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SPECTRAL APPROXIMATION OF ELLIPTIC OPERATORS

BY THE HYBRID HIGH-ORDER METHOD

VICTOR CALO, MATTEO CICUTTIN, QUANLING DENG, AND ALEXANDRE ERN

Abstract. We study the approximation of the spectrum of a second-order
elliptic differential operator by the Hybrid High-Order (HHO) method. The
HHO method is formulated using cell and face unknowns which are polynomi-
als of some degree k ≥ 0. The key idea for the discrete eigenvalue problem is to
introduce a discrete operator where the face unknowns have been eliminated.
Using the abstract theory of spectral approximation of compact operators in
Hilbert spaces, we prove that the eigenvalues converge as h2t and the eigen-
functions as ht in the H1-seminorm, where h is the mesh-size, t ∈ [s, k + 1]

depends on the smoothness of the eigenfunctions, and s > 1
2
results from the

elliptic regularity theory. The convergence rates for smooth eigenfunctions are
thus h2k+2 for the eigenvalues and hk+1 for the eigenfunctions. Our theoretical
findings, which improve recent error estimates for Hybridizable Discontinuous
Galerkin (HDG) methods, are verified on various numerical examples includ-
ing smooth and non-smooth eigenfunctions. Moreover, we observe numerically
in one dimension for smooth eigenfunctions that the eigenvalues superconverge
as h2k+4 for a specific value of the stabilization parameter.

1. Introduction

The Hybrid High-Order (HHO) method has been recently introduced for diffu-
sion problems in [28] and for linear elasticity problems in [27]. The HHO method is
formulated by introducing cell and face unknowns which are polynomials of some
degree k ≥ 0 (some variations in the degree of the cell unknowns are possible;
see [17]). The method is then devised from a local reconstruction operator and a
(subtle) local stabilization operator in each mesh cell. This leads to a discretiza-
tion method that supports general meshes (with polyhedral cells and non-matching
interfaces). Moreover, when approximating smooth solutions of second-order el-
liptic source problems, the method delivers error estimates of order hk+1 in the
H1-seminorm and of order hk+2 in the L2-norm under full elliptic regularity. Po-
sitioning unknowns at the mesh faces is also a natural way to express locally in
each mesh cell the balance properties satisfied by the model problem. As shown
in [17], the HHO method can be fitted into the family of Hybridizable Discontin-
uous Galerkin (HDG) methods introduced in [18] (and thus to the Weak Galerkin
method [47]) and is also closely related to the non-conforming Virtual Element
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Method from [5]. The HHO method has undergone a vigorous development over
the last few years; we mention, among others, the application to advection-diffusion
equations in [25], to the Stokes equations in [29], to the Leray–Lions equations in
[24], and to hyperelasticity with finite deformations in [1]. The implementation
of HHO methods is described in [16]. As already pointed out in [27, 28], the cell
unknowns can be eliminated locally in each mesh cell, leading to a global Schur
complement problem with compact stencil in terms of the face unknowns.

The goal of this work is to devise and analyze HHO methods for the discretiza-
tion of the eigenvalue problem associated with a second-order elliptic differential
operator. There are several salient motivations for considering HHO methods for
the present problem. First, HHO methods support general meshes with polyhedral
cells and hanging nodes resulting, e.g., from the presence of non-matching inter-
faces. An example on general meshes is presented in the numerical experiments
below. Second, HHO methods do not require tunable parameters, as opposed to
Interior Penalty Discontinuous Galerkin methods for instance, where the penalty
parameter depends in particular on the value of a certain constant in a discrete
trace inequality. Third, HHO methods are computationally effective since (i) they
are based on the primal formulation and do not require to introduce dual variables,
(ii) they lead to face-based stencils that are (far) more compact than vertex-based
stencils (especially in 3D) as produced by conforming finite element methods for in-
stance, and (iii) because HHO methods attach degrees of freedom to the mesh faces,
the size of the problem grows quadratically with the polynomial degree instead of
cubically as in discontinuous Galerkin methods.

The key idea in the analysis of the HHO approximation of the eigenvalue prob-
lem is to formulate the discrete problem by letting the mass bilinear form act only
on the cell unknowns, whereas the stiffness bilinear form acts, as for the discrete
source problem, on both cell and face unknowns. Thus, the first main contribution
of this work is to identify the relevant HHO solution operator approximating the
exact solution operator. We show that this can be achieved by introducing a purely
cell-based operator, where the face unknowns have been eliminated by expressing
them in terms of the cell unknowns. Note that the elimination process is reversed
with respect to the usual approach for the source problem, where one ends up with
a face-based discrete operator. While the present cell-based operator is not needed
for actual computations, it plays a central role in the error analysis. Indeed, with
this tool in hand, it becomes possible to analyze the approximation error on the
eigenvalues and the eigenfunctions by means of the abstract theory of spectral ap-
proximation of compact operators in Hilbert spaces following the work of Vǎınikko
[45, 46], Bramble and Osborn [10, 41], Descloux et al. [22, 23], and Babuška and
Osborn [6]. The second main contribution of this work is Theorem 4.4 and Corol-
lary 4.6 which establish a convergence of order h2t for the eigenvalues and of order
ht for the eigenfunctions in the H1-seminorm, where t ∈ [s, k+1] is the smoothness
index related to the eigenfunctions and s ∈ ( 12 , 1] is the smoothness index resulting
from the elliptic regularity theory. In the case of smooth eigenfunctions, we have
t = k + 1, leading to a convergence of order h2k+2 for the eigenvalues and of order
hk+1 for the eigenfunctions in the H1-seminorm. These convergence orders are
confirmed by our numerical experiments including both smooth and non-smooth
eigenfunctions of the Laplace operator in one and two dimensions. We highlight
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that these convergence results are so far lacking for HDG methods (see the dis-
cussion in the next paragraph), so that the present work contributes to fill this
gap. Finally, the third contribution of this work is the numerical observation of a
superconvergence of order h2k+4 for the eigenvalues in one dimension whenever the
stabilization parameter is chosen to be equal to (2k + 3).

Let us put our results in perspective with the literature on the approximation of
elliptic eigenvalue problems by other discretization methods. Following the early
work in [44], it is well known that using H1-conforming finite elements of degree
k ≥ 1 on simplicial meshes leads to convergence rates of order h2k for the eigenval-
ues and of order hk for the eigenfunctions (provided the eigenfunctions are smooth
enough). We refer the reader to [8] for a review on the finite element approximation
of eigenvalue problems. Similar results were obtained more recently in [3, 33] for
discontinuous Galerkin (dG) methods. The analysis of the spectral approximation
by mixed and mixed-hybrid methods was started in [14, 38, 39] and expanded in
[9,30]. Hybridization techniques leading to an eigenproblem on the face unknowns
were studied in [19] for Raviart–Thomas mixed finite elements; therein, it was also
observed that the use of a local post-processing technique improves the accuracy of
the computed eigenfunctions (see also [31] for the lowest-order case). The approx-
imation of elliptic eigenvalue problems using the Virtual Element Method (VEM)
was studied in [32], where optimal convergence rates were obtained. The spec-
tral approximation of elliptic operators by the HDG method was analyzed in [34],
leading to a convergence of order h2k+1 for the eigenvalues; therein, a non-trivial
post-processing using a Rayleigh quotient was also examined numerically leading
to an improved convergence of order h2k+2 for k ≥ 1. In contrast, the HHO ap-
proximation directly delivers a provable convergence of order h2k+2 even for k = 0.
Finally, let us mention the recent work in [13,20,42] which studies numerically the
optimally blended quadrature rules [2, 21] for the isogeometric analysis [36] of the
Laplace eigenvalue problem and reports superconvergence of order h2k+2 for the
eigenvalue errors while maintaining optimal convergence of orders hk and hk+1 for
the eigenfunction errors in the H1-seminorm and in the L2-norm, respectively.

The rest of this paper is organized as follows. Section 2 presents the second-
order elliptic eigenvalue problem and briefly recalls the main abstract results we
are going to use concerning the spectral approximation of compact operators in
Hilbert spaces. Section 3 deals with the HHO discretization, first of the source
problem and then of the eigenvalue problem. The algebraic realization of both
problems is also presented. Section 3 additionally identifies the relevant notion of
discrete solution operator for HHO methods and outlines the error analysis for the
HHO discretization of the source problem. This analysis is based on the results of
[28], but we handle the case where the exact solution does not have full regularity.
Section 4 is concerned with the error analysis for the HHO discretization of the
eigenvalue problem and contains our main results. Section 5 presents our numerical
examples. Finally, some concluding remarks are collected in Section 6.

2. Functional setting

In this section, we present the second-order elliptic eigenvalue problem, and
briefly recall the main abstract results on the approximation of the spectrum of
compact operators in Hilbert spaces.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1562 V. CALO, M. CICUTTIN, Q. DENG, AND A. ERN

2.1. Problem statement. We consider the following second-order elliptic eigen-
value problem: find an eigenpair (λ, u) with λ ∈ R>0 and u : Ω → R such that

(2.1)
−Δu = λu in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
d, d ∈ {1, 2, 3}, is a bounded open domain with Lipschitz boundary

∂Ω and Δ is the Laplacian. In weak form, the problem (2.1) reads as follows: find
(λ, u) ∈ R>0 ×H1

0 (Ω) such that

(2.2) a(u,w) = λb(u,w) ∀w ∈ H1
0 (Ω),

with the bilinear forms a and b defined on H1
0 (Ω)×H1

0 (Ω) and L2(Ω)× L2(Ω) as

(2.3) a(v, w) = (∇v,∇w)L2(Ω), b(v, w) = (v, w)L2(Ω),

where (·, ·)L2(Ω) denotes the inner product in L2(Ω) or in L2(Ω;Rd). The eigenvalue
problem (2.1) has a countably infinite sequence of eigenvalues (λj)j≥1 (see, among
many others, [12, Sec. 9.8]) such that

(2.4) 0 < λ1 < λ2 ≤ λ3 ≤ · · · , λj → +∞,

and an associated sequence of L2-orthonormal eigenfunctions (uj)j≥1 such that

(2.5) (uj , ul)L2(Ω) = δjl ∀j, l ≥ 1,

with the Kronecker delta defined as δjl = 1 when j = l and zero otherwise.
The source problem associated with the eigenvalue problem (2.2) is as follows:

for all φ ∈ L2(Ω), find u ∈ H1
0 (Ω) such that

(2.6) a(u,w) = b(φ,w) ∀w ∈ H1
0 (Ω).

The solution operator associated with (2.6) is denoted as T : L2(Ω) → L2(Ω), so
that we have T (φ) ∈ H1

0 (Ω) ⊂ L2(Ω) and

(2.7) a(T (φ), w) = b(φ,w) ∀w ∈ H1
0 (Ω).

By the Rellich–Kondrachov Theorem (see, e.g., [35, Thm. 1.4.3.2]), T is compact
from L2(Ω) to L2(Ω). Moreover, the elliptic regularity theory (see, e.g., [35,37,43])
implies that there is a real number s ∈ ( 12 , 1] so that T ∈ L(L2(Ω);H1+s(Ω)). The

reason for introducing the solution operator T is that (λ, u) ∈ R>0 ×H1
0 (Ω) is an

eigenpair for (2.2) if and only if (μ, u) ∈ R>0×H1
0 (Ω) with μ = λ−1 is an eigenpair

of T .
One can also consider the adjoint solution operator T ∗ : L2(Ω) → L2(Ω) such

that, for all ψ ∈ L2(Ω), T ∗(ψ) ∈ H1
0 (Ω) and

(2.8) a(w, T ∗(ψ)) = b(w,ψ) ∀w ∈ H1
0 (Ω).

The symmetry of the bilinear forms a and b implies that T = T ∗; however, allowing
more generality, we keep a distinct notation for the two operators. Since in general
we have

(2.9) (T (φ), ψ)L2(Ω) = a(T (φ), T ∗(ψ)) = (φ, T ∗(ψ))L2(Ω),

we infer that T ∗ is the adjoint operator of T , once the duality product is identified
with the inner product in L2(Ω). Therefore, in the present symmetric context, the
operator T is selfadjoint.
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2.2. Spectral approximation theory for compact operators. Let us now
briefly recall the main results we use concerning the spectral approximation of
compact operators in Hilbert spaces. Let L be a Hilbert space with inner product
denoted by (·, ·)L, and let T ∈ L(L;L); assume that T is compact. We do not
assume for the abstract theory that T is selfadjoint and we let T ∗ ∈ L(L;L) denote
the adjoint operator of T . Let Tn ∈ L(L;L) be a member of a sequence of compact
operators that converges to T in operator norm, i.e.,

(2.10) lim
n→+∞

‖T − Tn‖L(L;L) = 0,

and let T ∗
n ∈ L(L;L) be the adjoint operator of Tn. We want to study how well the

eigenvalues and the eigenfunctions of Tn approximate those of T . Let σ(T ) denote
the spectrum of the operator T and let μ ∈ σ(T ) \ {0} be a nonzero eigenvalue of
T . Let α be the ascent of μ, i.e., the smallest integer α such that ker(μI − T )α =
ker(μI − T )α+1, where I is the identity operator. Let also

(2.11) Gμ = ker(μI − T )α, G∗
μ = ker(μI − T ∗)α,

and m = dim(Gμ) (this integer is called the algebraic multiplicity of μ; note that
m ≥ α).

Theorem 2.1 (Convergence of the eigenvalues). Let μ ∈ σ(T ) \ {0}. Let α be the
ascent of μ and let m be its algebraic multiplicity. Then there are m eigenvalues of
Tn, denoted as μn,1, . . . , μn,m, that converge to μ as n → +∞. Moreover, letting
〈μn〉 = 1

m

∑m
j=1 μn,j denote their arithmetic mean, there is C, depending on μ but

independent of n, such that

(2.12)

max
1≤j≤m

|μ− μn,j |α + |μ− 〈μn〉| ≤ C
(

sup
0�=φ∈Gμ

0�=ψ∈G∗
μ

|((T − Tn)φ, ψ)L|
‖φ‖L‖ψ‖L

+ ‖(T − Tn)|Gμ
‖L(Gμ;L)‖(T − Tn)

∗|G∗
μ
‖L(G∗

μ;L)

)
.

Remark 2.2 (Convergence of the arithmetic mean). Note that (2.12) shows that for
α ≥ 2, the arithmetic mean of the eigenvalues has a better convergence rate than
each eigenvalue individually.

Theorem 2.3 (Convergence of the eigenfunctions). Let μ ∈ σ(T )\{0} with ascent
α and algebraic multiplicity m. Let μn,j be an eigenvalue of Tn that converges to
μ. Let wn,j be a unit vector in ker(μn,jI − Tn)

� for some positive integer 	 ≤ α.
Then, for any integer r with 	 ≤ r ≤ α, there is a vector ur ∈ ker(μI − T )r ⊂ Gμ

such that

(2.13) ‖ur − wn,j‖L ≤ C‖(T − Tn)|Gμ
‖

r−�+1
α

L(Gμ;L),

where C depends on μ but is independent of n.

3. HHO discretization

In this section we present the discrete setting underlying the HHO discretization
and then we describe the discretization of the source problem (2.6) and of the
eigenvalue problem (2.2) by the HHO method. The HHO discretization of the
source problem has been introduced and analyzed in [28]; herein, we complete
the error analysis by addressing the case where the solution has minimal elliptic
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regularity pickup. The devising and analysis of the HHO discretization of the
eigenvalue problem is the main subject of this work.

3.1. Discrete setting. Let K be a partition of Ω into non-overlapping mesh cells.
A generic mesh cell is denoted by K and can be a d-dimensional polytope with
planar faces. In what follows, we assume that Ω is also a polytope in R

d with
planar faces, so that the mesh can cover Ω exactly. For all K ∈ K, we let nK

denote the unit outward vector to K. We say that F ⊂ R
d is a mesh face if it is

a subset with non-empty relative interior of some affine hyperplane HF and if one
of the two following conditions holds true: either there are two distinct mesh cells
K1,K2 ∈ K so that F = ∂K1∩∂K2∩HF and F is called an interface, or there is one
mesh cell K ∈ K so that F = ∂K ∩ ∂Ω∩HF and F is called a boundary face. The
mesh faces are collected in the set F , interfaces in the set F i, and boundary faces in
the set Fb. We let hS denote the diameter of the set S which can be a mesh cell or
a mesh face. We assume that the mesh K is a member of a shape-regular polytopal
mesh family in the sense specified in [27, 28]. In a nutshell, there is a matching
simplicial submesh of K that belongs to a shape-regular family of simplicial meshes
in the usual sense of Ciarlet [15] and such that each cell K ∈ K (resp., face F ∈ F)
can be decomposed in a finite number of subcells (resp., subfaces) with uniformly
comparable diameter.

The HHO method is defined locally in each mesh cell K ∈ K from a pair of local
unknowns which consist of one polynomial attached to the cell K and a piecewise
polynomial attached to the boundary ∂K, i.e., one polynomial attached to each face
F composing the boundary of K. Let k ≥ 0 be a polynomial degree, and let Pk

d′(S),
with d′ ∈ {d − 1, d}, be the linear space composed of real-valued polynomials of
total degree at most k on the d′-dimensional affine manifold S ⊂ R

d (S is typically
a mesh face or a mesh cell). The local discrete HHO pair is denoted

(3.1) v̂K = (vK , v∂K) ∈ V̂ k
K := P

k
d(K)× P

k
d−1(F∂K),

where

(3.2) P
k
d−1(F∂K) = ×

F∈F∂K

P
k
d−1(F ),

and F∂K is the collection of all the faces composing the cell boundary ∂K. There is
actually some flexibility in the choice of the polynomial degree for the cell unknowns
since one can take them to be polynomials of degree l ∈ {k − 1, k, k + 1} [17]. For
simplicity, we only consider the case l = k; all what follows readily extends to the
other choices for l. In what follows, we always use hat symbols to indicate discrete
HHO pairs.

There are two key ingredients to devise locally the HHO method: a local re-
construction operator and a local stabilization operator. The local reconstruction
operator is defined as pk+1

K : V̂ k
K → P

k+1
d (K) such that for all v̂K = (vK , v∂K) ∈ V̂ k

K ,
we have

(3.3) (∇pk+1
K (v̂K),∇w)L2(K) = (∇vK ,∇w)L2(K) + (v∂K − vK ,∇w·nK)L2(∂K)

for all w ∈ P
k+1
d (K). The above Neumann problem uniquely defines pk+1

K (v̂K) ∈
P
k+1
d (K) up to an additive constant which can be specified by additionally requir-

ing that (pk+1
K (v̂K) − vK , 1)L2(K) = 0 (this choice is irrelevant in what follows).
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Concerning stabilization, we define the local operator Sk
∂K : V̂ k

K → P
k
d−1(F∂K) such

that, for all v̂K = (vK , v∂K) ∈ V̂ k
K , we have

(3.4) Sk
∂K(v̂K) = Πk

∂K(v∂K − pk+1
K (v̂K)|∂K)−Πk

K(vK − pk+1
K (v̂K))|∂K ,

where Πk
K and Πk

∂K denote the L2-orthogonal projectors from L1(K) onto P
k
d(K)

and from L1(∂K) onto P
k
d−1(F∂K), respectively. Equivalently, we have Sk

∂K(v̂K) =

Πk
∂K(v∂K − P k+1

K (v̂K)|∂K) with P k+1
K (v̂K) = vK + (I − Πk

K)(pk+1
K (v̂K)), which is

[28, eq. (22)]. Finally, the local HHO bilinear form for the stiffness is such that, for

all v̂K = (vK , v∂K) ∈ V̂ k
K and all ŵK = (wK , w∂K) ∈ V̂ k

K , we have
(3.5)

âK(v̂K , ŵK) = (∇pk+1
K (v̂K),∇pk+1

K (ŵK))L2(K) + (τ∂KSk
∂K(v̂K), Sk

∂K(ŵK))L2(∂K),

where τ∂K denotes the piecewise constant function on ∂K such that τ∂K|F = ηh−1
F

for all F ∈ F∂K , and η > 0 is a user-specified positive stabilization parameter (the
simplest choice is to set η = 1).

3.2. HHO discretization of the source problem. To discretize the source prob-
lem (2.6) using the HHO method, we consider the following global space of discrete
HHO pairs:

(3.6) V̂ k
h = V k

K × V k
F , V k

K = ×
K∈K

P
k
d(K), V k

F = ×
F∈F

P
k
d−1(F ).

Here, the subscript h refers to the global mesh-size defined as h = maxK∈K hK . For

a global HHO pair v̂h = (vK, vF ) ∈ V̂ k
h with vK ∈ V k

K and vF ∈ V k
F , we denote by

v̂K = (vK , v∂K) ∈ V̂ k
K the local HHO pair associated with the mesh cell K ∈ K, and

we denote by vF ∈ P
k
d−1(F ) the component associated with the mesh face F ∈ F .

The homogeneous Dirichlet boundary condition can be embedded into the HHO
space by considering the subspaces

(3.7) V̂ k
h,0 := V k

K × V k
F ,0, V k

F ,0 := {vF ∈ V k
F | vF = 0 ∀F ∈ Fb}.

The HHO discretization of the source problem with φ ∈ L2(Ω) reads as follows:

find ûh ∈ V̂ k
h,0 such that

(3.8) âh(ûh, ŵh) = b(φ,wK) ∀ŵh = (wK, wF ) ∈ V̂ k
h,0,

where

(3.9) âh(v̂h, ŵh) =
∑
K∈K

âK(v̂K , ŵK) ∀v̂h, ŵh ∈ V̂h.

The algebraic realization of the discrete source problem (3.8) leads to a symmet-
ric linear system which can be written in the following block form where unknowns
attached to the mesh cells are ordered before unknowns attached to the mesh faces:

(3.10)

[
AKK AKF
AFK AFF

] [
UK
UF

]
=

[
φK
0

]
.

The system matrix is positive-definite owing to the coercivity of the bilinear form
âh; see (3.25) below. A computationally-effective way to solve the above linear
system is to use a Schur complement technique, also known as static condensation,
where the cell unknowns are eliminated by expressing them locally in terms of the
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face unknowns. This elimination is simple since the block-matrix AKK is block-
diagonal. The resulting linear system in terms of the face unknowns is

(3.11) KFFUF = −AFKA
−1
KKφK,

with the Schur complement matrix KFF = AFF − AFKA
−1
KKAKF . As shown

in [17], the linear system (3.11) is a global transmission problem (in which a given
mesh face is locally coupled to the other mesh faces with which it shares a mesh
cell) that expresses the equilibration of a suitable flux across all the mesh interfaces.

3.3. HHO discretization of the eigenvalue problem. The HHO discretization
of the eigenvalue problem (2.2) consists of finding the discrete eigenpairs (λh, ûh) ∈
R>0 × V̂ k

h,0 such that

(3.12) âh(ûh, ŵh) = λhb(uK, wK) ∀ŵh = (wK, wF) ∈ V̂ k
h,0.

One key idea here is that the mass bilinear form on the right-hand side of (3.12)
only involves discrete cell unknowns.

The algebraic realization of (3.12) is the matrix eigenvalue problem

(3.13)

[
AKK AKF
AFK AFF

] [
UK
UF

]
= λh

[
BKK 0
0 0

] [
UK
UF

]
.

Since the face unknowns do not carry any mass, they can be eliminated, leading to
the following matrix eigenvalue problem solely in terms of the cell unknowns:

(3.14) KKKUK = λhBKKUK,

with the Schur complement matrix KKK = AKK−AKFA
−1
FFAFK. Therefore, there

are as many discrete eigenpairs as there are cell unknowns, i.e., the dimension of
the polynomial space P

k
d times the number of mesh cells.

3.4. HHO solution operators. We now introduce the key operators that play a
central role in the analysis of the HHO approximation of the eigenvalue problem.
To motivate the approach, we observe that for the source problem (3.8), one can

consider the cell-face HHO solution operator T̂h : L2(Ω) → V̂ k
h,0 so that

(3.15) âh(T̂h(φ), ŵh) = b(φ,wK) ∀ŵh = (wK, wF ) ∈ V̂ k
h,0.

However, this operator is not convenient to analyze the approximation of the eigen-
value problem since it does not map to a subspace of L2(Ω). The key idea is then
to introduce a cell HHO solution operator TK : L2(Ω) → V k

K ⊂ L2(Ω) by mimicking
the elimination of the face unknowns presented above at the algebraic level for the
eigenvalue problem.

As a first step, we define the operator ZF ,0 : V k
K → V k

F ,0 so that, for all vK ∈ V k
K ,

ZF ,0(vK) ∈ V k
F ,0 is defined as the unique solution of

(3.16) âh((vK, ZF ,0(vK)), (0, wF)) = 0 ∀wF ∈ V k
F ,0.

To allow for some generality, we also define the operator Z†
F ,0 : V k

K → V k
F ,0 so that

(3.17) âh((0, wF), (vK, Z
†
F ,0(vK))) = 0 ∀wF ∈ V k

F ,0.

In the present setting where the bilinear form âh is symmetric, the two operators

ZF ,0 and Z†
F ,0 coincide. As a second step, we define the bilinear form aK on V k

K×V k
K

such that

(3.18) aK(vK, wK) = âh((vK, ZF ,0(vK)), (wK, Z
†
F ,0(wK))),
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and introduce the solution operator TK : L2(Ω) → V k
K so that

(3.19) aK(TK(φ), wK) = b(φ,wK) ∀wK ∈ V k
K .

Lemma 3.1 (HHO solution operator). The following holds true:

(3.20) T̂h(φ) = (TK(φ), (ZF ,0 ◦ TK)(φ)) ∀φ ∈ L2(Ω).

Proof. Let φ ∈ L2(Ω). Let us set uK = TK(φ) so that uK ∈ V k
K and aK(uK, wK) =

b(φ,wK) for all wK ∈ V k
K , and set uF = (ZF ,0 ◦ TK)(φ) = ZF ,0(uK) so that uF ∈

V k
F ,0. Setting ûh = (uK, uF ) ∈ V̂ k

h,0, we need to verify that ûh solves the discrete
HHO source problem, i.e.,

âh(ûh, ŵh) = b(φ,wK) ∀ŵh = (wK, wF ) ∈ V̂ k
h,0.

Considering first a test function in the form ŵh = (wK, 0), we obtain

âh(ûh, (wK, 0)) = âh((uK, ZF ,0(uK)), (wK, 0))

= âh((uK, ZF ,0(uK)), (wK, 0)) + âh((uK, ZF ,0(uK)), (0, Z
†
F ,0(wK)))︸ ︷︷ ︸

=0

= âh((uK, ZF ,0(uK)), (wK, Z
†
F ,0(wK)))

= aK(uK, wK) = b(φ,wK),

where we used the definition (3.16) of ZF ,0 in the second line and the defini-
tion (3.18) of aK in the fourth line. Considering now a test function in the form
ŵh = (0, wF), we obtain owing to (3.16) that

âh(ûh, (0, wF)) = âh((uK, ZF ,0(uK)), (0, wF)) = 0.

This completes the proof. �

The cell HHO solution operator TK defined in (3.19) is the relevant solution
operator for the discrete eigenvalue problem (3.12). Indeed, the eigenpair (λh, ûh) ∈
R>0×V̂ k

h,0 with ûh = (uK, uF ) ∈ V k
K×V k

F ,0 solves (3.12) if and only if uF = ZF ,0(uK)

and the pair (λh, uK) ∈ R>0 × V k
K solves

(3.21) aK(uK, wK) = λhb(uK, wK) ∀wK ∈ V k
K ,

that is, if and only if (μh, uK) ∈ R>0 × V k
K with μh = λ−1

h is an eigenpair of the
discrete solution operator TK.

3.5. Error analysis for the source problem. In this section we briefly outline
the analysis of the HHO discretization of the source problem drawing on the ideas
introduced in [28]. One difference here is to include the case when the exact solution
has a smoothness index s ∈ ( 12 , k + 2] and not just s = k + 2 (recall that s > 1

2
follows from the elliptic regularity theory). In what follows, we use the symbol C
to denote a generic constant (its value can change at each occurrence) that can
depend on the mesh regularity, the polynomial degree k, and the domain Ω, but is
independent of the mesh-size h.

LetK ∈ K be a mesh cell. We equip the local HHO space V̂ k
K defined in (3.1) with

the following seminorm (which is an HHO counterpart of the H1(K)-seminorm):

(3.22) ‖v̂K‖2
V̂ k
K

= ‖∇vK‖2L2(K) + ‖τ
1
2

∂K(vK − v∂K)‖2L2(∂K)
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for all v̂K = (vK , v∂K) ∈ V̂ k
K . We observe that ‖v̂K‖V̂ k

K
= 0 implies that vK

and v∂K are constant functions taking the same value. We equip the global HHO
space V̂ k

h defined in (3.6) with the seminorm (which is an HHO counterpart of the
H1(Ω)-seminorm)

(3.23) ‖v̂h‖2V̂ k
h

=
∑
K∈K

‖v̂K‖2
V̂ k
K

∀v̂h ∈ V̂ k
h .

The map ‖ · ‖V̂ k
h

is a norm on the subspace V̂ k
h,0 defined in (3.7). [28, Lemma 4]

shows that there is a real number β > 0, uniform with respect to the mesh-size h,
such that, for all K ∈ K,

(3.24) β‖v̂K‖2
V̂ k
K

≤ âK(v̂K , v̂K) ≤ β−1‖v̂K‖2
V̂ k
K

∀v̂K ∈ V̂ k
K ,

and, consequently, given the definition (3.9) of âh, that the following coercivity and
boundedness properties hold true:

âh(v̂h, v̂h) ≥ β‖v̂h‖2V̂ k
h

∀v̂h ∈ V̂ k
h ,(3.25)

âh(v̂h, ŵh) ≤ β−1‖v̂h‖V̂ k
h
‖ŵh‖V̂ k

h
∀(v̂h, ŵh) ∈ V̂ k

h × V̂ k
h .(3.26)

Owing to the Lax–Milgram Lemma, we infer that the cell-face HHO solution op-
erator T̂h : L2(Ω) → V̂ k

h,0 introduced in (3.15) is well-defined. For later use in the

analysis of the eigenvalue problem, we now establish a stability property for T̂h.

Lemma 3.2 (Stability of T̂h). There is C so that

(3.27) ‖T̂h(φ)‖V̂ k
h
≤ C‖φ‖L2(Ω) ∀φ ∈ L2(Ω).

Proof. Let φ ∈ L2(Ω) and let us write T̂h(φ) = (uK, uF ) with uK ∈ V k
K and uF ∈

V k
F ,0. Using the coercivity property (3.25), the definition (3.15) of the solution

operator T̂h, that of the bilinear form b, and the Cauchy–Schwarz inequality lead
to

(3.28) β‖T̂h(φ)‖2V̂ k
h

≤ âh(T̂h(φ), T̂h(φ)) = b(φ, uK) ≤ ‖φ‖L2(Ω)‖uK‖L2(Ω).

On the broken polynomial space V k
K , we can apply the following discrete Poincaré

inequality which has been derived in the discontinuous Galerkin context in [4,11,26]:

CP,dG‖uK‖L2(Ω) ≤
( ∑

K∈K
‖∇uK‖2L2(K) +

∑
F∈F

h−1
F ‖[[uK]]F ‖2L2(F )

) 1
2

,

with CP,dG > 0 uniform with respect to the mesh-size h, and where [[uK]]F denotes
the jump of uK across F if F is an interface (F ∈ F i) or the value of uK on F
if F is a boundary face (F ∈ Fb). If F ∈ F i, we have [[uK]]F = uK1

|F − uK2
|F ,

where K1,K2 are the two mesh cells sharing F (the sign of the jump is irrelevant
in what follows), and we can therefore write [[uK]]F = (uK1

−uF )|F − (uK2
− uF )|F ,

where uF is the component of uF attached to F . If F ∈ Fb, we have [[uK]]F =
uK1

|F , where K1 is the unique mesh cell sharing F with ∂Ω, and we can therefore
write [[uK]]F = (uK1

− uF )|F since uF ≡ 0 (recall that uF ∈ V k
F ,0). Recalling the

definition (3.23) of the ‖ · ‖V̂ k
h
-norm, that of τ∂K given just below (3.5), and using

the triangle inequality, we infer that

‖uK‖L2(Ω) ≤ C‖(uK, uF )‖V̂ k
h
= C‖T̂h(φ)‖V̂ k

h
.

Combining this bound with (3.28), we obtain the assertion. �
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An important tool in the analysis of HHO methods is the global reduction op-
erator Îkh : H1

0 (Ω) → V̂ k
h,0 defined such that, for all v ∈ H1

0 (Ω),

(3.29) Îkh(v) = (Πk
K(v),Π

k
F(v)) := ((Πk

K(v))K∈K, (Π
k
F (v))F∈F ) ∈ V̂ k

h,0,

where Πk
K and Πk

F denote the L2-orthogonal projectors onto P
k
d(K) and P

k
d−1(F ),

respectively. We also define the local reduction operator ÎkK : H1(K) → V̂ k
K such

that, for all v ∈ H1(K),

(3.30) ÎkK(v) = (Πk
K(v),Πk

∂K(v)) = (Πk
K(v), (Πk

F (v))F∈F∂K
) ∈ V̂ k

K .

Recalling the local reconstruction operator pk+1
K : V̂ k

K → P
k+1
d (K) defined in (3.3),

[28, Lemma 3] shows that

(3.31) ek+1
K := pk+1

K ◦ ÎkK : H1(K) → P
k+1
d (K)

is the elliptic projector, i.e., for all v ∈ H1(K), ek+1
K (v) is the unique polynomial

in P
k+1
d (K) such that (∇(ek+1

K (v) − v),∇w)L2(K) = 0 for all w ∈ P
k+1
d (K) and

(ek+1
K (v)−v, 1)L2(K) = 0. For two functions v, w ∈ H1(K), the above orthogonality

condition on the gradient implies that

(∇(ek+1
K (v)− v),∇(ek+1

K (w)− w))L2(K)

= (∇v,∇w)L2(K) − (∇ek+1
K (v),∇ek+1

K (w))L2(K).
(3.32)

Lemma 3.3 (Discrete error estimate). There is C such that

(3.33) ‖T̂h(φ)− Îkh(T (φ))‖V̂ k
h
≤ Cht‖T (φ)‖H1+t(Ω)

for all t ∈ [s, k + 1] and all φ ∈ L2(Ω) such that T (φ) ∈ H1+t(Ω); here, s > 1
2 is

the smoothness index resulting from the elliptic regularity theory.

Proof. Let t ∈ [s, k+1], and let φ ∈ L2(Ω) be such that T (φ) ∈ H1+t(Ω). Proceed-
ing as in the proof of [28, Theorem 8], we infer that

‖T̂h(φ)− Îkh(T (φ))‖V̂ k
h
≤ C sup

ŵh∈V̂ k
h,0

‖ŵh‖V̂ k
h
=1

|δh(ŵh)| =: C ‖δh‖(V̂ k
h,0)

′ ,

with the consistency error δh(ŵh) such that

δh(ŵh) =
∑
K∈K

(∇ξK ,∇wK)L2(K) + (∇ξK ·nK , w∂K − wK)L2(∂K)

+ (τ∂KSk
∂K(ÎkK(u)), Sk

∂K(ŵK))L2(∂K),

and the shorthand notation ξK := ek+1
K (u|K)− u|K and u = T (φ) (we used s > 1

2
in writing the second summand on the right-hand side above). Using the Cauchy–
Schwarz inequality and recalling the definition of the norm ‖ŵh‖V̂ k

h
, we obtain

‖δh‖(V̂ k
h,0)

′ ≤ C

( ∑
K∈K

‖∇ξK‖2L2(K)+hK‖∇ξK‖2L2(∂K)+h−1
K ‖Sk

∂K(ÎkK(u))‖2L2(∂K)

) 1
2

.
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Recalling the definition (3.4) of the stabilization operator Sk
∂K , we obtain that

Sk
∂K(ÎkK(u)) = Πk

∂K(Πk
∂K(u)− ek+1

K (u)|∂K)−Πk
K(Πk

∂K(u)− ek+1
K (u))|∂K

= Πk
∂K((u− ek+1

K (u))|∂K)−Πk
K(u− ek+1

K (u))|∂K

= −Πk
∂K((ξK)|∂K) + Πk

K(ξK)|∂K .

We then have

‖Sk
∂K(ÎkK(u))‖L2(∂K) ≤ ‖ξK‖L2(∂K) + ‖Πk

K(ξK)‖L2(∂K)

≤ ‖ξK‖L2(∂K) + Ch
− 1

2

K ‖ξK‖L2(K)

≤ C(h
− 1

2

K ‖ξK‖L2(K) + h
1
2

K‖∇ξK‖L2(K))

≤ Ch
1
2

K‖∇ξK‖L2(K),

where we used a triangle inequality and the L2-stability of Πk
∂K in the first line, a

discrete trace inequality and the L2-stability of Πk
K in the second line, a multiplica-

tive trace inequality in the third line, and the Poincaré–Steklov inequality on K in
the fourth line (that is, ‖ξK‖L2(K) ≤ ChK‖∇ξK‖L2(K) since ξK has zero mean-value

inK by construction). We conclude that h
− 1

2

K ‖Sk
∂K(ÎkK(u))‖L2(∂K) ≤ C‖∇ξK‖L2(K)

for some generic constant C, and, therefore, we have

‖δh‖(V̂ k
h,0)

′ ≤ C

( ∑
K∈K

‖∇ξK‖2L2(K) + hK‖∇ξK‖2L2(∂K)

) 1
2

.

Finally, invoking the approximation properties of the elliptic projector on all the
mesh cells leads to the assertion. �

4. Error analysis for the eigenvalue problem

The goal of this section is to perform the error analysis of the discrete eigenvalue
problem (3.12) by using the abstract theory outlined in Section 2.2 in the Hilbert
space L = L2(Ω). Let T, T ∗ : L2(Ω) → H1

0 (Ω) ⊂ L2(Ω) be the exact solution and
adjoint solution operators defined in Section 2.1 (T = T ∗, i.e., T is selfadjoint, in
the present symmetric setting). Let TK : L → V k

K ⊂ L be the discrete HHO solution
operator defined in (3.19). Its adjoint operator T ∗

K : L → VK ⊂ L is defined so that,
for all ψ ∈ L, T ∗

K(ψ) ∈ VK is the unique solution of

(4.1) aK(wK, T
∗
K(ψ)) = b(wK, ψ) ∀wK ∈ V k

K .

Owing to the symmetry of the bilinear forms aK and b, we have TK = T ∗
K in

the present setting, i.e., TK is selfadjoint. We keep as before a distinct notation

to allow for more generality, and we also set T̂ †
h : L → V̂ k

h,0 so that T̂ †
h(ψ) =

(T ∗
K(ψ), (Z

†
F ,0 ◦ T ∗

K)(ψ)) for all ψ ∈ L. Proceeding as in Lemma 3.1, we conclude
that

(4.2) âh(ŵh, T̂
†
h(ψ)) = b(wK, ψ) ∀ŵh = (wK, wF) ∈ V̂ k

h,0.

In the present symmetric setting, we have T̂h = T̂ †
h with T̂h defined in (3.15).

Finally, the elliptic regularity theory implies that there is a real number s ∈ ( 12 , 1]

so that T, T ∗ ∈ L(L2(Ω);H1+s(Ω)), with operator norm denoted by Cs.
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4.1. Preliminary results. To verify that we can apply the abstract theory from
Section 2.2, let us show that TK converges to T in operator norm as the mesh-size
h tends to zero, i.e., that (2.10) holds true.

Lemma 4.1 (Bound on L× L). The following holds true:

(4.3) sup
(φ,ψ)∈L×L

|((T − TK)(φ), ψ)L| ≤ Chs‖φ‖L‖ψ‖L,

where s ∈ ( 12 , 1] is the smoothness index associated with the elliptic regularity theory.
Consequently, we have ‖T − TK‖L(L;L) → 0 as h → 0.

Proof. For all φ, ψ ∈ L, we have

((T − TK)(φ), ψ)L

= (T (φ), ψ)L − b(TK(φ), ψ)

= (T (φ), ψ)L − aK(TK(φ), T
∗
K(ψ))

= (T (φ), ψ)L − âh(T̂h(φ), T̂
†
h(ψ))

= (T (φ), ψ)L − âh(Î
k
h(T (φ)), T̂

†
h(ψ)) + âh(Î

k
h(T (φ))− T̂h(φ), T̂

†
h(ψ))

= (T (φ)−Πk
K(T (φ)), ψ)L + âh(Î

k
h(T (φ))− T̂h(φ), T̂

†
h(ψ)),(4.4)

where we used the definition of the bilinear form b in the first line, the defini-
tion (4.1) of T ∗

K in the second line, the definition (3.18) of aK and Lemma 3.1 in the
third line, a simple algebraic manipulation in the fourth line, and the property (4.2)

and the definition (3.29) of Îkh in the fifth line. Let us call S1, S2 the two summands
on the right-hand side of (4.4). Owing to the elliptic regularity theory and the
approximation properties of the projector Πk

K (with k ≥ 0), we obtain that

|S1| ≤ Ch|T (φ)|H1(Ω)‖ψ‖L.
Since |T (φ)|H1(Ω) ≤ ‖T (φ)‖H1+s(Ω) ≤ Cs‖φ‖L, we infer that

|S1| ≤ CCsh‖φ‖L‖ψ‖L.
To bound S2, we use the boundedness property (3.26) of âh followed by the error

estimate from Lemma 3.3 (with t = s) and the stability property of T̂ †
h = T̂h from

Lemma 3.2 to infer that

|S2| ≤ Chs‖T (φ)‖H1+s(Ω)‖ψ‖L ≤ CCsh
s‖φ‖L‖ψ‖L.

Combining the bounds on S1 and S2 concludes the proof. �

Let μ ∈ σ(T ) \ {0} with ascent α and algebraic multiplicity m. To quantify
the smoothness of the functions in the subspaces Gμ and G∗

μ defined in (2.11), we
assume that there is a real number t ∈ [s, k + 1] and a constant Ct so that

(4.5)
‖φ‖H1+t(Ω) + ‖T (φ)‖H1+t(Ω) ≤ Ct‖φ‖L ∀φ ∈ Gμ,

‖ψ‖H1+t(Ω) + ‖T ∗(ψ)‖H1+t(Ω) ≤ Ct‖ψ‖L ∀ψ ∈ G∗
μ.

Note that t depends on μ, but we just write t instead of tμ to alleviate the notation.
If t = s, functions in Gμ and G∗

μ do not provide additional smoothness with respect
to that resulting from the elliptic regularity theory. In general, functions in Gμ and
G∗

μ are smoother, and one has t > s. The case t = k + 1 leads to optimal error
estimates; see Remark 4.7 below.
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Lemma 4.2 (Bound on Gμ × L and L×G∗
μ). The following holds true:

(4.6) sup
(φ,ψ)∈Gμ×L

|((T − TK)(φ), ψ)L| ≤ Cht‖φ‖L‖ψ‖L,

where t ∈ [s, k + 1] is the smoothness index associated with μ. Consequently, we
have

(4.7) ‖(T − TK)|Gμ
‖L(Gμ;L) ≤ Cht.

Similar bounds hold for T ∗
K, and, in particular, we have ‖(T − TK)

∗|G∗
μ
‖L(G∗

μ;L) ≤
Cht.

Proof. We only prove the statement for TK, the other proof is similar. Our starting
point is (4.4). Owing to the smoothness of the function T (φ) resulting from (4.5),
we infer that

|S1| ≤ Chmin(k+1,t+1)‖T (φ)‖H1+t(Ω)‖ψ‖L ≤ CCth
min(k+1,t+1)‖φ‖L‖ψ‖L.

Using similar arguments leads to |S2| ≤ Cht‖φ‖L‖ψ‖L. Since t ≤ min(k+1, t+1),
the assertion follows. �

Lemma 4.3 (Bound on Gμ ×G∗
μ). The following holds true:

(4.8) sup
(φ,ψ)∈Gμ×G∗

μ

|((T − TK)(φ), ψ)L| ≤ Ch2t‖φ‖L‖ψ‖L,

where t ∈ [s, k + 1] is the smoothness index associated with μ.

Proof. Our starting point is again (4.4), but we can now derive sharper bounds on
the two summands S1 and S2 by exploiting the smoothness of both φ and ψ. On
the one hand, we have

S1 = (T (φ)−Πk
K(T (φ)), ψ)L = (T (φ)−Πk

K(T (φ)), ψ −Πk
K(ψ))L,

so that

|S1| ≤ Ch2min(k+1,t+1)‖T (φ)‖H1+t(Ω)‖ψ‖H1+t(Ω) ≤ CC2
t h

2min(k+1,t+1)‖φ‖L‖ψ‖L,
where we used the smoothness of the functions T (φ) and ψ resulting from (4.5).
On the other hand, we have

S2 = âh(Î
k
h(T (φ))− T̂h(φ), T̂

†
h(ψ))

= âh(Î
k
h(T (φ))− T̂h(φ), Î

k
h(T

∗(ψ))) + âh(Î
k
h(T (φ))− T̂h(φ), T̂

†
h(ψ)− Îkh(T

∗(ψ)))

= a(T (φ), T ∗(ψ))− âh(T̂h(φ), Î
k
h(T

∗(ψ)))

+ âh(Î
k
h(T (φ)), Î

k
h(T

∗(ψ)))− a(T (φ), T ∗(ψ))

+ âh(Î
k
h(T (φ))− T̂h(φ), T̂

†
h(ψ)− Îkh(T

∗(ψ)))

= (φ−Πk
K(φ), T

∗(ψ)− Πk
K(T

∗(ψ)))L

+ âh(Î
k
h(T (φ)), Î

k
h(T

∗(ψ)))− a(T (φ), T ∗(ψ))

+ âh(Î
k
h(T (φ))− T̂h(φ), T̂

†
h(ψ)− Îkh(T

∗(ψ))),

where we used simple algebraic manipulations to derive the second and third iden-
tities, and the definition of T together with that of T̂h and of Îkh to derive the last
identity. Let us call S2,1, S2,2, S2,3 the three summands on the right-hand side
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of the above equation. Reasoning as above and invoking the smoothness of the
functions φ and T ∗(ψ) resulting from (4.5), we infer that

|S2,1| ≤ CC2
t h

2min(k+1,t+1)‖φ‖L‖ψ‖L.
To bound S2,2, we observe that

S2,2 =
∑
K∈K

(∇ek+1
K (T (φ)),∇ek+1

K (T ∗(ψ)))L2(K) − (∇T (φ),∇T ∗(ψ))L2(K)

+
∑
K∈K

(τ∂KSk
∂K(Îkh(T (φ))), S

k
∂K(Îkh(T

∗(φ))))L2(∂K) =: S2,2,1 + S2,2,2.

Since ek+1
K is the elliptic projector, the identity (3.32) implies that

S2,2,1 =
∑
K∈K

−(∇(T (φ)− ek+1
K (T (φ))),∇(T ∗(ψ)− ek+1

K (T ∗(ψ))))L2(K).

Using the Cauchy–Schwarz inequality and the approximation properties of the el-
liptic projector, we infer that

|S2,2,1| ≤ Ch2t‖T (φ)‖H1+t(Ω)‖T ∗(ψ)‖H1+t(Ω) ≤ CC2
t h

2t‖φ‖L‖ψ‖L.
Moreover, reasoning as in the end of the proof of Lemma 3.3, we obtain that

|S2,2,2| ≤ Ch2t‖T (φ)‖H1+t(Ω)‖T ∗(ψ)‖H1+t(Ω) ≤ CC2
t h

2t‖φ‖L‖ψ‖L.
Hence, we have

|S2,2| ≤ CC2
t h

2t‖φ‖L‖ψ‖L.
Finally, the bound on S2,3 results from the boundedness property (3.26) of âh and
the error estimate from Lemma 3.3 since

|S2,3| ≤ Ch2t‖T (φ)‖H1+t(Ω)‖T ∗(ψ)‖H1+t(Ω) ≤ CC2
t h

2t‖φ‖L‖ψ‖L.
Collecting the above estimates concludes the proof. �

4.2. Main results. We can now present our main results. Let μ ∈ σ(T )\{0} with
ascent α and algebraic multiplicity m. We focus now on the spectral approxima-
tion of selfadjoint operators, so that we have α = 1. Owing to the convergence
result from Lemma 4.1, there are m eigenvalues of TK, denoted μh,1, . . . , μh,m, that
converge to μ as h → 0.

Theorem 4.4 (Error estimate on eigenvalues and eigenfunctions in L). Assume
that there is t ∈ [s, k + 1] so that the smoothness property (4.5) holds true, where
s > 1

2 is the smoothness index resulting from the elliptic regularity theory. Then
there is C, depending on μ (and on the mesh regularity, the polynomial degree k,
and the domain Ω) but independent of the mesh-size h, such that

(4.9) max
1≤j≤m

|μ− μh,j | ≤ Ch2t.

Furthermore, let uK,j ∈ V k
K be a unit vector in ker(μh,jI − TK). Then, there is a

unit vector uj ∈ ker(μI − T ) ⊂ Gμ such that

(4.10) ‖uj − uK,j‖L ≤ Cht.

Proof. Combining the results from Lemma 4.2 and Lemma 4.3 with Theorem 2.1
and Theorem 2.3 completes the proof. �
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Remark 4.5 (Error estimate on eigenvalues). Since the eigenvalues λ and λh asso-
ciated with (2.2) and (3.12), respectively, are such that λ = μ−1 and λh = μ−1

h , we
infer that the same estimate as (4.9) holds true for the error between λ and λh.

Corollary 4.6 (Eigenfunction error estimate in H1). Let us drop the index j for
simplicity from the eigenfunction uj and the approximate eigenfunction uK,j and
let us set ûh = (uK, ZF ,0(uK)). Then the following holds true:

(4.11) âh(ûh − Îkh(u), ûh − Îkh(u))
1
2 ≤ Cht.

Consequently, we have

(4.12)

( ∑
K∈K

‖∇(u− pk+1
K (ûK))‖2L2(K)

) 1
2

≤ Cht.

Proof. We observe that

λh(uK, u)L = λh(uK,Π
k
K(u))L = λhb(uK,Π

k
K(u)) = aK(uK,Π

k
K(u))

= âh((uK, ZF ,0(uK)), (Π
k
K(u), Z

†
F ,0(Π

k
K(u))))

= âh((uK, ZF ,0(uK)), (Π
k
K(u), Z

†
F ,0(Π

k
K(u))))

+ âh((uK, ZF ,0(uK)), (0,Π
k
F(u)− Z†

F ,0(Π
k
K(u))))

= âh(ûh, Î
k
h(u)),

where we have used the definition of Πk
K and (3.21) in the first line, the definition

(3.18) of âh in the second line, the property (3.16) of ZF ,0 in the third line, and

the definition of Îkh in the last line. Setting δu := âh(Î
k
h(u), Î

k
h(u)) − a(u, u) and

recalling the normalization ‖u‖L = ‖uK‖L = 1, we infer that

âh(ûh − Îkh(u), ûh − Îkh(u))

= âh(ûh, ûh)− 2âh(ûh, Î
k
h(u)) + âh(Î

k
h(u), Î

k
h(u))

= λh‖uK‖2L − 2λh(uK, u)L + λh‖u‖2L − (λh − λ)‖u‖2L + δu

= λh‖uK − u‖2L − λh + λ+ δu,

which is a generalization of the Pythagorean eigenvalue error identity (see [44])
in the HHO context. The bound (4.11) then follows from the bounds derived in
Theorem 4.4 (see in particular the bound on S2,2 therein to estimate δu). Finally,
the bound (4.12) follows from the definition of the bilinear form âh, the triangle
inequality, and the approximation properties of the elliptic projector. �

Remark 4.7 (Optimal convergence). If t = k + 1, we recover a convergence of
order h2k+2 for the eigenvalues and of order kk+1 for the eigenfunctions in the
H1-seminorm.

5. Numerical experiments

In this section, we first verify the error estimates from Section 4 for eigenvalues
and smooth eigenfunctions approximated by the HHO method in 1D (unit inter-
val) and in 2D (unit square). We then study the effect of varying the stabilization
parameter and, in particular, we report superconvergence results for 1D uniform
meshes when using a particular value of the stabilization parameter. We next con-
sider in 2D the use of polygonal (hexagonal) meshes and we compare our results
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Table 1. Unit interval, relative eigenvalue errors, η = 1.

k N first mode second mode fourth mode eighth mode

error order error order error order error order

10 3.19e-2 — 1.17e-1 — 3.50e-1 — 6.99e-1 —

20 8.16e-3 1.97 3.19e-2 1.87 1.17e-1 1.58 3.50e-1 1.00

0 40 2.05e-3 1.99 8.16e-3 1.97 3.19e-2 1.87 1.17e-1 1.58

80 5.14e-4 2.00 2.05e-3 1.99 8.16e-3 1.97 3.19e-2 1.87

160 1.28e-4 2.00 5.14e-4 2.00 2.05e-3 1.99 8.16e-3 1.97

10 1.10e-4 — 1.81e-3 — 3.25e-2 — 4.01e-1 —

20 6.78e-6 4.01 1.10e-4 4.05 1.81e-3 4.16 3.25e-2 3.63

1 40 4.23e-7 4.00 6.78e-6 4.01 1.10e-4 4.05 1.81e-3 4.16

80 2.64e-8 4.00 4.23e-7 4.00 6.78e-6 4.01 1.10e-4 4.05

160 1.65e-9 4.00 2.64e-8 4.00 4.23e-7 4.00 6.78e-6 4.01

10 1.15e-7 — 7.52e-6 — 5.28e-4 — 6.08e-2 —

20 1.79e-9 6.01 1.15e-7 6.03 7.52e-6 6.13 5.28e-4 6.85

2 40 2.78e-11 6.01 1.79e-9 6.01 1.15e-7 6.03 7.52e-6 6.13

80 9.88e-14 8.14 2.78e-11 6.01 1.79e-9 6.01 1.15e-7 6.03

to those obtained using continuous finite elements. Finally, we present convergence
results on an L-shaped domain (which includes the case of a non-smooth eigen-
function) and on the unit disk. In all cases, we consider the eigenvalues λ and λh

associated with (2.2) and (3.12), respectively; both sets of eigenvalues are sorted
in an increasing order as λ1 < λ2 < · · · and λ1,h < λ2,h < · · · , and we report the

normalized eigenvalue errors
|λj−λh,j |

λj
.

5.1. Smooth eigenfunctions in 1D and 2D unit domains. Let Ω = (0, 1)
or Ω = (0, 1) × (0, 1) be the unit interval in 1D or the unit square in 2D, respec-
tively. The 1D problem (2.1) has exact eigenvalues λj = j2π2 and corresponding

normalized eigenfunctions uj(x) =
√
2 sin(jπx) with j = 1, 2, . . ., whereas the 2D

problem (2.1) has exact eigenvalues λjk = π2(j2 + k2) and normalized eigenfunc-
tions ujk(x, y) = 2 sin(jπx) sin(kπy) with j, k = 1, 2, . . . . We discretize the unit
interval uniformly with N ∈ {10, 20, 40, 80, 160} elements and the unit square uni-
formly with N × N squares with N ∈ {4, 8, 16, 32, 64}. The default stabilization
parameter of the HHO method is η = 1. The relative eigenvalue errors are reported
in Table 1 in 1D and in Table 2 in 2D for the first, second, fourth, and eighth
eigenvalues and for the polynomial degrees k ∈ {0, 1, 2}. These tables show good
agreement with the convergence order predicted by Theorem 4.4, i.e., the conver-
gence order for the eigenvalues is indeed h2k+2. The H1-seminorm errors on the
first, second, fourth, and eighth eigenfunctions in 1D are reported in Table 3. We
observe a good agreement with the convergence order predicted by Corollary 4.6,
that is, the convergence order for the eigenfunctions in the H1-seminorm is indeed
hk+1.
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Table 2. Unit square, relative eigenvalue errors, η = 1.

k N first mode second mode fourth mode eighth mode

error order error order error order error order

4 2.51e-1 — 5.11e-1 — 6.36e-1 — 7.39e-1 —

8 7.70e-2 1.70 2.16e-1 1.24 2.51e-1 1.34 4.08e-1 0.86

0 16 2.04e-2 1.92 6.57e-2 1.72 7.70e-2 1.70 1.33e-1 1.61

32 5.18e-3 1.98 1.74e-2 1.92 2.04e-2 1.92 3.73e-2 1.84

64 1.30e-3 1.99 4.41e-3 1.98 5.18e-3 1.98 9.62e-3 1.96

4 2.27e-2 — 1.62e-1 — 3.32e-1 — 5.10e-1 —

8 1.45e-3 3.97 9.75e-3 4.06 2.27e-2 3.87 6.35e-2 3.01

1 16 9.15e-5 3.98 5.96e-4 4.03 1.45e-3 3.97 3.90e-3 4.02

32 5.74e-6 3.99 3.71e-5 4.00 9.15e-5 3.98 2.45e-4 3.99

64 3.59e-7 4.00 2.32e-6 4.00 5.74e-6 3.99 1.54e-5 4.00

4 5.71e-4 — 8.46e-3 — 4.91e-2 — 2.31e-1 —

8 8.63e-6 6.05 1.07e-4 6.30 5.71e-4 6.43 2.33e-3 6.64

2 16 1.34e-7 6.01 1.62e-6 6.05 8.63e-6 6.05 3.34e-5 6.12

32 2.09e-9 6.00 2.51e-8 6.01 1.34e-7 6.01 5.14e-7 6.02

64 3.26e-11 6.00 3.92e-10 6.00 2.09e-9 6.00 8.01e-9 6.00

Table 3. Unit interval, H1-seminorm errors on eigenfunctions,
η = 1.

k N first mode second mode fourth mode eighth mode

error order error order error order error order

10 2.08e-1 — 9.87e-1 — 4.39e0 — 1.61e+1 —

20 1.02e-1 1.03 4.16e-1 1.25 1.97e0 1.15 8.78e0 0.88

0 40 5.05e-2 1.01 2.03e-1 1.03 8.32e-1 1.25 3.95e0 1.15

80 2.52e-2 1.00 1.01e-1 1.01 4.06e-1 1.03 1.66e0 1.25

160 1.26e-2 1.00 5.04e-2 1.00 2.02e-1 1.01 8.13e-1 1.03

10 8.17e-3 — 9.87e-2 — 3.33e0 — 1.54e+1 —

20 2.04e-3 2.00 1.63e-2 2.60 1.97e-1 4.08 6.67e0 1.21

1 40 5.11e-4 2.00 4.09e-3 2.00 3.27e-2 2.60 3.95e-1 4.08

80 1.28e-4 2.00 1.02e-3 2.00 8.17e-3 2.00 6.53e-2 2.60

160 3.19e-5 2.00 2.55e-4 2.00 2.04e-3 2.00 1.63e-2 2.00

10 2.17e-4 — 4.36e-3 — 1.52e0 — 1.54e+1 —

20 2.71e-5 3.00 4.34e-4 3.33 8.71e-3 7.45 3.05e0 2.33

2 40 3.39e-6 3.00 5.42e-5 3.00 8.67e-4 3.33 1.74e-2 7.45

80 4.24e-7 3.00 6.78e-6 3.00 1.08e-4 3.00 1.73e-3 3.33

160 5.30e-8 3.00 8.47e-7 3.00 1.36e-5 3.00 2.17e-4 3.00
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Table 4. Unit interval, relative eigenvalue errors, η = 2k + 3.

k N first mode second mode fourth mode eighth mode

error order error order error order error order

10 4.07e-5 — 6.59e-4 — 1.10e-2 — 1.80e-1 —

20 2.54e-6 4.00 4.07e-5 4.02 6.59e-4 4.05 1.10e-2 4.04

0 40 1.59e-7 4.00 2.54e-6 4.00 4.07e-5 4.02 6.59e-4 4.05

80 9.91e-9 4.00 1.59e-7 4.00 2.54e-6 4.00 4.07e-5 4.02

160 6.19e-10 4.00 9.91e-9 4.00 1.59e-7 4.00 2.54e-6 4.00

5 1.66e-6 — 1.13e-4 — 1.19e-2 — 1.74e-2 —

10 2.55e-8 6.02 1.66e-6 6.09 1.13e-4 6.72 1.19e-2 0.54

1 20 3.98e-10 6.00 2.55e-8 6.02 1.66e-6 6.09 1.13e-4 6.72

40 5.95e-12 6.06 3.98e-10 6.00 2.55e-8 6.02 1.66e-6 6.09

4 9.18e-9 — 2.42e-6 — 1.34e-2 — 5.20e-1 —

2 8 3.57e-11 8.01 9.18e-9 8.04 2.42e-6 12.43 1.34e-2 5.28

16 1.04e-13 8.42 3.57e-11 8.01 9.18e-9 8.04 2.42e-6 12.43

5.1.1. Effect of the stabilization parameter η. We first report some striking super-
convergence results for the HHO method with the stabilization parameter set to
η = 2k + 3 on 1D uniform meshes. In this case, we observe numerically two extra
orders in the convergence of the relative eigenvalue errors, i.e., these errors now
converge as h2k+4; see Table 4. We thus obtain relative eigenvalue errors close
to machine precision already on relatively coarse meshes. Moreover, we observe
numerically (results are not reported for brevity) that taking values different from
2k + 3 for the stabilization parameter does not improve the relative eigenvalue er-
rors. We also point out that the choice η = 2k+3 does not increase the convergence
order of the eigenfunctions. In 2D, we observe that the choice η = 2k+3 improves
the approximation significantly in the sense of a much smaller constant C in (4.9),
but the convergence order remains h2k+2. The results are reported in Table 5 (com-
pare with Table 2). The theoretical analysis of the above observations is postponed
to future work.

In all of our numerical experiments, the default choice η = 1 for the stabilization
parameter produces satisfactory results. As expected, decreasing the value of η
progressively leads to a loss of stability in the HHO stiffness matrix, and therefore
to a degradation of the accuracy of the discrete eigenvalues and eigenfunctions. To
illustrate this simple fact, we report in Table 6 the first four discrete eigenvalues
using a polynomial degree k ∈ {0, 1, 2} and a stabilization parameter η = 2−l,
l ∈ {0, . . . , 6}. We consider here a quasi-uniform sequence of triangular meshes
with an initial average mesh-size 0.017, where the next finer mesh in the sequence
is produced by dividing each triangle into four congruent subtriangles. The results
reported in Table 6 indicate that the sensitivity to the choice of a too small value
of η swiftly decreases as the polynomial degree k increases. A similar study varying
the stabilization parameter in the context of the VEM can be found in [40], where
the loss of accuracy also follows from the loss of stability if the value assigned to
the stabilization parameter is too low.
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Table 5. Unit square, Relative eigenvalue errors, η = 2k + 3.

k N first mode second mode fourth mode eighth mode

error order error order error order error order

4 4.23e-2 — 1.41e-1 — 1.66e-1 — 3.97e-1 —

8 1.06e-2 1.99 3.60e-2 1.97 4.23e-2 1.97 7.84e-2 2.34

0 16 2.66e-3 2.00 9.04e-3 1.99 1.06e-2 1.99 1.98e-2 1.99

32 6.65e-4 2.00 2.26e-3 2.00 2.66e-3 2.00 4.96e-3 2.00

64 1.66e-4 2.00 5.66e-4 2.00 6.65e-4 2.00 1.24e-3 2.00

4 2.74e-4 — 3.33e-3 — 5.80e-5 — 1.73e-2 —

8 2.13e-5 3.69 1.69e-4 4.30 2.74e-4 -2.24 1.75e-4 6.63

1 16 1.40e-6 3.93 9.93e-6 4.09 2.13e-5 3.69 3.47e-6 5.66

32 8.82e-8 3.98 6.11e-7 4.02 1.40e-6 3.93 4.41e-7 2.97

64 5.53e-9 4.00 3.80e-8 4.01 8.82e-8 3.98 3.11e-8 3.83

4 1.75e-5 — 3.33e-5 — 8.23e-4 — 1.28e-3 —

8 2.90e-7 5.91 8.50e-7 5.29 1.75e-5 5.56 4.54e-5 4.82

2 16 4.60e-9 5.98 1.45e-8 5.87 2.90e-7 5.91 8.01e-7 5.82

32 7.20e-11 6.00 2.32e-10 5.97 4.60e-9 5.98 1.29e-8 5.96

64 2.66e-13 8.08 3.02e-12 6.26 7.20e-11 6.00 2.02e-10 5.99

Table 6. Discrete eigenvalues λh,j , j ∈ {1, 2, 3, 4}, with polyno-
mial degree k ∈ {0, 1, 2} and stabilization parameter η = 2−l,
l ∈ {0, . . . , 6}.

k η λh,1 λh,2 λh,3 λh,4

1/4 1.74e1 3.70e1 3.73e1 5.11e1

0 1/2 1.85e1 4.25e1 4.27e1 6.26e1

1 1.92e1 4.60e1 4.60e1 7.05e1

1/64 1.57e1 5.09e1 5.11e1 8.16e1

1 1/8 1.97e1 4.87e1 4.87e1 7.54e1

1 1.97e1 4.93e1 4.93e1 7.87e1

1/64 1.97e1 4.94e1 4.94e1 7.90e1

2 1/8 1.97e1 4.93e1 4.93e1 7.89e1

1 1.97e1 4.93e1 4.93e1 7.90e1

5.1.2. Polygonal (hexagonal) meshes in 2D. To illustrate the fact that the same
convergence orders can be obtained if the HHO method is deployed on general
meshes, we consider now a quasi-uniform sequence of polygonal (hexagonal) meshes
of the unit square; see Figure 1. The coarsest mesh in the sequence is composed of
predominantly hexagonal cells with average mesh-size 0.065; the average mesh-size
is halved from one mesh in the sequence to the next finer mesh. Table 7 shows
the relative eigenvalue errors for k ∈ {0, 1, 2} with stabilization parameter η = 1
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Figure 1. First and third approximate eigenfunctions with hexag-
onal meshes.

Table 7. Unit square with hexagonal meshes, relative eigenvalue
errors, η = 1 and η = 2k + 3.

k 	 j = 1, η = 1 j = 1, η = 2k + 3 j = 3, η = 1 j = 3, η = 2k + 3

error order error order error order error order

0 3.20e-1 — 8.72e-2 — 6.69e-1 — 2.78e-1 —

1 1.19e-1 1.43 2.21e-2 1.98 3.52e-1 0.93 8.41e-2 1.73

0 2 3.56e-2 1.74 5.45e-3 2.02 1.28e-1 1.45 2.15e-2 1.97

3 9.60e-3 1.89 1.35e-3 2.02 3.73e-2 1.78 5.37e-3 2.00

4 2.48e-3 1.95 3.34e-4 2.01 9.84e-3 1.92 1.33e-3 2.01

0 1.97e-2 — 1.10e-3 — 3.16e-1 — 1.43e-2 —

1 1.33e-3 3.89 8.28e-5 3.73 2.40e-2 3.72 1.32e-3 3.43

1 2 8.74e-5 3.92 5.63e-6 3.88 1.45e-3 4.05 9.01e-5 3.88

3 5.64e-6 3.95 3.66e-7 3.94 9.11e-5 3.99 5.86e-6 3.94

4 3.59e-7 3.97 2.33e-8 3.97 5.75e-6 3.98 3.73e-7 3.97

0 2.99e-4 — 1.09e-5 — 4.09e-2 — 8.54e-4 —

1 5.15e-6 5.86 2.26e-7 5.59 3.63e-4 6.82 1.42e-5 5.91

2 2 8.55e-8 5.91 3.97e-9 5.83 5.59e-6 6.02 2.53e-7 5.81

3 1.38e-9 5.95 6.52e-11 5.93 8.88e-8 5.98 4.17e-9 5.92

4 2.21e-11 5.97 9.32e-13 6.13 1.41e-9 5.98 6.69e-11 5.96

and η = 2k + 3 for the first (j = 1) and third (j = 3) eigenpairs. We observe a
convergence of order h2k+2, in agreement with Theorem 4.4. Once again, the choice
η = 2k + 3 for the stabilization parameter does not change the convergence order,
but substantially improves the constant C.

5.1.3. Comparison with the finite element method (FEM). We now present a brief
comparison between the discrete eigenvalues obtained using a continuous linear
finite element method (FEM(1)) and the HHO method with k = 0 and k = 1
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Table 8. Comparison of eigenvalue errors for λh,1 and λh,8 when
using FEM(1), HHO(0) with η = 1 or η = 8, and HHO(1) with
η = 1.

	 first eigenvalue eighth eigenvalue

FEM(1) HHO(0) HHO(1) FEM(1) HHO(0) HHO(1)

- - - η = 1 η = 8 η = 1 - - - η = 1 η = 8 η = 1

0 1.75e-2 2.92e-2 9.72e-5 1.48e-4 1.15e-1 1.64e-1 2.76e-3 7.28e-3

1 4.36e-3 7.47e-3 2.57e-5 9.45e-6 2.79e-2 4.65e-2 8.48e-4 4.68e-4

2 1.09e-3 1.88e-3 6.81e-6 5.97e-7 6.94e-3 1.20e-2 2.21e-4 2.99e-5

3 2.72e-4 4.70e-4 1.75e-6 3.76e-8 1.73e-3 3.03e-3 5.59e-5 1.89e-6

4 6.81e-5 1.18e-4 4.40e-7 2.36e-9 4.33e-4 7.59e-4 1.40e-5 1.19e-7

ρ 2.00 1.99 1.95 3.99 2.01 1.95 1.92 3.98

(referred to as HHO(0) and HHO(1), respectively). We consider the same quasi-
uniform sequence of triangular meshes as in Section 5.1.1, and we use the stabiliza-
tion parameter η = 1 or η = 8 for HHO(0) and η = 1 for HHO(1). Table 8 reports
the errors for the first and eighth eigenvalues. All the reported convergence orders
(denoted as ρ in the table) match the theoretical predictions. HHO(0) with η = 1
leads to somewhat larger errors than FEM(1), but the situation is significantly re-
versed when using HHO(0) with η = 8 or HHO(1) with η = 1. We also mention
that our numerical experiments show that the overall costs of FEM(1) and HHO(0)
on various domains and mesh configurations are roughly the same.

5.2. L-shaped domain. We now study the Laplacian eigenvalue problem on the
L-shaped domain Ω = Ω0\Ω1, where Ω0 = (0, 2) × (0, 2) and Ω1 = [1, 2] × [1, 2].
The L-shaped domain Ω has a re-entrant corner at the point (1, 1), which results
in possibly nonsmooth eigenfunctions. In fact, the first eigenfunction is in H1+t(Ω)
with t = 2

3 − ε with ε arbitrarily small, and the corresponding eigenvalue is λ1 =
9.6397238440219 [7]. There are also smooth eigenfunctions. For example, the third
eigenfunction is smooth and the corresponding eigenvalue is known exactly to be
λ3 = 2π2. Figure 2 shows the HHO approximations (with η = 1) of the first and
the third eigenfunctions using quasi-uniform triangulations of Ω and the polynomial
degree k = 1.

To assess the convergence orders, we consider a sequence of triangulations where
each of the three unit squares composing the L-shaped domain Ω is discretized
uniformly with 2×N ×N triangular elements, where N ∈ {4, 8, 16, 32, 64}. Table 9
reports the relative eigenvalue errors for the first and third eigenvalues. We consider
the values η = 1 and η = 2k + 3 for the stabilization parameter together with the
polynomial degrees k ∈ {0, 1}. The relative error on the first eigenvalue converges
with order h2t with 2t ≈ 4

3 , whereas the relative error on the third eigenvalue

converges with the optimal order h2k+2. These results are again in agreement with
Theorem 4.4. The errors with η = 2k + 3 are, as observed above, smaller than
those with η = 1. Comparing with the results reported in [34] with HDG and
k = 0, the HHO approximation of the first eigenvalue converges with order h4/3

whereas the HDG approximation converges with order h; the HHO approximation
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Table 9. L-shaped domain, relative eigenvalue errors, η = 1 and
η = 2k + 3.

k N j = 1, η = 1 j = 1, η = 2k + 3 j = 3, η = 1 j = 3, η = 2k + 3

error order error order error order error order

4 2.36e-1 — 1.25e-1 — 3.60e-1 — 1.82e-1 —

8 7.79e-2 1.60 4.12e-2 1.61 1.24e-1 1.54 5.32e-2 1.77

0 16 2.37e-2 1.72 1.37e-2 1.59 3.42e-2 1.86 1.39e-2 1.94

32 7.32e-3 1.70 4.75e-3 1.53 8.77e-3 1.96 3.52e-3 1.98

64 2.36e-3 1.63 1.71e-3 1.47 2.21e-3 1.99 8.82e-4 2.00

4 2.08e-2 — 1.04e-2 — 2.24e-2 — 4.62e-3 —

8 5.92e-3 1.81 4.12e-3 1.34 1.37e-3 4.04 2.77e-4 4.06

1 16 2.18e-3 1.44 1.64e-3 1.33 8.50e-5 4.01 1.72e-5 4.01

32 8.55e-4 1.35 6.51e-4 1.33 5.31e-6 4.00 1.07e-6 4.00

64 3.39e-4 1.34 2.58e-4 1.33 3.32e-7 4.00 6.71e-8 4.00

Figure 2. First and third approximate eigenfunctions in the L-
shaped domain.

of the third eigenvalue converges with order h2 whereas the HDG approximation
converges with order h. Additionally, Table 10 shows the eigenfunction errors in
the H1-seminorm for the first and third modes. Here, the sequence of triangular
meshes starts with an initial mesh-size 0.052, and the refinement procedure is the
same as above. We use a linear FEM solution (normalized in L2(Ω)) solved at
level 7 of the mesh sequence (this corresponds to a mesh-size 4.05 × 10−4) as a
reference solution for the calculation of the first eigenfunction error, and we use
u3(x, y) = 2 sin(πx) sin(πy)/

√
3 (normalized in L2(Ω)) to compute the error on

the third eigenfunction. In both cases, the error convergence rates are in good
agreement with Theorem 4.4.
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Table 10. L-shaped domain, first and third eigenfunction errors
in the H1-seminorm with polynomial degree k ∈ {0, 1} and stabi-
lization parameter η ∈ {1, 2k + 3}.

	 first mode third mode

k = 0 k = 1 k = 0 k = 1

η = 1 η = 3 η = 1 η = 3 η = 1 η = 3 η = 1 η = 3

0 1.38e0 1.33e0 3.80e-1 3.30e-1 2.36e0 2.16e0 4.73e-1 4.36e-1

1 7.42e-1 7.31e-1 2.21e-1 1.98e-1 1.20e0 1.14e0 1.09e-1 1.07e-1

2 4.09e-1 4.08e-1 1.40e-1 1.26e-1 5.88e-1 5.79e-1 2.68e-2 2.66e-2

3 2.34e-1 2.34e-1 9.09e-2 8.28e-2 2.92e-1 2.90e-1 6.65e-3 6.63e-3

4 1.39e-1 1.39e-1 6.18e-2 5.68e-2 1.46e-1 1.45e-1 1.62e-3 1.62e-3

order 0.83 0.81 0.65 0.63 1.01 0.98 2.04 2.01

Figure 3. The first and seventh approximate eigenfunctions in
the unit disk.

5.3. Unit disk. Lastly, we consider the Laplacian eigenvalue problem (2.1) in the
unit disk Ω = {(x, y) : x2 + y2 ≤ 1}. Using polar coordinates, the eigenpairs are

(5.1) (s2n,m, Jn(sn,mr) cos(nθ))n=0,1,2,..., (s2n,m, Jn(sn,mr) sin(nθ))n=1,2,...,

where Jn is the Bessel function of order n, and sn,m are the zeros of the Bessel
functions with m = 1, 2, 3, . . .. Figure 3 shows the first and seventh discrete eigen-
functions.

We approximate the unit disk using a sequence of unstructured triangulations
where the coarsest mesh in the sequence (	 = 0) is composed of triangular cells
with mesh-size 0.033, and the refinement procedure is the same as above. Since
the boundary of the disk is approximated by straight lines, the error committed
by this discretization is of order h2. Thus, we only consider the lowest-order HHO
approximation with k = 0. Table 11 reports the relative eigenvalue errors with
η = 2k + 3 = 3 for the stabilization parameter. We observe a convergence order of
h2 as predicted.
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Table 11. Unit disk, relative eigenvalue errors, k = 0 and η = 3.

k 	 first mode fourth mode seventh mode

error order error order error order

0 6.35e-3 — 1.55e-2 — 3.19e-2 —

1 1.59e-3 2.00 3.82e-3 2.02 7.95e-3 2.00

2 3.98e-4 2.00 9.54e-4 2.00 1.99e-3 2.00

0 3 9.96e-5 2.00 2.38e-4 2.00 4.97e-4 2.00

4 2.49e-5 2.00 5.96e-5 2.00 1.24e-4 2.00

5 6.22e-6 2.00 1.49e-5 2.00 3.11e-5 2.00

6. Concluding remarks

In this paper, we devised and analyzed the approximation of the eigenvalues and
eigenfunctions of a second-order selfadjoint elliptic operator using the Hybrid High-
Order (HHO) method. Using polynomials of degree k ≥ 0 for the face unknowns,
and assuming smooth eigenfunctions, we established theoretically and observed nu-
merically that the errors on the eigenvalues converge as h2k+2 whereas the errors
on the eigenfunctions converge as hk+1 in the H1-seminorm. We considered tri-
angular and polygonal (hexagonal) meshes in the numerical experiments for the
Laplace eigenproblem in two-dimensional domains with smooth and non-smooth
eigenfunctions. Additionally, we observed numerically in one dimension that the
eigenvalue error converges at the even faster rate h2k+4 for the particular choice
η = 2k + 3 of the stabilization parameter in the HHO method. Several extensions
of the present work can be considered, among which we mention biharmonic eigen-
value problems and non-selfadjoint second-order eigenvalue problems as well as the
Maxwell eigenvalue problem in a curl-curl setting.
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