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A HYBRID HIGH-ORDER DISCRETIZATION COMBINED WITH
NITSCHE'S METHOD FOR CONTACT AND TRESCA FRICTION IN

SMALL STRAIN ELASTICITY\ast 

FRANZ CHOULY\dagger , ALEXANDRE ERN\ddagger , AND NICOLAS PIGNET\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We devise and analyze a hybrid high-order (HHO) method to discretize unilateral
and bilateral contact problems with Tresca friction in small strain elasticity. The nonlinear frictional
contact conditions are enforced weakly by means of a consistent Nitsche technique with symmetric,
incomplete, and skew-symmetric variants. The present HHO-Nitsche method supports polyhedral
meshes and delivers optimal energy-error estimates for smooth solutions under some minimal thresh-
olds on the penalty parameters for all the symmetry variants. An explicit tracking of the dependency
of the penalty parameters on the material coefficients is carried out to identify the robustness of the
method in the incompressible limit, showing the more advantageous properties of the skew-symmetric
variant. Two- and three-dimensional numerical results, including comparisons to benchmarks from
the literature and to solutions obtained with an industrial software, as well as a prototype for an in-
dustrial application, illustrate the theoretical results and reveal that in practice the method behaves
in a robust manner for all the symmetry variants in Nitsche's formulation.
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1. Introduction. Hybrid high-order (HHO) methods have been introduced for
linear elasticity in [22] and for linear diffusion problems in [23]. HHO methods are
formulated in terms of face unknowns that are polynomials of arbitrary order k \geq 0
on each mesh face and in terms of cell unknowns which are polynomials of order
l \in \{ k, k \pm 1\} , with l \geq 0, in each mesh cell. The devising of HHO methods hinges
on two operators, both defined locally in each mesh cell: a reconstruction operator
and a stabilization operator. The cell unknowns can be eliminated locally by static
condensation leading to a global transmission problem posed solely in terms of the face
unknowns. HHO methods offer various assets: They support polyhedral meshes and
lead to local conservation principles and optimal convergence rates. HHO methods
have been bridged in [18] to hybridizable discontinuous Galerkin methods [19] and to
nonconforming virtual element methods [5]. HHO methods have been extended to
many other PDEs. Examples in computational mechanics include nonlinear elasticity
[7], hyperelasticity with finite deformations [2], and elastoplasticity with small [4] and
finite [3] deformations.

The goal of the present work is to devise, analyze, and evaluate numerically an
HHO method to approximate contact problems with Tresca friction in small strain
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elasticity. Either unilateral or bilateral contact can be considered. The main ingredi-
ent is to employ a Nitsche-type formulation to enforce the nonlinear frictional contact
conditions. The present HHO-Nitsche method can be deployed on polyhedral meshes.
As is classical with Nitsche's technique, we can consider symmetric, incomplete, and
skew-symmetric variants. Our main results, Theorem 12 and Corollary 14, provide
for all symmetry variants quasi-optimal energy-error estimates with convergence rates
of order \scrO (hr) for solutions with regularity H1+r, r \in ( 12 , k+1], where h is the mesh
size and k \geq 1 is the order of the polynomials for the cell and the face unknowns,
except for the face unknowns located on the frictional contact boundary, where poly-
nomials of order (k + 1) are employed. Note that the optimal order of convergence
is \scrO (hk+1) obtained with r = k + 1. These results are established under minimal
thresholds for the penalty parameters weakly enforcing the contact and friction con-
ditions and do not require any assumption on the (a priori unknown) friction/contact
set. Particular attention in the analysis is paid to the dependency of these parame-
ters on the Lam\'e parameters, showing that the skew-symmetric variant enjoys more
favorable properties regarding robustness in the incompressible limit, at least from a
theoretical viewpoint. Our two-dimensional (2D) and three-dimensional (3D) numer-
ical tests include comparisons with benchmarks from the literature and with solutions
obtained with the industrial software code aster [26]. We also consider a prototype
of an industrial application featuring a notched plug in a rigid pipe. Our numerical
tests indicate a more favorable dependency of the penalty parameters on the mate-
rial parameters since robustness in the quasi-incompressible regime is observed in all
considered situations.

Let us put our work in perspective with the literature. For most discretizations,
Tresca friction creates additional difficulties in order to establish optimal conver-
gence in comparison to the frictionless case (see, e.g., [34, 29, 25] and the references
therein for frictionless contact). As a consequence, convergence results addressing
Tresca friction are quite rare. The rate \scrO (hr) for the energy error with a regularity
H1+r(\Omega ), r \in (0, 1], has been obtained in the 2D case for a mixed low-order finite
element method (FEM) under some technical assumptions on the contact/friction set
[34, Theorem 4.9] (this is the first optimal bound to the best of our knowledge). In

the 3D case, the rate O(hmin( 1
2 ,r)) has also been reached without additional assump-

tion [34, Theorem 4.10]. For the penalty method, the rate of \scrO (h
1
2+

r
2+r2) with a

regularity H
3
2+r(\Omega ), r \in (0, 1

2 ), and the quasi-optimal rate of \scrO (h| log h| 12 ) with a
regularity H2(\Omega ) were established in [14] without additional assumptions on the con-
tact/friction set. This result has been improved recently in [24], and optimal rates
have been recovered if the penalty parameter is large enough. An important step
forward for the discretization of contact problems was accomplished in [13] by com-
bining Nitsche's method with FEM. The FEM-Nitsche method differs from standard
penalty techniques which are generally not consistent. Moreover, no additional un-
known (Lagrange multiplier) is needed, and therefore no discrete inf-sup condition
must be fulfilled contrary to mixed methods. For contact problems with Tresca fric-
tion discretized with FEM-Nitsche, optimal energy-error convergence of order O(hr)
has been proved in [11] with the regularity H1+r(\Omega ), r \in ( 12 , k], where k \geq 1 is
the polynomial degree of the Lagrange finite elements. To this purpose, there is no
need of any additional assumption on the contact/friction set. Note that the techni-
cal difficulties associated with the treatment of contact and friction condition when
Nitsche's technique is not employed are not limited to FEM but appear as well for
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Fig. 1. Geometry of the contact problem.

other discretizations, such as the discontinuous Galerkin [32] or the virtual element [33]
methods.

The devising and analysis of HHO-Nitsche methods was started in [10] for the
scalar Signorini problem. Therein a face version and a cell version were analyzed,
depending on the choice of the discrete unknown used to formulate the penalty terms.
The cell version used cell unknowns of order (k+1) (these unknowns can be eliminated
by static condensation) and a modified reconstruction operator inspired from the un-
fitted HHO method from [9], leading to energy-error estimates of order \scrO (hr) with
H1+r-regularity, r \in ( 12 , k+ 1]. Unfortunately, the modification of the reconstruction
operator is not convenient in the context of elasticity, as it hampers a key commuting
property with the divergence operator, which is crucial in the incompressible limit.
This difficulty is circumvented in the present work by using face polynomials of order
(k+1) on the faces located on the contact/friction boundary. The numerical analysis
also involves two novelties. First, the error analysis, which adapts ideas from [15, 16]
for FEM-Nitsche to HHO-Nitsche, is more involved than [10] since it covers all the
symmetry variants and since it hinges on a sharper bound on the consistency error,
allowing for a sharper threshold on the penalty parameters, especially in the case
of the skew-symmetric variant. Second, for the first time concerning FEM-Nitsche
as well, we track explicitly the dependency of the penalty parameters on the Lam\'e
parameters for the various symmetry variants. Furthermore, the present study is
completed with 2D and 3D numerical tests, including a prototype for an industrial
application. Finally, let us mention that polyhedral discretizations for contact and
friction problems have received some attention recently, as motivated by some nu-
merical evidence illustrating their flexibility and accuracy. These discretizations use,
for instance, the virtual element method [35, 33], the weak Galerkin methods [28], or
the hybridizable discontinuous Galerkin method [36], combined with different tech-
niques to handle contact and friction (such as a direct approximation of the variational
inequality, node-to-node contact, penalty, Lagrange multipliers). The present work
constitutes, to our knowledge, the first polyhedral discretization method for frictional
contact problems using Nitsche's technique.

This paper is organized as follows. The model problem is described in section 2.
The HHO-Nitsche method is introduced in section 3, and the stability and error
analysis is contained in section 4. Numerical results are discussed in section 5.

2. Model problem. Let \Omega be a polygon/polyhedron in \BbbR d, d \in \{ 2, 3\} , repre-
senting the reference configuration of an elastic body. The boundary \partial \Omega is parti-
tioned into three nonoverlapping parts (see Figure 1): the Dirichlet boundary \Gamma D,
the Neumann boundary \Gamma N, and the contact/friction boundary \Gamma C. We assume
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meas(\Gamma D) > 0 to prevent rigid body motions and meas(\Gamma C) > 0 to ensure that
contact is present. The small strain assumption is made, as well as plane strain if
d = 2. The linearized strain tensor associated with a displacement field v : \Omega \rightarrow \BbbR d is

\bfitvarepsilon (v) := 1
2 (\bfnabla v+\bfnabla v

T

) \in \BbbR d\times d
sym . Assuming isotropic behavior, the Cauchy stress tensor

resulting from the strain tensor \bfitvarepsilon (v) is denoted by \bfitsigma (v) and is given by

(2.1) \bfitsigma (v) = 2\mu \bfitvarepsilon (v) + \lambda trace(\bfitvarepsilon (v))\bfitI d \in \BbbR d\times d
sym ,

where \mu and \lambda are the Lam\'e coefficients of the material satisfying \mu > 0 and 3\lambda +2\mu >
0 and \bfitI d is the identity tensor of order d. In what follows, we set \kappa := max(1, \lambda 

2\mu ).
Let n be the unit outward normal vector to \Omega . On the boundary, we consider the
following decompositions into normal and tangential components:

v = vnn+ vt and \sigma n(v) := \bfitsigma (v)\cdot n = \sigma n(v)n+ \sigma t(v),

where vn := v\cdot n and \sigma n(v) := \sigma n(v)\cdot n (so that vt\cdot n = 0 and \sigma t(v)\cdot n = 0).
The body is subjected to volume forces f \in L2(\Omega ;\BbbR d) in \Omega and to surface loads

gN \in L2(\Gamma N;\BbbR d) on \Gamma N, and it is clamped on \Gamma D (for simplicity). The model problem

consists in finding the displacement field u : \Omega \rightarrow \BbbR d such that\left\{           
\nabla \cdot \bfitsigma (u) + f = 0 in \Omega ,

u = 0 on \Gamma D,

\sigma n(u) = gN on \Gamma N,

(2.3) and (2.4) hold true on \Gamma C,

(2.2)

where the unilateral contact conditions on \Gamma C are

(2.3) (i) un \leq 0, (ii) \sigma n(u) \leq 0, (iii) \sigma n(u)un = 0,

whereas the Tresca friction conditions on \Gamma C read

(2.4) (iv) | \sigma t(u)| \leq s if ut = 0, (v) \sigma t(u) =  - s
ut

| ut| 
if | ut| > 0,

where s \geq 0 is a given threshold and | \cdot | stands for the Euclidean norm in \BbbR d (or the
absolute value depending on the context). More generally, s can be a nonnegative-
valued function on \Gamma C.

Remark 1 (Tresca conditions). Let us recall the formulation of Tresca friction
conditions as stated in Kikuchi and Oden [30, equation (10.8)]:

(2.5)
(i) | \sigma t(u)| \leq s,
(ii) | \sigma t(u)| < s =\Rightarrow ut = 0,
(iii) | \sigma t(u)| = s =\Rightarrow (\exists \lambda \geq 0, ut =  - \lambda \sigma t(u)).

One can verify that if s > 0, (2.4) is equivalent to (2.5). The advantage of (2.4) is
that it remains meaningful for s = 0 since it only implies \sigma t(u) = 0 (thus allowing
sliding), whereas (2.5) implies that both \sigma t(u) = 0 and ut = 0.

Remark 2 (variants). The case of frictionless contact is recovered by setting
s := 0 in (2.4). The case of bilateral contact with Tresca friction can be considered
by keeping (2.4), whereas (2.3) is substituted by the following equation:

(2.6) un = 0 on \Gamma C.
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In the case of unilateral contact with Tresca friction, nonzero tangential stress (| \sigma t(u)| 
> 0) can occur in regions with no adhesion (un < 0), which is not expected physically
(for Coulomb friction, \sigma t(u) = 0 when un < 0). The setting of bilateral contact pre-
vents such situations (since un = 0, there are no regions with no adhesion). Therefore,
the setting of bilateral contact with Tresca friction can be useful for the numerical
simulation of specific situations that essentially correspond to persistent contact be-
tween elastic bodies with a high intensity of contact pressures (see, e.g., [30, section
10.3] or [31]).

We introduce the Hilbert space V D and the convex cone K such that

V D :=
\bigl\{ 
v \in H1(\Omega ;\BbbR d) | v = 0 on \Gamma D

\bigr\} 
, K := \{ v \in V D | vn \leq 0 on \Gamma C\} .

Notice that the Dirichlet condition on \Gamma D is explicitly enforced in the space V D, and
the noninterpenetration condition on \Gamma C is explicitly enforced in the cone K. We
define the bilinear form and the linear and nonlinear forms

a(v, w) := (\bfitsigma (v), \bfitvarepsilon (w))\Omega = 2\mu (\bfitvarepsilon (v), \bfitvarepsilon (w))\Omega + \lambda (\nabla \cdot v,\nabla \cdot w)\Omega ,(2.7)

\ell (w) := (f, w)\Omega + (gN, w)\Gamma N , j(w) := (s, | wt| )\Gamma C ,(2.8)

for any v and w in V D, where the notation (\cdot , \cdot )\omega stands for the L2-inner product on
the set \omega . The weak formulation of (2.2) as a variational inequality of the second
kind is

(2.9)

\biggl\{ 
Find u \in K such that
a(u,w  - u) + j(w) - j(u) \geq \ell (w  - u), \forall w \in K.

This problem admits a unique solution according, e.g., to [30, Theorem 10.2].
An important observation is that it is possible to reformulate the contact and

friction conditions (2.3)--(2.4) as nonlinear equations. For any real number x \in \BbbR , let
[x]\ominus := min(x, 0) denote its projection onto the closed convex subset \BbbR  - := ( - \infty , 0].
Moreover, let [\cdot ]\alpha denote the orthogonal projection onto B(0, \alpha ) \subset \BbbR d, where B(0, \alpha )
is the closed ball centered at the origin 0 and of radius \alpha > 0, so that for all x \in \BbbR d,
we have [x]\alpha := x if | x| \leq \alpha and [x]\alpha := \alpha x

| x| if | x| > \alpha . The following result has been

pointed out in [20] (see also [11] for formal proofs).

Proposition 3 (reformulation as nonlinear conditions). Let \gamma n and \gamma t be pos-
itive functions on \Gamma C. The conditions (2.3)--(2.4) enforcing unilateral contact with
Tresca friction can be reformulated as follows:

\sigma n(u) = [\tau n(u)]\ominus , \tau n(u) := \sigma n(u) - \gamma nun,(2.10)

\sigma t(u) = [\tau t(u)]s, \tau t(u) := \sigma t(u) - \gamma tut.(2.11)

3. HHO-Nitsche method. In this section, we devise and analyze the HHO-
Nitsche method to approximate the frictional contact problem (2.9).

3.1. Meshes and discrete unknowns. Let (\scrT h)h>0 be a mesh sequence, where
for all h > 0, the mesh \scrT h is composed of nonempty disjoint cells such that \Omega =\bigcup 

T\in \scrT h
T . The mesh cells are conventionally open subsets in \BbbR d (not necessarily

convex), and they can have a polygonal/polyhedral shape with straight edges (if d = 2)
or planar faces (if d = 3). This setting in particular allows for meshes with hanging
nodes. The mesh sequence (\scrT h)h>0 is assumed to be shape-regular in the sense of [22].
In a nutshell, each mesh \scrT h admits a matching simplicial submesh \Im h having locally
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(a) Pentagonal cell with no

contact face (\scrF \setminus 
\partial T = \scrF \partial T )

(b) Pentagonal cell with a con-

tact face in red (\scrF \setminus 
\partial T \varsubsetneq \scrF \partial T )

Fig. 2. Face (black or red) and cell (gray) degrees of freedom in \widehat Uk
T for k = 1 and d = 2 (each

dot represents a degree of freedom which is not necessarily a point evaluation).

equivalent length scales to those of \scrT h, and the mesh sequence (\Im h)h>0 is shape-
regular in the usual sense of Ciarlet. The mesh size is denoted h := maxT\in \scrT h

hT ,
with hT the diameter of the cell T and nT denoting the unit outward normal to T .
Discrete trace and inverse inequalities in the usual form are available on shape-regular
polyhedral mesh sequences (see, e.g., [21]).

A closed subset F of \Omega is called a mesh face if it is a subset with nonempty relative
interior of some affine hyperplane HF and if (i) either there are two distinct mesh
cells T1, T2 \in \scrT h so that F = \partial T1 \cap \partial T2 \cap HF (and F is called an interface) (ii) or
there is one mesh cell T1 \in \scrT h so that F = \partial T1 \cap \Gamma \cap HF (and F is called a boundary
face). Remark that this definition allows for hanging nodes since a mesh cell can have
various faces that belong to the same hyperplane. The mesh faces are collected in the
set \scrF h, which is further partitioned into the subset of interfaces \scrF i

h and the subset of
boundary faces \scrF b

h . We assume that the meshes are compatible with the boundary
partition \partial \Omega = \Gamma D \cup \Gamma N \cup \Gamma C, which leads to the partition of the boundary faces as
\scrF b

h = \scrF b,D
h \cup \scrF b,N

h \cup \scrF b,C
h (with obvious notation).

Let k \geq 1 be the polynomial degree. For all T \in \scrT h, let \scrF \partial T be the collection of
the mesh faces that are subsets of \partial T , let \scrF i

\partial T := \scrF \partial T \cap \scrF i
h, \scrF b,C

\partial T := \scrF \partial T \cap \scrF b,C
h , and

we use a similar notation for \scrF b,D
\partial T and \scrF b,N

\partial T . We set \scrF \setminus 
\partial T := \scrF i

\partial T \cup \scrF b,D
\partial T \cup \scrF b,N

\partial T for
the collection of all the faces composing \partial T except those located on \Gamma C. The local
HHO discrete space is \widehat Uk

T := \BbbP k(T ;\BbbR d)\times \BbbP k/k+1(\scrF \partial T ;\BbbR d),

where \BbbP k(T ;\BbbR d) is composed of the restrictions to T of d-variate polynomials of total
degree at most k and

\BbbP k/k+1(\scrF \partial T ;\BbbR d) := \BbbP k(\scrF \setminus 
\partial T ;\BbbR 

d)\times \BbbP k+1(\scrF b,C
\partial T ;\BbbR d),

where \BbbP k(\scrF \setminus 
\partial T ;\BbbR d) and \BbbP k+1(\scrF b,C

\partial T ;\BbbR d) are composed of the restrictions to \scrF \setminus 
\partial T and

\scrF b,C
\partial T , respectively, of piecewise (d  - 1)-variate polynomials of total degree at most

k and (k + 1), respectively. A generic element in \widehat Uk
T is a pair \widehat vT := (vT , v\partial T ),

where vT \in \BbbP k(T ;\BbbR d) is the cell component and v\partial T \in \BbbP k/k+1(\scrF \partial T ;\BbbR d) is the face
component. The degrees of freedom are illustrated in Figure 2, where a dot indicates
one degree of freedom (which is not necessarily computed as a point evaluation but
can be, for instance, the moments against a selected set of basis functions defined on
the cell or the face; see [17]).
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Remark 4 (degree on contact faces). We use a polynomial order (k + 1) on the
faces located on the contact boundary (it is also possible to use this order on all the
boundary faces). This choice is motivated by the error analysis, where it will be shown
that it allows one to recover error bounds with optimal convergence order. Moreover,
this choice increases only marginally the computational cost with respect to using the
same order k for all the faces.

3.2. Local HHO operators. The first key ingredient in the devising of the
HHO method is a local symmetric strain reconstruction in each mesh cell T \in \scrT h.
Following [2, 7, 4], we define the local discrete symmetric gradient operator \bfitE : \widehat Uk

T \rightarrow 
\BbbP k(T ;\BbbR d\times d

sym) such that, for all \widehat vT \in \widehat Uk
T , \bfitE (\widehat vT ) \in \BbbP k(T ;\BbbR d\times d

sym) solves the following

local problem: For all \bfittau \in \BbbP k(T ;\BbbR d\times d
sym),

(3.1) (\bfitE (\widehat vT ), \bfittau )T= - (vT ,\nabla \cdot \bfittau )T + (v\partial T , \bfittau \cdot nT )\partial T .

The local problem (3.1) mimics an integration by parts at the discrete level. Moreover,

the local discrete divergence operator D : \widehat Uk
T \rightarrow \BbbP k(T ;\BbbR ) is simply defined by taking

the trace of the discrete symmetric gradient: For all \widehat vT \in \widehat Uk
T ,

(3.2) D(\widehat vT ) := trace(\bfitE (\widehat vT )).
The second key ingredient is a local stabilization operator S : \widehat Uk

T \rightarrow \BbbP k/k+1(\partial T ;\BbbR d)
used to penalize in a least-squares sense the difference between the face unknown v\partial T
and the trace of the cell unknown vT | \partial T . Let \Pi 

k/k+1
\partial T and \Pi k

T be the L2-orthogonal

projections onto \BbbP k/k+1(\scrF \partial T ;\BbbR d) and \BbbP k(T ;\BbbR d), respectively. Then we set, for all\widehat vT \in \widehat Uk
T ,

(3.3) S(\widehat vT ) := \Pi 
k/k+1
\partial T

\bigl( 
v\partial T  - R(\widehat vT )| \partial T \bigr)  - \Pi k

T

\bigl( 
vT  - R(\widehat vT )\bigr) | \partial T .

Here R : \widehat Uk
T \rightarrow \BbbP k+1(T ;\BbbR d) is a local displacement reconstruction operator such

that, for all \widehat vT \in \widehat Uk
T , R(\widehat vT ) \in \BbbP k+1(T ;\BbbR d) solves the following local problem: For

all w \in \BbbP k+1(T ;\BbbR d),

(3.4) (\bfitvarepsilon (R(\widehat vT )), \bfitvarepsilon (w))T=(\bfitvarepsilon (vT ), \bfitvarepsilon (w))T + (v\partial T  - vT | \partial T , \bfitvarepsilon (w)\cdot nT )\partial T .

The reconstructed displacement is uniquely defined by prescribing additionally that\int 
T
R(\widehat vT )dT= \int 

T
vT dT and

\int 
T
\bfnabla ss(R(\widehat vT ))dT= \int 

\partial T
1
2 (v\partial T\otimes nT - nT\otimes v\partial T )d\partial T , where

\bfnabla ss(v) := 1
2 (\bfnabla v - \bfnabla v

T

) is the skew-symmetric part of the gradient (see [22]). Com-
paring with (3.1), one readily sees that \bfitvarepsilon (R(\widehat vT )) is the L2-orthogonal projection of
\bfitE (\widehat vT ) onto \bfitvarepsilon (\BbbP k+1(T ;\BbbR d)).

We use the above operators to mimic locally the exact local bilinear form a defined
in (2.7) by means of the following local bilinear form defined on \widehat Uk

T \times \widehat Uk
T (compare

with (2.7)):

\widehat aT (\widehat vT , \widehat wT ) :=2\mu (\bfitE (\widehat vT ),\bfitE ( \widehat wT ))T + \lambda (D(\widehat vT ), D( \widehat wT ))T

+ 2\mu h - 1
T (S(\widehat vT ), S( \widehat wT ))\partial T .(3.5)

The stabilization term is weighted (as in the linear case) by the Lam\'e coefficient \mu .



HHO-NITSCHE FOR CONTACT AND TRESCA FRICTION A2307

3.3. Global discrete problem. For simplicity, we employ the Nitsche tech-
nique only on the subset \Gamma C where the nonlinear frictional contact conditions are
enforced, whereas we resort to a strong enforcement of the homogeneous Dirichlet
condition on the subset \Gamma D. The global discrete space for the HHO-Nitsche method
is

(3.6) \widehat Uk
h := \BbbP k(\scrT h;\BbbR d)\times 

\Bigl( 
\BbbP k(\scrF i

h \cup \scrF b,D
h \cup \scrF b,N

h ;\BbbR d)\times \BbbP k+1(\scrF b,C
h ;\BbbR d)

\Bigr) 
,

leading to the notation \widehat vh :=
\bigl( 
(vT )T\in \scrT h

, (vF )F\in \scrF h

\bigr) 
for a generic element \widehat vh \in \widehat Uk

h.

For all T \in \scrT h, we denote by \widehat vT := (vT , (vF )F\in \scrF \partial T
) \in \widehat Uk

T the local components of\widehat vh attached to the mesh cell T and the faces composing \partial T , and for any mesh face
F \in \scrF h, we denote by vF the component of \widehat vh attached to the face F . We enforce
strongly the homogeneous Dirichlet condition on \Gamma D by considering the subspace\widehat Uk

h,0 := \{ \widehat vh \in \widehat Uk
h | vF = 0 \forall F \in \scrF b,D

h \} .

The HHO-Nitsche method uses a symmetry parameter \theta \in \{  - 1, 0, 1\} and two
penalty parameters \gamma n > 0 and \gamma t > 0 to enforce weakly the contact and friction
conditions on \Gamma C, respectively. Choosing \theta := 1 leads to a symmetric formulation
with a variational structure, choosing \theta := 0 is interesting to simplify the implemen-
tation by avoiding some terms in the formulation, and choosing \theta :=  - 1 allows one to
improve on the stability of the method by exploiting its skew symmetry and making
it more robust in the incompressible limit. It is convenient to define the subset \scrT C

h

as the collection of the mesh cells having at least one boundary face on \Gamma C and to
set \partial TC := \partial T \cap \Gamma C for all T \in \scrT C

h . The subset \scrT N
h is defined similarly, and we set

\partial TN := \partial T \cap \Gamma N for all T \in \scrT N
h . We consider the following discrete HHO-Nitsche

problem:

(3.7)

\Biggl\{ 
Find \widehat uh \in \widehat Uk

h,0 such that\widehat bh(\widehat uh; \widehat wh) =
\widehat \ell h( \widehat wh) \forall \widehat wh \in \widehat Uk

h,0,

where the global discrete semilinear form \widehat bh and the global discrete linear form \widehat \ell h are
defined as follows:\widehat bh(\widehat vh; \widehat wh) :=

\sum 
T\in \scrT h

\widehat aT (\widehat vT , \widehat wT )

 - 
\sum 

T\in \scrT C
h

\theta 
hT

\gamma n
(\sigma n(\widehat vT ), \sigma n( \widehat wT ))\partial TC  - 

\sum 
T\in \scrT C

h

\theta 
hT

\gamma t
(\sigma t(\widehat vT ), \sigma t( \widehat wT ))\partial TC

+
\sum 

T\in \scrT C
h

hT

\gamma n
([\tau n(\widehat vT )]\ominus , (\tau n + (\theta  - 1)\sigma n)( \widehat wT ))\partial TC

+
\sum 

T\in \scrT C
h

hT

\gamma t
([\tau t(\widehat vT )]s, (\tau t + (\theta  - 1)\sigma t)( \widehat wT ))\partial TC

and \widehat \ell h( \widehat wh) :=
\sum 
T\in \scrT h

(f, wT )T +
\sum 

T\in \scrT N
h

(gN, w\partial T )\partial TN .

Here, with a slight abuse of notation, we have written

(3.8) \bfitsigma ( \widehat wT ) := 2\mu \bfitE ( \widehat wT ) + \lambda D( \widehat wT )\bfitI d \in \BbbP k(T ;\BbbR d\times d
sym),
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together with the decomposition \bfitsigma ( \widehat wT )\cdot nT := \sigma n( \widehat wT )nT + \sigma t( \widehat wT ), and we have
introduced the linear operators (again with a slight abuse of notation)

\tau n( \widehat wT ) := \sigma n( \widehat wT ) - 
\gamma n
hT

w\partial T ,n, \tau t( \widehat wT ) := \sigma t( \widehat wT ) - 
\gamma t
hT

w\partial T ,t,

together with the decomposition w\partial T := w\partial T ,nnT + w\partial T ,t for the face polynomials.

Note that in the definition of \tau n and \tau t, the penalty parameters are rescaled by h - 1
T in

each mesh cell in \scrT C
h . Proposition 3 still holds true with this rescaling of the penalty

parameters since the only requirement there is that \gamma n and \gamma t be positive.

Remark 5 (comparison with FEM-Nitsche). In the FEM-Nitsche method de-
vised in [11], one restricts the setting to simplicial meshes and considers the usual
H1-conforming finite element space V h composed of continuous functions that are
piecewise polynomials of degree at most k \geq 1 in each mesh cell. The discrete prob-
lem is formulated in the subspace V h,0 explicitly enforcing the Dirichlet condition on
\Gamma D and involves the global discrete semilinear form

bh(vh;wh) := a(vh, wh) - ( \theta \~\gamma \sigma n(vh), \sigma n(wh))\Gamma C
 - ( \theta \~\gamma \sigma t(vh), \sigma t(wh))\Gamma C

+ ( 1\~\gamma [\tau n(vh)]\ominus , (\tau n + (\theta  - 1)\sigma n)(wh))\Gamma C

+ ( 1\~\gamma [\tau t(vh)]s, (\tau t + (\theta  - 1)\sigma t)(wh))\Gamma C

as well as the linear form \ell h(wh) := \ell (wh), where a and \ell are the same as for the
continuous problem. The notation \tau n, \sigma n, \tau t, and \sigma t is that employed for the exact
solution, the symmetry parameter \theta is taken again in \{  - 1, 0, 1\} , and the penalty
parameter \~\gamma is a piecewise constant function on \Gamma C such that \~\gamma | \partial TC = h - 1

T \gamma with

\gamma > 0 for all T \in \scrT C
h . Note that there is only one penalty parameter in [11] since the

analysis there did not consider the scaling with respect to the Lam\'e parameters.

Remark 6 (comparison with [10]). There are various differences compared to
the HHO-Nitsche method devised in [10] for the scalar Signorini problem. Here we
address the vector-valued case and include Tresca friction. Moreover, we use the face
polynomials in the definition of the operators \tau n and \tau t which corresponds to the face
version considered in [10]. However, we employ here a higher polynomial degree on
those faces located on \Gamma C.

4. Stability and error analysis. In this section, we perform the stability and
error analysis of the above HHO-Nitsche discretization of the frictional contact prob-
lem. We first collect some useful analysis tools. Then we establish a stability property
and infer the well-posedness of the nonlinear discrete problem (3.7). The stability
property is valid if the penalty parameters \gamma n and \gamma t are bounded from below, this
bound being 0 for the skew-symmetric variant \theta =  - 1. Then we slightly tighten these
minimal values to derive an error estimate bounding the energy error and the error on
the nonlinear boundary condition on \Gamma C and featuring optimal decay rates of order
(k + 1) for smooth solutions. The following properties of projections onto a convex
set will be useful:

([x]\ominus  - [y]\ominus )(x - y) \geq ([x]\ominus  - [y]\ominus )
2 \geq 0 \forall x, y \in \BbbR ,(4.1)

([x]s  - [y]s)\cdot (x - y) \geq | [x]s  - [y]s| 2 \geq 0 \forall x, y \in \BbbR d.(4.2)

We use the symbol C to denote a generic constant whose value can change at each
occurrence as long as it is independent of the mesh size and the Lam\'e parameters.
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The value of C can depend on the mesh regularity and the polynomial degree k \geq 1.
We abbreviate as a \lesssim b the inequality a \leq Cb with positive real numbers a, b and a
constant C > 0 as above and whose value can change at each occurrence.

4.1. Analysis tools for HHO operators. We equip the space \widehat Uk
T with the

following local discrete strain seminorm:

(4.3) | \widehat vT | 21,T := \| \bfitvarepsilon (vT )\| 2T + h - 1
T \| v\partial T  - vT | \partial T \| 2\partial T ,

where \| \cdot \| T (resp., \| \cdot \| \partial T and \| \cdot \| \partial TC) is the L2-norm on T (resp., on \partial T and \partial TC).
Notice that | \widehat vT | 1,T = 0 implies that vT is a rigid-body motion and that v\partial T is the
trace of vT on \partial T . The following local stability and boundedness properties of the
strain reconstruction and stabilization operators are established as in [22, Lemma 4].

Lemma 7 (boundedness and stability). Let \bfitE be defined by (3.1) and S by (3.3).

There are 0 < \alpha \flat < \alpha \sharp < +\infty such that, for all T \in \scrT h, all h > 0, and all \widehat vT \in \widehat Uk
T ,

we have

(4.4) \alpha \flat | \widehat vT | 1,T \leq 
\biggl( 
\| \bfitE (\widehat vT )\| 2T + h - 1

T \| S(\widehat vT )\| 2\partial T\biggr) 1
2

\leq \alpha \sharp | \widehat vT | 1,T .
The key operator in the HHO error analysis is the local interpolation operator\widehat IkT : H1(T ;\BbbR d) \rightarrow \widehat Uk

T such that

(4.5) \widehat IkT (v) := (\Pi k
T (v),\Pi 

k/k+1
\partial T (v| \partial T )) \in \widehat Uk

T

for all v \in H1(T ;\BbbR d) and all T \in \scrT h. The global version \widehat Ikh : V D \rightarrow \widehat Uk
h,0 is defined

locally by setting the local HHO components of \widehat Ikh(v) to (\widehat Ikh(v))T := \widehat IkT (v| T ) \in \widehat Uk
T for

all v \in V D and all T \in \scrT h. This definition makes sense since the functions in V D do
not jump across the mesh interfaces and vanish at the boundary faces located on \Gamma D.
The HHO interpolation operator allows one to obtain important local commuting
properties satisfied by the reconstruction operators (see, e.g., [22, Proposition 3]);
namely, we have

(4.6) \bfitE (\widehat IkT (v)) = \Pi k
T (\bfitvarepsilon (v)), D(\widehat IkT (v)) = \Pi k

T (\nabla \cdot v)

for all v \in H1(T ;\BbbR d), all T \in \scrT h, and all h > 0, where \Pi k
T is the L2-orthogonal

projection onto \BbbP k(T ;\BbbR d\times d
sym) and \Pi k

T that onto \BbbP k(T ;\BbbR ) For all v \in H1+\nu (\Omega ;\BbbR d),

\nu > 1
2 , and all \widehat wh \in \widehat Uk

h,0, let us set (the reason for the notation will become clear in
the proof of Theorem 12 below)
(4.7)

\BbbT \prime 
1,1(v, \widehat wh) :=

\sum 
T\in \scrT h

 - 
\bigl( 
(\nabla \cdot \bfitsigma (v), wT )T+\widehat aT (\widehat IkT (v), \widehat wT )

\bigr) 
+

\sum 
T\in \scrT N

h \cup \scrT C
h

(\sigma n(v), w\partial T )\partial TN\cup \partial TC ,

where we recall that \widehat wT = (wT , w\partial T ) are the local components of the test function\widehat wh \in \widehat Uk
h,0 attached to the mesh cell T \in \scrT h. For a function z \in H\nu (T ;\BbbR ), \nu > 1

2 , we
employ the notation

\| z\| 2\sharp ,T := \| z\| 2T + hT \| z\| 2\partial T
and the same notation for tensor-valued functions.
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Lemma 8 (consistency for linear elasticity). Let \BbbT \prime 
1,1(v, \widehat wh) be defined in (4.7)

for all v \in H1+\nu (\Omega ;\BbbR d), \nu > 1
2 , and all \widehat wh \in \widehat Uk

h,0. Then

(4.8) | \BbbT \prime 
1,1(v, \widehat wh)| 2 \lesssim \BbbA 1(v)

\biggl( \sum 
T\in \scrT h

2\mu | \widehat wT | 21,T
\biggr) 

holds true with the interpolation error

\BbbA 1(v) :=
\sum 
T\in \scrT h

1

2\mu 

\Bigl( 
(2\mu )2\| \bfitvarepsilon (v) - \Pi k

T (\bfitvarepsilon (v))\| 2\sharp ,T + (2\mu )2\| \bfitvarepsilon (v  - \Pi k+1
T (v))\| 2T

+ \lambda 2\| \nabla \cdot v  - \Pi k
T (\nabla \cdot v)\| 2\sharp ,T

\Bigr) 
.(4.9)

Proof. The proof essentially follows from [22, Theorem 8] and is only sketched
here. Integrating by parts the term (\nabla \cdot \bfitsigma (v), wT )T for all T \in \scrT h, using (2.1) together
with the definitions (3.1)--(3.2) for \bfitE ( \widehat wT ) and D( \widehat wT ), respectively, rearranging the

terms, and setting \bfiteta T := \bfitvarepsilon (v)  - \bfitE (\widehat IkT (v)) = \bfitvarepsilon (v)  - \Pi k
T (\bfitvarepsilon (v)) and \zeta T := \nabla \cdot v  - 

D(\widehat IkT (v)) = \nabla \cdot v - \Pi k
T (\nabla \cdot v) (owing to the commuting properties (4.6)) leads to (details

are skipped for brevity)

\BbbT \prime 
1,1(v, \widehat wh) =

\sum 
T\in \scrT h

\Bigl( 
2\mu (\bfiteta T , \bfitvarepsilon (wT ))T + 2\mu (\bfiteta T \cdot nT , w\partial T  - wT )\partial T

 - 2\mu h - 1
T (S(\widehat IkT (v)), S( \widehat wT ))\partial T

+ \lambda (\zeta T ,\nabla \cdot wT )T + \lambda (\zeta TnT , w\partial T  - wT )\partial T

\Bigr) 
.

Invoking the Cauchy--Schwarz inequality and the upper bound from Lemma 7 to

estimate h
 - 1

2

T \| S( \widehat wT )\| \partial T , we infer that

| \BbbT \prime 
1,1(v, \widehat wh)| 2 \lesssim 

\biggl( \sum 
T\in \scrT h

1

2\mu 

\Bigl( 
(2\mu )2\| \bfiteta T \| 2\sharp ,T + (2\mu )2h - 1

T \| S(\widehat IkT (v))\| 2\partial T + \lambda 2\| \zeta T \| 2\sharp ,T
\Bigr) \biggr) 

\times 
\biggl( \sum 

T\in \scrT h

2\mu | \widehat wT | 21,T
\biggr) 
.

Finally, combining the ideas used in [22, equations (20) and (35)] with a local multi-
plicative trace inequality and a local Korn inequality, we infer that

h - 1
T \| S(\widehat IkT (v))\| 2\partial T \lesssim \| \bfitvarepsilon (v  - R(\widehat IkT (v)))\| 2T \leq \| \bfitvarepsilon (v  - \Pi k+1

T (v))\| 2T ,
which completes the proof of (4.8).

4.2. Stability and well-posedness. Let us first establish an important mono-
tonicity property of the semilinear form \widehat bh under the assumption that the penalty
parameters \gamma n and \gamma t are large enough. The lower bound on these parameters in-
volves the constant Cdt from the discrete trace inequality

(4.10) \| vh\| \partial TC \leq Cdth
 - 1

2

T \| vh\| T
for all T \in \scrT C

h , all h > 0, and all vh \in \BbbP k(T ;\BbbR q), q \in \{ 1, d\} . We equip the global

HHO space \widehat Uk
h,0 with the norm

\| \widehat vh\| 2\mu ,\lambda :=
\sum 
T\in \scrT h

\Bigl( 
2\mu | \widehat vT | 21,T + \lambda \| D(\widehat vT )\| 2T\Bigr) .
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That \| \cdot \| \mu ,\lambda defines a norm on \widehat Uk
h,0 follows from the usual arguments since face com-

ponents are null on all the faces in \scrF b,D
h and this set is nonempty by assumption.

Lemma 9 (monotonicity). Assume that the penalty parameters are such that

(4.11) min(\kappa  - 1\gamma n, 2\gamma t) \geq 3(\theta + 1)2C2
dt\mu ,

recalling that \kappa := max(1, \lambda 
2\mu ). Then the semilinear form \widehat bh is monotone, and we

have for all \widehat vh, \widehat wh \in \widehat Uk
h,0,

(4.12) \widehat bh(\widehat vh; \widehat vh  - \widehat wh) - \widehat bh( \widehat wh; \widehat vh  - \widehat wh) \geq 
1

3
min(1, \alpha 2

\flat )\| \widehat vh  - \widehat wh\| 2\mu ,\lambda .

Proof. Let \widehat vh, \widehat wh \in \widehat Uk
h,0, and set \widehat zh := \widehat vh  - \widehat wh. Recalling the

definition of the HHO-Nitsche semilinear form \widehat bh and exploiting the positivity of
the local HHO bilinear form \widehat aT , we infer that
(4.13)\sum 
T\in \scrT h

\Bigl( 
2\mu 

\bigl( 
\| \bfitE (\widehat zT )\| 2T +h - 1

T \| S(\widehat zT )\| 2\partial T \bigr) +\lambda \| D(\widehat zT )\| 2T\Bigr) \leq \BbbT 1+\BbbT 2,n+\BbbT 2,t - \BbbT 3,n - \BbbT 3,t,

where

\BbbT 1 := \widehat bh(\widehat vh; \widehat zh) - \widehat bh( \widehat wh; \widehat zh),
\BbbT 2,n :=

\sum 
T\in \scrT C

h

\theta 
hT

\gamma n
\| \sigma n(\widehat zT )\| 2\partial TC , \BbbT 2,t :=

\sum 
T\in \scrT C

h

\theta 
hT

\gamma t
\| \sigma t(\widehat zT )\| 2\partial TC

and

\BbbT 3,n :=
\sum 

T\in \scrT C
h

hT

\gamma n
([\tau n(\widehat vT )]\ominus  - [\tau n( \widehat wT )]\ominus , \tau n(\widehat zT ))\partial TC

+
\sum 

T\in \scrT C
h

(\theta  - 1)
hT

\gamma n
([\tau n(\widehat vT )]\ominus  - [\tau n( \widehat wT )]\ominus , \sigma n(\widehat zT ))\partial TC ,

\BbbT 3,t :=
\sum 

T\in \scrT C
h

hT

\gamma t
([\tau t(\widehat vT )]s  - [\tau t( \widehat wT )]s, \tau t(\widehat zT ))\partial TC

+
\sum 

T\in \scrT C
h

(\theta  - 1)
hT

\gamma t
([\tau t(\widehat vT )]s  - [\tau t( \widehat wT )]s, \sigma t(\widehat zT ))\partial TC .

Let us consider \BbbT 2,n  - \BbbT 3,n. Setting \delta T := [\tau n(\widehat vT )]\ominus  - [\tau n( \widehat wT )]\ominus , we infer that

\BbbT 2,n  - \BbbT 3,n \leq 
\sum 

T\in \scrT C
h

\Bigl( 
\theta 
hT

\gamma n
\| \sigma n(\widehat zT )\| 2\partial TC  - \| \delta T \| 2\partial TC  - (\theta  - 1)

hT

\gamma n
(\delta T , \sigma n(\widehat zT ))\partial TC

\Bigr) 
\leq 

\sum 
T\in \scrT C

h

1

4
(\theta + 1)2

hT

\gamma n
\| \sigma n(\widehat zT )\| 2\partial TC \leq 

\sum 
T\in \scrT C

h

1

4
(\theta + 1)2

C2
dt

\gamma n
\| \sigma n(\widehat zT )\| 2T ,

where we used (4.1) in the first bound, Young's inequality and the fact that \theta + 1
4 (\theta  - 

1)2 = 1
4 (\theta + 1)2 in the second bound, and the discrete trace inequality (4.10) in the
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third bound. Recalling the definition (3.8) of the discrete HHO stress and using the
triangle and Young's inequalities, we infer that

\BbbT 2,n  - \BbbT 3,n \leq 
\sum 

T\in \scrT C
h

1

2
(\theta + 1)2

C2
dt

\gamma n

\Bigl( 
(2\mu )2\| \bfitE (\widehat zT )\| 2T + \lambda 2\| D(\widehat zT )\| 2T\Bigr) 

\leq 
\sum 

T\in \scrT C
h

(\theta + 1)2
C2

dt

\gamma n
\mu \kappa \times 

\Bigl( 
2\mu \| \bfitE (\widehat zT )\| 2T + \lambda \| D(\widehat zT )\| 2T\Bigr) .

The reasoning to bound \BbbT 2,t - \BbbT 3,t is similar except that \sigma t(\widehat zT ) has only off-diagonal
contributions and is therefore independent of \lambda . We infer that

\BbbT 2,t  - \BbbT 3,t \leq 
\sum 

T\in \scrT C
h

1

2
(\theta + 1)2

C2
dt

\gamma t
\mu \times 2\mu \| \bfitE (\widehat zT )\| 2T .

Combining the above bounds and using the condition (4.11) leads to

\BbbT 2,n + \BbbT 2,t  - \BbbT 3,n  - \BbbT 3,t \leq 
\sum 
T\in \scrT h

2

3

\Bigl( 
2\mu \| \bfitE (\widehat zT )\| 2T + \lambda \| D(\widehat zT )\| 2T\Bigr) .

Recalling (4.13) leads to

\BbbT 1 \geq 
\sum 
T\in \scrT h

1

3

\Bigl( 
2\mu 

\bigl( 
\| \bfitE (\widehat zT )\| 2T + h - 1

T \| S(\widehat zT )\| 2\partial T \bigr) + \lambda \| D(\widehat zT )\| 2T\Bigr) .
Using the definition of \BbbT 1, the lower bound from Lemma 7, and the definition of the
norm \| \cdot \| \mu ,\lambda concludes the proof.

Using the argument from [8, Corollary 15, page 126] (see [13] for the application
to FEM-Nitsche), we infer from Lemma 9 the following well-posedness result.

Corollary 10 (well-posedness). The discrete problem (3.7) is well-posed.

Remark 11 (lower bound (4.11)). The monotonicity result stated in Lemma 9 is
robust in the incompressible limit provided that the condition (4.11) does not imply
that the penalty parameters \gamma n and \gamma t need to be chosen large when the ratio \kappa is
large (remember that this ratio becomes large in the incompressible limit). Robustness
happens in the two following situations: (i) for the skew-symmetric variant \theta =  - 1,
for which the penalty parameters \gamma n and \gamma t need only to be positive real numbers
(instead, for \theta \in \{ 0, 1\} , this property is lost for \gamma n, which needs to scale as \mu \kappa ), and
(ii) for bilateral contact and any value of \theta since only the parameter \gamma t is used and it
remains independent of \kappa .

4.3. Error analysis. This section contains our main theoretical results on the
convergence of the HHO-Nitsche method for the frictional contact problem.

Theorem 12 (error estimate). Let \epsilon \in (0, 1]. Recall that \kappa := max(1, \lambda 
2\mu ).

Assume that the penalty parameters are such that

(4.14) min(\kappa  - 1\gamma n, 2\gamma t) \geq 3
\bigl( 
(\theta + 1)2 + \epsilon (4 + (\theta  - 1)2)

\bigr) 
C2

dt\mu .

Assume that the exact solution satisfies u \in H1+\nu (\Omega ;\BbbR d), \nu > 1
2 . Let \widehat uh be the



HHO-NITSCHE FOR CONTACT AND TRESCA FRICTION A2313

discrete solution of (3.7) with local components \widehat uT for all T \in \scrT h. Then we have

\sum 
T\in \scrT h

\Bigl( 
2\mu \| \bfitvarepsilon (u) - \bfitE (\widehat uT )\| 2T + \lambda \| \nabla \cdot u - D(\widehat uT )\| 2T

\Bigr) 
+

\epsilon 

2(1 + \epsilon )

\sum 
T\in \scrT C

h

\biggl( 
hT

\gamma n
\| [\tau n(u)]\ominus  - [\tau n(\widehat uT )]\ominus \| 2\partial TC +

hT

\gamma t
\| [\tau t(u)]s  - [\tau t(\widehat uT )]s\| 2\partial TC

\biggr) 

\lesssim \BbbA 1(u) + \BbbA 2(u),
(4.15)

with \BbbA 1(u) defined in (4.9). Moreover, \BbbA 2(u) is given by

\BbbA 2(u) :=
\sum 

T\in \scrT C
h

2

\epsilon 

\Bigl( hT

\gamma n
\| \delta \sigma n,T \| 2\partial TC +

\gamma n
hT

\| \delta un,T \| 2\partial TC

+
hT

\gamma t
\| \delta \sigma t,T \| 2\partial TC +

\gamma t
hT

\| \delta ut,T \| 2\partial TC

\Bigr) 
,(4.16)

with \delta \sigma n,T := \sigma n(u)  - \sigma n(\widehat IkT (u)), \delta \sigma t,T := \sigma t(u)  - \sigma t(
\widehat IkT (u)), the HHO interpola-

tion operator is defined in (4.5), and \delta un,T and \delta ut,T are the normal and tangential

components on \Gamma C of \delta uT := u| \partial T  - \Pi k+1
\partial T (u| \partial T ).

Proof. Let us set \widehat zh := \widehat uh  - \widehat Ikh(u), where \widehat Ikh : V D \rightarrow \widehat Uk
h,0 is the global HHO

interpolation operator defined in section 4.1. The same manipulations as in (4.13)
lead to\sum 
T\in \scrT h

\Bigl( 
2\mu 

\bigl( 
\| \bfitE (\widehat zT )\| 2T +h - 1

T \| S(\widehat zT )\| 2\partial T \bigr) +\lambda \| D(\widehat zT )\| 2T\Bigr) \leq \BbbT 1+\BbbT 2,n+\BbbT 2,t - \BbbT 3,n - \BbbT 3,t,

where the terms on the right-hand side are defined as above by setting \widehat vh := \widehat uh

and \widehat wh := \widehat Ikh(u). We use the fact that \widehat uh is the discrete solution to infer that

\BbbT 1 := \widehat bh(\widehat uh; \widehat zh)  - \widehat bh(\widehat Ikh(u), \widehat zh) = \widehat \ell h(\widehat zh)  - \widehat bh(\widehat Ikh(u), \widehat zh). Recalling the definition of\widehat bh and \widehat \ell h, we obtain \BbbT 1 := \BbbT 1,1 + \BbbT 1,2,n + \BbbT 1,2,t  - \BbbT 1,3,n  - \BbbT 1,3,t with

\BbbT 1,1 :=
\sum 
T\in \scrT h

\bigl( 
(f, zT )T  - \widehat aT (\widehat IkT (u), \widehat zT )\bigr) + \sum 

T\in \scrT N
h

(gN, z\partial T )\partial TN ,

\BbbT 1,2,n :=
\sum 

T\in \scrT C
h

\theta 
hT

\gamma n
(\sigma n(\widehat IkT (u)), \sigma n(\widehat zT ))\partial TC ,

\BbbT 1,3,n :=
\sum 

T\in \scrT C
h

hT

\gamma n
([\tau n(\widehat IkT (u))]\ominus , (\tau n + (\theta  - 1)\sigma n)(\widehat zT ))\partial TC ,

and similar expressions for \BbbT 1,2,t and \BbbT 1,3,t. We use the identities \sigma n(\widehat IkT (u)) =

(\sigma n(\widehat IkT (u)) - \sigma n(u))+ \sigma n(u) and [\tau n(\widehat IkT (u))]\ominus = ([\tau n(\widehat IkT (u))]\ominus  - [\tau n(u)]\ominus )+ [\tau n(u)]\ominus 
in \BbbT 1,2,n and \BbbT 1,3,n, respectively, and obtain

(4.17) \BbbT 1 := \BbbT \prime 
1,1(u, \widehat zh) - \BbbT \prime 

1,2,n  - \BbbT \prime 
1,2,t + \BbbT \prime 

1,3,n + \BbbT \prime 
1,3,t,
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where \BbbT \prime 
1,1(u, \widehat zh) is defined in (4.7) and (recall that \delta \sigma n,T := \sigma n(u) - \sigma n(\widehat IkT (u)))
\BbbT \prime 
1,2,n :=

\sum 
T\in \scrT C

h

\theta 
hT

\gamma n
(\delta \sigma n,T , \sigma n(\widehat zT ))\partial TC ,

\BbbT \prime 
1,3,n :=

\sum 
T\in \scrT C

h

hT

\gamma n
([\tau n(u)]\ominus  - [\tau n(\widehat IkT (u))]\ominus , (\tau n + (\theta  - 1)\sigma n)(\widehat zT ))\partial TC ,

and similar expressions for \BbbT \prime 
1,2,t and \BbbT \prime 

1,3,t. To make the term \BbbT \prime 
1,1(u, \widehat zh) appear

in (4.17), we used that \nabla \cdot \bfitsigma (u) + f = 0 in \Omega , \sigma n(u) = gN on \Gamma N, whereas on \Gamma C we

used that \sigma n(u) = [\tau n(u)]\ominus ,
hT

\gamma n
(\theta \sigma n(\widehat zT )  - (\tau n + (\theta  - 1)\sigma n)(\widehat zT )) = z\partial T ,n, a similar

identity for the tangential component, and that \sigma n(u)\cdot z\partial T = \sigma n(u)z\partial T ,n+\sigma t(u)\cdot z\partial T ,t.
Combining \BbbT 2,n with \BbbT \prime 

1,2,n, we infer that

\BbbT \prime 
2,n := \BbbT 2,n  - \BbbT \prime 

1,2,n =
\sum 

T\in \scrT C
h

\theta 
hT

\gamma n

\bigl( 
\| \sigma n(\widehat zT )\| 2\partial TC  - (\delta \sigma n,T , \sigma n(\widehat zT ))\partial TC

\bigr) 
,

together with a similar expression for \BbbT \prime 
2,t := \BbbT 2,t  - \BbbT \prime 

1,2,t. Moreover, combining \BbbT 3,n

with \BbbT \prime 
1,3,n, we infer that

\BbbT \prime 
3,n :=  - \BbbT 3,n + \BbbT \prime 

1,3,n =
\sum 

T\in \scrT C
h

hT

\gamma n
([\tau n(u)]\ominus  - [\tau n(\widehat uT )]\ominus , (\tau n + (\theta  - 1)\sigma n)(\widehat zT ))\partial TC ,

together with a similar expression for \BbbT \prime 
3,t :=  - \BbbT 3,t + \BbbT \prime 

1,3,t. Putting everything
together, we infer that\sum 

T\in \scrT h

\Bigl( 
2\mu 

\bigl( 
\| \bfitE (\widehat zT )\| 2T + h - 1

T \| S(\widehat zT )\| 2\partial T \bigr) + \lambda \| D(\widehat zT )\| 2T\Bigr) 
\leq \BbbT \prime 

1,1(u, \widehat zh) + \BbbT \prime 
2,n + \BbbT \prime 

2,t + \BbbT \prime 
3,n + \BbbT \prime 

3,t.(4.18)

Let us now bound the terms (\BbbT \prime 
2,n+\BbbT \prime 

3,n) and (\BbbT \prime 
2,t+\BbbT \prime 

3,t). We only detail the bound
on (\BbbT \prime 

2,n + \BbbT \prime 
3,n) since the reasoning is similar for (\BbbT \prime 

2,t + \BbbT \prime 
3,t). Recalling the above

expression for \BbbT \prime 
2,n and using Young's inequality (with \beta 1 > 0) for the second term

on the right-hand side, we infer that

\BbbT \prime 
2,n \leq 

\sum 
T\in \scrT C

h

hT

\gamma n

\bigl( 
(\theta + \beta 1

2 )\| \sigma n(\widehat zT )\| 2\partial TC + \theta 2

2\beta 1
\| \delta \sigma n,T \| 2\partial TC

\bigr) 
.

Turning to \BbbT \prime 
3,n, since \widehat zT = \widehat uT  - \widehat IkT (u) and the operator \tau n is linear, we have

(\tau n + (\theta  - 1)\sigma n)(\widehat zT ) =  - (\tau n(u) - \tau n(\widehat uT )) + (\tau n(u) - \tau n(\widehat IkT (u))) + (\theta  - 1)\sigma n(\widehat zT ),
so that we can rearrange the terms composing \BbbT \prime 

3,n as follows:

\BbbT \prime 
3,n=

\sum 
T\in \scrT C

h

hT

\gamma n

\Bigl( 
 - ([\tau n(u)]\ominus  - [\tau n(\widehat uT )]\ominus , \tau n(u) - \tau n(\widehat uT ))\partial TC

+ ([\tau n(u)]\ominus  - [\tau n(\widehat uT )]\ominus , \tau n(u) - \tau n(\widehat IkT (u)))\partial TC

+ (\theta  - 1)([\tau n(u)]\ominus  - [\tau n(\widehat uT )]\ominus , \sigma n(\widehat zT ))\partial TC

\Bigr) 
.
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Using (4.1) for the first term on the right-hand side and letting \omega n,T := [\tau n(u)]\ominus  - 
[\tau n(\widehat uT )]\ominus and \delta \tau n,T := \tau n(u) - \tau n(\widehat IkT (u)), we infer that

\BbbT \prime 
3,n \leq 

\sum 
T\in \scrT C

h

hT

\gamma n

\bigl( 
 - \| \omega n,T \| 2\partial TC + (\omega n,T , \delta \tau n,T )\partial TC + (\theta  - 1)(\omega n,T , \sigma n(\widehat zT ))\partial TC

\bigr) 
.

Using Young's inequality to bound the second and the third terms on the right-hand
side (with \beta 2 > 0 and \beta 3 > 0), we infer that

\BbbT \prime 
3,n \leq 

\sum 
T\in \scrT C

h

hT

\gamma n

\bigl( 
( - 1+ \beta 2

2 + | \theta  - 1| 
2\beta 3

)\| \omega n,T \| 2\partial TC + 1
2\beta 2

\| \delta \tau n,T \| 2\partial TC +
| \theta  - 1| \beta 3

2 \| \sigma n(\widehat zT )\| 2\partial TC

\bigr) 
.

Putting the bounds on \BbbT \prime 
2,n and \BbbT \prime 

3,n together leads to

\BbbT \prime 
2,n + \BbbT \prime 

3,n \leq 
\sum 

T\in \scrT C
h

hT

\gamma n

\bigl( 
 - \rho 1\| \omega n,T \| 2\partial TC + \rho 2\| \sigma n(\widehat zT )\| 2\partial TC

+ \theta 2

2\beta 1
\| \delta \sigma n,T \| 2\partial TC + 1

2\beta 2
\| \delta \tau n,T \| 2\partial TC

\bigr) 
,

with
\rho 1 := 1 - \beta 2

2  - | \theta  - 1| 
2\beta 3

, \rho 2 := \theta + \beta 1

2 + | \theta  - 1| \beta 3

2 .

Let \epsilon \in (0, 1], and let us choose \beta 1 := 2\epsilon , \beta 2 := \epsilon 
1+\epsilon , and \beta 3 := | \theta  - 1| (1+\epsilon )

2 . Then we

have \rho 1 = \epsilon 
2(1+\epsilon ) and \rho 2 = (\theta +1)2

4 + \epsilon (1 + (\theta  - 1)2

4 ), as well as \theta 2

2\beta 1
= \theta 2

4\epsilon \leq 1
4\epsilon \leq 1

\epsilon and
1

2\beta 2
= 1+\epsilon 

2\epsilon \leq 1
\epsilon . Using the above bound on \BbbT \prime 

2,n +\BbbT \prime 
3,n together with a similar bound

on \BbbT \prime 
2,t + \BbbT \prime 

3,t in (4.18), we infer that\sum 
T\in \scrT h

\Bigl( 
2\mu 

\bigl( 
\| \bfitE (\widehat zT )\| 2T + h - 1

T \| S(\widehat zT )\| 2\partial T \bigr) + \lambda \| D(\widehat zT )\| 2T\Bigr) (4.19)

+ \rho 1
\sum 

T\in \scrT C
h

\Bigl( hT

\gamma n
\| \omega n,T \| 2\partial TC +

hT

\gamma t
\| \omega t,T \| 2\partial TC

\Bigr) 
\leq \BbbT \prime 

1,1(u, \widehat zh) + \sum 
T\in \scrT C

h

\rho 2

\Bigl( hT

\gamma n
\| \sigma n(\widehat zT )\| 2\partial TC +

hT

\gamma t
\| \sigma t(\widehat zT )\| 2\partial TC

\Bigr) 
+ \BbbA \prime 

2(u),

with \omega t,T := [\tau t(u)]s  - [\tau t(\widehat uT )]s and

\BbbA \prime 
2(u) :=

\sum 
T\in \scrT C

h

1

\epsilon 

\Bigl( hT

\gamma n

\bigl( 
\| \delta \sigma n,T \| 2\partial TC + \| \delta \tau n,T \| 2\partial TC

\bigr) 
+

hT

\gamma t

\bigl( 
\| \delta \sigma t,T \| 2\partial TC + \| \delta \tau t,T \| 2\partial TC

\bigr) \Bigr) 
,

recalling that \delta \sigma n,T := \sigma n(u)  - \sigma n(\widehat IkT (u)), \delta \sigma t,T := \sigma t(u)  - \sigma t(
\widehat IkT (u)) are defined

below (4.16), \delta \tau n,T := \tau n(u) - \tau n(\widehat IkT (u)) is defined above in this proof, and \delta \tau t,T :=

\tau t(u) - \tau t(
\widehat IkT (u)). Recalling the definitions of the operators \tau n and \tau t and invoking the

triangle and Young's inequalities, we infer that \BbbA \prime 
2(u) \leq \BbbA 2(u), with \BbbA 2(u) defined

in (4.16). Note importantly that the face component of \widehat IkT (u) on \partial TC is indeed
\Pi k+1

\partial T (u| \partial T ) since the polynomial order is (k + 1) on the faces located on \Gamma C. Next,
we absorb the traces of \sigma n(\widehat zT ) and \sigma t(\widehat zT ) in (4.19) (in the term multiplied by \rho 2)
by the positive terms from the left-hand side. To this purpose, we proceed as in the
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proof of Lemma 9, and we invoke the discrete trace inequality (4.10) and the lower
bound (4.14) on the penalty parameters. This yields\sum 

T\in \scrT h

1

3

\Bigl( 
2\mu 

\bigl( 
\| \bfitE (\widehat zT )\| 2T + h - 1

T \| S(\widehat zT )\| 2\partial T \bigr) + \lambda \| D(\widehat zT )\| 2T\Bigr) 
+

\epsilon 

2(1 + \epsilon )

\sum 
T\in \scrT C

h

\Bigl( hT

\gamma n
\| \omega n,T \| 2\partial TC +

hT

\gamma t
\| \omega t,T \| 2\partial TC

\Bigr) 
\leq \BbbT \prime 

1,1(u, \widehat zh) + \BbbA 2(u).

Finally, we invoke Lemma 8 and infer that | \BbbT \prime 
1,1(u, \widehat zh)| 2 \lesssim \BbbA 1(u)

\sum 
T\in \scrT h

2\mu | \widehat zT | 21,T .
Owing to the lower bound from Lemma 7 and Young's inequality, we can hide the
factor

\sum 
T\in \scrT h

2\mu | \widehat zT | 21,T on the left-hand side of the above inequality. We conclude
the proof by means of a triangle inequality.

Remark 13 (lower bound (4.14)). The minimal value of the penalty parameters
from the lower bound in (4.14) is slightly tighter than that from the lower bound (4.11)
and tends to it as \epsilon \downarrow 0. Formally, one recovers the arguments from the proof of
Lemma 9 (which involve only the two functions \widehat vh, \widehat wh instead of the three functions\widehat uh,

\widehat Ikh(u), and u as in the proof of Theorem 12) by setting \epsilon := 0 so that \beta 1 = \beta 2 = 0,

\beta 3 = | \theta  - 1| 
2 , \rho 1 = 0, and \rho 2 = (\theta +1)2

4 .

Convergence rates for smooth solutions can be inferred from Theorem 12 by us-
ing the approximation properties of the L2-orthogonal projection on shape-regular
polyhedral mesh sequences. Referring, e.g., to [21, 27] for proofs, we have

(4.20) \| v  - \Pi k+1
T (v)\| T + h

1
2

T \| v  - \Pi k+1
T (v)\| \partial T + hT \| \nabla (v  - \Pi k+1

T (v))\| T
+ h

3
2

T \| \nabla (v  - \Pi k+1
T (v))\| \partial T \lesssim h1+r

T | v| H1+\nu (T )

for all v \in H1+\nu (T ;\BbbR ), \nu \in ( 12 , k + 1], all T \in \scrT h, and all h > 0. Similar bounds are
available for the projection of vector-valued functions. Using (4.20) to bound \BbbA 1(u)
and \BbbA 2(u) in (4.15) readily leads to the following error estimate (note that one can
assume \gamma t \leq \gamma n without loss of generality).

Corollary 14 (H1-error estimate). Keep the assumptions and notation from
Theorem 12. Assume that the exact solution satisfies u \in H1+\nu (\Omega ;\BbbR d) and \nabla \cdot u \in 
H\nu (\Omega ;\BbbR ), \nu \in ( 12 , k + 1]. Then we have\sum 
T\in \scrT h

\Bigl( 
2\mu \| \bfitvarepsilon (u) - \bfitE (\widehat uT )\| 2T + \lambda \| \nabla \cdot u - D(\widehat uT )\| 2T

\Bigr) 
+

\epsilon 

2(1 + \epsilon )

\sum 
T\in \scrT C

h

\Bigl( hT

\gamma n
\| [\tau n(u)]\ominus  - [\tau n(\widehat uT )]\ominus \| 2\partial TC +

hT

\gamma t
\| [\tau t(u)]s  - [\tau t(\widehat uT )]s\| 2\partial TC

\Bigr) 

\lesssim 
\sum 
T\in \scrT h

\biggl( \biggl( 
2\mu +

1

\epsilon 

\Bigl( \mu 2\kappa 2

\gamma n
+

\mu 2

\gamma t
+ \gamma n

\Bigr) \biggr) 
h2\nu 
T | u| 2H1+\nu (T ) +

\lambda 2

2\mu 
h2\nu 
T | \nabla \cdot u| 2H\nu (T )

\biggr) 
.

(4.21)

Remark 15 (choice of \epsilon , robustness). For \theta \in \{ 0, 1\} , the value chosen for \epsilon is
not really important, and one can simply set \epsilon = 1. Then (4.14) shows that \gamma n \sim \mu \kappa ,
\gamma t \sim \mu , and taking the square root in (4.21) shows that the error upper bound scales

as \kappa 
1
2 . Instead, for \theta =  - 1, choosing \epsilon arbitrarily small allows the lower bound on
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the parameters \kappa  - 1\gamma n and \gamma t to be arbitrarily small as well, as is expected for the
skew-symmetric variant. Note, however, that the choice of \epsilon affects the error upper
bound (4.21), which scales as \epsilon  - 1 (a similar issue is also observed for Nitsche-FEM
in [15]). A first possibility is to set \epsilon \approx \kappa  - 1 leading to \gamma n \sim \mu and \gamma t \sim \mu \kappa  - 1,

whereby the error estimate (4.21) delivers an upper bound scaling as \kappa 
3
2 after taking

the square root. A second possibility is to set \epsilon = 1 and to take \gamma n \sim \mu \kappa to moderate
the dependency on \kappa of the upper bound in (4.21), which then scales as \kappa 

1
2 after

taking the square root.

Remark 16 (choice of k). A usual smoothness assumption is u \in H
5
2 - \varepsilon (\Omega ;\BbbR d),

\varepsilon > 0, i.e., \nu = 3
2 - \varepsilon , as is generally the case when there is a transition between contact

and no contact. Then the maximal convergence rate is \scrO (h
3
2 - \varepsilon ) and is reached for

k = 1.

Remark 17 (face polynomials). Using face polynomials of order (k + 1) on the
faces located on \Gamma C is crucial to obtain the above error estimate in the optimal case
where \nu = k + 1. This allows us to invoke the approximation properties of \Pi k+1

\partial T on
\partial TC when bounding \BbbA 2(u).

5. Numerical experiments. The goal of this section is to evaluate the pro-
posed HHO-Nitsche method on 2D and 3D benchmarks: (i) a 2D manufactured solu-
tion, (ii) a 3D frictionless Hertz contact problem; (iii) a stick and slip transition, and
(iv) a prototype for an industrial application. We employ the notation HHO(k) when
using polynomials of order k \geq 1. The implementation of HHO methods is discussed
in [17], and an open-source software is available.1 The discrete nonlinear problem
(3.7) is solved by a generalized Newton method as in [20]. In the present implemen-
tation, the penalty parameters for the stabilization and the friction/Tresca condition
are proportional to 2\mu and are scaled by the reciprocal of the diameter of the local
face rather than the diameter of the local cell (these two length scales are uniformly
equivalent owing to the shape-regularity of the mesh sequence). We compare our nu-
merical results to the analytical solution whenever available or to numerical solutions
obtained either from the literature or using the industrial open-source FEM software
code aster [26]. In this latter case, we consider a mixed method called T2-LAC (see
[1]), where the discrete unknowns are the piecewise quadratic displacement field and
the piecewise constant contact pressure.

5.1. 2D manufactured solution. We consider the unit square \Omega := (0, 1)2, and
we set \Gamma C := (0, 1)\times \{ 0\} and \Gamma D := \{ 0, 1\} \times (0, 1)\cup (0, 1)\times \{ 1\} . The Lam\'e coefficients
are \mu := 2 and \lambda := 1000 (which corresponds to a Poisson ratio of \nu \simeq 0.499). The
manufactured solution is

(5.1) ux(x, y) :=

\biggl( 
1 +

1

1 + \lambda 

\biggr) 
xex+y, uy(x, y) :=

\biggl( 
 - 1 +

1

1 + \lambda 

\biggr) 
yex+y.

The x-dependent friction threshold is s(x) := \mu x2 \lambda +2
6\lambda +6 . The displacement imposed

on \Gamma D is the trace of the manufactured solution, and the volume force is computed
accordingly. The penalty parameters are taken as \gamma n = \gamma t := 2\mu . In this test case,
we consider hexagonal meshes to illustrate the polyhedral capabilities of the proposed
HHO-Nitsche method. The displacement Euclidean norm of the manufactured so-
lution is plotted in Figure 3 on the deformed configuration for a hexagonal mesh
composed of 280 cells.

1https://github.com/wareHHOuse/diskpp.

https://github.com/wareHHOuse/diskpp
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Fig. 3. 2D manufactured solution: displacement Euclidean norm on the deformed configuration
for HHO(1) and \theta = 0 for a hexagonal mesh (h = 4.60e-2) (the contact boundary \Gamma C is the bottom
side).

Table 1
2D manufactured solution: H1-error and convergence order vs. h for \theta = 1.

Mesh k = 1 k = 2 k = 3 k = 4

size h H1-error order H1-error order H1-error order H1-error order

3.33e-1 5.42e-3 - 4.41e-4 - 5.56e-6 - 1.84e-7 -

1.75e-1 1.38e-3 2.13 5.87e-5 3.13 3.33e-7 4.06 5.34e-9 5.11

9.06e-2 3.47e-4 2.08 7.62e-6 3.07 2.05e-8 4.02 1.63e-10 5.04

4.60e-2 8.70e-5 2.05 9.72e-7 3.04 1.28e-9 4.00 6.66e-12 4.61

We first report in Table 1 the H1-error (that is, the \mu -dependent part of the
left-hand side in (4.21)) and convergence rates as a function of the average mesh size
h for k \in \{ 1, . . . , 4\} on hexagonal mesh sequences and for the symmetric variant with
\theta = 1. For all k \in \{ 1, . . . , 4\} , the H1-error converges with order (k + 1) as predicted
in Corollary 14 (except for k = 4 and the finest mesh since we are slightly limited
here by the numerical precision). The results are similar for the other variants with
\theta \in \{  - 1, 0\} (not shown for brevity). These convergence rates are consistent with the
predicted rates in Corollary 14 (we are not limited by the regularity of the solution
in this test case).

In Figure 4, we report on a fixed hexagonal mesh the H1-error as a function of
the material parameter \lambda (left panel) and of the penalty parameter \gamma n

2\mu with \gamma t = 2\mu 

fixed (right panel) for k \in \{ 1, 2\} and for the three variants with \theta \in \{  - 1, 0, 1\} . We
observe that the H1-error is nearly independent of the values of \lambda and \gamma n

2\mu . These
results indicate that the HHO-Nitsche method appears to be locking-free in the in-
compressible limit despite the fact that the theoretical analysis is somewhat more
pessimistic. The same comment can be made regarding the necessity to enforce the
lower bound in (4.14).

5.2. 3D Hertz contact. The second benchmark is the well-known 3D Hertz
contact problem of a half ball in contact with a rigid foundation. The half sphere
is centered at the point having coordinates (0, 0, 100) and has a radius of 100. The
contact boundary is the infinite plane z := 0, and a vertical displacement uz :=  - 2
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(a) H1-error vs. \lambda (\gamma n = \gamma t = 2\mu )
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(b) H1-error vs. \gamma n
2\mu 

(\lambda = 1000 and \gamma t = 2\mu )

Fig. 4. 2D manufactured solution: H1-error vs. \lambda and \gamma n
2\mu 

for a hexagonal mesh (h = 4.60e-2).

is applied on the top surface. For symmetry reasons, one half of the half ball is
discretized. The material parameters are \mu := 26.9 and \lambda := 40.3. In this benchmark,
we modify slightly without difficulty the formulation of Nitsche-HHO method in order
to take into account the gap between the contact boundary and the obstacle since
this gap is supposed to be equal to zero in (2.3) (see, e.g., [12] for the Nitsche-FEM
formulation with a nonzero gap). We consider frictionless contact, i.e., s := 0, so as
to compare our numerical results with a reference solution computed using the mixed
quadratic formulation T2-LAC implemented in the industrial software code aster.
For this test case, we do not expect HHO(2) to deliver a more accurate solution than
HHO(1) since the curved boundary is discretized using tetrahedra with planar faces.
We consider only the variant with \theta = 0, and we set \gamma n = \gamma t := 2\mu . The displacement
Euclidean norm on the deformed configuration is plotted in Figure 5a for HHO(1).
In Figure 5b, we compare for HHO(k), k \in \{ 1, 2\} , and the reference T2-LAC solution
the evolution of the normal component of the Cauchy stress tensor (see (3.8) for
HHO) vs. the radial coordinate r at the barycenter of the contact faces. The results
for HHO(k), which are computed on a mesh composed of 3,740 tetrahedra, are in
good agreement with the reference solution, which is computed on a finer mesh with
102,436 tetrahedra, although some slight differences are visible near r = 15 where the
transition between contact and no contact occurs.

5.3. Stick and slip transition (Bostan \& Han test case). This third bench-
mark has been studied previously in [6]. It consists of a rectangular domain \Omega :=
(0, 8) \times (0, 4) which is clamped on the Dirichlet boundary \Gamma D := (0, 8) \times \{ 4\} and
subjected to a horizontal surface load gN := (400, 0) on the Neumann boundary
\Gamma N := \{ 0\} \times (0, 4). The bilateral contact boundary is \Gamma C := (0, 8)\times \{ 0\} , where a Tresca
friction is considered with s := 150. Moreover, the material parameters are \mu := 384.6
and \lambda := 576.9. The symmetry parameter is set to \theta := 1 and the penalty parameters
to \gamma n = \gamma t := 2\mu . The reference solution, referred to as Bostan \& Han, comes from
[6, Example 6.2], where a mixed method with adaptive mesh refinement is used.

In Figure 6, we compare the normalized quantity \| \sigma t\| /s at the barycenter of
the contact faces for HHO(k), k \in \{ 1, 2\} , and the reference solution on two differ-
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(a) Displacement Euclidean norm on the
deformed configuration for HHO(1)
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Reference HHO(1) HHO(2)

(b) \sigma k
n,T vs. radial-coordinate

Fig. 5. 3D Hertz contact sphere: displacement Euclidean norm on the deformed configuration
and contact pressure vs. radial coordinate.
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(a) mesh composed of 225 quadrangles
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(b) mesh composed of 10,000 quadrangles

Fig. 6. Stick and slip transition (Bostan \& Han test case): \| \sigma t\| /s vs. x-coordinate at the
barycenter of the contact faces on a coarse and a fine mesh.

ent meshes: a coarse mesh composed of 225 quadrangles and a fine mesh composed
of 10,000 quadrangles. We observe that the results for the HHO(k) methods are
close to the reference solution even on the coarse mesh. Moreover, on the fine mesh,
both methods accurately capture the transition between slip (\| \sigma t\| /s = 1) and stick
(\| \sigma t\| /s < 1) at x \sim 2.7. Additionally, the results are slightly more accurate for
HHO(2) than for HHO(1) on the coarse mesh and quasi-identical on the fine mesh.
We note that increasing k does not improve significantly the results as expected since
the regularity of the solution is a limiting factor in this example.

To evaluate the influence of the penalty parameters \gamma n and \gamma t, we compare the
total number of Newton's iterations needed to solve the nonlinear problem (3.7) vs.
the magnitude of the normalized penalty parameter \gamma 0 := \gamma n

2\mu = \gamma t

2\mu . The Newton's
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Fig. 7. Stick and slip transition (Bostan \& Han test case): total number of Newton's iterations
vs. the normalized penalty parameter \gamma 0 for a mesh composed of 225 quadrangles (no value is plotted
if Newton's method has not converged after 200 iterations).

Fig. 8. Notch plug: mesh composed of 21,200 hexahedra and 510 prisms in the reference
configuration.

iterations are stopped under a relative residual convergence threshold of 10 - 7, and
convergence failure is reported after 200 iterations. We present the results in Figure 7
for the coarse mesh composed of 225 quadrangles, the three symmetry variants, and
the polynomial degrees k \in \{ 1, 2\} . For HHO(1), we remark that the different symme-
try variants need the same total number of Newton's iterations (5 here) if \gamma 0 \geq 102,
whereas the skew-symmetric variant (\theta =  - 1) is the most robust since the number of
Newton's iterations is almost independent of \gamma 0, contrary to the incomplete variant
(\theta = 0), which suffers some degradation in the convergence for \gamma 0 \leq 1, and to the sym-
metric variant (\theta = 1), which does not converge anymore if \gamma 0 < 10 - 2. For HHO(2),
the skew-symmetric variant (\theta =  - 1) is again the most robust, as for HHO(1). How-
ever, both variants with \theta = 0 and \theta = 1 now exhibit a similar behavior and do not
converge anymore if \gamma 0 < 10 - 3 and \gamma 0 < 10 - 2, respectively. Finally, we observe that
for HHO(2), the number of iterations increases significantly for \gamma 0 \geq 104 whatever the
value of the symmetry parameter (and do not converge anymore if \gamma 0 > 105). This
effect is not observed for HHO(1). To sum up this numerical experiment, an optimal
range of values for \gamma 0 seems to be 10 - 1 \leq \gamma 0 \leq 103.

5.4. A prototype for an industrial application. This prototype simulates
the installation of a notched plug in a rigid pipe. The mesh is composed of 21,200
hexahedra and 510 prisms in the reference configuration; see Figure 8 (for symmetry
reasons, only one quarter of the pipe is discretized). The notched plug has a length
of 56 mm and an outer radius of 8 mm. The pipe is supposed to be rigid and has an
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(a) Full structure

(b) Zoom on the contact zone

Fig. 9. Notch plug: von Mises stress on the deformed configuration (in MPa).

Fig. 10. Notch plug: normal stress \sigma n on the contact zone (in MPa).

inner radius of 8.77 mm (there is an initial gap of 0.77 mm between the plug and the
pipe). The contact zone \Gamma C with Tresca's friction (s := 3,000MPa) is between the
rigid pipe and the 10 notches of the plug. In the actual industrial setting, an indenter
imposes a displacement to the upper surface of the plug. To simplify, sufficiently large
vertical and horizontal forces are applied to the upper surface of the plug to impose
a contact between the pipe and the notches. The material parameters for the plug
are \mu := 80, 769MPa and \lambda := 121, 154MPa (which correspond to a Young modulus
E := 210, 000MPa and a Poisson ratio \nu := 0.3). The simulation is performed using
HHO(1), the symmetry variant \theta := 1, and the penalty parameters \gamma n = \gamma t := 2\mu ).

The von Mises stress is plotted in Figure 9 on the deformed configuration. The
maximal value is reached where the force is applied. Moreover, a zoom on the contact
zone is plotted in Figure 9b. We remark that there is contact between the notches and
the pipe. Finally, the normal stress \sigma n is visualized in Figure 10 on the inferior surface
of the plug. We remark that all the notches are in contact except the first three (from
left to right) and the last one (where \sigma n = 0) and that a transition between contact
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and noncontact is located at the fourth notch. Moreover, the maximal value of the
contact pressure is reached at the extremity of the notches.

6. Conclusion. We have devised, analyzed, and evaluated numerically an HHO
discretization combined with a Nitsche method to impose weakly contact and Tresca
friction conditions in small strain elasticity. We have proved optimal error estimates
for this nonlinear problem and have studied the robustness of the estimates in the
incompressible limit. The numerical tests indicate that robustness is achieved in all
configurations considered herein. This work can be pursued in several directions,
such as extending the analysis to Coulomb friction and addressing further extensions
(multibody contact, large transformations, plasticity) for industrial applications.
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