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STABLE BROKEN H1 AND H(div) POLYNOMIAL EXTENSIONS

FOR POLYNOMIAL-DEGREE-ROBUST POTENTIAL AND

FLUX RECONSTRUCTION IN THREE SPACE DIMENSIONS

ALEXANDRE ERN AND MARTIN VOHRALÍK

Abstract. We study extensions of piecewise polynomial data prescribed on
faces and possibly in elements of a patch of simplices sharing a vertex. In
the H1 setting, we look for functions whose jumps across the faces are pre-
scribed, whereas in the H(div) setting, the normal component jumps and the
piecewise divergence are prescribed. We show stability in the sense that the
minimizers over piecewise polynomial spaces of the same degree as the data
are subordinate in the broken energy norm to the minimizers over the whole
broken H1 and H(div) spaces. Our proofs are constructive and yield con-
stants independent of the polynomial degree. One particular application of
these results is in a posteriori error analysis, where the present results justify
polynomial-degree-robust efficiency of potential and flux reconstructions.

1. Introduction

Braess et al. [1, Theorem 1] showed that equilibrated flux a posteriori error
estimates lead to local efficiency and polynomial-degree robustness (in short, p-
robustness). This means that the estimators upper-bounding the error also give
local lower bounds for the error, up to a generic constant independent of the poly-
nomial degree of the approximate solution. These results apply to conforming finite
element methods in two space dimensions. They are based on flux reconstructions
obtained by solving, via the mixed finite element method, a homogeneous Neumann,
hat-function-weighted residual problem on each vertex-centered element patch of
the mesh. The proof of the p-robustness in [1] relies on two key components:
p-robust stability of the right inverse of the divergence operator shown in Costa-
bel and McIntosh [10, Corollary 3.4] and p-robust stability of the right inverse of
the normal trace shown in Demkowicz et al. [13, Theorem 7.1]. In our contribu-
tion [21, Theorem 3.17], we extended p-robustness of a posteriori error estimates to
any numerical scheme satisfying a couple of clearly identified assumptions, includ-
ing nonconforming, discontinuous Galerkin, and mixed finite elements, still in two
space dimensions, while proceeding through similar stability arguments. A second
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type of local problem appears here, where one is led to solve a homogeneous Dirich-
let, conforming finite element problem on each vertex-centered element patch, with
a hat-function-weighted discontinuous datum, yielding a potential reconstruction.

The present work extends the results of [1] on flux reconstruction to three space
dimensions and reformulates the methodology of [21] for potential reconstruction
so that it can be applied in the same way in two and three space dimensions. In
doing so, we adopt a different viewpoint leading to a larger abstract setting not
necessarily linked to a posteriori error analysis. The two main results of this paper
are Theorems 2.2 and 2.3. They concern a setting where one considers a shape-
regular patch of simplicial mesh elements sharing a given vertex, say a, together
with a p-degree polynomial rF associated with each interior face F of the patch
(H1 potential reconstruction setting) or p-degree polynomials rF and rK associated
with each interior and boundary face F and element K of the patch, respectively,
(H(div) flux reconstruction setting). These data, satisfying appropriate compati-
bility conditions, are to be extended to functions defined over the patch, such that
the jumps across the interior faces of the patch are prescribed by rF (H1 setting) or
such that the normal component jumps and boundary values are prescribed by rF
and the piecewise divergence is prescribed by rK (H(div) setting). Crucially, we
prove that the extension into piecewise polynomials of degree p that minimizes the
broken energy norm is, up to a constant only depending on the patch shape regu-
larity, as good as the extension into the whole broken H1 space with the same jump
constraints. Similarly, our broken p-degree Raviart–Thomas–Nédélec extension is
stable with respect to the broken H(div) one.

Section 3 reformulates equivalently the above theorems as Corollaries 3.1 and 3.3
to show that best-approximation of trace-discontinuous or normal-trace discontin-
uous piecewise polynomial data by H1

0 (ωa)- or H0(div, ωa)-conforming piecewise
polynomials (i.e., by trace-continuous or normal-trace continuous piecewise poly-
nomials on the open set ωa composed of the elements in the patch sharing the
given vertex a) is, up to a p-independent constant, as good as by all H1

0 (ωa) or
H0(div, ωa) Sobolev functions. This section also sheds more light on the continuous
level, uncovering that three different equivalent formulations of our results can be
devised using the equivalence principle of primal and dual energies. This, in partic-
ular, allows us to make a link with the previously obtained results in [1,21] and to
describe the application of our results to a posteriori error analysis in Section 4. In
particular, a guaranteed error upper bound for a generic numerical approximation
of the Laplace equation is recalled in Corollary 4.1 and p-robust local efficiency is
stated in Corollary 4.2, with potential reconstructions treated in formula (4.9a) and
flux reconstructions in formula (4.9b).

The proofs of Theorems 2.2 and 2.3 are, respectively, presented in Sections 5
and 6. In contrast to [1], where the work with dual norms was essential, we design
here a procedure only working in the (broken) energy norms. The proofs are con-
structive and therefore indicate a possible practical reconstruction of the potential
and the flux which avoid the patchwise problem solves by replacing them by a sin-
gle explicit run through the patch, with possibly a solve of a local problem in each
element. The key ingredients on a single element are still the right inverse of the
divergence [10, Corollary 3.4] and the right inverse of the normal trace [13, The-
orem 7.1] in the H(div) setting, but the single key ingredient becomes the right
inverse of the trace shown in Demkowicz et al. [11, Theorem 6.1] in the H1 setting.
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We combine these building blocks into a stability result on a single tetrahedron in
Lemmas A.1 and A.3 in Appendix A. Gluing the elemental contributions together
at the patch level turns out to be a rather involved ingredient of the proofs in three
space dimensions, and we collect some auxiliary results for that purpose in Appen-
dix B. A first difficulty is that the two-dimensional argument of turning around a
vertex can no longer be invoked. To achieve a suitable enumeration of the mesh
cells composing the patch in three dimensions, we rely on the notion of shelling of
polytopes; see Ziegler [24, Chap. 8], which we reformulate for the present purposes
in Lemma B.1. Another difficulty is that we need to devise suitable functional
transformations between different cells in the patch. This is done by introducing
two- and three-coloring of some vertices lying on the boundary of the patch, possi-
bly on a submesh of the original patch; how to achieve such colorings is described
in Lemmas B.2 and B.3.

For the sake of clarity of our exposition, we focus on discussing in detail patches
completely surrounding the vertex a, corresponding to an “interior” vertex when
considering a mesh of some computational domain. Our technique, though, ex-
tends to the case where one considers a “boundary” vertex as well. Our main
results in this context are Theorems 2.4 and 2.5, whereas the reformulations as
best-approximation results on piecewise polynomial data can be found in Corol-
laries 3.7 and 3.8. The proofs of our main results concerning boundary vertices
are given in Section 7. The aforementioned application to a posteriori error anal-
ysis (Section 4) then also covers some configurations of inhomogeneous Dirichlet
and Neumann boundary conditions. In the H1 setting, we restrict ourselves for
simplicity to the case where either Dirichlet or Neumann conditions are enforced;
there is no such assumption in the H(div) setting, which allows also for mixed
Neumann–Dirichlet conditions.

Let us finally discuss some extensions of the present results. In [18], we were
recently able to employ them to construct p-robust H(div) liftings over arbitrary
domains, not just patches of elements sharing a given point. A natural extension
of [18] would be to obtain the same type of results in the H1 setting. Another
extension of the present work would be to cover the H(curl) case, hinging on the
single tetrahedron results of Demkowicz et al. [12, Theorem 7.2]. We also mention
that the application of the present results to the construction of p-robust a posteriori
error estimates for problems with arbitrarily jumping coefficients is detailed in [9],
to eigenvalue problems in [5, 6], to the Stokes problem in [8], to linear elasticity
in [17], and to the heat equation in [19, 20].

2. Main results

This section presents our main results, once the setting and basic notation have
been fixed.

2.1. Setting and basic notation. We call tetrahedron any nondegenerate
(closed) simplex in R3, uniquely determined by four points in R3 not lying in a
plane. Let a be a point in R3. We consider a patch of tetrahedra around a, say
Ta, i.e., a finite collection of tetrahedra having a as the vertex, such that the in-
tersection of any two distinct tetrahedra in Ta is either a, or a common edge, or a
common face. A generic tetrahedron in Ta is denoted by K and is also called an
element or a cell. We let ωa ⊂ R3 denote the interior of the subset

⋃
K∈Ta

K. For
the time being, we focus on the case where ωa contains an open ball around a. The
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main application we have in mind is when a is the interior vertex of a simplicial
mesh Th of some computational domain Ω, so that a lies in the interior of the patch
ωa surrounding it; see the left panel of Figure 1 for an illustration. The case where
a is a boundary vertex of the mesh entails some additional technicalities that we
detail in Section 2.4.

•a
Ta

•a
e

nF
1

nF
2

nF
3

nF
4

Fe

ιF
1
,e = 1

ιF
2
,e = −1

ιF
3
,e = 1

ιF
4
,e = 1

Figure 1. Left: example of an interior patch Ta. Right: an edge
e ∈ Ea, the set Fe of all the faces that share it, the face normals,
and the orientation indicators ιF,e.

All the faces of the elements in the patch Ta are collected in the set Fa which is
split into

(2.1) Fa = F int
a ∪ Fext

a ,

with F int
a collecting all the interior faces (containing the vertex a and shared by

two distinct elements in Ta) and Fext
a collecting the faces located in ∂ωa. For all

faces F ∈ Fa, nF denotes a unit normal vector to F whose orientation is arbitrary
but fixed for all F ∈ F int

a and coinciding with the unit outward normal nωa
to ωa

for all F ∈ Fext
a . We consider the jump operator �·�F for all F ∈ F int

a , yielding the
difference (evaluated along nF ) of the traces of the argument from the two elements
that share the interior face F (the subscript F is omitted if there is no ambiguity).
We also need to consider edges. Let Ea collect all the edges in Ta sharing the
vertex a; we refer to these edges as interior edges. Then, for each e ∈ Ea, the set
Fe collects all the faces in F int

a sharing e, and the set Te collects all the cells in Ta
sharing e. For each e ∈ Ea, we fix one direction of rotation around e, and indicate
for all F ∈ Fe by ιF,e either equal to 1 or to −1 whether nF complies with this
direction or not; see the right panel of Figure 1 for an illustration.

We define the broken H1-space on the patch Ta as

(2.2) H1(Ta) := {v ∈ L2(ωa); v|K ∈ H1(K) ∀K ∈ Ta},
and similarly the broken H(div)-space on the patch Ta as

(2.3) H(div, Ta) := {v ∈ L2(ωa); v|K ∈ H(div,K) ∀K ∈ Ta}.
For any v ∈ H1(Ta), we can consider its piecewise (broken) gradient ∇T v defined
as (∇T v)|K = ∇(v|K), and similarly for any v ∈ H(div, Ta), we can consider its
piecewise (broken) divergence ∇T ·v defined as (∇T ·v)|K = ∇·(v|K) for all K ∈ Ta.
For any v ∈ H1(Ta), the jumps �v�F across any face F ∈ F int

a are well defined since
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the traces of v on F from the two cells sharing F are in L2(F ); similarly, the traces
v|Fext

a
are well defined. We note that any function v ∈ H1+ε(Ta), ε > 0, is such

that

(2.4)
∑
F∈Fe

ιF,e �v�F |e = 0 for all interior edges e ∈ Ea,

since the oriented sum of the jumps along a closed path around an interior edge is
always zero. The definition of traces is a bit more subtle when one considers a field
v ∈ H(div, Ta). Let rF ∈ L2(F ) for all F ∈ Fa. Then we say that

v·nF = rF ∀F ∈ Fext
a ,(2.5a)

�v�·nF = rF ∀F ∈ F int
a(2.5b)

for a function v ∈ H(div, Ta) if and only if

(2.5c) (∇T ·v, v)ωa
+ (v,∇v)ωa

=
∑

F∈Fa

(rF , v)F ∀v ∈ H1(ωa).

We will also need to prescribe the normal component of vector fields in a single cell
K ∈ Ta with unit outward normal nK . Consider a nonempty subset FN

K ⊂ FK

where FK collects the faces of K. Given functions rF ∈ L2(F ) for all F ∈ FN
K , we

say that v·nK |F = rF ∀F ∈ FN
K for a function v ∈ H(div,K) if

(2.6)

(∇·v, φ)K+(v,∇φ)K =
∑

F∈FN
K

(rF , φ)F ∀φ ∈ H1(K) s.t. φ|F = 0 ∀F ∈ FK\FN
K .

Let p ≥ 0 denote an integer. We use the notation Pp(K) for polynomials of
order at most p in the element K ∈ Ta and Pp(F ) for polynomials of order at most
p in the face F ∈ Fa. We denote by Pp(Ta) the space composed of all functions
defined on the patch Ta whose restriction to any K ∈ Ta is in Pp(K). Similarly,
Pp(Fa) stands for the space composed of all functions defined on all faces from
Fa whose restriction to any F ∈ Fa is in Pp(F ). Analogous notation is used for
any subset of Fa. We denote by rK the restriction of r ∈ Pp(Ta) to K ∈ Ta and
similarly by rF the restriction of r ∈ Pp(Fa) to F ∈ Fa. Let RTNp(K) be the
Raviart–Thomas–Nédélec polynomial space of vector-valued functions of order p in
the element K ∈ Ta, i.e., RTNp(K) := [Pp(K)]3 + Pp(K)x. Finally, RTNp(Ta)
denotes the broken space composed of all functions whose restriction to any element
K ∈ Ta is in RTNp(K).

For an element K ∈ Ta, its shape-regularity parameter γK is defined to be the
ratio of its diameter to the diameter of the largest inscribed ball, and the shape-
regularity parameter of the patch Ta is then defined to be γTa

:= maxK∈Ta
γK .

Remark 2.1 (Orientation). The orientation of nF is irrelevant in (2.4). Indeed,
changing the orientation of nF changes the sign of the jumps (evaluated along nF )
and at the same time the sign of ιF,e. Similarly, the orientation of nF is irrelevant
in the left-hand side of (2.5b).

2.2. Broken H1 polynomial extension. Our main result for broken scalar ex-
tensions is the following.
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Theorem 2.2 (Stable broken H1 polynomial extension). Let p ≥ 1. Let the
interface-based p-degree polynomial r ∈ Pp(F int

a ) satisfy the following compatibil-
ity conditions:

rF |F∩∂ωa
= 0 on all interior faces F ∈ F int

a ,(2.7a) ∑
F∈Fe

ιF,e rF |e = 0 on all interior edges e ∈ Ea.(2.7b)

Then there exists a constant Cst > 0 only depending on the patch shape-regularity
parameter γTa

such that

(2.8) min
vp∈Pp(Ta)

vp|F=0 ∀F∈Fext
a

�vp�F=rF ∀F∈F int
a

‖∇T vp‖ωa
≤ Cst min

v∈H1(Ta)

v|F=0 ∀F∈Fext
a

�v�F=rF ∀F∈F int
a

‖∇T v‖ωa
,

where the minimization sets are nonempty and both minimizers in (2.8) are unique.

The compatibility conditions (2.7) are natural since rF is used to prescribe inter-
face jumps. Indeed, these jumps necessarily vanish on the points of the interfaces
located on ∂ωa since the considered functions vanish on ∂ωa; moreover, (2.7b) fol-
lows from (2.4). The minimizers in (2.8) are, respectively, denoted by v∗p and v∗,
so that (2.8) becomes

(2.9) ‖∇T v
∗
p‖ωa

≤ Cst‖∇T v
∗‖ωa

.

Note also that since the minimization sets are nonempty and the left one is a subset
of the right one by definition, the inequality in the other direction, ‖∇T v

∗‖ωa
≤

‖∇T v
∗
p‖ωa

, is trivial.

2.3. Broken H(div) polynomial extension. Our main result for broken vector
extensions is the following.

Theorem 2.3 (Stable broken H(div) polynomial extension). Let p ≥ 0. Let the
element- and face-based p-degree polynomial r ∈ Pp(Ta) × Pp(Fa) satisfy the fol-
lowing compatibility condition:

(2.10)
∑

K∈Ta

(rK , 1)K −
∑

F∈Fa

(rF , 1)F = 0.

Then there exists a constant Cst > 0 only depending on the patch shape-regularity
parameter γTa

such that

(2.11) min
vp∈RTNp(Ta)

vp·nF=rF ∀F∈Fext
a

�vp�·nF=rF ∀F∈F int
a

∇T ·vp|K=rK ∀K∈Ta

‖vp‖ωa
≤ Cst min

v∈H(div,Ta)

v·nF=rF ∀F∈Fext
a

�v�·nF=rF ∀F∈F int
a

∇T ·v|K=rK ∀K∈Ta

‖v‖ωa
,

where the minimization sets are nonempty and both minimizers in (2.11) are unique.

The compatibility condition (2.10) is again natural here, since it follows from
(2.5c) with the test function equal to 1 in ωa. The minimizers in (2.11) are, respec-
tively, denoted by v∗

p and v∗, so that (2.11) becomes

(2.12) ‖v∗
p‖ωa

≤ Cst‖v∗‖ωa
.

Since the minimization sets are nonempty and the left one is a subset of the right
one by definition, the inequality in the other direction, ‖v∗‖ωa

≤ ‖v∗
p‖ωa

, is again
trivial.
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•a

FD
a

FD
a

F ext
a

Ta •a

FN
a

FN
a

Fext
a

Ta

Figure 2. Two examples of boundary patches Ta; in both cases,
the faces in Fext

a , and thus the subset ∂ωext
a , are shown in white.

Left: patch where all the faces in Fext
a have at least one vertex

lying in the interior of ∂ωext
a . Right: patch where there are faces

in Fext
a (actually both of them) that do not have any vertex lying

in the interior of ∂ωext
a but where |Ta| ≤ 2.

2.4. Boundary vertices. We consider in this section the case where the patch
domain ωa does not contain an open ball around the point a; typically, a is a mesh
vertex lying on the boundary of some computational domain Ω. In this case, the
patch domain ωa only contains an open ball around a minus some sector with solid
angle θa ∈ (0, 4π); see Figure 2 for two examples.

The set Fa collecting all the faces of Ta is now divided into four disjoint subsets:

(2.13) Fa = F int
a ∪ Fext

a ∪ FD
a ∪ FN

a ,

where the set F int
a collects (as before) the faces interior to ωa, that is, the faces

containing the vertex a and shared by two distinct elements in Ta, the set Fext
a

collects the faces that are subsets of ∂ωa that do not contain a, and FD
a ∪FN

a collects
the faces that are subsets of ∂ωa that contain a. The distinction between FD

a and
FN

a is needed because some prescription is to be enforced on FD
a (H1-extension)

or on FN
a (H(div)-extension). These additional prescriptions are motivated by the

handling of Dirichlet or Neumann boundary conditions as further highlighted in
Section 4. Correspondingly, we set ∂ωext

a :=
⋃

F∈Fext
a

F , ∂ωD
a :=

⋃
F∈FD

a
F , and

∂ωN
a :=

⋃
F∈FN

a
F , so that

(2.14) ∂ωa = ∂ωext
a ∪ ∂ωD

a ∪ ∂ωN
a ;

see Figure 2. Faces in the three sets Fext
a , FD

a , and FN
a are assigned a unit normal

vector nF pointing outward ωa. We remark that F int
a can be empty (if Ta consists

of a single tetrahedron), that Fext
a is always nonempty, and that either FD

a or FN
a

can be empty, but not both at the same time. Finally, the set Ea collects all the
edges in Ta sharing the vertex a (note that some of these edges are now located on
∂ωa) and, for each edge e ∈ Ea, Fe collects all the faces in Fa sharing e (note that
Fe is now a subset of F int

a ∪ FD
a ∪ FN

a ). As above, for each edge e ∈ Ea and each
face F ∈ Fe, ιF,e is either equal to 1 or to −1 and indicates whether nF complies
with the fixed direction of rotation around e or not; see the right panel of Figure 1.
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We now present our main results for boundary vertices. In the H1 setting, they
request that either (the Dirichlet part of the boundary) ∂ωD

a is empty, or (the
Neumann part of the boundary) ∂ωN

a is empty. No such assumption on ∂ωD
a and

∂ωN
a is needed in the H(div) setting. Moreover, in both settings, we assume that

either all the faces in Fext
a have at least one vertex lying in the interior of ∂ωext

a ,
or that the number of elements in the patch Ta is at most two. For instance, the
patch in the left panel of Figure 2 satisfies the first assumption, and that in the
right panel the second assumption. Other cases can be treated, see Remark 2.6
below, but the analysis is increasingly technical.

Theorem 2.4 (Stable broken H1 polynomial extension). Let p ≥ 1 and let either
FD

a = ∅ or FN
a = ∅. Assume either that all the faces in Fext

a have at least one
vertex lying in the interior of ∂ωext

a , or that |Ta| ≤ 2. Let r ∈ Pp(F int
a ∪FD

a ) satisfy
the following compatibility conditions:

rF |F∩∂ωext
a

= 0 ∀F ∈ F int
a ∪ FD

a ,(2.15a) ∑
F∈Fe

ιF,e rF |e = 0 ∀e ∈ Ea such that Fe ∩ FN
a = ∅.(2.15b)

Then there exists a constant Cst > 0 only depending on the patch shape-regularity
parameter γTa

such that

(2.16) min
vp∈Pp(Ta)

vp|F=0 ∀F∈Fext
a

vp|F=rF ∀F∈FD
a

�vp�F=rF ∀F∈F int
a

‖∇T vp‖ωa
≤ Cst min

v∈H1(Ta)

v|F=0 ∀F∈Fext
a

v|F=rF ∀F∈FD
a

�v�F=rF ∀F∈F int
a

‖∇T v‖ωa
,

where the minimization sets are nonempty and both minimizers in (2.16) are unique.

Theorem 2.5 (Stable broken H(div) polynomial extension). Let p ≥ 0. Assume
either that all the faces in Fext

a have at least one vertex lying in the interior of
∂ωext

a , or that |Ta| ≤ 2. Let r ∈ Pp(Ta)×Pp(F int
a ∪Fext

a ∪FN
a ) satisfy the following

compatibility condition:

(2.17)
∑

K∈Ta

(rK , 1)K −
∑

F∈Fa

(rF , 1)F = 0 if FD
a = ∅.

Then there exists a constant Cst > 0 only depending on the patch shape-regularity
parameter γTa

such that

(2.18) min
vp∈RTNp(Ta)

vp·nF=rF ∀F∈Fext
a

vp·nF=rF ∀F∈FN
a

�vp�·nF=rF ∀F∈F int
a

∇T ·vp|K=rK ∀K∈Ta

‖vp‖ωa
≤ Cst min

v∈H(div,Ta)

v·nF=rF ∀F∈Fext
a

v·nF=rF ∀F∈FN
a

�v�·nF=rF ∀F∈F int
a

∇T ·v|K=rK ∀K∈Ta

‖v‖ωa
,

where the minimization sets are nonempty and both minimizers in (2.18) are unique.

Remark 2.6 (FD
a ∪FN

a lying in two hyperplanes). Theorems 2.4 and 2.5 for instance
also hold in the case where the set FD

a ∪ FN
a is contained in two hyperplanes as in

the right panel of Figure 2 and in topologically equivalent situations, in place of
the interior vertex condition in Fext

a or the condition |Ta| ≤ 2, with a similar proof
as in Section 7.1.1 below.
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3. Equivalent reformulations

We reformulate in this section Theorems 2.2 and 2.3 in an equivalent way as
best-approximation results of discontinuous piecewise polynomial data. This will
in particular allow for a straightforward application to a posteriori error analysis
in Section 4. For further insight, as well as to make a link with previous contri-
butions on the subject, we also give equivalent reformulations of the right-hand
sides in (2.8) and (2.11). Finally, we also reformulate Theorems 2.4 and 2.5 as
best-approximation results.

3.1. Reformulation as best-approximation results. Let us set

H1
0 (ωa) := {v ∈ H1(ωa); v|∂ωa

= 0},(3.1a)

H0(div, ωa) := {v ∈ H(div, ωa); v·n∂ωa
= 0}.(3.1b)

The result of Theorem 2.2 can be rephrased as follows.

Corollary 3.1 (H1 best-approximation). Let the assumptions of Theorem 2.2 hold
true. Consider any τp ∈ Pp(Ta) so that τp|F = 0 ∀F ∈ Fext

a and �τp�F = rF
∀F ∈ F int

a . Then the following holds true:

(3.2) min
vp∈Pp(Ta)∩H1

0 (ωa)
‖∇T (τp − vp)‖ωa

≤ Cst min
v∈H1

0 (ωa)
‖∇T (τp − v)‖ωa

.

Proof. Direct consequence of (2.8) upon shifting the minimization sets by τp. Note
that the existence of τp follows from the nonemptiness of the discrete minimization
set in (2.8). �

Remark 3.2 (Minimizers). The unique minimizers in (3.2) are, respectively, sap ∈
Pp(Ta) ∩H1

0 (ωa) such that

(3.3) (∇sap ,∇vp)ωa
= (∇T τp,∇vp)ωa

∀vp ∈ Pp(Ta) ∩H1
0 (ωa),

and sa ∈ H1
0 (ωa) such that

(3.4) (∇sa,∇v)ωa
= (∇T τp,∇v)ωa

∀v ∈ H1
0 (ωa).

The minimizers in (2.8) are such that v∗p = τp − sap and v∗ = τp − sa.

Similarly, in the H(div)-setting, Theorem 2.3 can be reformulated as follows.

Corollary 3.3 (H(div) best-approximation). Let the assumptions of Theorem 2.3
hold true. Consider any τp ∈ RTNp(Ta) so that τp·nF = rF ∀F ∈ Fext

a and
�τp�·nF = rF ∀F ∈ F int

a . Then the following holds true:
(3.5)

min
vp∈RTNp(Ta)∩H0(div,ωa)

∇·vp|K=rK−∇T ·τp|K ∀K∈Ta

‖τp + vp‖ωa
≤ Cst min

v∈H0(div,ωa)
∇·v|K=rK−∇T ·τp|K ∀K∈Ta

‖τp + v‖ωa
.

Proof. Direct consequence of (2.11) upon shifting the minimization sets by τp, the
existence of τp following from the nonemptiness of the discrete minimization set
in (2.11). �

Remark 3.4 (Minimizers). The unique minimizers in (3.5) are, respectively, σa
p ∈

RTNp(Ta) ∩H0(div, ωa) with ∇·σa
p |K = rK −∇T ·τp|K for all K ∈ Ta such that

(3.6) (σa
p ,vp)ωa

= −(τp,vp)ωa
∀vp ∈ RTNp(Ta) ∩H0(div, ωa), ∇·vp = 0,
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and σa ∈ H0(div, ωa) with ∇·σa|K = rK −∇T ·τp|K for all K ∈ Ta such that

(3.7) (σa,v)ωa
= −(τp,v)ωa

∀v ∈ H0(div, ωa), ∇·v = 0.

The minimizers in (2.11) are such that v∗
p = τp + σa

p and v∗ = τp + σa.

3.2. Equivalent reformulations at the continuous level. We summarize here
additional equivalence results on the continuous-level minimizations appearing in
the right-hand sides of (3.2) and (3.5). Let us first set

H1
∗ (ωa) := {v ∈ H1(ωa); (v, 1)ωa

= 0},

and let us define the following subspace of H(curl, ωa):

H∗(curl, ωa) := {v ∈ H(curl, ωa); (v,∇φ)ωa
= 0 ∀φ ∈ H1

∗ (ωa)}.

We first show that the H1
0 (ωa)-minimization of Corollary 3.1 is equivalent to

evaluating a dual H(curl)-norm of a suitable linear form defined from the data rF ,
and consequently to evaluating the energy norm of its H∗(curl, ωa)-lifting.

Corollary 3.5 (H(curl) form of the H1-minimization). Let the assumptions of
Corollary 3.1 hold true. Recall that τp ∈ Pp(Ta) verifies τp|F = 0 ∀F ∈ Fext

a and
�τp�F = rF ∀F ∈ F int

a . Let ra ∈ H∗(curl, ωa) solve

(3.8) (∇×ra,∇×v)ωa
= −(∇T τp,∇×v)ωa

∀v ∈ H∗(curl, ωa),

where the right-hand side can be formally rewritten as

(∇T τp,∇×v)ωa
=

∑
F∈F int

a

(rFnF ,∇×v)F

owing to the elementwise Green formula. Then, we have
(3.9)

min
v∈H1

0 (ωa)
‖∇T (τp − v)‖ωa

= ‖∇×ra‖ωa
= max

v∈H(curl,ωa)
‖∇×v‖ωa=1

⎧⎨⎩ ∑
F∈F int

a

(rFnF ,∇×v)F

⎫⎬⎭ .

Proof. Since sa solves (3.4), i.e., (∇sa − ∇T τp,∇v)ωa
= 0 for all v ∈ H1

0 (ωa), a
distributional argument implies that the vector field ∇sa −∇T τp is divergence-free
in ωa. The boundary ∂ωa being connected, we infer that there is ra ∈ H(curl, ωa)
such that ∇sa −∇T τp = ∇×ra, and without loss of generality, we can take ra ∈
H∗(curl, ωa) since ωa is simply connected so that H(curl, ωa) = H∗(curl, ωa) ⊕
∇H1

∗ (ωa) (the sum being L2-orthogonal) and fields in ∇H1
∗ (ωa) are curl-free. We

now observe that we have
(3.10)
(∇×ra,∇×v)ωa

=(∇sa−∇T τp,∇×v)ωa
=−(∇T τp,∇×v)ωa

∀v∈H∗(curl, ωa),

since sa ∈ H1
0 (ωa), so that (3.8) follows. Finally,

min
v∈H1

0 (ωa)
‖∇T (τp − v)‖ωa

= ‖∇T (τp − sa)‖ωa
= ‖∇×ra‖ωa

(3.11)

= max
v∈H(curl,ωa)
‖∇×v‖ωa=1

(∇T τp,∇×v)ωa
,

using (3.10) and noting that any function v ∈ ∇H1
∗ (ωa) is automatically excluded

from the maximization set by the constraint ‖∇×v‖ωa
= 1. �
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Let us now show that the constrained H0(div, ωa)-minimization of Corollary 3.3
is equivalent to evaluating a dual H1-norm of a suitable linear form defined from
the data rK and rF and consequently to evaluating the energy norm of its H1

∗ (ωa)-
lifting.

Corollary 3.6 (H1 form of the H(div)-minimization). Let the assumptions of
Corollary 3.3 hold true. Let ra ∈ H1

∗ (ωa) solve

(3.12) (∇ra,∇v)ωa
=

∑
K∈Ta

(rK , v)K −
∑

F∈Fa

(rF , v)F ∀v ∈ H1
∗ (ωa).

Then

min
v∈H0(div,ωa)

∇·v|K=rK−∇T ·τp|K ∀K∈Ta

‖τp + v‖ωa
= ‖∇ra‖ωa

= max
v∈H1(ωa)
‖∇v‖ωa=1

{ ∑
K∈Ta

(rK , v)K −
∑

F∈Fa

(rF , v)F

}
.

(3.13)

Proof. The elementwise Green formula combined with the definition of τp gives∑
K∈Ta

(rK , v)K −
∑

F∈Fa

(rF , v)F =
∑

K∈Ta

(rK , v)K −
∑

K∈Ta

(τp·nK , v)∂K

=
∑

K∈Ta

(rK −∇T ·τp, v)K −
∑

K∈Ta

(τp,∇v)K ,

and we immediately see that (3.12) is the primal formulation of (3.7). As both
formulations are equivalent, σa = −∇ra − τp, cf. [21, Remark 3.15]. The equal-
ity (3.13) follows immediately from (3.12), writing the maximum first for all v ∈
H1

∗ (ωa) with ‖∇v‖ωa
= 1 and then noting that any function v constant on ωa is au-

tomatically excluded from the maximization set by the constraint ‖∇v‖ωa
= 1. �

Corollaries 3.5 and 3.6 allow us to draw insightful links with the literature.
On the one hand, Corollary 3.5 explains how the right-hand side in (3.2) links
to the continuous minimization used in [21, Lemma 3.13]. Therein, in two space
dimensions, the field 
⊥(∇T τp) has been employed in the definition of the function
ra by formulas (3.19) and (3.32), where 
⊥ =

(
0 −1
1 0

)
is the rotation by π

2 ; then
‖∇ra‖ωa

of [21] equals the present minv∈H1
0 (ωa)‖∇T (τp − v)‖ωa

, and, in particular,
we have

min
v∈H1

0 (ωa)
‖∇T (τp − v)‖ωa

= max
v∈H1(ωa)
‖∇v‖ωa=1

{
−
(

⊥(∇T τp),∇v

)
ωa

}
.

On the other hand, the maximization form in Corollary 3.6 has been used previously
in [1, Theorem 7] and [21, Lemma 3.12 and Corollary 3.16].

3.3. Boundary vertices. In this section, we reformulate Theorems 2.4 and 2.5 as
best-approximation results on discontinuous piecewise polynomial data on bound-
ary patches. The proofs are omitted since they are similar to the previous ones.
In view of application to a posteriori error analysis of model problems with non-
homogeneous boundary conditions, it is convenient to introduce some additional
boundary data denoted by uD

a and σN
a in the H1 and H(div) settings, respectively.
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Corollary 3.7 (H1 best-approximation). Let the assumptions of Theorem 2.4 hold
true. Let uD

a ∈ Pp(FD
a ) ∩ C0(∂ωD

a ). Consider any τp ∈ Pp(Ta) so that τp|F = 0
∀F ∈ Fext

a , τp|F − uD
a |F = rF ∀F ∈ FD

a , and �τp�F = rF ∀F ∈ F int
a . Then the

following holds true:

(3.14) min
vp∈Pp(Ta)∩H1(ωa)

vp|F=0 ∀F∈Fext
a

vp|F=uD
a |F ∀F∈FD

a

‖∇T (τp − vp)‖ωa
≤ Cst min

v∈H1(ωa)

v|F=0 ∀F∈Fext
a

v|F=uD
a |F ∀F∈FD

a

‖∇T (τp − v)‖ωa
.

Corollary 3.8 (H(div) best-approximation). Let the assumptions of Theorem 2.5
hold true. Let σN

a ∈ Pp(FN
a ). Consider any τp ∈ RTNp(Ta) so that τp·nF = rF

∀F ∈ Fext
a , τp·nF + σN

a = rF ∀F ∈ FN
a , and �τp�·nF = rF ∀F ∈ F int

a . Then the
following holds true:
(3.15)

min
vp∈RTNp(Ta)∩H(div,ωa)

vp·nF=0 ∀F∈Fext
a

vp·nF=σN
a |F ∀F∈FN

a

∇·vp|K=rK−∇T ·τp|K ∀K∈Ta

‖τp + vp‖ωa
≤ Cst min

v∈H(div,ωa)

v·nF=0 ∀F∈Fext
a

v·nF=σN
a |F ∀F∈FN

a

∇·v|K=rK−∇T ·τp|K ∀K∈Ta

‖τp + v‖ωa
.

4. Application to a posteriori error analysis

We show in this section how to apply our results to a posteriori error analysis.
For this purpose, let Ω ⊂ R3 be a polyhedral Lipschitz domain (open, bounded, and
connected set). Let Th be a matching tetrahedral mesh of Ω, shape-regular with
parameter γTh

> 0 that bounds the ratio of any element diameter to the diameter
of its largest inscribed ball. All faces of the mesh are collected in the set Fh, with
faces lying on the boundary of Ω forming two disjoint sets FN

h and FD
h covering two

subdomains ΓN and ΓD that form a partition of ∂Ω. Consider the Laplace problem

−Δu = f in Ω,(4.1a)

u = uD on ΓD,(4.1b)

−∇u·nΩ = σN on ΓN,(4.1c)

where, for simplicity, f ∈ Pp′−1(Th), uD ∈ Pp′(FD
h )∩C0(ΓD), and σN ∈ Pp′−1(FN

h ),
for a polynomial degree p′ ≥ 1. If |ΓD| = 0, we need to additionally suppose
the Neumann compatibility condition (f, 1)Ω = (σN, 1)∂Ω. The weak solution of
problem (4.1) is a function u ∈ H1(Ω) such that u|ΓD

= uD and such that

(4.2) (∇u,∇v)Ω = (f, v)Ω − (σN, v)ΓN
∀v ∈ H1(Ω) such that v|ΓD

= 0.

When ΓD = ∅, uniqueness is imposed through (u, 1)Ω = 0. For more general data
f , uD, and σN, data oscillation terms arise in the a posteriori error analysis; see [16]
and the references therein for details.

Let uh ∈ Pp′(Th) be an approximate solution to the problem (4.1); uh can be
primal-nonconforming in the sense that uh �∈ H1(Ω) and uh|ΓD

�= uD, as well
as dual-nonconforming in the sense that −∇T uh �∈ H(div,Ω), ∇·(−∇T uh) �= f ,
and (−∇T uh·nΩ)|ΓN

�= σN. The results of this paper have a direct application
to a posteriori error analysis since they allow us to construct two central objects
leading to guaranteed reliability and p-robust local efficiency. The first is a so-called
potential reconstruction sh ∈ Pp′+1(Th) ∩H1(Ω), equal to uD on ΓD. The second
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one is a so-called equilibrated flux reconstruction σh ∈ RTNp′(Th) ∩ H(div,Ω),
such that ∇·σh = f in Ω and σh·n|ΓN

= σN on ΓN.
Let us collect all the mesh vertices in the set Vh, and for any mesh vertex a ∈ Vh,

let the patch Ta ⊂ Th be given by the elements in Th having a as the vertex, whereas
ωa ⊂ Ω is the corresponding open subdomain of Ω. Let ψa be the “hat” function
associated with the vertex a: this is a continuous function, piecewise affine with
respect to the mesh Th, which takes the value 1 at the vertex a and 0 at the other
vertices. Its support is thus the closure of the patch subdomain ωa. We also split
the vertex set as Vh = V int

h ∪ Vext
h , where V int

h contains all interior vertices and
Vext
h all boundary vertices. The faces of the elements in the interior patches Ta

(i.e., associated with an interior vertex a) are collected in Fa = F int
a ∪ Fext

a , in
conformity with Section 2.1. For a boundary vertex a ∈ Vext

h , the split is Fa =
F int

a ∪Fext
a ∪FD

a ∪FN
a , as in Section 2.4, where FD

a collects the Dirichlet boundary
faces from ∂ωa∩ΓD and sharing the point a, and FN

a the Neumann boundary faces
from ∂ωa ∩ΓN and sharing the point a. To have a more unified formalism between
interior and boundary vertices, we conventionally define FD

a and FN
a to be empty

sets for all a ∈ V int
h .

We define the potential reconstruction following [21, Construction 3.8 and Re-
mark 3.10], cf. also [7], as sh :=

∑
a∈Vh

sap , where sap is the discrete minimizer of

Corollary 3.1 given by (3.3) for interior vertices and similarly the discrete minimizer
of Corollary 3.7 for boundary vertices. We choose the polynomial degree p of our
theory to be p := p′ + 1 and we set for all a ∈ Vh

τp := ψauh in ωa,(4.3a)

rF := ψa�uh�F on all F ∈ F int
a ,(4.3b)

rF := 0 on all F ∈ Fext
a ,(4.3c)

rF := ψa(uh − uD) on all F ∈ FD
a ,(4.3d)

uD
a := ψauD on all F ∈ FD

a .(4.3e)

By construction, the polynomial data satisfy the compatibility conditions (2.7)
and (2.15). Similarly, following [14], [1, 2], and [21, Construction 3.4 and Re-
mark 3.7], we define the equilibrated flux reconstruction as σh :=

∑
a∈Vh

σa
p , where

σa
p is the discrete minimizer of Corollary 3.3 given by (3.6) for interior vertices and

similarly the discrete minimizer of Corollary 3.8 for boundary vertices, with the
polynomial degree p := p′. Here we set, for all a ∈ Vh,

τp := ψa∇T uh in ωa,(4.4a)

rK := ψa(f +ΔT uh) in all K ∈ Ta,(4.4b)

rF := ψa�∇T uh�·nF on all F ∈ F int
a ,(4.4c)

rF := 0 on all F ∈ Fext
a ,(4.4d)

rF := ψa(∇T uh·nF + σN) on all F ∈ FN
a ,(4.4e)

σN
a := ψaσN on all F ∈ FN

a .(4.4f)

For all interior vertices and for those boundary vertices which are only shared by
Neumann faces (i.e., FD

a = ∅), the hat-function orthogonality

(4.5) (∇T uh,∇ψa)ωa
= (f, ψa)ωa

− (σN, ψa)∂ωa∩ΓN
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is equivalent to the data compatibility conditions (2.10) and (2.17). This relation
is not verified, for example, for certain discontinuous Galerkin methods; the use of
the discrete gradient ∇duh from [15, Section 4.3] in place of the broken gradient
∇T uh allows us to fix this; see [16, 21]. This altogether leads to the following.

Corollary 4.1 (Guaranteed a posteriori error estimate). Let the data in prob-
lem (4.1) satisfy f ∈ Pp′−1(Th), uD ∈ Pp′(FD

h ) ∩ C0(ΓD), and σN ∈ Pp′−1(FN
h ),

p′ ≥ 1. Let u ∈ H1(Ω) such that u|ΓD
= uD be the weak solution of (4.2). Let

uh ∈ Pp′(Th) satisfying (4.5) be arbitrary. Let sh :=
∑

a∈Vh
sap , where sap is the

discrete minimizer of Corollaries 3.1 or 3.7 with p = p′ + 1 and data (4.3). Let
σh :=

∑
a∈Vh

σa
p , where σa

p is the discrete minimizer of Corollaries 3.3 or 3.8 with

p = p′ and data (4.4). Then

‖∇T (u− uh)‖2Ω ≤
∑

K∈Th

(
‖∇T uh + σh‖2K + ‖∇T (uh − sh)‖2K

)
,

as well as

‖∇T (u− uh)‖2Ω +
∑

F∈F int
h ∪FD

h

h−1
F ‖Π0

F �u− uh�‖2F

≤
∑

K∈Th

(
‖∇T uh + σh‖2K + ‖∇T (uh − sh)‖2K

)
+

∑
F∈F int

h

h−1
F ‖Π0

F �uh�‖2F +
∑

F∈FD
h

h−1
F ‖Π0

F (uh − uD)‖2F .

Proof. See [21, Theorem 3.3] or [16, Theorem 3.3] and the references therein. �

Let

H1
∗ (ωa) := {v ∈ H1(ωa); (v, 1)ωa

= 0}, a ∈ V int
h or

(
a ∈ Vext

h and FD
a = ∅

)
,

(4.6a)

H1
∗ (ωa) := {v ∈ H1(ωa); v = 0 on all F ∈ FD

a },a ∈ Vext
h and FD

a �= ∅.
(4.6b)

Then the Poincaré(–Friedrichs) inequality states that

‖v‖ωa
≤ CPF,ωa

hωa
‖∇v‖ωa

∀v ∈ H1
∗ (ωa).

Similarly, the broken Poincaré(–Friedrichs) inequality [3, 23] states that

‖v‖ωa
≤ CbPF,ωa

hωa

[
‖∇T v‖ωa

+

{ ∑
F∈F int

a ∪FD
a

h−1
F ‖Π0

F �v�‖2F

} 1
2
]

for all v ∈ H1(Ta) such that (v, 1)ωa
= 1 if a ∈ V int

h , all v ∈ H1(Ta) such that∑
F∈FN

a
(v, 1)F = 0 if a ∈ Vext

h and FD
a = ∅, and all v ∈ H1(Ta) if a ∈ Vext

h and

FD
a �= ∅. Let Ccont,PF := maxa∈Vh

{1 + CPF,ωa
hωa

‖∇ψa‖∞,ωa
} and Ccont,bPF :=

maxa∈Vh
{1 + CbPF,ωa

hωa
‖∇ψa‖∞,ωa

}, where both constants only depend on the
shape-regularity parameter γTh

. Then we have

(4.7) ‖∇(ψav)‖ωa
≤ Ccont,PF‖∇v‖ωa

∀v ∈ H1
∗ (ωa),
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see [1] or [21, Lemma 3.12], and, similarly,

‖∇T (ψav)‖ωa
≤ Ccont,bPF

[
‖∇T v‖ωa

+

{ ∑
F∈F int

a ∪FD
a

h−1
F ‖Π0

F �v�‖2F

} 1
2
]

(4.8)

for all v ∈ H1(Ta) with the above constraints. Let VK stand for the vertices of the
element K. The crucial application of our results is the following.

Corollary 4.2 (Local efficiency and polynomial-degree robustness). For the esti-
mators of Corollary 4.1, the following holds true:

‖∇T (uh − sh)‖K ≤ CstCcont,bPF

∑
a∈VK

[
‖∇T (u− uh)‖ωa

+

{ ∑
F∈F int

a ∪FD
a

h−1
F ‖Π0

F �u− uh�‖2F

} 1
2
]

∀K ∈ Th,(4.9a)

‖∇T uh + σh‖K ≤ CstCcont,PF

∑
a∈VK

‖∇T (u− uh)‖ωa
∀K ∈ Th,(4.9b)

h
− 1

2

F ‖Π0
F �uh�‖F = h

− 1
2

F ‖Π0
F �u− uh�‖F ∀F ∈ F int

h ,(4.9c)

h
− 1

2

F ‖Π0
F (uh − uD)‖F = h

− 1
2

F ‖Π0
F �u− uh�‖F ∀F ∈ FD

h .

(4.9d)

Proof. Corollary 3.1 for interior vertices and Corollary 3.7 for boundary vertices
immediately give, for any a ∈ Vh,

‖∇T (ψauh − sap )‖ωa
≤ Cst min

v∈H1(ωa)

v|F=0 ∀F∈Fext
a

v|F=ψauD ∀F∈FD
a

‖∇T (ψauh − v)‖ωa

≤ Cst inf
v∈H1(ωa)

v|F=uD ∀F∈FD
a

‖∇T (ψa(uh − v))‖ωa
.

Indeed, the right inequality follows immediately as any function v ∈ H1(ωa), equal
to uD on the faces from FD

a , belongs to the minimization set of the middle term
above when multiplied by the hat function ψa. This means that the discrete fully
computable estimator ‖∇T (ψauh− sap )‖ωa

is a local lower bound for a ψa-weighted

distance to the H1(ωa) space (or an affine subspace if FD
a �= ∅). We now make

the weak solution u of (4.1) appear in the bound. For a ∈ V int
h , let ũ := u − ca,

where the constant ca is chosen so that (ũ, 1)ωa
= (uh, 1)ωa

. For a boundary
vertex a ∈ Vext

h such that FD
a = ∅, let ũ := u − ca, where the constant ca is

chosen so that
∑

F∈FN
a
(ũ, 1)F =

∑
F∈FN

a
(uh, 1)F . In the other situations, we let

ũ := u. Note that in all three cases, ∇ũ = ∇u on the patch ωa and �ũ� =
�u� on all the faces F ∈ F int

a . Then, using (4.8) for v = uh − ũ together with
‖∇T (uh − sh)‖K ≤

∑
a∈VK

‖∇T (ψauh − sap )‖ωa
, we obtain (4.9a). Note that if

the mean values of the jumps of uh are zero, i.e., (�uh�, 1)F = 0 for all the faces
F ∈ F int

h and (uh, 1)F = (uD, 1)F for all the Dirichlet faces F ∈ FD
h , (4.9a) actually

simplifies to

‖∇T (uh − sh)‖K ≤ CstCcont,bPF

∑
a∈VK

‖∇T (u− uh)‖ωa
.
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Corollary 3.3 for interior vertices and Corollary 3.8 for boundary vertices, in
conjunction with Corollary 3.6, yield, for any a ∈ Vh,

‖ψa∇T uh + σa
p ‖ωa

≤ Cst max
v∈H1

∗(ωa)
‖∇v‖ωa=1

{ ∑
K∈Ta

(rK , v)K −
∑

F∈Fa

(rF , v)F

}

= Cst max
v∈H1

∗(ωa)
‖∇v‖ωa=1

⎧⎨⎩(f, ψav)ωa
− (∇T uh,∇(ψav))ωa

−
∑

F∈FN
a

(σN, ψav)F

⎫⎬⎭ ,

using the definition of rK and rF in (4.4) and the Green formula. Thus, the
fully computable estimator ‖ψa∇T uh + σa

p ‖ωa
is a local lower bound for the local

dual norm of the residual with ψa-weighted test functions. We now note that
ψav, extended by zero outside of the patch subdomain ωa, is a function in H1(Ω)
which is zero on the Dirichlet part of the boundary ΓD. Thus we can use the
definition (4.2) of the weak solution to replace the right-hand side by (∇T (u −
uh),∇(ψav))ωa

. Invoking (4.7) together with ‖∇T uh+σh‖K ≤
∑

a∈VK
‖ψa∇T uh+

σa
p ‖ωa

gives (4.9b).
Finally, (4.9c) and (4.9d) are immediate by definition. �

5. Proof for broken H1
polynomial extensions

We prove here Theorem 2.2. In particular, we show in Section 5.1 the existence
of the minimizers in (2.8), in Section 5.2 their uniqueness, and in Section 5.3 the
stability bound (2.8). Let p ≥ 1 and let r ∈ Pp(F int

a ) satisfy the compatibility
conditions (2.7). Define

Vp(Ta) := {vp ∈ Pp(Ta); vp|F = 0 ∀F ∈ Fext
a , �vp�F = rF ∀F ∈ F int

a },(5.1a)

V (Ta) := {v ∈ H1(Ta); v|F = 0 ∀F ∈ Fext
a , �v�F = rF ∀F ∈ F int

a }.(5.1b)

Then the stability bound (2.8) becomes

(5.2) min
vp∈Vp(Ta)

‖∇T vp‖ωa
≤ Cst min

v∈V (Ta)
‖∇T v‖ωa

.

To prove it, we crucially consider the enumeration of the cells in the patch Ta
from Lemma B.1 below in the form K1, . . . ,K|Ta|. Without loss of generality (see

Remark 2.1), we orient all the interior faces F = ∂Ki ∩ ∂Kj ∈ F int
a so that nF

points from Kj to Ki with j < i.
In what follows, we abbreviate as A � B the inequality A ≤ cB with a generic

constant c whose value can only depend on the patch regularity parameter γTa
; the

constant C is in particular independent of the polynomial degree p.

5.1. Existence of the minimizers. Let us first prove that the minimization sets
Vp(Ta) and V (Ta) are nonempty; then the existence of the minimizers immediately
follows. Since Vp(Ta) ⊂ V (Ta), we only consider Vp(Ta). The proof is constructive
in that we build a function in Vp(Ta) by enumerating all the cells in Ta while
prescribing suitable Dirichlet data on some faces of each cell. For all 1 ≤ i ≤ |Ta|,
let us set F ext

i := ∂Ki∩∂ωa, i.e., F
ext
i is the face ofKi lying on the patch subdomain

boundary ∂ωa. Note that F ext
i ∈ Fext

a . Consider a function wp ∈ Pp(Ta) such that
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its restrictions wi
p := wp|Ki

, for all 1 ≤ i ≤ |Ta|, are defined by induction as follows:

(i) For i = 1, w1
p is any function in

(5.3a) Vp(K1) := {vp ∈ Pp(K1); vp|F ext
1

= 0}.
(ii) For all 1 < i ≤ |Ta|, wi

p is any function in

(5.3b) Vp(Ki) := {vp ∈ Pp(Ki); vp|F ext
i

= 0, vp|F = −rF + wj
p|F ∀F ∈ F�

i },
where j = j(i, F ) is the index of the cell sharing F with Ki, i.e., F =
∂Ki ∩ ∂Kj . Recall that by definition of the set of previously enumerated

faces F�
i in Appendix B, we have j < i, so that wj

p is already known from
a previous step of the construction.

Lemma 5.1 below shows that the (affine) subspaces Vp(Ki) are all nonempty, i.e.,
the above construction is meaningful. Then, it is easy to see that any function wp

constructed as above is in the discrete minimization set Vp(Ta); in particular, we

note that the prescription (5.3b) on the faces in F�
i implies that �wp�F = wj

p|F −
wi

p|F = rF .

Lemma 5.1 (Nonemptiness). For all 1 ≤ i ≤ |Ta|, the set Vp(Ki) is nonempty.

Proof. The proof is carried out by induction.
(1) First, the linear space Vp(K1) is nontrivial. Its dimension is actually equal

to the number of Lagrange nodes of order p in the tetrahedron K1 that are not
located on the face F ext

1 .
(2) Let now 1 < i ≤ |Ta| and suppose that Vp(Ki−1) is nonempty. To prove

that Vp(Ki) is nonempty, we need to verify that the prescribed values on the faces
of Ki are continuous across the edges they share. Once this is established, it will
follow that Vp(Ki) is an affine space whose tangent space has dimension equal to
the number of Lagrange nodes of order p in Ki not located in the faces of Ki where
a value is prescribed. We distinguish three cases.

(2.a) Case 1 < i < |Ta| and |F�
i | = 1, say F�

i = {F 1
i }. There is one edge to

consider, namely e = F ext
i ∩ F 1

i . The compatibility condition (2.7a) implies that
rF |e = 0, and we have by construction wj

p|e = 0 since e ⊂ ∂ωa. Hence, the value

we are prescribing on the face F 1
i restricted to the edge e is zero.

(2.b) Case 1 < i < |Ta| and |F�
i | = 2, say F�

i = {F 1
i , F

2
i } (note that |F�

i | < 3
if i < |Ta| owing to Lemma B.1(ii), although we do not need to make use of
this property here). There are three edges to consider, namely e1 = F ext

i ∩ F 1
i ,

e2 = F ext
i ∩ F 2

i , and e12 = F 1
i ∩ F 2

i . For e1 and e2, the reasoning is the same as
above. For e := e12, we first use Lemma B.1(i), giving that Ki is the last cell to
be enumerated in the rotational path of cells around e. Thus wp has been already
defined in the previous elements by the induction argument, and the algebraic
properties of the jump operator (see (2.4)) give

(5.4)
∑

F∈Fe\{F 1
i ,F

2
i }

ιF,e�wp� = wj1
p − wj2

p ,

where F 1
i = ∂Ki ∩ ∂Kj1 and F 2

i = ∂Ki ∩ ∂Kj2 , with Kj1 following Ki in the
rotation direction around the edge e. Second, employing in (5.4) �wp�F = rF for
all F ∈ Fe \ {F 1

i , F
2
i } and the compatibility condition (2.7b), we conclude that

(5.5) wj1
p − wj2

p = −ιF 1
i ,e

rF 1
i
− ιF 2

i ,e
rF 2

i
= rF 1

i
− rF 2

i
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on the edge e; the last equality also employs that ιF 1
i ,e

= −1 and ιF 2
i ,e

= 1 in the

chosen notation (recall that both normal vectors nF 1
i
and nF 2

i
point inward Ki as

j1, j2 < i); see the right panel of Figure 1. Equation (5.5) provides the desired
continuity property on e.

(2.c) Case i = |Ta|. Then F�
i contains three faces, and the six edges of K|Ta|

need to be considered. The reasoning is the same as above for the three edges
located on ∂ωa and the three edges inside ωa (using again Lemma B.1(i) and the
compatibility condition (2.7b)). �

5.2. Uniqueness of the minimizers. The uniqueness of the minimizers in (2.8)
results from the fact that Vp(Ta) and V (Ta) are convex sets (being affine spaces)
and that the functional we are minimizing is strictly convex on the tangent spaces
of Vp(Ta) and V (Ta) (both tangent spaces are composed of functions vanishing on
∂ωa, where the H1-seminorm defines a strictly convex functional).

5.3. Proof of the stability bound (2.8). We now construct two functions ζp ∈
Pp(Ta) and ζ ∈ H1(Ta) such that their restrictions ζip := ζp|Ki

and ζi := ζ|Ki
, for

all 1 ≤ i ≤ |Ta|, are defined by induction as follows:

(i) For i = 1, we define the spaces

Vp(K1) := {vp ∈ Pp(K1); vp|F ext
1

= 0},(5.6a)

V (K1) := {v ∈ H1(K1); v|F ext
1

= 0},(5.6b)

and consider the following unique minimizers:

(5.7) ζ1p := argmin
vp∈Vp(K1)

‖∇vp‖K1
, ζ1 := argmin

v∈V (K1)

‖∇v‖K1
.

Note that these problems are actually trivial, so that we have ζ1p = ζ1 = 0
in K1.

(ii) For all 1 < i ≤ |Ta|, we define the spaces

Vp(Ki) := {vp ∈ Pp(Ki); vp|F ext
i

= 0, vp|F = −rF + ζjp|F ∀F ∈ F�
i },(5.8a)

V (Ki) := {v ∈ H1(Ki); v|F ext
i

= 0, v|F = −rF + ζjp|F ∀F ∈ F�
i },(5.8b)

where j = j(i, F ) is the index of the cell sharing F with Ki, i.e., F =
∂Ki ∩ ∂Kj . Note that both spaces are defined using the same Dirichlet
data which are piecewise polynomials of degree p. Consider the following
unique minimizers:

(5.9) ζip := argmin
vp∈Vp(Ki)

‖∇vp‖Ki
, ζi := argmin

v∈V (Ki)

‖∇v‖Ki
.

Note that the above minimization problems are well-posed since the mini-
mization sets are nonempty. Indeed, the Dirichlet condition is a continuous,
piecewise polynomial, as established in Section 5.1. Moreover, the set of
faces where a Dirichlet condition is prescribed is always nonempty, and
the minimized functional is strictly convex. We can also observe that the
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continuous minimizer ζi ∈ H1(Ki) is the weak solution to the problem

−Δζi = 0 in Ki,(5.10a)

ζi|F = −rF + ζjp|F on all F ∈ F�
i ,(5.10b)

ζi|F = 0 on F ext
i ,(5.10c)

−∇ζi·nKi
|F = 0 on all F ∈ F	

i ,(5.10d)

whereas ζip is its (spectral) finite element approximation in Pp(Ki).

We will show the following two statements for all 1 < i ≤ |Ta| (the statements
being trivial for i = 1):

‖∇ζip‖Ki
� ‖∇ζi‖Ki

,(5.11a)

‖∇ζi‖Ki
� ‖∇T v

∗‖ωa
+
∑
j<i

‖∇ζjp‖Kj
,(5.11b)

where the sum in (5.11b) is void if i = 1 and where v∗ ∈ V (Ta) is the global
continuous minimizer in (2.8). Since the above inductive construction implies that
ζp ∈ Vp(Ta), the global discrete minimizer v∗p ∈ Vp(Ta) in (2.8) is such that

‖∇T v
∗
p‖ωa

≤ ‖∇T ζp‖ωa
.

Moreover, combining (5.11a) with (5.11b) proves by induction that ‖∇ζip‖Ki
�

‖∇T v
∗‖ωa

for all 1 ≤ i ≤ |Ta|, so that ‖∇T ζp‖ωa
� ‖∇T v

∗‖ωa
. Hence, ‖∇T v

∗
p‖ωa

�
‖∇T v

∗‖ωa
, and this concludes the proof of (2.8).

Proof of (5.11a). We apply Lemma A.1 on K = Ki with FD
K = {F ext

i } ∪ F�
i and

the p-degree polynomials given by 0 for F = F ext
i and −rF + ζjp|F for all F ∈ F�

i .
The proof that these polynomials are continuous over the edges shared by two faces
in FD

K has been given in Section 5.1. �
Proof of (5.11b). We distinguish three cases.

(1) Case 1 < i < |Ta| and |F�
i | = 1, say F�

i = {F}. Let Kj ∈ Ta be the cell such

that F = ∂Ki ∩ ∂Kj ; the definition of F�
i implies that j < i. Let T : Kj → Ki

be the (unique) bijective affine map leaving F pointwise invariant. Consider in the
cell Ki the function

v := v∗|Ki
− (v∗|Kj

− ζjp) ◦ T−1.

The crucial observation is that v ∈ V (Ki). Indeed, the properties v ∈ H1(Ki) and
v|F ext

i
= 0 are straightforward to verify. Moreover, since j < i, we have v∗|Kj

−
v∗|Ki

= �v∗�F = rF , so that indeed v|F = −rF + ζjp|F . Using the definition (5.9)

of ζi together with the properties of the map T which follow from mesh regularity,
we infer that

‖∇ζi‖Ki
≤ ‖∇v‖Ki

≤ ‖∇v∗‖Ki
+ ‖∇((v∗|Kj

− ζjp) ◦ T−1)‖Ki

� ‖∇v∗‖Ki
+ ‖∇(v∗|Kj

− ζjp)‖Kj
≤ ‖∇v∗‖Ki

+ ‖∇v∗‖Kj
+ ‖∇ζjp‖Kj

,

so that (5.11b) holds true (recall that j < i).

(2) Case 1 < i < |Ta| and |F�
i | = 2, say F�

i = {F 1, F 2} with e = F 1 ∩ F 2. We
consider the conforming refinement T ′

e of Te from Lemma B.2 applied with K∗ = Ki

(observe that the partition T ′
e may add one element with respect to Te). Recall that

T ′
e contains Ki, that all the tetrahedra in T ′

e have e as edge with their two other
vertices lying on ∂ωa, that the shape regularities of T ′

e and Te are comparable, and



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

570 A. ERN AND M. VOHRALÍK

that, collecting all the vertices of T ′
e that are not endpoints of e in the set V ′

e, there
is a two-color map col : V ′

e → {1, 2} so that for all κ ∈ T ′
e , the two vertices of κ

that are not endpoints of e, say {an
κ}1≤n≤2, satisfy col(an

κ) = n. We use the two-
color map to define, for all κ ∈ T ′

e , the (unique) bijective affine map Tκ : κ → Ki

leaving e pointwise invariant and preserving the color of the two other vertices of
κ, i.e., col(Tκ(a

n
κ)) = n for each n ∈ {1, 2}. Consider in the cell Ki a function v

defined from the global continuous minimizer v∗ in Ki and from its difference with
the piecewise polynomial ζp on the previously enumerated elements by

(5.12) v := v∗|Ki
+

∑
κ∈T ′

e\{Ki}

εκ
εKi

(v∗ − ζp)|κ ◦ T−1
κ ,

where for all κ ∈ T ′
e (thus including Ki), εκ = 1 if the orientation of the vector

a1
κa

2
κ is compatible with the fixed orientation of rotation around the edge e and

εκ = −1 otherwise. Note that the binary coloring implies that εκ+εκ′ = 0 if the two
cells κ and κ′ share an interior face. Let us verify that v ∈ V (Ki). The properties
v ∈ H1(Ki) and v|F ext

i
= 0 are again straightforward to verify. It remains to show

that v|F = −rF + ζjp|F for all F ∈ F�
i . We will do the proof for the face F 1; the

proof for the face F 2 is similar. Let x ∈ F 1, and assume without loss of generality
that the vertex of F 1 that is not in e has color 1. Let F1

e collect all the interior
faces in T ′

e whose vertex that is not in e has color 1. Then, F 1 ∈ F1
e and F 2 �∈ F1

e .
Moreover, the definition of Tκ implies that, for all κ ∈ T ′

e , κ �= Ki, the point T
−1
κ (x)

belongs to the face of κ in the set F1
e . Recall that εκ has opposite sign on the two

cells sharing each interior face. As a result, we find that the function v in (5.12)
satisfies
(5.13)

v|F 1 = v∗|Ki
|F 1 − (v∗|Kj1

− ζj1p )|F 1 ◦ T−1
Kj1

+
∑

F∈F1
e \{F 1}

εF (�v
∗�F − �ζp�F )|F ◦ T−1

κF
,

where Kj1 is the cell sharing F 1 with Ki, i.e., F
1 = ∂Ki ∩ ∂Kj1 , whereas εF =

εκF
/εKi

= ±1 where κF is the element sharing F having the lowest enumeration
index. Since �v∗�F = �ζp�F for all F ∈ F1

e (the common value being rF if F is
already a face in Te or zero if F is a newly created face in T ′

e ) and since j1 < i, this
yields

v|F 1 = v∗|Ki
|F 1 − (v∗|Kj1

− ζj1p )|F 1 = −rF 1 |F 1 + ζj1p |F 1 .

Hence, v ∈ V (Ki). In view of (5.12) and (5.9), we conclude that

‖∇ζi‖Ki
≤ ‖∇v‖Ki

� ‖∇v∗‖Ki
+

∑
κ∈T ′

e\{Ki}
{‖∇v∗‖κ + ‖∇ζp‖κ}

≤ |T ′
e |

1
2 ‖∇T v

∗‖ωa
+ 2

1
2

∑
j<i

‖∇ζp‖Kj
,

and (5.11b) follows.
(3) Case i = |Ta|. Note that owing to Lemma B.1(ii), this is the only case where

|F�
i | = 3 happens, so that we need to work with all the three interior faces of the

element Ki. For this purpose, we apply Lemma B.3 with K∗ = Ki. Recall that
T ′
a contains Ki, that all the tetrahedra in T ′

a have a as the vertex with their three
other vertices lying on ∂ωa, and that, collecting all the vertices of T ′

a that lie on
∂ωa in the set V ′

a, there is a three-color map col : V ′
a → {1, 2, 3} so that for all

κ ∈ T ′
a, the three vertices of κ that are not a, say {an

κ}1≤n≤3, satisfy col(an
κ) = n.
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We use the three-color map to define, for all κ ∈ T ′
a, the (unique) bijective affine

map Tκ : κ → Ki leaving a invariant and preserving the color of the three other
vertices of κ. Consider in the cell Ki the function

(5.14) v := v∗|Ki
+

∑
κ∈T ′

a\{Ki}

εκ
εKi

(v∗ − ζp)|κ ◦ T−1
κ ,

where, for all κ ∈ T ′
a, εκ = 1 if the vector a1

κa
2
κ×a1

κa
3
κ points outward ωa and

εκ = −1 otherwise. Let us verify that v ∈ V (Ki). The properties v ∈ H1(Ki) and
v|F ext

|Ta|
= 0 are straightforward. It remains to verify that v satisfies the appropriate

boundary condition on the three faces in F �
i , i.e., on the three faces of Ki sharing

the vertex a. We can call these faces F 12, F 13, and F 23, where the superscripts
refer to the two colors of the two vertices of the face that are not a. Let us verify
the boundary condition on F 12; the proof for the two other faces is similar. Let
F12 collect all the interior faces in T ′

a such that their two vertices which are not
a have colors 1 and 2. Since any interior face in F12 is shared by two cells in T ′

a

having opposite number εκ and since any cell in T ′
a has one interior face in F12, we

infer that

v|F 12 = v∗|Ki
− (v∗|Kj12

−ζj12p )|F 12 ◦T−1
Kj12

+
∑

F∈F12\{F 12}
εF (�v

∗�F −�ζp�F )|F ◦T−1
κF

,

with εF and κF defined as above and where j12 is the index of the cell sharing F 12

with Ki. Since �v∗�F = �ζp�F (the common value being either rF or 0) and since
j12 < i, we conclude that v|F 12 = −rF 12 |F 12 + ζj12p |F 12 . Hence, v ∈ V (Ki). Finally,
we can bound ‖∇v‖Ki

as above, and this completes the proof. �

6. Proof for broken H(div) polynomial extensions

We prove here Theorem 2.3. In particular, we show in Section 6.1 the existence
of the minimizers in (2.11), in Section 6.2 their uniqueness, and in Section 6.3 the
stability bound (2.11). Let p ≥ 0. Let r ∈ Pp(Ta)×Pp(Fa) satisfy the compatibility
condition (2.10). Let us set

Vp(Ta) := {vp ∈ RTNp(Ta); vp·nF = rF ∀F ∈ Fext
a , ∇T ·vp|K = rK ∀K ∈ Ta,

�vp�·nF = rF ∀F ∈ F int
a },(6.1a)

V (Ta) := {v ∈ H(div, Ta); v·nF = rF ∀F ∈ Fext
a , ∇T ·v|K = rK ∀K ∈ Ta,

�v�·nF = rF ∀F ∈ F int
a }.(6.1b)

Then the stability bound (2.11) becomes

(6.2) min
vp∈Vp(Ta)

‖vp‖ωa
≤ Cst min

v∈V (Ta)
‖v‖ωa

.

As in Section 5, we consider the enumeration of the cells in Ta from Lemma B.1
in the form K1, . . . ,K|Ta|. Without loss of generality (see Remark 2.1), we orient

all the interior faces F = ∂Ki ∩ ∂Kj ∈ F int
a so that nF points from Kj to Ki with

j < i.
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6.1. Existence of the minimizers. Let us first prove that the minimization sets
Vp(Ta) and V (Ta) are nonempty, yielding the existence of the minimizers. Since
Vp(Ta) ⊂ V (Ta), we only consider Vp(Ta). Recall that, for all 1 ≤ i ≤ |Ta|,
F ext
i = ∂Ki ∩ ∂ωa is the face of the element Ki lying on the patch boundary ∂ωa.

Consider a function wp ∈ RTNp(Ta) such that its restrictions wi
p := wp|Ki

, for
all 1 ≤ i ≤ |Ta|, are defined by induction as follows:

(i) For i = 1, w1
p is any function in

(6.3a) Vp(K1) := {vp ∈ RTNp(K1); vp·nF ext
1

= rF ext
1

, ∇·vp = rK1
}.

(ii) For all 1 < i ≤ |Ta|, wi
p is any function in

(6.3b) Vp(Ki) := {vp ∈ RTNp(Ki); vp·nF ext
i

= rF ext
i

,

∇·vp = rKi
, vp·nF = −rF +wj

p·nF ∀F ∈ F�
i },

where j = j(i, F ) is the index of the cell sharing F with Ki, i.e., F =

∂Ki ∩ ∂Kj . Recall that by definition of F�
i , we have j < i, so that wj

p is
already known from a previous step.

Lemma 6.1 below shows that the (affine) subspaces Vp(Ki) are all nonempty,
i.e., the above construction is meaningful. Then, it is easy to see that any function
wp constructed as above is in the discrete minimization set Vp(Ta); in particular,

we note that the prescription (6.3b) on the faces in F�
i implies that �wp�·nF =

(wj
p −wi

p)·nF = rF .

Lemma 6.1 (Nonemptiness). For all 1 ≤ i ≤ |Ta|, the set Vp(Ki) is nonempty.

Proof. The proof is actually simpler than that of Lemma 5.1 in the H1-setting in
Section 5.1, as Neumann boundary data in (6.3) do not request any condition of
continuity on edges between faces of each Ki. Thus, property (i) of Lemma B.1
is not used here. The only nontrivial property to verify is the compatibility be-
tween the prescriptions of the normal component and the divergence whenever

F�
i ∪ {F ext

i } = FKi
, i.e., whenever the normal component is prescribed over the

whole boundary of Ki. Here, it is important that this situation only happens when
i = |Ta|, i.e., for the last cell in the enumeration; this is indeed the case owing to
Lemma B.1(ii). Then the nonemptiness of Vp(Ki) follows from classical properties
of Raviart–Thomas–Nédélec finite elements. Let thus i = |Ta|. We need to check
the Neumann compatibility condition

(6.4) (rKi
, 1)Ki

= (rF ext
i

, 1)F ext
i

+
∑

F∈F�
i

(rF −wj
p·nF , 1)F .
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(Note that nF points inward Ki for all F ∈ F�
i since i = |Ta|.) Using the divergence

theorem in each cell Kj , 1 ≤ j < |Ta|, we write∑
1≤j<|Ta|

(rKj
, 1)Kj

=
∑

1≤j<|Ta|
(∇·wj

p, 1)Kj
=

∑
1≤j<|Ta|

∑
F∈FKj

(wj
p·nKj

, 1)F

=
∑

1≤j<|Ta|
(rF ext

j
, 1)F ext

j
+

∑
F∈F int

a \F�
i

(�wp�·nF , 1)F +
∑
F∈F�

i

(wj
p·nF , 1)F

=
∑

1≤j<|Ta|
(rF ext

j
, 1)F ext

j
+

∑
F∈F int

a \F�
i

(rF , 1)F +
∑

F∈F�
i

(wj
p·nF , 1)F ,

where nKj
is the unit normal pointing outwardKj . Then (6.4) follows by combining

the above relation with the compatibility condition (2.10). �

6.2. Uniqueness of the minimizers. As the affine subspaces Vp(Ta) and V (Ta)
are nonempty convex sets, the uniqueness of the minimizers in (2.11) follows from
the fact that the functional we are minimizing is strictly convex on the tangent
spaces (both tangent spaces are composed of divergence-free functions, so that the
‖·‖ωa

= ‖·‖H(div,Ta) for such functions).

6.3. Proof of the stability bound (2.11). We now construct two functions ζp ∈
RTNp(Ta) and ζ ∈ H(div, Ta) such that their restrictions ζi

p := ζp|Ki
and ζi :=

ζ|Ki
, for all 1 ≤ i ≤ |Ta|, are defined by induction as follows:

(i) For i = 1, we define the spaces

Vp(K1) := {vp ∈ RTNp(K1); vp·nF ext
1

= rF ext
1

, ∇·vp = rK1
},(6.5a)

V (K1) := {v ∈ H(div,K1); v·nF ext
1

= rF ext
1

, ∇·v = rK1
},(6.5b)

and consider the following unique minimizers:

(6.6) ζ1
p := argmin

vp∈Vp(K1)

‖vp‖K1
, ζ1 := argmin

v∈V (K1)

‖v‖K1
.

(ii) For all 1 < i ≤ |Ta|, we define the spaces

(6.7a) Vp(Ki) := {vp ∈ RTNp(Ki); vp·nF ext
i

= rF ext
i

,

∇·vp = rKi
, vp·nF = −rF + ζj

p·nF ∀F ∈ F�
i },

(6.7b) V (Ki) := {v ∈ H(div,Ki); v·nF ext
i

= rF ext
i

,

∇·v = rKi
, v·nF = −rF + ζj

p·nF ∀F ∈ F�
i },

where j = j(i, F ) is the index of the cell sharing F with Ki, i.e., F =
∂Ki ∩ ∂Kj . In (6.7b), the normal trace is prescribed according to (2.6).
Consider the following unique minimizers:

(6.8) ζi
p := argmin

vp∈Vp(Ki)

‖vp‖Ki
, ζi := argmin

v∈V (Ki)

‖v‖Ki
.
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The same reasoning as in Sections 6.1 and 6.2 shows that these minimization prob-
lems are well-posed. We can also observe that the continuous minimizer ζi of (6.8)
is given by −∇ζi, where ζi ∈ H1(Ki) is the weak solution to the problem

−Δζi = rKi
in Ki,

−∇ζi·nF = −rF + ζj
p·nF on all F ∈ F�

i ,

−∇ζi·nF ext
i

= rF ext
i

on F ext
i ,

ζi|F = 0 on all F ∈ F	
i ,

whereas ζi
p is its (spectral) mixed finite element approximation in RTNp.

We will show the following two statements for all 1 ≤ i ≤ |Ta|:
‖ζi

p‖Ki
� ‖ζi‖Ki

,(6.9a)

‖ζi‖Ki
� ‖v∗‖ωa

+
∑
j<i

‖ζj
p‖Kj

,(6.9b)

where the sum in (6.9b) is void for i = 1 and where v∗ ∈ V (Ta) is the global
minimizer in (2.11). With these two bounds, we can conclude the proof as in Sec-
tion 5.3.

Proof of (6.9a). We apply Lemma A.3 on K = Ki with FN
K = {F ext

i } ∪ F�
i , the

p-degree polynomial prescribing the divergence being rKi
, and the p-degree polyno-

mials prescribing the normal components being rF ext
i

for F = F ext
i and rF − ζj

p·nF

for all F ∈ F�
i (recall that nF points inward Ki since F = ∂Kj ∩ ∂Ki with j < i).

The compatibility condition for these polynomials on the last element follows by
the same reasoning as in Section 6.1. �

Proof of (6.9b). The principle of the proof is the same as that of (5.11b) in Sec-
tion 5.3, the only salient difference being that the pullback by the geometric map
has to be replaced by the contravariant Piola transformation. Let us exemplify this

modification in the case where 1 < i < |Ta| and |F�
i | = 1, say F�

i = {F}. Let

Kj ∈ Ta be the cell such that F = ∂Ki ∩ ∂Kj ; the definition of F�
i implies that

j < i. Let T : Kj → Ki be the (unique) bijective affine map leaving F pointwise
invariant. Let J be the (constant) Jacobian matrix of T and consider the transfor-
mation ψ(v) = A(v ◦ T ) with A = det(J)J−1. Then ψ is an isomorphism from
H(div,Ki) to H(div,Kj), and also from RTNp(Ki) to RTNp(Kj). Consider in
the cell Ki the function

(6.10) v := v∗|Ki
−ψ−1(v∗|Kj

− ζj
p),

and let us prove that v ∈ V (Ki). It is clear that v ∈ H(div,Ki). Concerning the
divergence, we use the property ∇·ψ−1(vj) = det(J)−1(∇·vj) ◦ T−1 in Ki for any
function vj defined in Kj . Applying this identity to the function vj = v∗|Kj

− ζj
p

which is divergence-free (since j < i), we infer that ∇·v = ∇·v∗|Ki
= rKi

. Let
us now consider the normal component of v. Recalling (2.6) and that nF points
inward Ki, we need to prove that

(6.11) (v,∇φ)Ki
= −(rKi

, φ)Ki
+ (rF ext

i
, φ)F ext

i
+ (rF − ζj

p·nF , φ)F

for all φ ∈ H1(Ki) such that φ|F = 0 for all F ∈ F	
i . Let φ̃ : ωa → R be such that

φ̃|Ki
= φ, φ̃|Kj

= φ ◦ T , and φ̃ = 0 otherwise, and observe that φ̃ ∈ H1(ωa). Using
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φ̃ as the test function in (2.5c) for the global minimizer v∗, we infer that

(v∗,∇φ)Ki
+ (v∗,∇(φ ◦ T ))Kj

= −(rKi
, φ)Ki

−(rKj
, φ ◦ T )Kj

+ (rF ext
i

, φ)F ext
i

+ (rF ext
j

, φ ◦ T )F ext
j

+ (rF , φ)F .

Considering the term (v,∇φ)Ki
, the definition (6.10), changing variables in the last

term in the right-hand side, and employing εJ = det(J)
| det(J)| = −1, we obtain

(v,∇φ)Ki
= (v∗,∇φ)Ki

− (ψ−1(v∗|Kj
− ζj

p),∇φ)Ki

= (v∗,∇φ)Ki
+ (v∗,∇(φ ◦ T ))Kj

− (ζj
p,∇(φ ◦ T ))Kj

= (v∗,∇φ)Ki
+ (v∗,∇(φ ◦ T ))Kj

+ (rKj
, φ ◦ T )Kj

− (rF ext
j

, φ ◦ T )F ext
j

− (ζj
p·nF , φ)F

= −(rKi
, φ)Ki

+ (rF ext
i

, φ)F ext
i

+ (rF − ζj
p·nF , φ)F ,

where we used the Green formula for the term (ζj
p,∇(φ ◦T ))Kj

and the prescribed

properties of ζj
p together with the above relation satisfied by v∗. Hence, (6.11)

holds true, and v ∈ V (Ki) as announced.

The reasoning is similar when F�
i contains two or three interior faces of Ki. Let

us still briefly discuss the case where 1 < i < |Ta| and |F�
i | = 2, say F�

i = {F 1, F 2}
with e = F 1 ∩ F 2. We consider the two-color conforming refinement T ′

e of the
rotational path Te around e of Lemma B.2 below. Define in the cell Ki the function

(6.12) v := v∗|Ki
+

∑
κ∈T ′

e\{Ki}

εκ
εKi

ψ−1
κ ((v∗ − ζp)|κ),

where we use the same notation as in Section 5.3, together with the contravariant
Piola transformation ψκ built using the geometric map Tκ with Jacobian matrix
Jκ. We need to show that v ∈ V (Ki). It is again clear that v ∈ H(div,Ki)
and similarly, remarking that the restrictions (v∗ − ζp)|κ for all κ ∈ T ′

e \ {Ki} are
divergence-free, we infer that ∇·v = ∇·v∗|Ki

= rKi
. We are thus left to prove that

the normal components conditions in (6.7b) are satisfied. Let F 1 = ∂Ki ∩ ∂Kj1

and F 2 = ∂Ki ∩ ∂Kj2 , where we remark that j1, j2 < i. Using (2.6), we need to
show that

(v,∇φ)Ki

(6.13)

= −(rKi
, φ)Ki

+ (rF ext
i

, φ)F ext
i

+ (rF 1 − ζj1
p ·nF 1 , φ)F 1 + (rF 2 − ζj2

p ·nF 2 , φ)F 2

for all φ ∈ H1(Ki) such that φ|F = 0 for all F ∈ F	
i . Let now φ̃ : ωa → R be

such that φ̃|Ki
= φ, φ̃|κ = φ ◦ Tκ, κ ∈ T ′

e \ {Ki}, and φ̃ = 0 otherwise. Observe

that φ̃ takes the value zero on the faces lying on the boundary of the submesh T ′
e

and sharing the vertex a and is continuous over the faces in T ′
e sharing the edge e.

Consequently, φ̃ ∈ H1(ωa). Using as above φ̃ as the test function in (2.5c), we see
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that

(v∗,∇φ)Ki
+

∑
κ∈T ′

e\{Ki}
(v∗,∇(φ ◦ Tκ))κ

= − (rKi
, φ)Ki

−
∑

κ∈T ′
e\{Ki}

(rκ, φ ◦ Tκ)κ + (rF ext
i

, φ)F ext
i

+
∑

κ∈T ′
e\{Ki}

(rF ext
κ

, φ ◦ Tκ)F ext
κ

+
∑
F∈Fe

(rF , φ ◦ TκF
)F ,

(6.14)

with the obvious association of F ext
κ with F ext

j and where κF ∈ T ′
e is the element

sharing F having the lowest enumeration index. Employing the definition (6.12),
changing variables, noting that εκεJκ

is independent of the two cells sharing F ∈ Fe

since nκ changes orientation, and using that the jumps of ζp on the faces from Fe

other than F 1 and F 2 are given by rF whereas the normal component of ζj
p has

zero jumps inside of the original simplices Kj from Te, we deduce

(v,∇φ)Ki
= (v∗,∇φ)Ki

−
∑

κ∈T ′
e\{Ki}

( εκ
εKi

ψ−1
κ ((v∗ − ζp)|κ),∇φ

)
Ki

= (v∗,∇φ)Ki
+

∑
κ∈T ′

e\{Ki}
(v∗,∇(φ ◦ Tκ))κ −

∑
κ∈T ′

e\{Ki}
(ζp,∇(φ ◦ Tκ))κ

= (v∗,∇φ)Ki
+

∑
κ∈T ′

e\{Ki}
(v∗,∇(φ ◦ Tκ))κ +

∑
κ∈T ′

e\{Ki}
(rκ, φ ◦ Tκ)κ

−
∑

κ∈T ′
e\{Ki}

(rF ext
κ

, φ ◦ Tκ)F ext
κ

−
∑

F∈Fe\{F 1,F 2}
(�ζp�·nF , φ ◦ TκF

)F

− (ζj1
p ·nF 1 , φ ◦ TκF1 )F 1 − (ζj2

p ·nF 2 , φ ◦ TκF2 )F 2

= − (rKi
, φ)Ki

+ (rF ext
i

, φ)F ext
i

+ (rF 1 − ζj1
p ·nF 1 , φ)F 1 + (rF 2 − ζj2

p ·nF 2 , φ)F 2 ,

where we have also employed that both nF 1 and nF 2 point inwards Ki, and, in the
last step, (6.14). Thus (6.13) holds true. �

7. Proofs for boundary vertices

In this section, we prove Theorems 2.4 and 2.5, by relating the case of a boundary
patch to that of an interior patch via geometric piecewise affine mappings and
symmetry arguments. Let a be a boundary vertex as specified in Section 2.4.
Recall that by assumption, the patch domain ωa only contains an open ball around
a minus some sector with solid angle θa ∈ (0, 4π). In what follows, as throughout
the paper, we abbreviate as A � B the inequality A ≤ cB with a generic constant
c whose value can only depend on the patch regularity parameter γTa

. Moreover,
A ≈ B stands for simultaneously A ≤ cB and B ≤ cA.

7.1. H1 setting. We prove in this section Theorem 2.4. Recall that we have as-
sumed that either FN

a = ∅ or FD
a = ∅. Moreover, either all the faces in Fext

a have
at least one vertex lying in the interior of ∂ωext

a , see the left panel of Figure 2 for
an example, or there are at most two tetrahedra in the patch, see the right panel of
Figure 2 for an example. We show the details under the first assumption and only
give brief comments on the case where this does not hold but |Ta| ≤ 2.
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When all the faces in Fext
a have at least one vertex lying in the interior of ∂ωext

a ,

it is possible to design a mapping T of Ta into a flattened patch T̃a lying in a half-
space in R3 determined by some plane containing the boundary vertex a. More
precisely, the mapping T is defined by means of a collection of bijective affine
mappings {TK}K∈Ta

such that (see the left panel of Figure 3 for an illustration

in the context of Figure 2): 1) TK : K → K̃, where K̃ is a tetrahedron; 2) the

tetrahedra K̃ form a patch T̃a topologically equivalent to Ta (i.e., the connectivity

between elements, faces, edges, and vertices of T̃a is the same as that in Ta); 3) all
the faces F ∈ FD

a ∪ FN
a are mapped into a plane P and T̃a lies in a half-space of

R3 bounded by this plane; 4) the shape-regularity parameter of T̃a is equivalent to
that of Ta up to a constant that only depends on γTa

.

•a

T̃a

P

•a

T̂a

P

S

Figure 3. Left: boundary patch Ta of the left panel of Figure 2

mapped by T to the flattened patch T̃a lying in the half-space of

R3 determined by the plane P . Right: patch T̃a mapped by the

symmetry S over the plane P and the resulting interior patch T̂a.

Let us further map the flattened patch T̃a by the symmetry S over the plane

P into the other half-space of R3 to produce together with T̃a a new patch of

elements denoted by T̂a; see the right panel of Figure 3 for an illustration. We

keep the orientation for the face normals n
˜F of faces F̃ in T̃a the same and let it

be arbitrary for the newly created faces in T̂a. Then, T̂a is an “interior” patch of
tetrahedra sharing the vertex a as described in Section 2.1, where in particular the

patch subdomain ω̂a, defined as the interior of the set
⋃

̂K∈̂Ta
K̂, contains an open

ball around a.

7.1.1. Case 1: Pure Dirichlet conditions. Let us first treat the case where FN
a = ∅,

i.e., Fa = F int
a ∪ Fext

a ∪ FD
a and all the faces located on the patch boundary ∂ωa
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and sharing the vertex a are contained in the (Dirichlet) set FD
a . Denote

(7.1a) Vp(Ta) :=
{
vp ∈ Pp(Ta); vp|F = 0 ∀F ∈ Fext

a ,

vp|F = rF ∀F ∈ FD
a , �vp�F = rF ∀F ∈ F int

a

}
,

(7.1b) V (Ta) :=
{
v ∈ H1(Ta); v|F = 0 ∀F ∈ Fext

a ,

v|F = rF ∀F ∈ FD
a , �v�F = rF ∀F ∈ F int

a

}
.

Then the stability bound (2.16) becomes

(7.2) min
vp∈Vp(Ta)

‖∇T vp‖ωa
≤ Cst min

v∈V (Ta)
‖∇T v‖ωa

.

As in Section 5, we denote, respectively, by v∗p ∈ Vp(Ta) and v∗ ∈ V (Ta) the

minimizers in (7.2), supposing for the moment that they exist. Considering on T̃a
the equivalents Ṽp(T̃a) and Ṽ (T̃a) of the spaces Vp(Ta) and V (Ta) from (7.1), where

r̃
˜F := rF ◦ T−1

K for F ∈ FK , F̃ ∈ F̃
˜K , K̃ = TK(K), F̃ = TK(F ), one readily shows

that

(7.3) ‖∇
˜T ṽ

∗
p‖ω̃a

≈ ‖∇T v
∗
p‖ωa

, ‖∇
˜T ṽ

∗‖ω̃a
≈ ‖∇T v

∗‖ωa
,

where ω̃a is the interior of the set
⋃

˜K∈˜Ta
K̃ and

(7.4) ṽ∗p := arg min
ṽp∈˜Vp(˜Ta)

‖∇
˜T ṽp‖ω̃a

, ṽ∗ := arg min
ṽ∈˜V (˜Ta)

‖∇
˜T ṽ‖ω̃a

.

For instance, since v∗ ◦ T−1 ∈ Ṽ (T̃a), we have ‖∇
˜T ṽ

∗‖ω̃a
≤ ‖∇

˜T (v
∗ ◦ T−1)‖ω̃a

=

‖JT(∇T v
∗) ◦ T−1‖ω̃a

≤ | det(J)|1/2‖J‖�2‖∇T v
∗‖ωa

� ‖∇T v
∗‖ωa

, since the Jaco-
bian matrix J of T−1 and its determinant det(J) are both of order unity.

For each interior face F̂ ∈ F̂ int
a of the symmetrized patch T̂a, cf. Figure 3, right,

consider a polynomial r̂
̂F ∈ Pp(F̂ ) such that

r̂
̂F = r̃

˜F if F̂ = F̃ ∈ F̃ int
a ,(7.5a)

r̂
̂F = r̃

˜F if F̂ = F̃ ∈ F̃D
a ,(7.5b)

r̂
̂F = 0 if F̂ = S(F̃ ), F̃ ∈ F̃ int

a ,(7.5c)

where, in the last line, more precisely, F̃ ∈ F̃
˜K , F̂ ∈ F̂

̂K , K̂ = S(K̃), F̂ =

S(F̃ ). Remark that, crucially, r̂
̂F | ̂F∩∂ω̂a

= 0 on all interior faces F̂ ∈ F̂ int
a and∑

̂F∈ ̂Fe
ι

̂F,ê r̂ ̂F |ê = 0 on all interior edges ê ∈ Êa. Indeed, the former property

follows by (2.15a), whereas the latter property is trivial for edges only present in

the extension by S (not lying in the patch T̃a, to the left of the plane P in the right
panel of Figure 3) and follows from (2.15b) together with our definition in (7.5) for

edges already present in T̃a. Thus, by the results of Sections 5.1 and 5.2 for interior
patches, there exist unique minimizers of the problems

(7.6) v̂∗p := arg min
v̂p∈̂Vp(̂Ta)

‖∇
̂T v̂p‖ω̂a

, v̂∗ := arg min
v̂∈̂V (̂Ta)

‖∇
̂T v̂‖ω̂a

,

where

V̂p(T̂a) :=
{
v̂p ∈ Pp(T̂a); v̂p| ̂F = 0 ∀F̂ ∈ F̂ext

a , �v̂p� ̂F = r̂
̂F ∀F̂ ∈ F̂ int

a

}
,(7.7a)

V̂ (T̂a) :=
{
v̂ ∈ H1(T̂a); v̂|

̂F = 0 ∀F̂ ∈ F̂ext
a , �v̂�

̂F = r̂
̂F ∀F̂ ∈ F̂ int

a

}
.(7.7b)
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Moreover, as proved in Section 5.3, the claim (2.8) of Theorem 2.2 holds true, i.e.,

(7.8) ‖∇
̂T v̂

∗
p‖ω̂a

� ‖∇
̂T v̂

∗‖ω̂a
.

We now show that there exist unique minimizers in problems (7.4) and, a fortiori,
in problems (7.2). Consider v̂∗p given by (7.6) and define on ω̃a

(7.9) ṽp := v̂∗p |ω̃a
− v̂∗p|ω̂a\ω̃a

◦ S.

Immediately, ṽp ∈ Pp(T̃a); moreover, it is easy to verify that actually ṽp ∈ Ṽp(T̃a).
Thus, the minimization sets in (7.4) are nonempty, and uniqueness of the minimizers
follows as in Section 5.2. From (7.4) and the definition (7.9) of ṽp, we immediately
conclude that

(7.10) ‖∇
˜T ṽ

∗
p‖ω̃a

≤ ‖∇
˜T ṽp‖ω̃a

≤
√
2‖∇

̂T v̂
∗
p‖ω̂a

.

Finally, let us extend the continuous minimizer ṽ∗ from (7.4) from ω̃a to ω̂a by

zero, which we denote by E(ṽ∗). Immediately, we have E(ṽ∗) ∈ V̂ (T̂a), so that

(7.11) ‖∇
̂T v̂

∗‖ω̂a
≤ ‖∇

̂T E(ṽ∗)‖ω̂a
= ‖∇

˜T ṽ
∗‖ω̃a

.

Combining (7.10), (7.8), and (7.11) gives ‖∇
˜T ṽ

∗
p‖ω̃a

� ‖∇
˜T ṽ

∗‖ω̃a
, and (7.3) yields

the desired stability property (7.2).

•

e1

e2

e3

e4

a

T a

FD
a

FD
a

P

S

•

e1

e2

e3

e4

a

FD
a

FD
a

Fext
a

Ta

Figure 4. Left: boundary patch Ta with FN
a = ∅, the two faces

in Fext
a not having a vertex lying inside ∂ωext

a , and four edges ei,
1 ≤ i ≤ 4 having a as the vertex and lying in ∂ωD

a . Right: extended
patch T a.

At most two elements in the patch Ta. Let there be a face in Fext
a not having a

vertex lying on ∂ωext
a but let |Ta| ≤ 2, as in the left panel of Figure 4. We now

show that (7.2) also holds true in this case. If |Ta| = 1, i.e., the patch consists of
a single tetrahedron, then (7.2) holds true by virtue of Lemma A.1. If |Ta| = 2,
then there exists an edge e between the vertex a and one of the vertices in Fext

a not
lying inside ∂ωext

a such that all the faces F ∈ FD
a that share e either lie in a plane

P , or the patch Ta is such that there exists a collection of bijective affine maps TK

(denoted simply T ) as in the first step above, such that all the faces F ∈ FD
a lie in

a plane P after the mapping of Ta by T . This condition is satisfied in the situation
illustrated in the left panel of Figure 4 for the faces e1 and e4 but not for e2 and e3.
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For simplicity, we keep the notation Ta for the patch even after a possible mapping
by T , since an equivalent of (7.3) holds here as well.

Let us now map Ta by a collection of bijective affine maps S in a symmetry over
the plane P into the other half-space of R3, as in the second step above; see the
right panel of Figure 4 for an illustration. Note that again, the shape-regularity
parameter of T a is equivalent to that of Ta up to a constant that only depends on
γTa

. The new patch T a is not an interior patch, since otherwise, the condition on
the edge e would be violated. An illustration is given in the right panel of Figure 4.

Extend now the polynomial data rF “by zero” from Ta to T a. More precisely,
for each face F ∈ Fa, consider a polynomial rF ∈ Pp(F ) such that

rF = rF if F = F ∈ F int
a ,(7.12a)

rF = rF if F = F ∈ FD
a ,(7.12b)

rF = 0 if F ∈ (F int

a ∪ FD

a ) \ (F int
a ∪ FD

a ).(7.12c)

Here Fa = F int

a ∪ Fext

a ∪ FD

a with our usual notation; in particular all faces lying

in ∂ωa and sharing the vertex a are gathered in the Dirichlet set FD

a . Again,

rF |F∩∂ωa
= 0 on all interior and Dirichlet faces F ∈ F int

a ∪FD

a and
∑

F∈Fe
ιF,e rF |e

= 0 on all edges e ∈ Ea, so that we can apply the result for the case where all the

faces in Fext

a have at least one vertex lying in the interior of ∂ωext
a . We then conclude

using restriction from T a to Ta by symmetry over P and prolongation from Ta to
T a by zero.

7.1.2. Case 2: Pure Neumann conditions. We now treat the case where FD
a = ∅,

i.e., FN
a collects all the faces lying on the boundary of the patch ωa and having a

as vertex. Let

Vp(Ta) :=
{
vp ∈ Pp(Ta); vp|F = 0 ∀F ∈ Fext

a , �vp�F = rF ∀F ∈ F int
a

}
,(7.13a)

V (Ta) :=
{
v ∈ H1(Ta); v|F = 0 ∀F ∈ Fext

a , �v�F = rF ∀F ∈ F int
a

}
.(7.13b)

Recall from Figure 3 the flattened patch T̃a and the symmetrized patch T̂a. For

each interior face F̂ ∈ F̂ int
a , we now consider a polynomial r̂

̂F ∈ Pp(F̂ ) such that

r̂
̂F = r̃

˜F if F̂ = F̃ ∈ F̃ int
a ,(7.14a)

r̂
̂F = 0 if F̂ = F̃ ∈ F̃N

a ,(7.14b)

r̂
̂F = r̃

˜F ◦ S−1 if F̂ = S(F̃ ), F̃ ∈ F̃ int
a ,(7.14c)

where, in the last line, more precisely, F̃ ∈ F̃
˜K , F̂ ∈ F̂

̂K , K̂ = S(K̃), F̂ = S(F̃ ).

Recall that, crucially, we have r̂
̂F | ̂F∩∂ω̂a

= 0 on all interior faces F̂ ∈ F̂ int
a and∑

̂F∈ ̂Fe
ι

̂F,ê r̂ ̂F |ê = 0 on all interior edges ê ∈ Êa. Indeed, as in Section 7.1.1, the

former property follows from (2.15a), whereas the latter property is here a conse-
quence of the conditions imposed in (7.14) together with the choice of the orienta-

tion of the normals n
̂F of the faces F̂ not present in T̃a. If the sum

∑
̂F∈ ̂Fe

ι
̂F,ê r̂ ̂F |ê

only contains faces either from T̃a or from T̂a \ T̃a, then it is equal to zero be-

cause of (2.15b), whereas if it also contains faces from both T̃a and T̂a \ T̃a, then
the summands from T̃a and T̂a \ T̃a cancel out owing to the symmetry of T̃a with

T̂a \ T̃a.
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Then the result of Sections 5.1 and 5.2 can again be used here, so there exist in
particular unique minimizers to the problems (7.6), and Theorem 2.2 implies (7.8).
Consider v̂∗p given by (7.6) and define

(7.15) ṽp := v̂∗p |ω̃a

(compare with (7.9) in the case of Dirichlet conditions). Recall that V̂p(T̂a) is

defined by the mapping S from (7.13) and that Ṽp(T̃a) is the equivalent of Vp(Ta)
on T̃a. Then ṽp ∈ Ṽp(T̃a); in particular, no condition needs to be satisfied on the

Neumann faces F̃N
a . From (7.4) and the definition (7.15) of ṽp, we immediately

conclude that

(7.16) ‖∇
˜T ṽ

∗
p‖ω̃a

≤ ‖∇
˜T ṽp‖ω̃a

≤ ‖∇
̂T v̂

∗
p‖ω̂a

.

Extending the continuous minimizer ṽ∗ from (7.4) from ω̃a to ω̂a by symmetry as

E(ṽ∗)|ω̂a\ω̃a
:= ṽ∗|ω̃a

◦ S−1, we see that E(ṽ∗) ∈ V̂ (T̂a), so that

(7.17) ‖∇
̂T v̂

∗‖ω̂a
≤ ‖∇

̂T E(ṽ∗)‖ω̂a
≤

√
2‖∇

˜T ṽ
∗‖ω̃a

.

Combining (7.16), (7.8), and (7.17) gives ‖∇
˜T ṽ

∗
p‖ω̃a

� ‖∇
˜T ṽ

∗‖ω̃a
and (7.3) yields

the desired stability property (7.2).

At most two elements in the patch Ta. If there exists a face in Fext
a without a vertex

lying inside ∂ωext
a but |Ta| ≤ 2, as in the right panel of Figure 2, the face jumps rF

have to be set to zero on the original Neumann faces and extended by symmetry
over P otherwise. We map from T a to Ta by simple restriction and from Ta to T a

by symmetry, cf. Figure 4.

7.2. H(div) setting. We sketch here the proof of Theorem 2.5. As in the H1

setting, we present the case where all the faces in Fext
a have at least one vertex

lying in the interior of ∂ωext
a , see the left panel of Figure 2 for an example; the case

|Ta| ≤ 2, see the right panel of Figure 2, can be treated as in Section 7.1. Contrary
to the H1 setting, we do not make here any assumption on the subsets FD

a and FN
a ;

for the sake of clarity of exposition, we still distinguish the case with pure Neumann
conditions, that with pure Dirichlet conditions, and finally we treat the general case

of mixed Neumann–Dirichlet conditions. We again rely on the flattened patch T̃a
and the symmetrized patch T̂a; see Figure 3.

7.2.1. Case 1: Pure Neumann conditions. Let us first assume that FD
a = ∅. Denote

Vp(Ta) := {vp ∈ RTNp(Ta); vp·nF = rF ∀F ∈ Fext
a , vp·nF = rF ∀F ∈ FN

a ,

�vp�·nF = rF ∀F ∈ F int
a , ∇T ·vp|K = rK ∀K ∈ Ta},(7.18a)

V (Ta) := {v ∈ H(div, Ta); v·nF = rF ∀F ∈ Fext
a , v·nF = rF ∀F ∈ FN

a ,

�v�·nF = rF ∀F ∈ F int
a , ∇T ·v|K = rK ∀K ∈ Ta}.(7.18b)

Then the stability bound (2.18) becomes

(7.19) min
vp∈Vp(Ta)

‖vp‖ωa
≤ Cst min

v∈V (Ta)
‖v‖ωa

.
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The data rK and rF are here extended “by zero” from the flattened patch T̃a to

the symmetrized patch T̂a:
r̂

̂F = r̃
˜F if F̂ = F̃ ∈ F̃ int

a ∪ F̃ext
a ,(7.20a)

r̂
̂K = r̃

˜K if K̂ = K̃ ∈ T̃a,(7.20b)

r̂
̂F = r̃

˜F if F̂ = F̃ ∈ F̃N
a ,(7.20c)

r̂
̂F = 0 if F̂ = S(F̃ ), F̃ ∈ F̃ int

a ∪ F̃ext
a ,(7.20d)

r̂
̂K = 0 if K̂ = S(K̃), K̃ ∈ T̃a,(7.20e)

V̂p(T̂a) := {v̂p ∈ RTNp(T̂a); v̂p·n ̂F = r̂
̂F ∀F̂ ∈ F̂ext

a ,

�v̂p�·n ̂F = r̂
̂F ∀F̂ ∈ F̂ int

a , ∇T ·v̂p| ̂K = r̂
̂K ∀K̂ ∈ T̂a},(7.21a)

V̂ (T̂a) := {v ∈ H(div, T̂a); v·n
̂F = r̂

̂F ∀F̂ ∈ F̂ext
a ,

�v�·n
̂F = r̂

̂F ∀F̂ ∈ F̂ int
a , ∇T ·v| ̂K = r̂

̂K ∀K̂ ∈ T̂a},(7.21b)

and the stability property in T̂a becomes

(7.22) min
v̂p∈ ̂Vp(̂Ta)

‖v̂p‖ω̂a
≤ Cst min

v̂∈ ̂V (̂Ta)
‖v̂‖ω̂a

.

Owing to (2.17) and (7.20), we find that the compatibility condition (2.10) in T̂a,
i.e.,

(7.23)
∑
̂K∈̂Ta

(r̂
̂K , 1)

̂K −
∑

̂F∈ ̂Fa

(r̂
̂F , 1) ̂F = 0

holds true. The last two ingredients of the proof are the restriction of the discrete

minimizer v̂∗
p of (7.22), left, from T̂a to T̃a given by

(7.24) ṽp := v̂∗
p |ω̃a

−ψ(v̂∗
p|ω̂a\ω̃a

),

where the contravariant Piola transformation ψ is built using the geometric map-

ping S, and the extension of the continuous minimizer ṽ∗ on T̃a from T̃a to T̂a by
zero.

7.2.2. Case 2: Pure Dirichlet conditions. The case FN
a = ∅ can be treated as

above. After moving from Ta to T̃a in the first step, the data are extended “by

symmetry” from T̃a to T̂a, similarly to (7.14). This ensures the compatibility

condition (2.10) on the “extended interior” patch T̂a, even though there has been
no such condition on the original patch Ta. The restriction of the discrete minimizer

v̂∗
p of (7.22), left, from T̂a to T̃a is given by ṽp := v̂∗

p |ω̃a
, whereas the extension

of the continuous minimizer ṽ∗ on T̃a from T̃a to T̂a is obtained by symmetry as
E(ṽ∗)|ω̂a\ω̃a

:= ψ−1(ṽ∗|ω̃a
).

7.2.3. Case 3: Mixed Neumann–Dirichlet conditions. The proof proceeds again as

above. The main change is that in (7.20), we also need to impose r̂
̂F for all F̂ =

F̃ ∈ F̃D
a : we can choose arbitrary values for all Dirichlet faces except for one, where

r̂
̂F is chosen such that (7.23) holds true. As in Section 7.2.1, the restriction of the

discrete minimizer v̂∗
p is given by (7.24); note that all the Neumann conditions

prescribed on the faces from F̃N
a (or FN

a ) are satisfied, whereas no conditions need
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to be satisfied on the faces from F̃D
a (or FD

a ). Finally, the continuous minimizer ṽ∗

on T̃a is extended from T̃a to T̂a by zero.

Appendix A. Stable polynomial extensions on a tetrahedron

In this section, we reformulate and extend some recent results by Demkowicz,
Gopalakrishnan, and Schöberl [11, 13] and by Costabel and McIntosh [10] on sta-
ble polynomial extensions on a single tetrahedron. We first consider H1-stable
extensions in the polynomial space Pp(K).

Lemma A.1 (H1-stable polynomial extension on a tetrahedron). Let K be a tetra-
hedron with FD

K ⊂ FK a possibly empty subset of its faces. Let r be a p-degree piece-
wise polynomial on FD

K , p ≥ 1, with restriction to each F ∈ FD
K denoted by rF .

Assume that r is globally continuous over the Dirichlet boundary given by FD
K . Then

there exists a constant C > 0 only depending on the shape-regularity parameter γK
of K such that

(A.1) min
vp∈Pp(K)

vp|F=rF ∀F∈FD
K

‖∇vp‖K ≤ C min
v∈H1(K)

v|F=rF ∀F∈FD
K

‖∇v‖K .

Remark A.2 (Equivalent form). Consider the following problem: find ζK such that

−ΔζK = 0 in K,

ζK |F = rF on all F ∈ FD
K ,

−∇ζK ·nK |F = 0 on all F ∈ FK \ FD
K ,

i.e., in weak form, ζK ∈ H1(K) is such that ζK |F = rF for all F ∈ FD
K and

(∇ζK ,∇v)K = 0 ∀v ∈ H1(K), v|F = 0 ∀F ∈ FD
K .

Similarly, the (spectral) finite element method of order p finds ζp,K ∈ Pp(K) with
ζp,K |F = rF for all F ∈ FD

K such that

(∇ζp,K ,∇vp)K = 0 ∀vp ∈ Pp(K), vp|F = 0 for all F ∈ FD
K .

As ζp,K and ζK are, respectively, the (unique) minimizers from (A.1), Lemma A.1
can be rephrased as a stability result for (spectral) finite elements on a single
tetrahedron, i.e., ‖∇ζK‖K ≤ ‖∇ζp,K‖K ≤ C‖∇ζK‖K .

Proof. The result of Lemma A.1 follows from the results and proofs in [11]. For
completeness, we give a proof using the present notation.

(1) Let us start by noting that in the case FD
K = ∅, both ζp,K and ζK can be

taken as zero. Let us henceforth suppose that FD
K �= ∅.

(2) We first establish (A.1) on the unit tetrahedron, say K̂; to this purpose, we
proceed in three substeps.

(2.a) CaseK = K̂ and FD
K = FK , i.e., the Dirichlet condition is prescribed on the

whole boundary ∂K. Then [11, Theorem 6.1] shows that there exists a polynomial
ζp(r) ∈ Pp(K) such that ζp(r)|∂K = r and ‖ζp(r)‖H1(K) ≤ CDGS‖r‖

H
1
2 (∂K)

, where

‖r‖
H

1
2 (∂K)

is defined using the Sobolev–Slobodeckij norm as follows:

‖r‖2
H

1
2 (∂K)

= ‖r‖2L2(∂K) +

∫
∂K

∫
∂K

|r(x)− r(y)|2
‖x− y‖d�2

dxdy,
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recalling that d = 3. Since there exist constants C
H

1
2
and C

H
1
2
of order unity so

that

(A.2) C
H

1
2

min
v∈H1(K)
v|∂K=r

‖v‖H1(K) ≤ ‖r‖
H

1
2 (∂K)

≤ C
H

1
2

min
v∈H1(K)
v|∂K=r

‖v‖H1(K),

and since ‖ζp(r)‖H1(K) ≥ min‖vp‖H1(K) over all vp ∈ Pp(K) such that vp|∂K = r,
we infer that

(A.3) min
vp∈Pp(K)

vp|F=rF ∀F∈FD
K

‖vp‖H1(K) ≤ Ĉ min
v∈H1(K)

v|F=rF ∀F∈FD
K

‖v‖H1(K)

with Ĉ = CDGSC
H

1
2
and ‖v‖2H1(K) = ‖v‖2K + ‖∇v‖2K . Note that we are using the

H1-norm in (A.3), and not the H1-seminorm as in (A.1).

(2.b) Case K = K̂ and FD
K �= FK . Let us prove again (A.3). Let us set

(A.4) ζ̃K := argmin
v∈H1(K)

v|F=rF ∀F∈FD
K

‖v‖H1(K).

Note that ζ̃K solves in strong form −Δζ̃K+ζ̃K = 0 inK, ζ̃K |F = r|F for all F ∈ FD
K ,

and −∇ζ̃K ·nK |F = 0 for all F ∈ FK \ FD
K ; note also that ζ̃K is well defined since

FD
K is assumed to be nonempty. Define a new function r̃ ∈ H

1
2 (∂K) as the trace of

ζ̃K on ∂K; this extends the boundary data r originally defined only on the faces in
FD

K to the whole ∂K, not necessarily by polynomials on the faces in FK \FD
K . The

definition (A.4) of ζ̃K combined with (A.2) yields ‖r̃‖
H

1
2 (∂K)

≤ C
H

1
2
‖ζ̃K‖H1(K).

Let us now order the faces of K with the faces in FD
K first and consider only the

summands corresponding to the faces in FD
K instead of the full extension operator

of [11, equation (6.1)], applied to the function r̃. Following [11, Theorem 6.1], we
obtain a polynomial ζp(r̃) ∈ Pp(K) such that ζp(r̃)|F = rF for all F ∈ FD

K and
‖ζp(r̃)‖H1(K) ≤ CDGS‖r̃‖

H
1
2 (∂K)

. Combining with the above bound on ‖r̃‖
H

1
2 (∂K)

and since ‖ζp(r̃)‖H1(K) ≥ min‖vp‖H1(K) over all vp ∈ Pp(K) such that vp|F = rF

on all F ∈ FD
K , we infer that (A.3) also holds true if FD

K �= FK with Ĉ = CDGSC
H

1
2
.

This completes the proof of (A.3).

(2.c) Let us prove that (A.1) holds true when K = K̂. Let c ∈ R be arbitrary
and let us set r′ := r + c; note that r′ is also a p-degree piecewise polynomial
on FD

K that is globally continuous over FD
K . Since K is the unit tetrahedron and

applying (A.3) with the datum r′, we infer that

min
vp∈Pp(K)

vp|F=rF ∀F∈FD
K

‖∇vp‖K ≤ min
vp∈Pp(K)

vp|F=rF ∀F∈FD
K

‖vp + c‖H1(K) = min
vp∈Pp(K)

vp|F=r′F ∀F∈FD
K

‖vp‖H1(K)

≤ C min
v∈H1(K)

v|F=r′F ∀F∈FD
K

‖v‖H1(K) = C min
v∈H1(K)

v|F=rF ∀F∈FD
K

‖v + c‖H1(K),

where the first bound follows by dropping the L2-norm of vp+c. Taking the infimum
over c ∈ R on the right-hand side and using the Poincaré inequality infc∈R ‖v +
c‖K ≤ 1

πhK‖∇v‖K ≤ c‖∇v‖K with a constant c of order unity, we infer that (A.1)

holds true when K = K̂.
(3) Finally, we use a scaling argument to prove (A.1) in any tetrahedron K. Let

ζp,K and ζK be the two minimizers in (A.1) (see Remark A.2). Let T be the affine
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geometric map from the unit tetrahedron K̂ to K. Then the pullback by T defined

as ψ(v) = v ◦ T is an isomorphism from H1(K) to H1(K̂) and also from Pp(K)

to Pp(K̂). Moreover, we have ‖∇(ψ(v))‖
̂K ≤ Cψ‖∇v‖K and ‖∇(ψ−1(v̂))‖K ≤

Cψ−1‖∇v̂‖
̂K with constants such that CψCψ−1 is uniformly bounded by the shape-

regularity parameter of K. Let now FD
̂K

:= {F̂ ∈ F
̂K ; T (F̂ ) ∈ FD

K} and let us

introduce the piecewise polynomial r̂ such that r̂
̂F = r ◦ (T |

̂F ) for all F̂ ∈ FD
̂K
.

Applying the result of Step (2.c) to K̂ with the polynomial data r̂ and the subset

FD
̂K
, and introducing the two corresponding minimizers, ζ̂p, ̂K and ζ̂

̂K , we infer that

‖∇ζ̂p, ̂K‖
̂K ≤ Ĉ‖∇ζ̂

̂K‖
̂K with Ĉ of order unity. Finally, we have

‖∇ζp,K‖K ≤ ‖∇(ψ−1(ζ̂p, ̂K))‖K ≤ Cψ−1‖∇ζ̂p, ̂K‖
̂K ≤ Cψ−1Ĉ‖∇ζ̂

̂K‖
̂K

≤ Cψ−1Ĉ‖∇ψ(ζK)‖
̂K ≤ CψCψ−1Ĉ‖∇ζK‖K ,

since ψ−1(ζ̂p, ̂K) is in the minimization set defining ζp,K and ψ(ζK) is in that defining

ζ̂
̂K . �

Let us now consider H(div)-stable extensions in the polynomial space
RTNp(K). The following lemma rephrases the first two steps of the proof of [1,
Theorem 7], while merging them together and extending them to three space dimen-
sions. Recall that the normal trace of a field in H(div,K) is prescribed according
to (2.6).

Lemma A.3 (H(div)-stable polynomial extension on a tetrahedron). Let K be
a tetrahedron with unit outward normal nK . Let FN

K ⊂ FK be a possibly empty
subset of its faces. Let r be a p-degree piecewise polynomial on FN

K , p ≥ 0, with
restriction to each F ∈ FN

K denoted by rF . Let rK be a p-degree polynomial in K. If
FN

K = FK , assume that
∑

F∈FK
(rF , 1)F = (rK , 1)K . Then there exists a constant

C > 0 only depending on the shape-regularity parameter γK such that

(A.5) min
vp∈RTNp(K)

vp·nK |F=rF ∀F∈FN
K

∇·vp=rK

‖vp‖K ≤ C min
v∈H(div,K)

v·nK |F=rF ∀F∈FN
K

∇·v=rK

‖v‖K .

Remark A.4 (Equivalent form). Consider the following problem: find ζK such that

−ΔζK = rK in K,(A.6a)

ζK |F = 0 on all F ∈ FK \ FN
K ,(A.6b)

−∇ζK ·nK |F = rF on all F ∈ FN
K ,(A.6c)

i.e., in weak form, ζK ∈ H1(K) is such that ζK |F = 0 on all F ∈ FK \ FN
K ,

(ζK , 1)K = 0 if FN
K = FK , and

(A.7)

(∇ζK ,∇φ)K=(rK , φ)K−
∑

F∈FN
K

(rF , φ)F ∀φ∈H1(K) with φ|F =0 ∀F ∈FK\FN
K .

The dual weak formulation looks for ξK ∈ H(div,K) with ∇·ξK = rK and
ξK ·nK |F = rF on all F ∈ FN

K such that

(ξK ,v)K = 0 ∀v ∈ H(div,K) with ∇·v = 0 and v·nK |F = 0 ∀F ∈ FN
K ,
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and it is well known that

(A.8) ξK = argmin
v∈H(div,K)

v·nK |F=rF ∀F∈FN
K

∇·v=rK

‖v‖K = −∇ζK .

Similarly, the dual (or, equivalently, (dual) mixed) finite element method (here, a
dual spectral method) finds ξp,K ∈ RTNp(K) with ∇·ξp,K = rK and ξp,K ·nK |F =
rF on all F ∈ FN

K such that

(ξp,K ,vp)K = 0 ∀vp ∈ RTNp(K) with ∇·vp = 0 and vp·nK |F = 0 ∀F ∈ FN
K .

As ξp,K and ξK are, respectively, the unique minimizers from (A.5), Lemma A.3 can
be rephrased as a stability result for mixed finite elements on a single tetrahedron,
i.e., ‖ξK‖K ≤ ‖ξp,K‖K ≤ C‖ξK‖K .

Proof. We first establish (A.5) on the unit tetrahedron, say K̂; to this purpose, we
proceed in three steps. Then, we establish (A.5) on any tetrahedron by using the
contravariant Piola transformation.

(1) Case K = K̂ and FN
K = ∅. We infer from [10, Corollary 3.4] that there is

ξp(rK) ∈ RTNp(K) such that ∇·ξp(rK) = rK and ‖ξp(rK)‖K ≤ CCM‖rK‖H−1(K)

where ‖rK‖H−1(K) := max(rK , φ)K over all φ ∈ H1
0 (K) such that ‖∇φ‖K = 1.

Furthermore, since a Dirichlet boundary condition is prescribed over the whole
boundary of K in (A.6) when FN

K = ∅, we infer that ζK ∈ H1
0 (K) is such that

(∇ζK ,∇φ)K = (rK , φ)K for all φ ∈ H1
0 (K). Then, we have by (A.8),

min
v∈H(div,K)

∇·v=rK

‖v‖K = ‖ξK‖K = ‖∇ζK‖K = max
φ∈H1

0 (K)
‖∇φ‖K=1

(rK , φ)K = ‖rK‖H−1(K).

Altogether,

min
vp∈RTNp(K)

∇·vp=rK

‖vp‖K ≤ ‖ξp(rK)‖K ≤ CCM‖rK‖H−1(K) = CCM min
v∈H(div,K)

∇·v=rK

‖v‖K .

(2) Case K = K̂, FN
K �= ∅, and rK = 0. We further distinguish two cases.

(2.a) Assume first that FN
K = FK . Since a Neumann boundary condition is

prescribed over the whole boundary of K in (A.6), ζK ∈ H1(K) is such that
(ζK , 1)K = 0 and (∇ζK ,∇φ)K = (r, φ)∂K for all φ ∈ H1(K). Since (r, 1)∂K = 0
by assumption, [13, Theorem 7.1] shows that there is ξp(r) ∈ RTNp(K) (actu-
ally, in [Pp(K)]3) such that ∇·ξp(r) = 0, ξp(r)·nK |F = rF for all F ∈ FK , and

‖ξp(r)‖H(div,K) = ‖ξp(r)‖K ≤ CDGS‖r‖
H− 1

2 (∂K)
. Here, H− 1

2 (∂K) is the dual

space of H
1
2 (∂K) equipped with the norm ‖r‖

H− 1
2 (∂K)

:= max(r, φ)∂K over all φ ∈
H

1
2 (∂K) such that ‖φ‖

H
1
2 (∂K)

= 1. On the unit tetrahedron, we can use the lower

bound in (A.2) and the Poincaré inequality in the space {φ ∈ H1(K); (φ, 1)K = 0}
to infer that there is a constant C

H− 1
2
of order unity so that

‖r‖
H− 1

2 (∂K)
≤ C

H− 1
2

sup
φ∈H1(K)
(φ,1)K=0

(r, φ)∂K
‖∇φ‖K

.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

STABLE BROKEN H1 AND H(div) POLYNOMIAL EXTENSIONS 587

Owing to (A.8), we infer that

‖r‖
H− 1

2 (∂K)
≤ C

H− 1
2
‖∇ζK‖K = C

H− 1
2

min
v∈H(div,K)

v·nK |F=rF ∀F∈FK

∇·v=0

‖v‖K .

Altogether,

min
vp∈RTNp(K)

vp·nK |F=rF ∀F∈FK

∇·vp=0

‖vp‖K ≤ ‖ξp(r)‖K ≤ CDGS‖r‖
H− 1

2 (∂K)

≤ CDGSC
H− 1

2
min

v∈H(div,K)
v·nK |F=rF ∀F∈FK

∇·v=0

‖v‖K .

(2.b) Assume now that ∅ �= FN
K � FK . Let us set

ζ̃K := argmin
v∈H1(K)

v|F=0 ∀F∈FK\FN
K

{
1

2
‖∇v‖2K+

∑
F∈FN

K

(rF , v)F

}

i.e., in weak form (∇ζ̃K ,∇φ)K = −
∑

F∈FN
K
(rF , φ)F for all φ ∈ H1(K) such that

φ|F = 0 for all F ∈ FK \ FN
K . Since K is a convex polyhedron, elliptic regularity

implies that ζ̃K ∈ H2(K), so that the normal derivative −∇ζ̃K ·nK can be given
a pointwise meaning on ∂K. Let us call r̃ this normal derivative (we could have

also considered ζ̃K ·nK , where ζ̃K is the arg min of ‖v‖K over all v ∈ H(div,K)
such that v·nK |F = rF for all F ∈ FN

K and such that ∇·v = 0). We infer that

‖r̃‖
H− 1

2 (∂K)
≤ C‖∇ζ̃K‖K . Let us now order the faces in FN

K first and consider only

the summands corresponding to the faces from FN
K instead of the full extension

operator of [13, equation (7.1)], applied to the function r̃. Following [13, Theo-
rem 7.1], we obtain a polynomial ζp(r̃) ∈ [Pp(K)]3 such that ζp(r̃)·nK |F = rF for
all F ∈ FN

K and ‖ζp(r̃)‖K ≤ CDGS‖r̃‖
H− 1

2 (∂K)
. Combining the above bounds and

reasoning as above, we infer that (A.5) holds true in case (2) altogether.

(3) Proof of (A.5) when K = K̂. Since K is the unit tetrahedron, we can use
the bounds established in steps (1) and (2). Let ξ′p,K ∈ RTNp(K) be the discrete
argmin with only divergence prescribed by rK but no boundary flux prescribed.
Using the result of step (1), we infer that

‖ξ′p,K‖K = min
vp∈RTNp(K)

∇·vp=rK

‖vp‖K ≤ C min
v∈H(div,K)

∇·v=rK

‖v‖K

≤ C min
v∈H(div,K)

v·nK |F=rF ∀F∈FN
K

∇·v=rK

‖v‖K = C‖ξK‖K ,

where the last inequality follows by restricting the minimization set and introducing
the unique minimizer ξK defined in Remark A.4. Let now ξ′′p,K ∈ RTNp(K) be the
discrete argmin with divergence prescribed to zero and boundary flux prescribed
to rF − ξ′p,K ·nK |F for all F ∈ FN

K . In the case where FN
K = FK , the compatibility
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condition on the prescribed fluxes holds true since∑
F∈FN

K

(rF − ξ′p,K ·nK |F , 1)F =
∑

F∈FN
K

(rF , 1)F − (∇·ξ′p,K , 1)K

=
∑

F∈FN
K

(rF , 1)F − (rK , 1)K = 0

by assumption. Step (2) implies that

‖ξ′′p,K‖K = min
vp∈RTNp(K)

vp·nK |F=rF−ξ′
p,K ·nK |F ∀F∈FN

K

∇·vp=0

‖vp‖K

≤ C min
v∈H(div,K)

v·nK |F=rF−ξ′
p,K ·nK |F ∀F∈FN

K

∇·v=0

‖v‖K .

Furthermore, a shift by ξ′p,K allows us to rewrite equivalently, and then bound by
the triangle inequality, the last minimum above as follows:

min
v∈H(div,K)

v·nK |F=rF ∀F∈FN
K

∇·v=rK

‖v − ξ′p,K‖K ≤ min
v∈H(div,K)

v·nK |F=rF ∀F∈FN
K

∇·v=rK

‖v‖K + ‖ξ′p,K‖K

= ‖ξK‖K + ‖ξ′p,K‖K ,

so that ‖ξ′′p,K‖K ≤ C(‖ξK‖K + ‖ξ′p,K‖K). Now ξ′p,K + ξ′′p,K belongs to the dis-

crete minimization set in (A.5) and ‖ξ′p,K + ξ′′p,K‖K is bounded by ‖ξK‖K . This

proves (A.5) on the unit tetrahedron.
(4) Proof of (A.5) on a general tetrahedron K. We are given a subset FN

K of the
faces of K, a p-degree piecewise polynomial r on FN

K , and a p-degree polynomial
rK in K such that, if FN

K = FK ,
∑

F∈FK
(rF , 1)F = (rK , 1)K . We are going to

prove (A.5) on K by mapping the minimization problems to the unit tetrahedron

K̂. Consider an affine bijective map T : K̂ → K with Jacobian matrix J . Note

that J is a constant (and invertible) matrix in K̂ since T is an affine (bijective)

map. Let FN
̂K
collect the faces of K̂ that are images by T−1 of the faces of K in

FN
K . Let us set

r̂
̂F := det(J)‖J−Tn

̂F ‖�2(rF ◦ T |
̂F ) ∀F̂ ∈ FN

̂K
, r̂

̂K := det(J)(rK ◦ T ),

where n
̂F is the unit outward normal to K̂ on the face F̂ . Then, r̂ defined by its

restrictions to the faces F̂ ∈ FN
̂K
is a p-degree piecewise polynomial on FN

̂K
, and r̂

̂K

is a p-degree polynomial on K̂, and in the case where FN
̂K
= F

̂K , we additionally

have∑
̂F∈F

̂K

(r̂
̂F , 1) ̂F =

∑
̂F∈F

̂K

(rF ◦ T |
̂F , det(J)‖J

−Tn
̂F ‖�2) ̂F

=
∑

F∈FK

εJ (rF , 1)F = εJ (rK , 1)K = (rK ◦ T , det(J))
̂K = (r̂

̂K , 1)
̂K
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with εJ = det(J)
| det(J)| = ±1. Here, we used the following classical formulas to change

the surface measure and the volume measure: ds = | det(J)|‖J−Tn
̂F ‖�2dŝ and

dx = | det(J)|dx̂. Let us now consider the contravariant Piola transformation such
that ψ(v) = A(v ◦ T ) with A = det(J)J−1. Then ψ is an isomorphism from

H(div,K) to H(div, K̂), and also from RTNp(K) to RTNp(K̂). Moreover, we
have the following key properties:

∇·v = rK in K ⇐⇒ ∇·(ψ(v)) = r̂
̂K in K̂,(A.9a)

v·nK |F = rF on all F ∈ FN
K ⇐⇒ ψ(v)·n

̂F = r̂
̂F on all F̂ ∈ FN

̂K
(A.9b)

with K = T (K̂) and F = T (F̂ ). The first equivalence results from ∇·(ψ(v)) =
det(J)(∇·v) ◦ T and the definition of r̂

̂K . To prove the second equivalence, recall-
ing (2.6), the left-hand side means that

(v,∇φ)K + (∇·v, φ)K =
∑

F∈FN
K

(rF , φ)F

for all φ ∈ H1(K) such that φ|F = 0 for all F ∈ FK \ FN
K . Changing variables in

the volume and surface integrals, the above identity amounts to

(ψ(v),∇φ̂)
̂K + (∇·(ψ(v)), φ̂)

̂K =
∑

̂F∈FN
̂K

(r̂
̂F , φ̂) ̂F ,

where φ̂ = φ◦T . Since the pullback by the geometric map T is an isomorphism from

{φ ∈ H1(K); φ|F = 0 ∀F ∈ FK \ FN
K} to {φ̂ ∈ H1(K̂); φ̂|

̂F = 0 ∀F̂ ∈ F
̂K \ FN

̂K
},

the above identity means that ψ(v)·n
̂F = r̂

̂F on all F̂ ∈ FN
̂K
.

Let now ξp,K and ξK be the unique minimizers in (A.5) using the polynomial data

r and rK ; similarly, let ξ̂p, ̂K and ξ̂
̂K be the unique minimizers for the minimization

problems posed on K̂ using the polynomial data r̂ and r̂
̂K . We infer from step (3)

that ‖ξ̂p, ̂K‖
̂K ≤ Ĉ‖ξ̂

̂K‖
̂K with constant Ĉ of order unity. Since ψ−1(ξ̂p, ̂K) is in the

minimization set defining ξp,K and since ψ(ξK) is in that of ξ̂
̂K , we have

‖ξp,K‖K ≤ ‖ψ−1(ξ̂p, ̂K)‖K ≤ ‖ψ−1‖L(L2,L2)‖ξ̂p, ̂K‖
̂K ≤ ‖ψ−1‖L(L2,L2)Ĉ‖ξ̂

̂K‖
̂K

≤ ‖ψ−1‖L(L2,L2)Ĉ‖ψ(ξK)‖
̂K ≤ ‖ψ‖L(L2,L2)‖ψ−1‖L(L2,L2)Ĉ‖ξK‖K ,

where ‖ψ‖L(L2,L2) and ‖ψ−1‖L(L2,L2) are the operator norms of ψ and ψ−1 as

linear maps between L2(K) and L2(K̂). This completes the proof since the factor
‖ψ‖L(L2,L2)‖ψ−1‖L(L2,L2) is bounded by a constant only depending on the shape-
regularity parameter γK . �

Appendix B. On cell enumeration and vertex coloring in patches

We collect in this section some auxiliary results on cell enumeration and vertex
coloring in simplicial patches, corresponding to the setting of an “interior vertex”
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as described in Section 2.1. For any cell K ∈ Ta, its interior faces are collected in
the set F int

K := FK∩F int
a . Let us first observe that any enumeration of the elements

in the patch Ta in the form K1, . . . ,K|Ta| induces a partition of each of the sets

F int
Ki

, 1 ≤ i ≤ |Ta|, into two disjoint subsets, F int
Ki

= F�
i ∪ F	

i , where F�
i collects all

the interior faces of Ki shared by an already enumerated cell Kj with j < i, i.e.,

F�
i := {F ∈ F int

a , F = ∂Ki∩∂Kj , j < i}, and F	
i collects all the other interior faces

of Ki, i.e., F	
i := {F ∈ F int

a , F = ∂Ki ∩ ∂Kj , j > i}. Note that |F	
i | + |F�

i | = 3.

An immediate consequence of this definition is that F	
1 = F i

K1
and F�

1 = ∅ on the

first element, whereas F	
|Ta| = ∅ and F�

|Ta| = F i
K|Ta|

on the last element.

Lemma B.1 (Patch enumeration). Let Ta be an interior patch of tetrahedra as
specified in Section 2.1. Then there exists an enumeration of the elements in the
patch Ta so that:

(i) For all 1 < i ≤ |Ta|, if there are at least two faces in F�
i , intersecting

in an edge, then all the elements sharing this edge come sooner in the

enumeration, i.e., if |F�
i | ≥ 2 with F 1, F 2 ∈ F�

i , then letting e := F 1 ∩ F 2,
Kj ∈ Te \ {Ki} implies that j < i.

(ii) For all 1 < i < |Ta|, there are one or two neighbors of Ki which have been
already enumerated and correspondingly two or one neighbors of Ki which

have not been enumerated yet, i.e., |F�
i | ∈ {1, 2} (so that |F	

i | = 3− |F�
i | ∈

{1, 2} as well) for all but the first and the last element. In particular, F�
i

contains all the interior faces of Ki (so that F	
i is empty) if and only if

i = |Ta|.

Proof. The key notion to assert the existence of the enumeration with the requested
properties is the shelling of a polytopal complex. Let us first explain the concepts
of polytopal complex and of shelling in the present context; we refer the reader to
[24, Definition 8.1] for a more abstract presentation. The collection of the boundary
faces, edges, and vertices of the patch constitutes a so-called pure, two-dimensional,
polytopal complex, that is, a finite, nonempty collection of simplices (triangles,
segments, and points, all lying on the boundary ∂ωa) that contains all the faces
of its simplices (that is, the lower-dimensional simplices composing the boundary
of each simplex) and such that the intersection of two distinct simplices in the
complex is either empty or an edge or a vertex for each of them. The shellability
of the polytopal complex (composed of the boundary faces, edges, and vertices)
means that there exists an enumeration of the boundary faces (or, equivalently, the
cells composing the patch) so that, for all 1 ≤ i < |Ta|, the boundary of the set
(∪j≤iKj) ∩ ∂ωa is connected and contains only vertices of degree two (i.e., each
vertex is connected by an edge to exactly two other vertices also belonging to this
boundary). The fact that this polytopal complex is shellable results from a theorem
by Bruggesser and Mani [4]; see also [24, Theorem 8.12]. The main idea for the
construction of the shelling is to imagine the complex as a “little” polyhedral planet,
and launch a rocket from the interior of one of its faces; the rocket trajectory is a
line that is supposed to intersect all the planes supporting the faces at one and only
one point. The faces are enumerated by counting the launching face first, followed
by the faces as they become visible from the rocket as it progresses to infinity. Once
the rocket reaches infinity, it starts its travel back from minus infinity towards the
complex; then all the previously hidden faces become visible and are enumerated as
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they disappear from the horizon. When the rocket reaches back to the complex, all
the faces have been enumerated, and the resulting enumeration produces a shelling
with the desirable properties. We refer the reader to [24, pp. 240–243] for details
and illustrations. �

Lemma B.2 (Two-color refinement around edges). Fix a cell K∗ ∈ Ta and an
edge e of K∗ having a as one endpoint. Recall that Te collects all the cells in Ta
having e as an edge. Then there exists a conforming refinement T ′

e of Te composed
of tetrahedra such that

(i) T ′
e contains K∗;

(ii) all the tetrahedra in T ′
e have e as an edge, and their two other vertices lie

on ∂ωa;
(iii) the shape regularity parameter γT ′

e
is at most twice γTe

;
(iv) collecting all the vertices of T ′

e that are not endpoints of e in the set V ′
e, there

is a two-color map col : V ′
e → {1, 2} so that for all κ ∈ T ′

e , the two vertices
of κ that are not endpoints of e, say {an

κ}1≤n≤2, satisfy col(an
κ) = n.

Proof. If |Te| is even, we can just take T ′
e = Te since the vertices of Te that are not

endpoints of e then form a cycle with an even number of vertices that can be colored
using alternating colors. If |Te| is odd, we pick one tetrahedron in Te \ {K∗} and
subdivide it into two sub-tetrahedra by cutting it along the median plane containing
e. By doing so, we obtain a conforming simplicial refinement T ′

e of Te that has all
the desired properties. �

Lemma B.3 (Three-color patch refinement). Fix a cell K∗ ∈ Ta. There exists a
conforming refinement T ′

a of Ta composed of tetrahedra such that

(i) T ′
a contains K∗;

(ii) all the tetrahedra in T ′
a have a as the vertex, and their three other vertices

lie on ∂ωa;
(iii) the shape regularity parameter γT ′

a
is at most a fixed multiple of γTa

;
(iv) collecting all the vertices of T ′

a distinct from a in the set V ′
a, there is a three-

color map col : V ′
a → {1, 2, 3} so that for all κ ∈ T ′

a, the three vertices of
κ distinct from a, say {an

κ}1≤n≤3, satisfy col(an
κ) = n.

Proof. Since all the cells in Ta and in T ′
a have a as the vertex and their three

other vertices lie on ∂ωa, we will reason on the trace of Ta on ∂ωa. Using a
homeomorphism, we can map

⋃
K′∈Ta\{K∗}{K

′∩∂ωa} to an interior triangulation,

say T, of the unit triangle T in R2 with the particularity that the three sides of
T are edges of cells in T (these three triangular cells are the images by the above
homeomorphism of the trace on ∂ωa of the three tetrahedra sharing a face with
K∗); see Figure 5. We now devise a conforming triangular refinement of T that does
not refine the three sides of T and such that all the vertices in this refinement are
connected to an even number of other vertices (the number of connections is called
the degree of the vertex). The existence of a three-coloring map on the vertices of
this refinement will then follow from [22]. To this purpose, we proceed in several
steps. Let us call {z1, z2, z3} the three vertices of T . The three triangles in T

supported on the three edges of T are denoted by {τ1, τ2, τ3} in such a way that τn
does not touch the vertex zn for all n = 1, 2, 3. Let z′

n denote the barycenter of τn.
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Figure 5. Left: original patch Ta ∩ ∂ωa locally around K∗ ∩ ∂ωa

(highlighted in dark grey), the three triangles K ′ ∩ ∂ωa for which
the tetrahedronK ′ shares an interior face withK are highlighted in
light grey, and the triangles K ′∩∂ωa for which the tetrahedron K ′

shares only an interior edge withK are dashed. Right: mapping by
the homeomorphism to a triangulation of the unit triangle T in R2;
the polygon at the heart of T is the image by the homeomorphism
of all the triangles K ′ ∩ ∂ωa where K ′ only shares the vertex a
with K∗.

(1) We subdivide all the triangles in T by barycentric subdivision into six sub-
triangles. By doing so, we create new vertices, namely the barycenter of each
triangle in T (with degree six), and the midpoint of each edge in T (with degree
four). Moreover, all the original vertices of T now have even degree, except for
{z1, z2, z3} which have odd degree. To avoid refining the three edges of T , we
remove for all n ∈ {1, 2, 3} the connection between the barycenter z′

n and the
midpoint of the edge of T supporting the triangle τn. By doing so, the degree
of the three barycenters {z′

1, z
′
2, z

′
3} changes from six to five. At this stage, we

have a conforming, triangular refinement preserving the three sides of T , but which
contains six vertices of odd degree, namely {z1, z2, z3} and {z′

1, z
′
2, z

′
3}.

(2) We subdivide the triangle with vertices {z1, z′
2, z3} into three triangles by

joining its barycenter, say z′′
2 , to the three vertices. The degree of z1, z

′
2, and z3

is now even as desired, but we have created the new vertex z′′
2 with degree three.

This new triangulation is illustrated in the central panel of Figure 6 in a slightly
simplified setting with respect to Figure 5 since we have reduced to one the number
of original dashed triangles at each of the three vertices of T (see the left panel of
Figure 6 for the original triangulation).

(3) We now subdivide all the triangles having z1 as the vertex, except the newly
created one on the boundary of T , into two sub-triangles as depicted in the right
panel of Figure 6. The vertices z′′

2 and z2 now have even degree, and we have
created additional vertices at some edge midpoints that all have degree four while
we have also increased by two the degree of some vertices.

(4) Finally, we use a similar process, as depicted also in the right panel of Fig-
ure 6, so that the vertices z′

1 and z′
3 now have even degree, while we create addi-

tional vertices at some edge midpoints that all have degree four. We now have a
triangulation where all the vertices have even degree. �
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z3
z2

z3

z2

z2

z1

z1

Figure 6. Left: original triangulation in the simple case where
there is only one dashed triangle at each of the three vertices
{z1, z2, z3}. Center: Refined triangulation at the end of step (2)
showing the barycenters {z′

1, z
′
2, z

′
3} and the newly created one z′′

2 .
Right: final refined triangulation where now all the vertices have
even degree.
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[3] S. C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer.
Anal. 41 (2003), no. 1, 306–324, DOI 10.1137/S0036142902401311. MR1974504

[4] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29
(1971), 197–205 (1972), DOI 10.7146/math.scand.a-11045. MR0328944

[5] E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohraĺık, Guaranteed and robust a pos-
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