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HYBRID HIGH-ORDER AND WEAK GALERKIN METHODS FOR
THE BIHARMONIC PROBLEM\ast 

ZHAONAN DONG\dagger AND ALEXANDRE ERN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We devise and analyze two hybrid high-order (HHO) methods for the numerical ap-
proximation of the biharmonic problem. The methods support polyhedral meshes, rely on the primal
formulation of the problem, and deliver O(hk+1) H2-error estimates when using polynomials of order
k \geq 0 to approximate the normal derivative on the mesh (inter)faces. Both HHO methods hinge on a
stabilization in the spirit of Lehrenfeld and Sch\"oberl for second-order PDEs. The cell unknowns are
polynomials of order (k+2) that can be eliminated locally by means of static condensation. The face
unknowns approximating the trace of the solution on the mesh (inter)faces are polynomials of order
(k + 1) in the first HHO method, which is valid in dimension two and uses an original stabilization
involving the canonical hybrid finite element, and they are of order (k + 2) for the second HHO
method, which is valid in arbitrary dimension and uses only L2-orthogonal projections in the stabi-
lization. A comparative discussion with the weak Galerkin methods from the literature is provided,
highlighting the close connections and the improvements proposed herein. Additionally, we show how
the two HHO methods can be combined with a Nitsche-like boundary-penalty technique to weakly
enforce the boundary conditions. An originality in the devised Nitsche's technique is to avoid any
penalty parameter that must be large enough. Finally, numerical results showcase the efficiency of
the proposed methods and indicate that the HHO methods can generally outperform discontinuous
Galerkin methods and even be competitive with C0-interior penalty methods on triangular meshes.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . biharmonic problem, fourth-order PDEs, hybrid high-order method, weak Galerkin
method, stability, error analysis, computational performance

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 65N15, 65N30, 74K20

\bfD \bfO \bfI . 10.1137/21M1408555

1. Introduction. Fourth-order PDEs are encountered in the modeling of various
physical phenomena, such as plate bending, thin-plate elasticity, microelectromechan-
ical systems, and the Cahn--Hilliard phase-field model. In the present work, we are
concerned with the following model problem:

(1.1)

\Delta 2u = f in \Omega ,

u = 0 on \partial \Omega ,

\partial nu = 0 on \partial \Omega ,

where \Omega is an open, bounded, polytopal, Lipschitz set in \BbbR d, d \geq 2, with boundary \partial \Omega ,
the load f is in L2(\Omega ), and \partial n denotes the normal derivative on \partial \Omega . Nonhomogeneous
boundary conditions and a boundary condition on the second-normal derivative can
be readily incorporated. Instead, considering more singular loads is nontrivial for the
present purpose. We also emphasize that the present developments hinge on the weak
formulation of (1.1) involving the Hessian.

The main goal of this work is to devise and analyze a discretization method
for (1.1) offering two main features: (i) it supports polyhedral meshes (the mesh cells
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HHO AND WG METHODS FOR THE BIHARMONIC PROBLEM 2627

can be polyhedra as such or have a simple shape but contain hanging nodes); (ii)
it hinges on the primal formulation of the problem, thereby leading to a symmetric
positive definite system matrix. There are already some methods in the literature
achieving these goals. These methods can be loosely classified into three groups, de-
pending on the dimension of the smallest geometric object to which discrete unknowns
are attached. This criterion is relevant since it influences the stencil of the method,
and it also influences the level of conformity that can be achieved in the approximation
of the solution. The methods in the first group were developed in the practically im-
portant case where d = 2. They attach discrete unknowns to the mesh vertices, edges,
and cells and can achieve C1-conformity. Salient examples are the C1-conforming vir-
tual element methods (VEM) from [6, 13] and the C0-conforming VEM from [50].
Another example of a method in this group is the nonconforming VEM from [3, 51],
where the approximation is, however, (fully) nonconforming. The methods in the
second group attach discrete unknowns only to the mesh faces and cells for d \geq 2.
They are amenable to static condensation (meaning that the cell unknowns can be
eliminated locally, leading to a global problem coupling only the face unknowns), and
they provide a nonconforming approximation to the solution. The two salient exam-
ples are the weak Galerkin (WG) methods from [38, 49, 48] and the hybrid high-order
(HHO) method from [4]. Finally, the methods in the third group attach discrete un-
knowns only to the mesh cells for d \geq 2 and belong to the class of interior penalty
discontinuous Galerkin (IPDG) methods. These are also nonconforming methods,
and they were developed for the model problem (1.1) in [37, 42, 31]. We mention
that on specific meshes composed of simplices or cuboids, there are variants of the
above methods achieving C0-conformity, such as the C0-WG method from [40, 12]
and the C0-IPDG from [25, 5]. Furthermore, important examples of nonconforming
finite elements on simplicial meshes are the Morley element [36, 47] and the Hsieh--
Clough--Tocher (HCT) element (see, e.g., [15, Chap. 6]).

In the present work, we focus on HHO methods. HHO methods were introduced
in [21] for locking-free linear elasticity and in [22] for linear diffusion. The two ingre-
dients of HHO methods are a local reconstruction operator and a local stabilization
operator in each mesh cell. For second-order PDEs, the aim of the first operator is
to reconstruct locally a gradient from the cell and the face unknowns, and the aim of
the second operator is to penalize in a least-squares sense the difference between the
trace of the cell unknown and the face unknown on every mesh face. HHO methods
have undergone vigorous development in the last few years; to cite a few examples, we
mention Navier--Stokes flows [23], elastoplastic problems [2], Tresca friction problems
[14], spectral problems [9], and magnetostatics [11]. HHO methods were embedded
into the broad framework of hybridizable dG (HDG) methods in [17] by reformulat-
ing the HHO equations as local balance equations with equilibrated numerical fluxes.
Moreover, HHO methods are closely related to WG methods, which were also em-
bedded into the HDG framework in [16, sec. 6.6]. The reconstruction operator in the
HHO method corresponds to the weak gradient in WG methods. Hence, HHO and
WG methods differ only in the choice of the discrete unknowns and in the design of
stabilization. Although the close connections between HHO and WG methods should
be mutually beneficial, these connections are, in the authors' opinion, not sufficiently
explicit in the literature, and the title of the present work is also meant to draw the
community's attention to this opportunity.

The design of the stabilization turns out to be a key ingredient so that the method
leads to optimal error estimates. By this, we mean, in the case of a second-order
elliptic PDE, that the method delivers an O(hk+1) H1-error estimate, where k \geq 0
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2628 ZHAONAN DONG AND ALEXANDRE ERN

is the degree of the face unknowns. Notice that this criterion is consistent with the
classical properties of hybridized mixed finite element methods. The point we want
to make here is that optimality cannot be reached on general meshes if one uses plain
least-squares stabilization, i.e., a more subtle design of the stabilization is required.
If the cell unknowns are of degree k, optimality is achieved in [21, 22] by means of a
stabilization that uses the reconstruction operator (this is the first occurrence of this
idea in the broad framework of HDG methods). Alternatively, if the cell unknowns
are of degree (k + 1), one can use the Lehrenfeld--Sch\"oberl (LS) stabilization [35], as
in [17] for HHO methods and in [39] for WG methods. Although the LS stabilization
does not use the reconstruction operator, it is not a plain least-squares stabilization,
since an orthogonal projection is applied to the trace of the cell unknowns. We
mention that it is also possible to achieve optimality without stabilization for second-
order PDEs if one uses Raviart--Thomas functions of degree k to reconstruct the
gradient (see [1, 19]). However, optimality is lost if one reconstructs the gradient in
larger polynomial spaces (the convergence rate is in general O(hk)), since the normal
component of the reconstructed gradient on the mesh faces is too rich to be captured
by the face unknowns. Another possibility is to enrich the space for the gradient
reconstruction by suitable bubble functions based on the notion of M -decomposition
devised for HDG methods [18].

To discretize fourth-order PDEs, HHO and WG methods use cell unknowns that
are meant to approximate the solution in each mesh cell, face unknowns that are meant
to approximate its trace on each mesh (inter)face, and additional face unknowns that
are meant to approximate either its full gradient trace or only its normal derivative
on each mesh (inter)face. The HHO and WG methods from the literature and the
present HHO methods are described in Table 1.1 in terms of their discrete unknowns.
To put all the methods on the same ground and allow for a fair comparison, the
polynomial degree k is such that all the methods in the table deliver an O(hk+1) H2-
error estimate. Consistently with the terminology adopted above for second-order
elliptic PDEs, the method can be viewed as optimal if the order of the face unknowns
approximating the trace of the gradient (or of the normal derivative) is of degree k. As
seen from Table 1.1, the WG methods from the literature do not meet this criterion.
For instance, the HHO method from [4] with k = 1 converges with one order higher
than the WG method from [48] while using the same discrete unknowns. The lack
of optimality is related to the use of a plain least-squares stabilization. Instead, the
HHO method from [4] and the present HHO methods are optimal, and this is reflected
by a more elaborate design of the stabilization. Notice that for fourth-order PDEs,

Table 1.1
Discrete unknowns in HHO and WG methods from the literature and the present work. In the

column ``Grad,"" the notation [\cdot ]d means that the full gradient is approximated; otherwise, only the
normal derivative is approximated. For all the methods, the integer k is fixed by the fact that the
method delivers an O(hk+1) H2-error estimate.

Unknowns Cell Face Grad k Ref.

WG k + 2 k + 2 [k + 1]d k \geq 0 [38]
k + 2 k + 2 k + 1 k \geq 0 [38]
k + 2 k + 1 k + 1 k \geq 0 [49]
1 1 [1]d k = 0 [48]

HHO k k [k]d k \geq 1 [4]
HHO(A) k + 2 k + 1 k k \geq 0 present (d = 2)
HHO(B) k + 2 k + 2 k k \geq 0 present (d \geq 2)
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this also means that the Hessian (and not only the Laplacian) has to be reconstructed
locally. In [4], the stabilization design follows the spirit of [21, 22] in that it uses a
Hessian-based deflection reconstruction operator. In the present methods, the design
is performed in the spirit of the LS stabilization. Another difference with [4] is that the
present methods only introduce face unknowns approximating the normal derivative
of the solution on the mesh (inter)faces (and not the full gradient trace). As a result,
and despite the slight increase in the degree of the face unknowns approximating
the solution trace, the present HHO methods involve less globally coupled unknowns
than in [4]; see the discussion in Remarks 3.1 and 5.2. Moreover, we allow here
for k \geq 0, whereas [4] requires k \geq 1. We also mention that the increase of cell
unknowns compared to [4] has a moderate impact on computational costs owing to
static condensation. This slight overhead is actually compensated by the simplification
in the stabilization term (see section 7 for further discussion).

Let us briefly summarize the main novelties and results of the present work: (i)
two novel and computationally effective HHO methods leading to optimal O(hk+1)
H2-error estimates with polynomials of order k \geq 0 to approximate the normal de-
rivative; (ii) an original design in two dimensions using, for the first time in HHO
methods, the canonical hybrid finite element in the stabilization; (iii) HHO meth-
ods that do not feature stabilization parameters that must be large enough (only
positive), in contrast with dG and C0-IPDG methods; (iv) a numerical study show-
ing the attractive performances of the proposed methods, which in particular can
outperform dG methods (except for low polynomial orders and Voronoi-like meshes
where the number of faces is quite large) and even be competitive with C0-IPDG and
HCT methods on simplicial meshes; and (v) a variant of the HHO methods using
a Nitsche-type boundary-penalty technique to weakly enforce the boundary condi-
tions. We notice in particular that the development of Nitsche's boundary-penalty
technique is instrumental to dealing with domains with curved boundary (in the wake
of [8, 7] for elliptic interface problems) and to derive a robust approximation method
in the case of singularly perturbed regimes. These results are explored in our re-
cent work [24]. We also emphasize that our Nitsche technique does not need the
penalty parameter to be large enough. This is the first time this property is met for
fourth-order PDEs, and to this purpose, we adapt ideas from [34, 7] derived for second-
order PDEs. Heuristically, the reason for circumventing the constraint on having a
large enough penalty parameter is that the reconstruction operator in HHO methods
avoids the need to introduce an additional consistency term as in the standard Nitsche
method.

As a final remark, we mention that our main error estimates are established for
an exact solution that belongs to the broken Sobolev space Hk+3(\scrT h) (where \scrT h de-
notes the underlying mesh) and to the Sobolev space H2+s(\Omega ) with s > 3

2 . This
latter assumption follows the rather classical paradigm in the analysis of nonconform-
ing methods and is invoked when bounding the consistency error. As discussed in
Remark 4.7, the regularity gap can be lowered to s > 1 by adapting the techniques
developed in [29] and [28, Chaps. 40 and 41] in the context of second-order elliptic
PDEs. We also notice that quasi-optimal error estimates for general loads in H - 2(\Omega )
are derived in [45, 44] for the Morley element and the C0-IPDG method (see also
[10] for further results in the case of various lowest-order methods). The techniques
in [45, 44] require modifying the right-hand side of the discrete problem by means of
bubble functions and a C1-smoother. These ideas have been adapted to HHO meth-
ods for second-order elliptic PDEs with loads in H - 1(\Omega ) in [30]. We expect that the
extension to the biharmonic problem could follow a similar path for d = 2, whereas for
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2630 ZHAONAN DONG AND ALEXANDRE ERN

d = 3, one difficulty is related, irrespective of the considered discretization method,
to the lack of a well-established and computable C1-smoother of arbitrary order.

The rest of this work is organized as follows. We introduce some basic notation,
the mesh assumptions, and some analysis tools in section 2. In section 3, we introduce
the HHO method in the two-dimensional (2D) setting employing the canonical hybrid
finite element to design the stabilization. In section 4, we present the stability and er-
ror analysis of the method introduced in section 3. In section 5, we present the second
HHO method, this time valid in arbitrary dimension, and we outline the main changes
in the stability and error analysis from section 4. Our numerical results indicate that
in two dimensions, the first HHO method from section 3 is more effective than the
second method from section 5. In section 6, we combine the above HHO methods
with Nitsche's boundary-penalty technique. Finally, numerical results showcasing the
computational advantages of the proposed HHO methods are presented in section 7.

2. Model problem and discrete setting. In this section, we introduce some
basic notation, the weak formulation of the model problem, and the discrete setting
to formulate and analyze the HHO discretization.

2.1. Basic notation and weak formulation. We use standard notation for
the Lebesgue and Sobolev spaces, and, in particular, for the fractional-order Sobolev
spaces, we consider the Sobolev--Slobodeckij seminorm based on the double integral.
For an open, bounded, Lipschitz set S in \BbbR d, d \in \{ 1, 2, 3\} , we denote by (v, w)S the
L2(S)-inner product, and we employ the same notation when v and w are vector-
or matrix-valued fields. We denote by \nabla w the (weak) gradient of w and by \nabla 2w its
(weak) Hessian. Let \bfitn be the unit outward normal vector on the boundary \partial S of
S. Assuming that the functions v and w are smooth enough, we have the following
integration by parts formula:

(2.1) (\Delta 2v, w)S = (\nabla 2v,\nabla 2w)S + (\nabla \Delta v,\bfitn w)\partial S  - (\nabla 2v\bfitn ,\nabla w)\partial S .

Whenever the context is unambiguous, we denote by \partial n the (scalar-valued) normal
derivative on \partial S and by \partial t the (\BbbR d-valued) tangential derivative. We also denote
by \partial nnv the (scalar-valued) normal-normal second-order derivative and by \partial ntv the
(\BbbR d-valued) normal-tangential second-order derivative. The integration by parts for-
mula (2.1) can then be rewritten as

(2.2) (\Delta 2v, w)S = (\nabla 2v,\nabla 2w)S + (\partial n\Delta v, w)\partial S  - (\partial nnv, \partial nw)\partial S  - (\partial ntv, \partial tw)\partial S .

In what follows, the set S is always a polytope so that its boundary can be decom-
posed into a finite union of planar faces with disjoint interiors. Expressions involving
the tangential derivative on \partial S are then implicitly understood to be evaluated as a
summation over the faces composing \partial S.

Using the above integration by parts formula, the following weak formulation of
the model problem (1.1) is classically derived: Find u \in H2

0 (\Omega ) such that

(2.3) (\nabla 2u,\nabla 2v)\Omega = (f, v)\Omega \forall v \in H2
0 (\Omega ).

The well-posedness of (2.3) is proven, e.g., in [32, section 1.5].

Remark 2.1 (nonhomogeneous conditions). Since the domain \Omega is a polytope, its
boundary can be split into \{ \partial \Omega i\} Ni=1 (d  - 1)-dimensional planar faces with disjoint

interiors. Let gD and gN be boundary data such that gD| \partial \Omega i
\in H

3
2 (\partial \Omega i) and gN | \partial \Omega i

\in 
H

1
2 (\partial \Omega i) for all i \in \{ 1, . . . , N\} , as well as gD \in C0(\partial \Omega ). Then, one can enforce the

nonhomogeneous boundary conditions u = gD and \partial nu = gN on all the faces \partial \Omega i; see
[33, sections 1.5 and 1.6].
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2.2. Inverse, trace, and Poincar\'e inequalities. Let \scrT h be a mesh covering
\Omega exactly. The mesh \scrT h can have cells that are disjoint open polytopes in \BbbR d (with
planar faces), and hanging nodes are possible. A generic mesh cell is denoted by
K \in \scrT h, its diameter by hK , and its unit outward normal by \bfitn K . We assume that
the mesh belongs to a shape-regular mesh sequence (\scrT h)h>0 in the sense of [21]. In a
nutshell, any mesh \scrT h admits a matching simplicial submesh \scrT \prime 

h such that any cell (or
face) of \scrT \prime 

h is a subset of exactly one cell (or at most one face) of \scrT h. Moreover, there
exists a mesh-regularity parameter \rho > 0 such that for all h > 0, all K \in \scrT h, and all
S \in \scrT \prime 

h such that S \subset K, we have \rho hS \leq rS and \rho hK \leq hS , where rS denotes the
inradius of the simplex S. The mesh faces are collected in the set \scrF h, which is split as
the set \scrF b

h containing the mesh boundary faces and the set \scrF i
h containing the mesh

interfaces. In this work, we make the mild additional assumption that the mesh faces
are connected; the reason for this is that we will consider an approximation operator
on the mesh faces that is only H1-stable, and not L2-stable, so that we will need
to invoke some polynomial approximation properties directly on the mesh faces (see
(2.13)). Let \bfitn F denote the unit normal vector orienting any mesh face F \in \scrF h. The
direction of \bfitn F is arbitrary, but fixed once and for all, for all F \in \scrF i

h, and \bfitn F := \bfitn 
for all F \in \scrF b

h . For any mesh cell K \in \scrT h, the mesh faces composing its boundary
\partial K are collected in the set \scrF \partial K . The shape-regularity of the mesh sequence implies
that for all K \in \scrT h and all F \in \scrF \partial K with diameter hF , the length scales hK and hF

are uniformly equivalent, and that \#(\scrF \partial K) is uniformly bounded.
Let us recall some important analysis tools. We refer the reader, e.g., to [20,

sec. 1.4] for the proofs of Lemmas 2.2 and 2.3 and to [46] for the derivation of the
Poincar\'e inequality in H2 from the corresponding inequality in H1. For all K \in \scrT h
and all k \geq 0, \BbbP k(K) denotes the linear space composed of the restriction to K of
polynomials of total degree at most k.

Lemma 2.2 (discrete inverse and trace inequalities). Let \scrT h belong to a shape-
regular mesh sequence and let k \geq 0. There are constants Ctr

inv and Cinv, only depend-
ing on the mesh shape-regularity, the polynomial degree k, and the space dimension d,
such that for all vh \in \BbbP k(K) and all K \in \scrT h,

\| vh\| \partial K \leq Ctr
invh

 - 1
2

K \| vh\| K ,(2.4)

\| \nabla vh\| K \leq Cinvh
 - 1
K \| vh\| K .(2.5)

Lemma 2.3 (multiplicative trace inequality). Let \scrT h belong to a shape-regular
mesh sequence. There is a constant Cmt, only depending on the mesh shape-regularity
and the space dimension d, such that for all v \in H1(K) and all K \in \scrT h,

(2.6) \| v\| \partial K \leq Cmt

\bigl( 
h
 - 1

2

K \| v\| K + \| v\| 
1
2

K\| \nabla v\| 
1
2

K

\bigr) 
.

Lemma 2.4 (Poincar\'e inequality). Let \scrT h belong to a shape-regular mesh se-
quence. There is a constant CP, only depending on the mesh shape-regularity and
the space dimension d, such that for all v \in H2(K)\bot := \{ v \in H2(K) | (v, \xi )K = 0,
for all \xi \in \BbbP 1(K)\} , and all K \in \scrT h,

(2.7) h - 2
K \| v\| K + h - 1

K \| \nabla v\| K \leq CP\| \nabla 2v\| K .

Remark 2.5 (discrete inverse inequality on faces). Similarly to (2.5) and recall-
ing that the diameter of any face F \in \scrF \partial K is uniformly equivalent to hK , one can
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2632 ZHAONAN DONG AND ALEXANDRE ERN

prove that there is a constant \widetilde Cinv, only depending on the mesh shape-regularity, the
polynomial degree k, and the space dimension d, such that

(2.8) \| \partial tvh\| F \leq \widetilde Cinvh
 - 1
K \| vh\| F

for all vh \in \BbbP k(K), all K \in \scrT h, and all F \in \scrF \partial K .

Remark 2.6 (fractional multiplicative trace inequality). Let \scrT h belong to a shape-
regular mesh sequence. Let s \in ( 12 , 1]. There is a constant Cfmt, only depending on
the mesh shape-regularity and the space dimension d, such that for all v \in Hs(K)
and all K \in \scrT h,

(2.9) \| v\| \partial K \leq Cfmt

\bigl( 
h
 - 1

2

K \| v\| K + h
s - 1

2

K | v| Hs(K)

\bigr) 
.

The proof when K is a simplex can be found in [26, Lem. 7.2]. In the general case,
for every subface of a face in \scrF \partial K , one carves a subsimplex inside K whose height is
uniformly equivalent to hK . Notice that for s = 1, (2.9) is a simple consequence of
(2.6) and Young's inequality since | v| H1(K) = \| \nabla v\| K .

2.3. Polynomial approximation in cells and on faces. Let k \geq 0 and let
\Pi k+2

K be the L2-orthogonal projection onto \BbbP k+2(K). Since the mesh cells can be
decomposed into a finite number of subsimplices, the approximation properties of
\Pi k+2

K can be established by proceeding as in [26, Lem. 5.4].

Lemma 2.7 (polynomial approximation in K). Let \scrT h belong to a shape-regular
mesh sequence. Let k \geq 0. There is a constant Capp, only depending on the mesh
shape-regularity, the polynomial degree k, and the space dimension d, such that for all
t \in [0, k + 3], all m \in \{ 0, . . . , \lfloor t\rfloor \} , all v \in Ht(K), and all K \in \scrT h,

(2.10) | v  - \Pi k+2
K (v)| Hm(K) \leq Capph

t - m
K | v| Ht(K).

Another useful property of \Pi k+2
K results from the multiplicative trace inequality

(2.6) and the Poincar\'e inequality (2.7). Indeed, we infer that there is a constant C\Pi ,
only depending on the mesh shape-regularity, the polynomial degree k, and the space
dimension d, such that for all v \in H2(K) and all K \in \scrT h,

(2.11) h
 - 3

2

K \| v  - \Pi k+2
K (v)\| \partial K + h

 - 1
2

K \| \nabla (v  - \Pi k+2
K (v))\| \partial K \leq C\Pi \| \nabla 2(v  - \Pi k+2

K (v))\| K .

We will use two operators for the polynomial approximation on the mesh faces.
The first one is an L2-orthogonal projection. Specifically, letting \BbbP k(\scrF \partial K) := \times F\in \scrF \partial K

\BbbP k(F ) for all k \geq 0 and all K \in \scrT h, we denote by \Pi k
\partial K the L2-orthogonal projection

onto \BbbP k(\scrF \partial K). Notice that \Pi k
\partial K(v) can be computed independently for each face

F \in \scrF \partial K . The second operator is specific to the 2D setting where the mesh faces
are straight segments. On the reference interval \widehat I := ( - 1, 1), the canonical hybrid
finite element of degree (k + 1) has for its degrees of freedom the value at the two

endpoints and, for k \geq 1, the integrals on \widehat I weighted by a chosen set of basis functions
in \BbbP k - 1(\widehat I) (see, e.g., [27, secs. 6.3.3 and 7.6] or [41, Thm. 3.14]). For all F \in \scrF h,
let Jk+1

F : H1(F ) \rightarrow \BbbP k+1(F ) be the corresponding interpolation operator generated

using geometric affine mappings. Then, the two key identities satisfied by Jk+1
F are

for all v \in H1(F ),
(2.12)\bigl( 
\partial t(v  - Jk+1

F (v)), \xi 
\bigr) 
F
= 0 \forall \xi \in \BbbP k(F ), (v  - Jk+1

F (v), \theta )F = 0 \forall \theta \in \BbbP k - 1(F ),
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or, in more compact form, \Pi k
F (\partial tv) = \partial t(J

k+1
F (v)) and \Pi k - 1

F \circ Jk+1
F = \Pi k - 1

F . Moreover,

Jk+1
F satisfies the following approximation properties: There is a constant CJ , only

depending on the mesh shape-regularity, the polynomial degree k, and the space
dimension d, such that

(2.13) \| v  - Jk+1
F (v)\| F \leq CJhF \| \partial tv\| F , \| v  - Jk+1

F (v)\| F \leq CJh
2
F \| \partial ttv\| F

for all v \in H1(F ) and all v \in H2(F ), respectively. Notice that for k = 0, J1
F coincides

with the Lagrange interpolate on F based on its two endpoints.
In what follows, it is convenient to rewrite (2.12) and (2.13) on the whole boundary

of every mesh cellK \in \scrT h. LettingH l(\scrF \partial K) := \{ v \in L2(\partial K) | v| F \in H l(F ) for all F \in 
\scrF \partial K\} with l \in \{ 1, 2\} , Jk+1

\partial K : H1(\scrF \partial K) \rightarrow \BbbP k+1(\scrF \partial K) is defined facewise by setting

Jk+1
\partial K (v)| F := Jk+1

F (v| F ) for all v \in H1(\scrF \partial K). Recalling that the tangential derivative
is understood to act facewise, we obtain for all v \in H1(\scrF \partial K),

\bigl( 
\partial t(v - Jk+1

\partial K (v)), \xi 
\bigr) 
\partial K

= 0 \forall \xi \in \BbbP k(\scrF \partial K), (v - Jk+1
\partial K (v), \theta )\partial K = 0 \forall \theta \in \BbbP k - 1(\scrF \partial K).

(2.14)

Moreover, there is a constant \widetilde CJ having the same dependencies as CJ such that

(2.15) \| v  - Jk+1
\partial K (v)\| \partial K \leq \widetilde CJhK\| \partial tv\| \partial K , \| v  - Jk+1

\partial K (v)\| \partial K \leq \widetilde CJh
2
K\| \partial ttv\| \partial K

for all v \in H1(\scrF \partial K) and all v \in H2(\scrF \partial K), respectively, where we used that hF and
hK are uniformly equivalent for all F \in \scrF \partial K .

3. HHO method for the 2D biharmonic problem. Let k \geq 0 be the poly-
nomial degree. For all K \in \scrT h, the local HHO space is

(3.1) \widehat V k
K := \BbbP k+2(K)\times \BbbP k+1(\scrF \partial K)\times \BbbP k(\scrF \partial K).

A generic element in \widehat V k
K is denoted \widehat vK := (vK , v\partial K , \gamma \partial K) with vK \in \BbbP k+2(K), v\partial K \in 

\BbbP k+1(\scrF \partial K), and \gamma \partial K \in \BbbP k(\scrF \partial K). The first component of \widehat vK aims at representing the
solution inside the mesh cell, the second its trace on the cell boundary, and the third
its normal derivative on the cell boundary (along the direction of the outward normal
\bfitn K). In what follows, it is implicitly understood that within integrals over \partial K, the
symbol \partial n means \bfitn K \cdot \nabla .

3.1. Reconstruction and stabilization. The HHO method is formulated lo-
cally by means of a reconstruction and a stabilization operator. The local reconstruc-

tion operator RK : \widehat V k
K \rightarrow \BbbP k+2(K) is such that, for all \widehat vK := (vK , v\partial K , \gamma \partial K) \in \widehat V k

K ,
RK(\widehat vK) \in \BbbP k+2(K) is determined by solving the following well-posed problem:

(\nabla 2RK(\widehat vK),\nabla 2w)K = (\nabla 2vK ,\nabla 2w)K + (vK  - v\partial K , \partial n\Delta w)\partial K  - (\partial nvK  - \gamma \partial K , \partial nnw)\partial K

 - (\partial t(vK  - v\partial K), \partial ntw)\partial K \forall w \in \BbbP k+2(K),

(RK(\widehat vK), \xi )K = (vK , \xi )K \forall \xi \in \BbbP 1(K).

(3.2)

When computing RK(\widehat vK), one actually takes w \in \BbbP k+2(K)\bot := \{ w \in \BbbP k+2(K) | 
(w, \xi )K = 0 for all \xi \in \BbbP 1(K)\} since the first equation in (3.2) is trivial whenever
w \in \BbbP 1(K). Moreover, owing to the integration by parts formula (2.2), we infer that

(\nabla 2RK(\widehat vK),\nabla 2w)K = (vK ,\Delta 2w)K  - (v\partial K , \partial n\Delta w)\partial K + (\gamma \partial K , \partial nnw)\partial K + (\partial tv\partial K , \partial ntw)\partial K .

(3.3)
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2634 ZHAONAN DONG AND ALEXANDRE ERN

This expression shows that in the rightmost term on the right-hand side, we take
advantage of the face component v\partial K to represent the tangential derivative at the
boundary of K. Notice also that for k = 0, the second term on the right-hand side
vanishes.

The local stabilization bilinear form S\partial K is defined such that, for all (\widehat vK , \widehat wK) \in \widehat V k
K \times \widehat V k

K with \widehat vK := (vK , v\partial K , \gamma \partial K) and \widehat wK := (wK , w\partial K , \chi \partial K),

(3.4)
S\partial K(\widehat vK , \widehat wK) := h - 3

K

\bigl( 
Jk+1
\partial K (v\partial K  - vK), Jk+1

\partial K (w\partial K  - wK)
\bigr) 
\partial K

+ h - 1
K

\bigl( 
\Pi k

\partial K(\gamma \partial K  - \partial nvK),\Pi k
\partial K(\chi \partial K  - \partial nwK)

\bigr) 
\partial K

.

Notice the use of the interpolation operator Jk+1
\partial K for the first term on the right-hand

side. The reconstruction and stabilization operators are combined together to build
the local bilinear form aK on \widehat V k

K \times \widehat V k
K such that

(3.5) aK(\widehat vK , \widehat wK) := (\nabla 2RK(\widehat vK),\nabla 2RK( \widehat wK))K + S\partial K(\widehat vK , \widehat wK).

3.2. The global discrete problem. We define the global HHO space as

(3.6) \widehat V k
h := \BbbP k+2(\scrT h)\times \BbbP k+1(\scrF h)\times \BbbP k(\scrF h).

A generic element in \widehat V k
h is denoted \widehat vh := (v\scrT h

, v\scrF h
, \gamma \scrF h

) with v\scrT h
:= (vK)K\in \scrT h

,
v\scrF h

:= (vF )F\in \scrF h
, and \gamma \scrF h

:= (\gamma F )F\in \scrF h
, where \gamma F is meant to approximate the

normal derivative in the direction of the unit normal vector \bfitn F orienting F . For all
K \in \scrT h, the local components of \widehat vh are collected in the triple \widehat vK := (vK , v\partial K , \gamma \partial K) \in \widehat V k
K with v\partial K | F := vF and \gamma \partial K | F := (\bfitn F \cdot \bfitn K)\gamma F for all F \in \scrF \partial K . Notice that the

way the face components of v\partial K are assigned follows the usual way of HHO methods
for second-order elliptic PDEs, whereas the definition of the face components of \gamma \partial K
takes into account the orientation of the faces in \scrF \partial K . Furthermore, we enforce the
homogeneous boundary conditions strongly by considering the subspace

(3.7) \widehat V k
h0 := \{ \widehat vh \in \widehat V k

h | vF = \gamma F = 0 \forall F \in \scrF b
h\} .

The discrete HHO problem for the 2D biharmonic problem is as follows: Find \widehat uh \in \widehat V k
h0

such that

(3.8) ah(\widehat uh, \widehat wh) = \ell (w\scrT h
) \forall \widehat wh \in \widehat V k

h0,

where the global discrete bilinear form ah and the global linear form \ell are assembled
cellwise as

(3.9) ah(\widehat vh, \widehat wh) :=
\sum 

K\in \scrT h

aK(\widehat vK , \widehat wK), \ell (w\scrT h
) := (f, w\scrT h

)\Omega =
\sum 

K\in \scrT h

(f, wK)K .

Notice that only the first component of the triple \widehat wh is used to evaluate the right-hand
side in (3.8). An important observation is that the discrete problem (3.8) is amenable
to static condensation. Indeed, the cell unknowns can be eliminated locally in every
mesh cell, leading to a global problem where the only remaining unknowns are those
attached to the mesh faces, i.e., those in \BbbP k+1(\scrF i

h)\times \BbbP k(\scrF i
h).

Remark 3.1 (comparison with [4]). The present HHO method is cheaper than the
one from [4], where the globally coupled unknowns are in \BbbP k(\scrF h) \times \BbbP k(\scrF h;\BbbR 2) with
k \geq 1. Indeed, in the present method, there are (2k + 3), k \geq 0, unknowns per
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mesh interface, whereas this number is (3k + 3), k \geq 1, in [4]. On the other hand,
the present method is slightly more expensive regarding static condensation since the
number of cell unknowns is 1

2 (k + 3)(k + 4) vs. 1
2 (k + 2)(k + 3) in [4]. However, the

slight overhead incurred in the static condensation is compensated for by the simpler
form of the stabilization; see section 7 for more insight into the computational costs.

Remark 3.2 (variant). It is also possible to consider the slightly cheaper choice\widehat V k
K := \BbbP k+1(K) \times \BbbP k+1(\partial K) \times \BbbP k(\partial K) with k \geq 0. With this choice, the number of

cell unknowns to be statically condensed is slightly reduced, whereas the size of the
global problem coupling all the face unknowns is unchanged. Notice that this choice
requires modifying the stabilization bilinear form by setting

S\partial K(\widehat vK , \widehat wK) := h - 4
K

\bigl( 
\Pi k+1

K (vK  - RK(\widehat vK)),\Pi k+1
K (wK  - RK( \widehat wK))

\bigr) 
K

+ h - 3
K

\bigl( 
Jk+1
\partial K (v\partial K  - RK(\widehat vK)), Jk+1

\partial K (w\partial K  - RK( \widehat wK))
\bigr) 
\partial K

+ h - 1
K

\bigl( 
\Pi k

\partial K(\gamma \partial K  - \partial nRK(\widehat vK)),\Pi k
\partial K(\chi \partial K  - \partial nRK( \widehat wK))

\bigr) 
\partial K

.(3.10)

The analysis of this variant will not be detailed herein, but this variant will be included
in the numerical investigations presented in section 7.

Remark 3.3 (boundary conditions). In the nonhomogeneous case, the HHO solu-

tion is sought in the space \widehat V k
h , whereas the test functions are still taken in the space\widehat V k

h0. The value of the components of the HHO solution attached to the mesh bound-
ary faces is then assigned by means of the projections Jk+1

\partial K (gD| \partial K) and \Pi k
\partial K(gN | \partial K).

The convergence analysis proceeds as for homogeneous boundary conditions, up to
straightforward adaptations when bounding the consistency error. Details are omit-
ted for brevity. It is also possible to consider the boundary conditions u = \partial nnu = 0
on \partial \Omega . The discrete HHO bilinear form is still defined as above, but the discrete
problem (3.8) now involves the subspace \widehat V k

h0 := \{ \widehat vh \in \widehat V k
h | vF = 0 for all F \in \scrF b

h\} ,
i.e., the boundary condition u = 0 is still strongly enforced, whereas the boundary
condition \partial nnu = 0 is weakly enforced.

4. Stability and error analysis. In this section, we perform the stability and
error analysis of the HHO method devised in the previous section for the 2D bihar-
monic problem. We first establish a local stability property for the bilinear form aK
together with the well-posedness of the discrete problem (3.8). Then, we introduce
a suitable reduction operator leading to optimal approximation properties, we bound
the corresponding consistency error, and finally we derive the error estimate.

In what follows, the symbol C denotes a generic positive constant whose value
can change at each occurrence, provided this value only depends on the mesh shape-
regularity, the polynomial degree k, and the space dimension d.

4.1. Stability and well-posedness. We equip the local HHO space \widehat V k
K with

the H2-like seminorm such that for all \widehat vK := (vK , v\partial K , \gamma \partial K) \in \widehat V k
K ,

(4.1) | \widehat vK | 2\widehat V k
K

:= \| \nabla 2vK\| 2K + h - 3
K \| v\partial K  - vK\| 2\partial K + h - 1

K \| \gamma \partial K  - \partial nvK\| 2\partial K .

Lemma 4.1 (local stability and boundedness). There is a real number \alpha > 0,
depending only on the mesh shape-regularity, the polynomial degree k, and the space
dimension d, such that for all \widehat vK \in \widehat V k

K and all K \in \scrT h,

(4.2) \alpha | \widehat vK | 2\widehat V k
K

\leq \| \nabla 2RK(\widehat vK)\| 2K + S\partial K(\widehat vK , \widehat vK) \leq \alpha  - 1| \widehat vK | 2\widehat V k
K

.
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2636 ZHAONAN DONG AND ALEXANDRE ERN

Proof. (1) Lower bound. Using the reconstruction defined in (3.2) with w :=
vK \in \BbbP k+2(K), we have
(4.3)

(\nabla 2RK(\widehat vK),\nabla 2vK)K =\| \nabla 2vK\| 2K + (vK  - v\partial K , \partial n\Delta vK)\partial K

 - (\partial nvK  - \gamma \partial K , \partial nnvK)\partial K  - (\partial t(vK  - v\partial K), \partial ntvK)\partial K

= \| \nabla 2vK\| 2K + (Jk+1
\partial K (vK  - v\partial K), \partial n\Delta vK)\partial K

 - (\Pi k
\partial K(\partial nvK  - \gamma \partial K), \partial nnvK)\partial K  - (\partial tJ

k+1
\partial K (vK  - v\partial K), \partial ntvK)\partial K ,

where we used the two identities from (2.14) together with \partial n\Delta vK \in \BbbP k - 1(\scrF \partial K)
(if k \geq 1; otherwise this term vanishes) and \partial nnvK , \partial ntvK \in \BbbP k(\scrF \partial K). Using the
Cauchy--Schwarz inequality together with the inverse inequalities (2.5), (2.4), and
(2.8), we infer that

\| \nabla 2vK\| 2K \leq \| \nabla 2RK(\widehat vK)\| K\| \nabla 2vK\| K + \| Jk+1
\partial K (vK  - v\partial K)\| \partial K\| \partial n\Delta vK\| \partial K

+ \| \Pi k
\partial K(\partial nvK  - \gamma \partial K)\| \partial K\| \partial nnvK\| \partial K + \| \partial tJ

k+1
\partial K (vK  - v\partial K)\| \partial K\| \partial ntvK\| \partial K

\leq \| \nabla 2RK(\widehat vK)\| K\| \nabla 2vK\| K + CS\partial K(\widehat vK , \widehat vK)
1
2 \| \nabla 2vK\| K ,

which shows that

(4.4) \| \nabla 2vK\| K \leq \| \nabla 2RK(\widehat vK)\| K + CS\partial K(\widehat vK , \widehat vK)
1
2 .

Moreover, since v\partial K - vK = Jk+1
\partial K (v\partial K - vK) - (vK - Jk+1

\partial K (vK)), the triangle inequality
implies that

h
 - 3

2

K \| v\partial K  - vK\| \partial K \leq h
 - 3

2

K \| Jk+1
\partial K (v\partial K  - vK)\| \partial K + h

 - 3
2

K \| vK  - Jk+1
\partial K (vK)\| \partial K

\leq S\partial K(\widehat vK , \widehat vK)
1
2 + Ch

1
2

K\| \partial ttvK\| \partial K
\leq S\partial K(\widehat vK , \widehat vK)

1
2 + C\| \nabla 2vK\| K ,

where we used the approximation property (2.15) and the discrete trace inequal-
ity (2.4). Combining this bound with (4.4) proves that

(4.5) h
 - 3

2

K \| v\partial K  - vK\| \partial K \leq C
\bigl( 
\| \nabla 2RK(\widehat vK)\| K + S\partial K(\widehat vK , \widehat vK)

1
2

\bigr) 
.

Proceeding similarly shows that

h
 - 1

2

K \| \gamma \partial K  - \partial nvK\| \partial K \leq h
 - 1

2

K \| \Pi k
\partial K(\gamma \partial K  - \partial nvK)\| \partial K + h

 - 1
2

K \| \partial nvK  - \Pi k
\partial K(\partial nvK)\| \partial K

\leq S\partial K(\widehat vK , \widehat vK)
1
2 + Ch

1
2

K\| \partial ntvK\| \partial K
\leq S\partial K(\widehat vK , \widehat vK)

1
2 + C\| \nabla 2vK\| K ,

where we used the approximation properties of \Pi k
\partial K and the discrete trace inequal-

ity (2.4). Combining this bound with (4.4) proves that

(4.6) h
 - 1

2

K \| \gamma \partial K  - \partial nvK\| \partial K \leq C
\bigl( 
\| \nabla 2RK(\widehat vK)\| K + S\partial K(\widehat vK , \widehat vK)

1
2

\bigr) 
.

Finally, combining the bounds (4.4), (4.5), and (4.6) proves the lower bound in (4.2).
(2) Upper bound. Using this time w := RK(\widehat vK) \in \BbbP k+2(K) in the reconstruction

defined in (3.2) and proceeding as above shows that

(4.7) \| \nabla 2RK(\widehat vK)\| K \leq \| \nabla 2vK\| K + CS\partial K(\widehat vK , \widehat vK)
1
2 .
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Moreover, still proceeding as above, we infer that

h
 - 3

2

K \| Jk+1
\partial K (v\partial K  - vK)\| \partial K \leq h

 - 3
2

K \| v\partial K  - vK\| \partial K + h
 - 3

2

K \| vK  - Jk+1
\partial K (vK)\| \partial K

\leq h
 - 3

2

K \| v\partial K  - vK\| \partial K + C\| \nabla 2vK\| K

and

h
 - 1

2

K \| \Pi k
\partial K(\gamma \partial K  - \partial nvK)\| \partial K \leq h

 - 1
2

K \| \gamma \partial K  - \partial nvK\| \partial K + C\| \nabla 2vK\| K .

Putting the above two bounds together shows that

(4.8) S\partial K(\widehat vK , \widehat vK)
1
2 \leq C| \widehat vK | \widehat V k

K
.

Finally, the combination of (4.7) and (4.8) proves the upper bound in (4.2).

We equip the space \widehat V k
h0 with the norm

(4.9) \| \widehat vh\| \widehat V k
h0

:=
\sum 

K\in \scrT h

| \widehat vK | 2\widehat V k
K

\forall \widehat vh \in \widehat V k
h0.

To show that this indeed defines a norm, consider \widehat vh \in \widehat V k
h0 such that \| \widehat vh\| \widehat V k

h0
= 0.

Then, for allK \in \scrT h, vK \in \BbbP 1(K) and v\partial K = vK and \gamma \partial K = \partial nvK on \partial K. For any cell
K \in \scrT h having at least one boundary face, say, F \in \scrF \partial K \cap \scrF b

h , we have vF = \gamma F = 0

by definition of \widehat V k
h0. Since vK is affine and its gradient vanishes identically on F ,

\nabla vK vanishes in K, and since vK vanishes on F , we infer that vK vanishes identically
in K. This implies that vF = \gamma F = 0 for all F \in \scrF \partial K . We can then propagate the
reasoning one layer of cells further inside the domain, and by repeating the process,
we reach all the cells composing the mesh. Thus, the three components of the triple\widehat vh vanish identically everywhere.

Corollary 4.2 (coercivity and well-posedness). The discrete bilinear form ah
is coercive on \widehat V k

h0, and the discrete problem (3.8) is well-posed.

Proof. Summing the lower bound in (4.2) over all the mesh cells shows the fol-
lowing coercivity property:

(4.10) ah(\widehat vh, \widehat vh) \geq \alpha \| \widehat vh\| 2\widehat V k
h0

\forall \widehat vh \in \widehat V k
h0.

The well-posedness of (3.8) then follows from the Lax--Milgram lemma.

4.2. Local reduction operator and polynomial approximation. For all
K \in \scrT h, we define the local reduction operator \widehat \scrI k

K : H2(K) \rightarrow \widehat V k
K such that for all

v \in H2(K),

(4.11) \widehat \scrI k
K(v) :=

\bigl( 
\Pi k+2

K (v), Jk+1
\partial K (v),\Pi k

\partial K(\bfitn K \cdot \nabla v)
\bigr) 
\in \widehat V k

K .

Moreover, the H2-elliptic projection \scrE K(v) : H2(K) \rightarrow \BbbP k+2(K) is defined such that

(4.12)
(\nabla 2(\scrE K(v) - v),\nabla 2w)K = 0 \forall w \in \BbbP k+2(K),

(\scrE K(v) - v, \xi )K = 0 \forall \xi \in \BbbP 1(K).

The following lemma states the two key properties of the local reduction operator
defined in (4.11).
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2638 ZHAONAN DONG AND ALEXANDRE ERN

Lemma 4.3 (local reduction operator). We have RK \circ \widehat \scrI k
K = \scrE K for all K \in \scrT h.

Moreover, for all K \in \scrT h and all v \in H2(K), we have

(4.13) S\partial K(\widehat \scrI k
K(v), \widehat \scrI k

K(v))
1
2 \leq C\| \nabla 2(v  - \Pi k+2

K (v))\| K .

Proof. Let K \in \scrT h and let v \in H2(K).
(1) Using the definition (3.3) of the reconstruction operator, we infer that for all

w \in \BbbP k+2(K), we have

(\nabla 2RK(\widehat \scrI k
K(v)),\nabla 2w)K = (\Pi k+2

K (v),\Delta 2w)K  - (Jk+1
\partial K (v), \partial n\Delta w)\partial K

+ (\Pi k
\partial K(\partial nv), \partial nnw)\partial K + (\partial t(J

k+1
\partial K (v)), \partial ntw)\partial K .

Since \Delta 2w \in \BbbP k - 2(K) for k \geq 2 (and vanishes otherwise), \partial n\Delta w \in \BbbP k - 1(K) for k \geq 1
(and vanishes otherwise), \partial nnw \in \BbbP k(K), and \partial ntw \in \BbbP k(K), the L2-orthogonality
properties of \Pi k+2

K and \Pi k
\partial K , together with the identities (2.14) satisfied by Jk+1

\partial K ,
imply that

(\nabla 2RK(\widehat \scrI k
K(v)),\nabla 2w)K = (v,\Delta 2w)K  - (v, \partial n\Delta w)\partial K + (\partial nv, \partial nnw)\partial K

+ (\partial tv, \partial ntw)\partial K = (\nabla 2v,\nabla 2w)K .

Moreover, for all \xi \in \BbbP 1(K), we have (RK(\widehat \scrI k
K(v)), \xi )K = (\Pi k+2

K (v), \xi )K = (v, \xi )K
for all \xi \in \BbbP 1(K). The above two identities prove that RK(\widehat \scrI k

K(v)) = \scrE K(v) for all

v \in H2(K). Thus, RK \circ \widehat \scrI k
K = \scrE K .

(2) Let us now prove (4.13). Recalling the definitions (3.4) and (4.11), we have

S\partial K(\widehat \scrI k
K(v), \widehat \scrI k

K(v))
1
2\leq h

 - 3
2

K \| Jk+1
\partial K (v - \Pi k+2

K (v))\| \partial K+h
 - 1

2

K \| \Pi k
\partial K(\partial nv - \partial n\Pi 

k+2
K (v))\| \partial K ,

(4.14)

where we used that Jk+1
\partial K \circ Jk+1

\partial K = Jk+1
\partial K and \Pi k

\partial K \circ \Pi k
\partial K = \Pi k

\partial K . We start with the

first term in (4.14), where we set \phi := v  - \Pi k+2
K (v). Notice that \phi \in H2(K)\bot and

that \phi | \partial K \in H1(\scrF \partial K). Invoking the triangle inequality, the approximation property
(2.15), and the trace inequality (2.11) shows that

h
 - 3

2
K \| Jk+1

\partial K (\phi )\| \partial K \leq h
 - 3

2
K \| \phi \| \partial K + h

 - 3
2

K \| \phi  - Jk+1
\partial K (\phi )\| \partial K

\leq h
 - 3

2
K \| \phi \| \partial K + Ch

 - 1
2

K \| \partial t\phi \| \partial K \leq C\| \nabla 2\phi \| K = C\| \nabla 2(v  - \Pi k+2
K (v))\| K .

Moreover, for the second term in (4.14), we invoke the L2(\partial K)-stability of \Pi k
\partial K and

the trace inequality (2.11) to show that

h
 - 1

2
K \| \Pi k

\partial K(\partial nv  - \partial n(\Pi 
k+2
K (v))\| \partial K \leq h

 - 1
2

K \| \partial n(v  - \Pi k+2
K (v))\| \partial K \leq C\| \nabla 2(v  - \Pi k+2

K (v))\| K .

Combining the above two bounds with (4.14) proves (4.13).

To bound the consistency error in the next section, we will consider a norm that is
stronger than the H2-norm. For all K \in \scrT h and all v \in H2+s(K), s > 3

2 , we consider
the following norm:

(4.15) \| v\| 2\sharp ,K := \| \nabla 2v\| 2K + h3
K\| \partial n\Delta v\| 2\partial K + hK\| \partial nnv\| 2\partial K + hK\| \partial ntv\| 2\partial K .

Lemma 4.4 (approximation). The following holds true for all K \in \scrT h and all
v \in H2+s(K), s > 3

2 :

(4.16) \| v  - \scrE K(v)\| \sharp ,K \leq C\| v  - \Pi k+2
K (v)\| \sharp ,K .
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Proof. Using the triangle inequality, we have

\| v  - \scrE K(v)\| \sharp ,K \leq \| v  - \Pi k+2
K (v)\| \sharp ,K + \| \scrE K(v) - \Pi k+2

K (v)\| \sharp ,K ,

so that we only need to bound the second term on the right-hand side. Owing to the
discrete inverse and trace inequalities (2.4) and (2.5), we readily infer that

\| \scrE K(v) - \Pi k+2
K (v)\| \sharp ,K \leq C\| \nabla 2(\scrE K(v) - \Pi k+2

K (v))\| K ,

so that it remains to bound \| \nabla 2(\scrE K(v) - \Pi k+2
K (v))\| K . Recalling that \scrE K = RK \circ \widehat \scrI k

K ,
using the definition (3.2) of the reconstruction operator, and reasoning as in the proof
of Lemma 4.3 to remove the various projection operators, we infer that

(\nabla 2\scrE K(v),\nabla 2w)K = (\nabla 2\Pi k+2
K (v),\nabla 2w)K + (\Pi k+2

K (v) - v, \partial n\Delta w)\partial K

 - (\partial n(\Pi 
k+2
K (v) - v), \partial nnw)\partial K  - (\partial t(\Pi 

k+2
K (v) - v), \partial ntw)\partial K

for all w \in \BbbP k+2(K). Taking w := \scrE K(v) - \Pi k+2
K (v) and invoking the Cauchy--Schwarz

inequality together with the discrete trace and inverse inequalities (2.4) and (2.5), we
infer that

\| \nabla 2(\scrE K(v) - \Pi k+2
K (v))\| K \leq C

\bigl( 
h
 - 3

2

K \| v  - \Pi k+2
K (v)\| \partial K + h

 - 1
2

K \| \nabla (v  - \Pi k+2
K (v))\| \partial K

\bigr) 
\leq C\| \nabla 2(v  - \Pi k+2

K (v))\| K ,

where the last bound follows from the trace inequality (2.11). This completes the
proof.

4.3. Bound on consistency error. The global reduction operator \widehat \scrI k
h : H2(\Omega )

\rightarrow \widehat V k
h is defined such that for all v \in H2(\Omega ),

(4.17) \widehat \scrI k
h(v) :=

\bigl( 
(\Pi k+2

K (v))K\in \scrT h
, (Jk+1

F (v))F\in \scrF h
, (\Pi k

F (\bfitn F \cdot \nabla v))F\in \scrF h

\bigr) 
\in \widehat V k

h ,

recalling that v and \nabla v are single-valued on every F \in \scrF i
h for all v \in H2(\Omega ). Impor-

tantly, we notice that for all K \in \scrT h, the local components of \widehat \scrI k
h(v) attached to K

and the faces composing its boundary are \widehat \scrI k
K(v| K). Moreover, for the exact solution

u of (2.3), we have \widehat \scrI k
h(u) \in \widehat V k

h0. We define the consistency error \delta h \in (\widehat V k
h0)

\prime such
that

(4.18) \langle \delta h, \widehat wh\rangle := \ell (w\scrT h
) - ah(\widehat \scrI k

h(u), \widehat wh) \forall \widehat wh \in \widehat V k
h0,

where \langle \cdot , \cdot \rangle denotes the duality pairing between (\widehat V k
h0)

\prime and \widehat V k
h0.

Lemma 4.5 (consistency). Assume that u \in H2+s(\Omega ) with s > 3
2 . The following

holds true:

(4.19) \| \delta h\| (\widehat V k
h0)

\prime := sup\widehat wh\in \widehat V k
h0

| \langle \delta h, \widehat wh\rangle | 
\| \widehat wh\| \widehat V k

h0

\leq C

\Biggl( \sum 
K\in \scrT h

\| u - \Pi k+2
K (u)\| 2\sharp ,K

\Biggr) 1
2

.

Proof. Let \widehat wh \in \widehat V k
h0. Using the definition of \ell in (3.9) and the PDE and the

boundary conditions satisfied by the exact solution u, and integrating by parts cell-
wise, we infer that

\ell (w\scrT h
) =

\sum 
K\in \scrT h

\bigl\{ 
(\nabla 2u,\nabla 2wK)K+(\partial n\Delta u,wK)\partial K - (\partial nnu, \partial nwK)\partial K - (\partial ntu, \partial twK)\partial K

\bigr\} 
.
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2640 ZHAONAN DONG AND ALEXANDRE ERN

The assumption u \in H2+s(\Omega ) with s > 3
2 implies that (\partial n\Delta u)| \partial K , (\partial nnu)| \partial K , and

(\partial ntu)| \partial K are meaningful in L2(\partial K) and single-valued at every mesh interface. More-
over, since w\partial K , \partial tw\partial K , and \chi \partial K are single-valued at every mesh interface \scrF i

h and

vanish at each mesh boundary face since \widehat wh \in \widehat V k
h0, we have

\ell (w\scrT h
) =

\sum 
K\in \scrT h

\Bigl\{ 
(\nabla 2u,\nabla 2wK)K + (\partial n\Delta u,wK  - w\partial K)\partial K

 - (\partial nnu, \partial nwK  - \chi \partial K)\partial K  - (\partial ntu, \partial t(wK  - w\partial K))\partial K

\Bigr\} 
.

Since ah is assembled cellwise (see (3.9)) and the local components of \widehat \scrI k
h(u) are\widehat \scrI k

K(u| K) for all K \in \scrT h, we infer that ah(\widehat \scrI k
h(u), \widehat wh) =

\sum 
K\in \scrT h

aK(\widehat \scrI k
K(u| K), \widehat wK).

Using the definition (3.5) of aK , the definition (3.2) of RK( \widehat wK), and the identity

RK \circ \widehat \scrI k
K = \scrE K from Lemma 4.3 leads to

ah(\widehat \scrI k
h(u), \widehat wh) =

\sum 
K\in \scrT h

\Bigl\{ 
(\nabla 2\scrE K(u),\nabla 2wK)K + (\partial n\Delta \scrE K(u), wK  - w\partial K)\partial K

 - (\partial nn\scrE K(u), \partial nwK  - \chi \partial K)\partial K - (\partial nt\scrE K(u), \partial t(wK - w\partial K))\partial K + S\partial K(\widehat \scrI k
K(u), \widehat wK)

\Bigr\} 
.

Defining the function \eta cellwise as \eta | K := u| K  - \scrE K(u| K) for all K \in \scrT h, we infer that
(4.20)

\langle \delta h, \widehat wh\rangle =
\sum 

K\in \scrT h

\Bigl\{ 
(\nabla 2\eta ,\nabla 2wK)K + (\partial n\Delta \eta , wK  - w\partial K)\partial K

 - (\partial nn\eta , \partial nwK - \chi \partial K)\partial K - (\partial nt\eta , \partial t(wK - w\partial K))\partial K - S\partial K(\widehat \scrI k
K(u), \widehat wK)

\Bigr\} 
.

(Notice that (\nabla 2\eta ,\nabla 2wK)K = 0, but we keep this term since it can be bounded as the
other ones.) Let us denote by \scrT 1,K the first four addends on the right-hand side and
by \scrT 2,K the fifth addend. We bound \scrT 1,K by the Cauchy--Schwarz inequality and also
invoke the inverse inequality (2.8). Recalling the definition (4.15) of the \| \cdot \| \sharp ,K-norm,
this yields

| \scrT 1,K | \leq C\| \eta \| \sharp ,K | \widehat wK | \widehat V k
K
.

Moreover, owing to (4.13) and the upper bound in (4.2), we have

| \scrT 2,K | \leq S\partial K(\widehat \scrI k
K(u), \widehat \scrI k

K(u))
1
2S\partial K( \widehat wK , \widehat wK)

1
2 \leq C\| \nabla 2(u - \Pi k+2

K (u))\| K | \widehat wK | \widehat V k
K
.

Altogether, this implies that

| \langle \delta h, \widehat wh\rangle | \leq C

\Biggl( \sum 
K\in \scrT h

\| \eta \| 2\sharp ,K + \| \nabla 2(u - \Pi k+2
K (u))\| 2K

\Biggr) 1
2

\| \widehat wh\| \widehat V k
h0
.

Invoking Lemma 4.4, this completes the proof.

4.4. Error estimate. We are now ready to establish the main result concerning
the error analysis.

Theorem 4.6 (H2-error estimate). Assume that u \in H2+s(\Omega ) with s > 3
2 . The

following holds true:

(4.21)
\sum 

K\in \scrT h

\| \nabla 2(u - RK(\widehat uK))\| 2K \leq C
\sum 

K\in \scrT h

\| u - \Pi k+2
K (u)\| 2\sharp ,K .
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Consequently, if k \geq 1, assuming u| K \in Hk+3(K) for all K \in \scrT h, we have

(4.22)
\sum 

K\in \scrT h

\| \nabla 2(u - RK(\widehat uK))\| 2K \leq C
\sum 

K\in \scrT h

\bigl( 
hk+1
K | u| Hk+3(K)

\bigr) 2
,

and if k = 0, letting \sigma := min(s - 1, 1) \in ( 12 , 1], we have

(4.23)
\sum 

K\in \scrT h

\| \nabla 2(u - RK(\widehat uK))\| 2K \leq C
\sum 

K\in \scrT h

\bigl( 
hK(| u| H3(K) + h\sigma 

K | u| H3+\sigma (K))
\bigr) 2
.

Proof. Set \widehat eh := \widehat \scrI k
h(u) - \widehat uh \in \widehat V k

h0, so that ah(\widehat eh, \widehat eh) =  - \langle \delta h, \widehat eh\rangle . The coercivity
property (4.10) implies that

\alpha \| \widehat eh\| 2\widehat V k
h0

\leq ah(\widehat eh, \widehat eh) =  - \langle \delta h, \widehat eh\rangle \leq \| \delta h\| (\widehat V k
h0)

\prime \| \widehat eh\| \widehat V k
h0
,

so that \| \widehat eh\| \widehat V k
h0

\leq 1
\alpha \| \delta h\| (\widehat V k

h0)
\prime . Since

\sum 
K\in \scrT h

\| \nabla 2RK(\widehat eK)\| 2K \leq C\| \widehat eh\| 2\widehat V k
h0

, we infer

from Lemma 4.5 that\sum 
K\in \scrT h

\| \nabla 2RK(\widehat eK)\| 2K \leq C
\sum 

K\in \scrT h

\| u - \Pi k+2
K (u)\| 2\sharp ,K .

Since u  - RK(\widehat uK) = (u  - \scrE K(u)) + RK(\widehat eK), the triangle inequality combined with
Lemma 4.4 and the above bound proves (4.21). Furthermore, (4.22) results from (4.21)
and the approximation properties of \Pi k+2

K (using Lemma 2.7 and the multiplicative
trace inequality (2.6)). Finally, (4.23) is proved similarly to (4.22), but this time
invoking the fractional multiplicative trace inequality (2.9), in particular to bound

h
3
2

K\| \partial n\Delta (u - \Pi 2
K(u))\| \partial K = h

3
2

K\| \partial n\Delta u\| \partial K .

Remark 4.7 (regularity gap). The error estimates in Theorem 4.6 require u \in 
H2+s(\Omega ) with s > 3

2 . This global regularity requirement on the exact solution can
be lowered to s > 1 by using the techniques developed in [29] and [28, Chaps. 40 and
41] in the context of second-order elliptic PDEs. Indeed, the crucial point is to give
a meaning to \partial n\Delta u on each mesh face, and this can be done by applying the tools
from [29, 28] to the field \nabla \Delta u. Notice that the requirement u \in H2+s(\Omega ) with s > 3

2
is, however, less stringent than the one resulting from achieving optimal decay rates
as soon as k \geq 1 (see (4.22)).

5. HHO method in arbitrary dimension. In this section, we adapt the mate-
rial from the above two sections to devise and analyze an HHO method to approximate
the biharmonic problem in arbitrary dimension d \geq 2. The main difference with the
previous section is that the interpolation operator Jk+1

\partial K is no longer available if d \geq 3.
The idea in this section is to raise the degree of the face unknowns representing the
solution trace to (k+2) and to consider L2-orthogonal projections to lead the analysis.
Thus, letting k \geq 0 be the polynomial degree, the local HHO space considered in this
section is such that for all K \in \scrT h,

(5.1) \widehat V k
K := \BbbP k+2(K)\times \BbbP k+2(\scrF \partial K)\times \BbbP k(\scrF \partial K).

Remark 5.1 (d = 3). In three dimensions, on tetrahedral meshes, one can also
generalize the HHO method from the previous section by considering the canonical
hybrid finite element of degree (k + 2) on the mesh faces.
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5.1. Reconstruction, stabilization, discrete problem, and stability. The
local reconstruction operator is still defined by (3.2) (or, equivalently, (3.3)). Instead,
the local stabilization bilinear form S\partial K has to be slightly modified and is now such

that for all (\widehat vK , \widehat wK) \in \widehat V k
K \times \widehat V k

K ,

S\partial K(\widehat vK , \widehat wK):=h - 3
K

\bigl( 
v\partial K - vK , w\partial K - wK

\bigr) 
\partial K

+h - 1
K

\bigl( 
\Pi k

\partial K(\gamma \partial K - \partial nvK),\Pi k
\partial K(\chi \partial K - \partial nwK)

\bigr) 
\partial K

.

(5.2)

Notice that only L2-orthogonal projections are considered. The local bilinear form
aK is defined on \widehat V k

K \times \widehat V k
K as in (3.5).

The global HHO space is now defined as

(5.3) \widehat V k
h := \BbbP k+2(\scrT h)\times \BbbP k+2(\scrF h)\times \BbbP k(\scrF h).

Focusing for simplicity on homogeneous boundary conditions, we consider the sub-
space \widehat V k

h0 obtained by zeroing out all the components attached to the mesh boundary

faces. The discrete HHO problem is as follows: Find \widehat uh \in \widehat V k
h0 such that

(5.4) ah(\widehat uh, \widehat wh) = \ell (w\scrT h
) \forall wh \in \widehat V k

h0,

where ah and \ell are still defined as in (3.9). Moreover, as in the 2D setting, the
discrete problem (5.4) is amenable to static condensation, whereby the cell unknowns
are eliminated locally in every mesh cell, leading to a global problem where the only
remaining unknowns are those attached to the mesh faces, i.e., those in \BbbP k+2(\scrF i

h) \times 
\BbbP k(\scrF i

h).
Finally, it is readily seen that the local stability and boundedness property stated

in Lemma 4.1 still holds true. Therefore, the discrete bilinear form ah is coercive
on \widehat V k

h0, so that the discrete problem (5.4) is well-posed owing to the Lax--Milgram
lemma.

Remark 5.2 (comparison with [4]). In the present HHO method, the global prob-
lem after static condensation features (2k + 4), k \geq 0, unknowns per mesh interface,
whereas this number is (4k + 4), k \geq 1, for [4].

Remark 5.3 (boundary conditions). In the nonhomogeneous case, similarly to Re-
mark 3.3, the value of the components of the HHO solution attached to the mesh
boundary faces is assigned by means of the projections \Pi k+2

\partial K (gD| \partial K) and \Pi k
\partial K(gN | \partial K).

It is also possible to enforce the boundary conditions u = \partial nnu = 0 on \partial \Omega by pro-
ceeding as in Remark 3.3.

5.2. Polynomial approximation, consistency, and error estimate. For all
K \in \scrT h, the local reduction operator \widehat \scrI k

K : H2(K) \rightarrow \widehat V k
K is now defined such that for

all v \in H2(K),

(5.5) \widehat \scrI k
K(v) := (\Pi k+2

K (v),\Pi k+2
\partial K (v),\Pi k

\partial K(\bfitn K \cdot \nabla v)) \in \widehat V k
K .

We also define the operator \widetilde \scrE K := RK \circ \widehat \scrI k
K : H2(K) \rightarrow \BbbP k+2(K). Although this

operator is no longer the H2-elliptic projection, we can show that it still enjoys the
same approximation properties as those derived in Lemma 4.4. Recall that the \| \cdot \| \sharp ,K-
norm is defined in (4.15).

Lemma 5.4 (polynomial approximation). The following holds true for all K \in \scrT h
and all v \in H2+s(K) with s > 3

2 :

(5.6) \| v  - \widetilde \scrE K(v)\| \sharp ,K \leq C\| v  - \Pi k+2
K (v)\| \sharp ,K .
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Moreover, for all K \in \scrT h and all v \in H2(K), we have

(5.7) S\partial K(\widehat \scrI k
K(v), \widehat \scrI k

K(v))
1
2 \leq C\| v  - \Pi k+2

K (v)\| \sharp ,K .

Proof. (1) Using the definition (3.2) of RK , the definition (5.5) of \widehat \scrI k
K , and the

orthogonality property of the L2-projections \Pi k+2
K and \Pi k+2

\partial K , we infer that for all

w \in \BbbP k+2(K),

(\nabla 2 \widetilde \scrE K(v),\nabla 2w)K = (\nabla 2\Pi k+2
K (v),\nabla 2w)K  - (\Pi k+2

\partial K (v) - \Pi k+2
K (v), \partial n\Delta w)\partial K

+ (\Pi k
\partial K(\partial nv) - \partial n\Pi 

k+2
K (v), \partial nnw)\partial K+(\partial t(\Pi 

k+2
\partial K (v) - \Pi k+2

K (v)), \partial ntw)\partial K

= (\nabla 2\Pi k+2
K (v),\nabla 2w)K  - (v  - \Pi k+2

K (v), \partial n\Delta w)\partial K

+ (\partial n(v  - \Pi k+2
K (v)), \partial nnw)\partial K + (\partial t(\Pi 

k+2
\partial K (v) - \Pi k+2

K (v)), \partial ntw)\partial K ,

Taking w := \widetilde \scrE K(v)  - \Pi k+2
K (v), rearranging the terms, and invoking the Cauchy--

Schwarz inequality together with the inverse inequalities (2.4), (2.5), (2.8) leads to

\| \nabla 2(\widetilde \scrE K(v) - \Pi k+2
K (v))\| K

\leq C
\bigl( 
h
 - 3

2

K \| v - \Pi k+2
K (v)\| \partial K+h

 - 1
2

K \| \partial n(v - \Pi k+2
K (v))\| \partial K+h

 - 3
2

K \| \Pi k+2
\partial K (v) - \Pi k+2

K (v)\| \partial K
\bigr) 
.

Concerning the rightmost term, we observe that \Pi k+2
\partial K (v)  - \Pi k+2

K (v) = \Pi k+2
\partial K (v  - 

\Pi k+2
K (v)), so that using the L2-stability of \Pi k+2

\partial K , we obtain

\| \nabla 2(\widetilde \scrE K(v) - \Pi k+2
K (v))\| K \leq C

\bigl( 
h
 - 3

2

K \| v  - \Pi k+2
K (v)\| \partial K + h

 - 1
2

K \| \partial n(v  - \Pi k+2
K (v))\| \partial K

\bigr) 
.

The trace inequality (2.11) then shows that

\| \nabla 2(\widetilde \scrE K(v) - \Pi k+2
K (v))\| K \leq C\| \nabla 2(v  - \Pi k+2

K (v))\| K .

The proof of (5.6) can now be completed by invoking the triangle inequality.
(2) Let us now prove (5.7). We have

S\partial K(\widehat \scrI k
K(v), \widehat \scrI k

K(v))
1
2 \leq h

 - 3
2

K \| \Pi k+2
\partial K (v) - \Pi k+2

K (v)\| \partial K+h
 - 1

2

K \| \Pi k
\partial K(\partial nv - \partial n\Pi 

k+2
K (v))\| \partial K ,

where we used that \Pi k
\partial K \circ \Pi k

\partial K = \Pi k
\partial K for the second term on the right-hand side.

To bound the first term on the right-hand side, we invoke the same arguments as in
the first step of this proof leading to

h
 - 3

2

K \| \Pi k+2
\partial K (v) - \Pi k+2

K (v)\| \partial K \leq C\| \nabla 2(v  - \Pi k+2
K (v))\| K .

Furthermore, the second term has already been bounded in the proof of Lemma 4.3.
This completes the proof.

The global reduction operator \widehat \scrI k
h : H2(\Omega ) \rightarrow \widehat V k

h is defined such that for all
v \in H2(\Omega ),

(5.8) \widehat \scrI k
h(v) :=

\bigl( 
(\Pi k+2

K (v))K\in \scrT h
, (\Pi k+2

F (v))F\in \scrF h
, (\Pi k

F (\bfitn F \cdot \nabla v))F\in \scrF h

\bigr) 
\in \widehat V k

h ,

so that the local components of \widehat \scrI k
h(v) are \widehat \scrI k

K(v| K) for all K \in \scrT h. The consistency

error \delta h \in (\widehat V k
h0)

\prime can now be defined as in (4.18) and it can be bounded as in Lemma
4.5. Finally, the error estimate and its proof are the same as those from Theorem 4.6
(and are not repeated for brevity).
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6. HHO method with Nitsche's boundary penalty. In this section, we
combine the HHO methods devised in the previous sections with Nitsche's boundary-
penalty technique to enforce the boundary conditions in a weak manner. For brevity,
we only discuss the HHO method presented in section 3, but the following develop-
ments can be readily applied to the HHO method from section 5. To allow for a
bit more generality, we detail here the case of nonhomogeneous boundary conditions.
Thus, the model problem is as follows:

(6.1) \Delta 2u = f in \Omega , u = gD, \partial nu = gN in \partial \Omega ,

where the assumptions on the boundary data gD and gN are given in Remark 2.1.
We set \bfitG := (\nabla u)| \partial \Omega and notice that \bfitG is explicitly known in terms of the boundary
data gD and gN since \bfitG = gN\bfitn + (\partial tgD)\bfitt .

Hinging on the ideas from [8, 7] for second-order elliptic PDEs, the HHO-Nitsche
(HHO-N) method devised in this section does not place any discrete unknown on the
mesh boundary faces, but only in the mesh cells and the mesh interfaces. Thus, for
every mesh cell K \in \scrT h, we define the subsets

(6.2) \partial K i := \partial K \cap \Omega , \partial Kb := \partial K \cap \partial \Omega ,

as well as \scrF \partial Ki := \scrF \partial K \cap \scrF i
h and \scrF \partial Kb := \scrF \partial K \cap \scrF b

h . The mesh cells having at least
one boundary face are collected in the subset \scrT b

h := \{ K \in \scrT h | \scrF \partial Kb \not = \emptyset \} , and we
set \scrT i

h := \scrT h \setminus \scrT b
h .

Letting k \geq 0 be the polynomial degree, the local HHO-N space is such that for
all K \in \scrT h,

(6.3) \widehat V k
K := \BbbP k+2(K)\times \BbbP k+1(\scrF \partial Ki)\times \BbbP k(\scrF \partial Ki),

and the corresponding global HHO-N space is now defined as

(6.4) \widehat V k
h := \BbbP k+2(\scrT h)\times \BbbP k+1(\scrF i

h)\times \BbbP k(\scrF i
h).

6.1. Reconstruction, stabilization, discrete problem, and stability. The
definition of the local reconstruction operator is slightly modified with respect to (3.2).

Indeed, Ri
K : \widehat V k

K \rightarrow \BbbP k+2(K) is now such that for all \widehat vK \in \widehat V k
K ,

(6.5)

(\nabla 2Ri
K(\widehat vK),\nabla 2w)K = (\nabla 2vK ,\nabla 2w)K + (vK  - v\partial K , \partial n\Delta w)\partial Ki

 - (\partial nvK  - \gamma \partial K , \partial nnw)\partial Ki  - (\partial t(vK  - v\partial K), \partial ntw)\partial Ki

+ (vK , \partial n\Delta w)\partial Kb  - (\nabla vK ,\nabla \partial nw)\partial Kb

for all w \in \BbbP k+2(K)\bot together with the condition (Ri
K(\widehat vK), \xi )K = (vK , \xi )K for all

\xi \in \BbbP 1(K). Equivalently, owing to the integration by parts formula (2.2), we have

(\nabla 2Ri
K(\widehat vK),\nabla 2w)K = (vK ,\Delta 2w)K  - (v\partial K , \partial n\Delta w)\partial Ki(6.6)

+ (\gamma \partial K , \partial nnw)\partial Ki + (\partial tv\partial K , \partial ntw)\partial Ki .

Dropping the integral over \partial Kb for the three rightmost terms in (6.6) is, loosely
speaking, a consistent operation in the case of homogeneous boundary conditions. In
the general case, we need to lift the boundary data in every mesh cell K \in \scrT b

h by
means of the lifting operator \scrL K : H2(K) \rightarrow \BbbP k+2(K) such that for all v \in H2(K),

(6.7) (\nabla 2\scrL K(v),\nabla 2w)K =  - (v, \partial n\Delta w)\partial Kb + (\nabla v,\nabla \partial nw)\partial Kb
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for all w \in \BbbP k+2(K)\bot , together with the condition (\scrL K(v), \xi )K = 0 for all \xi \in \BbbP 1(K).
Notice that \scrL K(u| K) is fully computable from the boundary data gD and gN . For
convenience, we set \scrL K(v) := 0 for all K \in \scrT i

h.
The local stabilization bilinear form S\partial K is also slightly modified and is now

such that for all (\widehat vK , \widehat wK) \in \widehat V k
K \times \widehat V k

K , we have S\partial K(\widehat vK , \widehat wK) := Si
\partial K(\widehat vK , \widehat wK) +

Sb
\partial K(vK , wK) with

Si
\partial K(\widehat vK , \widehat wK) := h - 3

K

\bigl( 
Jk+1
\partial K (v\partial K  - vK), Jk+1

\partial K (w\partial K  - wK)
\bigr) 
\partial Ki

+ h - 1
K

\bigl( 
\Pi k

\partial K(\gamma \partial K  - \partial nvK),\Pi k
\partial K(\chi \partial K  - \partial nwK)

\bigr) 
\partial Ki ,(6.8)

Sb
\partial K(vK , wK) := h - 3

K

\bigl( 
vK , wK

\bigr) 
\partial Kb + h - 1

K

\bigl( 
\nabla vK ,\nabla wK

\bigr) 
\partial Kb ,(6.9)

where Sb
\partial K represents the boundary-penalty contribution and acts only on the cell

components. We emphasize that Sb
\partial K does not need to be scaled by a weighting

coefficient to be taken large enough. Finally, the local bilinear form aK is defined on\widehat V k
K \times \widehat V k

K as in (3.5).

The discrete HHO-N problem is as follows: Find \widehat uh \in \widehat V k
h such that

(6.10) ah(\widehat uh, \widehat wh) = \ell h( \widehat wh) \forall \widehat wh \in \widehat V k
h ,

where ah is still assembled cellwise as in (3.9), yielding
(6.11)

ah(\widehat vh, \widehat wh) :=
\sum 

K\in \scrT h

(\nabla 2Ri
K(\widehat vK),\nabla 2Ri

K( \widehat wK))K +
\sum 

K\in \scrT h

Si
\partial K(\widehat vK , \widehat wK) +

\sum 
K\in \scrT b

h

Sb
\partial K(vK , wK),

whereas the linear form \ell h now acts as follows:

(6.12)

\ell h( \widehat wh) :=
\sum 

K\in \scrT h

(f, wK)K +
\sum 

K\in \scrT b
h

\Bigl\{ 
h - 3
K (gD, wK)\partial Kb + h - 1

K (\bfitG ,\nabla wK)\partial Kb

+
\bigl( 
gD, \partial n\Delta Ri

K( \widehat wK)
\bigr) 
\partial Kb  - 

\bigl( 
\bfitG ,\nabla \partial nR

i
K( \widehat wK)

\bigr) 
\partial Kb

\Bigr\} 
.

Notice that
(6.13)

\ell h( \widehat wh) =
\sum 

K\in \scrT h

(f, wK)K +
\sum 

K\in \scrT b
h

\Bigl\{ 
Sb
\partial K(u| K , wK) - (\nabla 2\scrL K(u| K),\nabla 2Ri

K( \widehat wK))K

\Bigr\} 
.

Notice also that \ell h( \widehat wh) =
\sum 

K\in \scrT h
(f, wK)K = (f, w\scrT h

)\Omega if the boundary conditions are
homogeneous (so that only the cell component of \widehat wh is needed to assemble \ell h). As in
the previous sections, the discrete problem (6.10) is amenable to static condensation,
whereby all the cell unknowns are eliminated locally in every mesh cell, leading to a
global problem where the only remaining unknowns are those attached to the mesh
interfaces.

It is easy to see that the local stability and boundedness property stated in
Lemma 4.1 still holds true in the updated H2-seminorm
(6.14)
| \widehat vK | 2\widehat V k

K

:= \| \nabla 2vK\| 2K + h - 3
K \| v\partial K  - vK\| 2\partial Ki + h - 1

K \| \gamma \partial K  - \partial nvK\| 2\partial Ki + Sb
\partial K(vK , vK),

recalling that Sb
\partial K(vK , vK) = h - 3

K \| vK\| 2\partial Kb+h - 1
K \| \nabla vK\| 2\partial Kb . Since \| \widehat vh\| 2\widehat V k

h

:=
\sum 

K\in \scrT h

| \widehat vK | 2\widehat V k
K

defines a norm on the global HHO space \widehat V k
h defined in (6.4), the discrete

bilinear form ah is coercive on \widehat V k
h , and the discrete problem (6.10) is well-posed

owing to the Lax--Milgram lemma.
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2646 ZHAONAN DONG AND ALEXANDRE ERN

6.2. Polynomial approximation, consistency, and error estimate. For all
K \in \scrT h, we define the local reduction operator \widehat \scrI k

K : H2(K) \rightarrow \widehat V k
K such that for all

v \in H2(K),

(6.15) \widehat \scrI k
K(v) :=

\bigl( 
\Pi k+2

K (v), Jk+1
\partial Ki (v),\Pi 

k
\partial Ki(\bfitn K \cdot \nabla v)

\bigr) 
\in \widehat V k

K ,

with obvious notation regarding the operators Jk+1
\partial Ki and \Pi k

\partial Ki . Let us set

(6.16) \scrE i
K := Ri

K \circ \widehat \scrI k
K : H2(K) \rightarrow \BbbP k+2(K).

A straightforward verification (omitted for brevity) shows that the operator \scrE K :=
\scrE i
K+\scrL K : H2(K) \rightarrow \BbbP k+2(K) coincides indeed with the H2-elliptic projection defined

in (4.12). Therefore, owing to Lemma 4.4, there is a C such that for all K \in \scrT h and
all v \in H2+s(K), s > 3

2 ,

(6.17) \| v  - (\scrE i
K(v) + \scrL K(v))\| \sharp ,K \leq C\| v  - \Pi k+2

K (v)\| \sharp ,K ,

where the \| \cdot \| \sharp ,K-norm is defined in (4.15). Moreover, by restricting the arguments to
the mesh interfaces in the proof of Lemma 4.3, we infer that there is a C such that
for all K \in \scrT h and all v \in H2(K),

(6.18) Si
\partial K(\widehat \scrI k

K(v), \widehat \scrI k
K(v))

1
2 \leq C\| \nabla 2(v  - \Pi k+2

K (v))\| K .

The global reduction operator \widehat \scrI k
h : H2(\Omega ) \rightarrow \widehat V k

h is defined such that for all
v \in H2(\Omega ),

(6.19) \widehat \scrI k
h(v) :=

\bigl( 
(\Pi k+2

K (v))K\in \scrT h
, (Jk+1

F (v))F\in \scrF i
h
, (\Pi k

F (\bfitn F \cdot \nabla v))F\in \scrF i
h

\bigr) 
\in \widehat V k

h ,

recalling that v and \nabla v are single-valued on every F \in \scrF i
h for all v \in H2(\Omega ). As

above, the local components of \widehat \scrI k
h(v) attached to K and its faces in \scrF \partial Ki are \widehat \scrI k

K(v| K)

for all K \in \scrT h. We define the consistency error \delta h \in (\widehat V k
h )\prime such that \langle \delta h, \widehat wh\rangle :=

\ell (w\scrT h
)  - ah(\widehat \scrI k

h(u), \widehat wh) for all \widehat wh \in \widehat V k
h , where \langle \cdot , \cdot \rangle now denotes the duality pairing

between (\widehat V k
h )\prime and \widehat V k

h .

Lemma 6.1 (consistency). Assume that u \in H2+s(\Omega ) with s > 3
2 . The following

holds true:

(6.20) \| \delta h\| (\widehat V k
h )\prime := sup\widehat wh\in \widehat V k

h

| \langle \delta h, \widehat wh\rangle | 
\| \widehat wh\| \widehat V k

h

\leq C

\Biggl( \sum 
K\in \scrT h

\| u - \Pi k+2
K (u)\| 2\sharp ,K

\Biggr) 1
2

.

Proof. The proof is similar to that of Lemma 4.5, so we only sketch it. Let\widehat wh \in \widehat V k
h having local components (wK , w\partial K , \chi \partial K) for all K \in \scrT h. On the one hand,

we have

\ell h( \widehat wh) +
\sum 

K\in \scrT b
h

(\nabla 2\scrL K(u| K),\nabla 2(Ri
K( \widehat wK)))K

=
\sum 

K\in \scrT h

\Bigl\{ 
(\nabla 2u,\nabla 2wK)K + (\partial n\Delta u,wK)\partial Kb  - (\nabla \partial nu,\nabla wK)\partial Kb

+ (\partial n\Delta u,wK  - w\partial K)\partial Ki  - (\partial nnu, \partial nwK  - \chi \partial K)\partial Ki  - (\partial ntu, \partial t(wK  - w\partial K))\partial Ki

\Bigr\} 
+
\sum 

K\in \scrT b
h

\Bigl\{ 
h - 3
K (u,wK)\partial Kb + h - 1

K (\nabla u,\nabla wK)\partial Kb

\Bigr\} 
.
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On the other hand, recalling that \scrE K = \scrE i
K + \scrL K , we have

ah(\widehat \scrI k
h(u), \widehat wh) +

\sum 
K\in \scrT b

h

(\nabla 2\scrL K(u| K),\nabla 2(Ri
K( \widehat wK)))K

=
\sum 

K\in \scrT h

\Bigl\{ 
(\nabla 2\scrE K(u),\nabla 2Ri

K( \widehat wK))K + Si
\partial K(\widehat \scrI k

K(u), \widehat wK)
\Bigr\} 
+
\sum 

K\in \scrT b
h

Sb
\partial K(\Pi k+2

K (u), wK),

so that we have

ah(\widehat \scrI k
h(u), \widehat wh) +

\sum 
K\in \scrT b

h

(\nabla 2\scrL K(u| K),\nabla 2(Ri
K( \widehat wK)))K

=
\sum 

K\in \scrT h

\Bigl\{ 
(\nabla 2\scrE K(u),\nabla 2wK)K + (\partial n\Delta \scrE K(u), wK)\partial Kb  - (\nabla \partial n\scrE K(u),\nabla wK)\partial Kb

+ (\partial n\Delta \scrE K(u), wK  - w\partial K)\partial Ki  - (\partial nn\scrE K(u), \partial nwK  - \chi \partial K)\partial Ki

 - (\partial nt\scrE K(u), \partial t(wK  - w\partial K))\partial Ki + Si
\partial K(\widehat \scrI k

K(u), \widehat wK)
\Bigr\} 

+
\sum 

K\in \scrT b
h

\Bigl\{ 
h - 3
K (\Pi k+2

K (u), wK)\partial Kb + h - 1
K (\nabla \Pi k+2

K (u),\nabla wK)\partial Kb

\Bigr\} 
.

Defining the function \eta cellwise as \eta | K := u| K  - \scrE K(u| K) for all K \in \scrT h, we infer that

\langle \delta h, \widehat wh\rangle =
\sum 

K\in \scrT h

\Bigl\{ 
(\nabla 2\eta ,\nabla 2wK)K + (\partial n\Delta \eta , wK)\partial Kb  - (\nabla \partial n\eta ,\nabla wK)\partial Kb

+ (\partial n\Delta \eta , wK  - w\partial K)\partial Ki  - (\partial nn\eta , \partial nwK  - \chi \partial K)\partial Ki

 - (\partial nt\eta , \partial t(wK  - w\partial K))\partial Ki  - Si
\partial K(\widehat \scrI k

K(u), \widehat wK)
\Bigr\} 

+
\sum 

K\in \scrT b
h

\Bigl\{ 
h - 3
K (u - \Pi k+2

K (u), wK)\partial Kb + h - 1
K (\nabla (u - \Pi k+2

K (u)),\nabla wK)\partial Kb

\Bigr\} 
.

All the terms on the right-hand side can now be bounded by means of the Cauchy--
Schwarz inequality. For the first, fourth, fifth, and sixth terms, we use (6.17), for the
seventh term (involving Si

\partial K), we use (6.18), and for the eighth and ninth terms, we
invoke the trace inequality (2.11).

We are now ready to establish our main error estimate.

Theorem 6.2 (H2-error estimate). Assume that u \in H2+s(\Omega ) with s > 3
2 . The

following holds true:

(6.21)
\sum 

K\in \scrT h

\| \nabla 2(u - Ri
K(\widehat uK) - \scrL K(u))\| 2K \leq C

\sum 
K\in \scrT h

\| u - \Pi k+2
K (u)\| 2\sharp ,K .

Consequently, if k \geq 1, assuming u| K \in Hk+3(K) for all K \in \scrT h, we have

(6.22)
\sum 

K\in \scrT h

\| \nabla 2(u - Ri
K(\widehat uK) - \scrL K(u))\| 2K \leq C

\sum 
K\in \scrT h

\bigl( 
hk+1
K | u| Hk+3(K)

\bigr) 2
,

and if k = 0, letting \sigma := min(s - 1, 1) \in ( 12 , 1], we have
(6.23)\sum 

K\in \scrT h

\| \nabla 2(u - Ri
K(\widehat uK) - \scrL K(u))\| 2K \leq C

\sum 
K\in \scrT h

\bigl( 
hK(| u| H3(K) + h\sigma 

K | u| H3+\sigma (K))
\bigr) 2
.
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Proof. As in the proof of Theorem 4.6, one shows that\sum 
K\in \scrT h

\| \nabla 2Ri
K(\widehat eK)\| 2K \leq C

\sum 
K\in \scrT h

\| u - \Pi k+2
K (u)\| 2\sharp ,K ,

where \widehat eh := \widehat \scrI k
h(u)  - \widehat uh \in \widehat V k

h is the discrete error. Since u  - Ri
K(\widehat uK)  - \scrL K(u) =

(u  - \scrE i
K(u)  - \scrL K(u)) + Ri

K(\widehat eK) for all K \in \scrT h, the triangle inequality combined
with (6.17) and the above bound on the discrete error proves (4.21). Finally, (6.22)
and (6.23) are established by invoking the same arguments as above.

7. Numerical examples. In this section, we present numerical examples to
illustrate the theoretical results on the present HHO methods and also to compare
their numerical performance with respect to other methods from the literature.

7.1. Convergence rates and computational performance of HHO meth-
ods. We select f on \Omega := (0, 1)2 so that the exact solution to (1.1) is u(x, y) =
sin(\pi x)2 sin(\pi y)2 with homogeneous boundary conditions. We consider the two HHO
methods analyzed above. For clarity, we term ``HHO(A)"" the method introduced in
section 3 with discrete unknowns in \BbbP k+2(\scrT h) \times \BbbP k+1(\scrF i

h) \times \BbbP k(\scrF i
h) and ``HHO(B)""

the method introduced in section 5 with discrete unknowns in \BbbP k+2(\scrT h)\times \BbbP k+2(\scrF i
h)\times 

\BbbP k(\scrF i
h). Additionally, we consider the method termed ``HHO(C)"" mentioned in

Remark 3.2, where the discrete unknowns are in \BbbP k+1(\scrT h) \times \BbbP k+1(\scrF i
h) \times \BbbP k(\scrF i

h).
We employ polynomial degrees k \in \{ 0, . . . , 5\} . Since we consider various polynomial
degrees, and despite an hp-analysis falling beyond the present scope, we implement
the stabilization terms in (3.4), (5.2), and (3.10) with h - 1

K replaced by (k + 1)2h - 1
K

for all K \in \scrT h. All the computations were run with MATLAB R2018a on the NEF
platform at INRIA Sophia Antipolis M\'editerran\'ee using 12 cores, and all the linear
systems after static condensation are solved using the backslash function. The al-
gorithm for solving the symmetric positive definite linear systems is the Cholesky
factorization.

Let us first verify the convergence rates obtained with the HHO(A) method with
k \in \{ 0, 1, 2, 3\} . We consider a sequence of successively refined rectangular meshes and
a sequence of successively refined polygonal (Voronoi-like) meshes (generated through
the PolyMesher MATLAB library [43]). Two examples of polygonal meshes are shown
in Figure 7.1 (in general, the cells do not contain more than 8 edges). We measure
relative errors in the (broken) H2-seminorm and in the L2-norm, both quantities
being evaluated using the reconstruction of the HHO solution cellwise. The errors are
reported in Figure 7.2 as a function of DoFs1/2, where DoFs denotes the total number
of globally coupled discrete unknowns (that is, the face unknowns). We observe that

Fig. 7.1. Two examples of polygonal (Voronoi-like) meshes with 64 (left) and 1,024 polygons.
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Fig. 7.2. Convergence of HHO(A) method in H2- and L2-(semi)norms on polygonal and
rectangular meshes.

10
1

10
2

10
3

10
-8

10
-6

10
-4

10
-2

10
0

A k0

A k1

A k2

A k3

B k0

B k1

B k2

B k3

C k0

C k1

C k2

C k3

10
1

10
2

10
3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

A k0

A k1

A k2

A k3

B k0

B k1

B k2

B k3

C k0

C k1

C k2

C k3

Fig. 7.3. Convergence of HHO(A,B,C) methods in H2- and L2-(semi)norms on polygonal
meshes.

the H2-error converges at the optimal rate O(hk+1), as predicted in Theorem 4.6.
The L2-error converges at the optimal rate O(hk+3), except for k = 0, where the rate
is only O(h2); all these rates are consistent with what can be expected from a duality
argument (not detailed herein for brevity; see [4, 38] for examples of this argument
for HHO and WG methods).

Let us now compare the three HHO(A,B,C) methods. The same relative errors as
in Figure 7.2 are reported in Figure 7.3. The results show that the three HHO methods
converge with the same rates and that the accuracy reached on a given mesh with a
given polynomial degree is quite close for the three methods. We mention that the
three methods are sensitive to conditioning issues that arise for high polynomial degree
when the error is already quite low (typically below 10 - 8 in theH2-seminorm), and the
HHO(C) method is somewhat more sensitive. It is instructive to have a closer look at
how the computational costs related to the assembling of the system matrix are spent
between the tasks of reconstruction, stabilization, and static condensation. The results
are reported in Figure 7.4 on a polygonal mesh with 16,384 cells (and 49,014 edges)
and polynomial degrees k \in \{ 0, . . . , 5\} . Quite importantly, the local reconstruction
operator is computed based on (3.3). Indeed, using (3.2) instead results in a more
intricate assembling of the right-hand side, increasing by a factor ranging from 2.5
(for k = 0) to 3.5 (for k = 5) the time spent in reconstruction. Figure 7.4 shows that
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Fig. 7.4. Comparison of computational times (in seconds) spent in reconstruction, stabilization,
and static condensation for the three HHO(A,B,C) methods on a polygonal mesh with 16,384 cells
and polynomial degrees k \in \{ 0, . . . , 5\} .

the time spent on static condensation is always marginal. Moreover, we can see that
the somewhat more elaborate design of the stabilization in the HHO(C) method is
reflected by a somewhat larger computational cost than for the HHO(A,B) methods.
The (perhaps a bit unexpected) consequence is that the HHO(A,B) methods require
altogether less assembly time than the HHO(C) method although their number of
discrete unknowns is larger. Finally, we notice that the reconstruction time is always
larger than the stabilization time, and this trend gets more pronounced for larger
k. To sum up, the most computationally effective method based on these results is
HHO(A). In what follows, we only consider this method and simply call it the ``HHO""
method.

7.2. Comparison with DG, \bfitC \bfzero -IPDG, and FEM. In this section, we com-
pare the computational performance of HHO with the fully nonconforming dG method
on polygonal and simpler meshes, and with the C0-IPDG, Morley, and HCT methods
on triangular meshes.

Let us consider first the dG method. To put HHO and dG on a fair comparison
basis, we compare the HHO method with face polynomial degree k \geq 0 to the dG
method with cell polynomial degree \ell := k+2, so that both methods deliver the same
decay rates on the H2-error. A comparison of total DoFs, assembling time (including
static condensation if applicable), and solving time for both methods is provided in
Table 7.1. We consider a triangular mesh and a polygonal mesh (with 32,768 and
16,384 cells, respectively). The first observation is that HHO always leads to fewer
DoFs and to smaller times spent on assembling. The main reason is that the HHO
DoFs are attached to the mesh faces rather than the mesh cells. Although there are
more faces than cells in a given mesh (the more so when the cells are polygons with
many faces), the polynomial spaces in cells are richer than those on faces. Moreover,
the degree of the cell polynomials in the dG method is larger than the degree of the
face polynomials in the HHO method ((k+2) vs. \{ k, k+1\} ). Another reason for the
lower assembling times with HHO is that the evaluation of numerical fluxes in dG
methods actually leads to a more expensive evaluation of face-related quantities. The
conclusions are, however, slightly different if one considers the solving time (since
the assembling stage can be fully parallelized, the solving time becomes dominant
in highly parallel architectures). The results in Table 7.1 show that on triangular
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Table 7.1
Comparison of total DoFs, assembling time, and solving time for the HHO and dG methods.

The polynomial degree is chosen so that both methods deliver the same decay rates on the H2-error.
Upper table: triangular mesh composed of 32,768 cells; lower table: polygonal mesh composed of
16,384 cells.

HHO, triangular mesh dG, triangular mesh

Order \# DoFs Assembling Solving Order \# DoFs Assembling Solving
k = 0 146,688 275.5 7.0 \ell = 2 196,608 472.0 16.0
k = 1 244,480 882.0 18.3 \ell = 3 327,680 1300.9 41.1
k = 2 342,272 2076.3 33.2 \ell = 4 491,520 2965.4 96.0
k = 3 440,064 4062.0 53.0 \ell = 5 688,128 5940.6 195.1

HHO, polygonal mesh dG, polygonal mesh

Order \# DoFs Assembling Solving Order \# DoFs Assembling Solving
k = 0 145,554 251.1 17.3 \ell = 2 98,304 420.5 12.7
k = 1 242,590 770.2 44.7 \ell = 3 163,840 1160.9 33.1
k = 2 339,626 1784.3 86.9 \ell = 4 245,760 2647.3 78.4
k = 3 436,662 3496.7 149.9 \ell = 5 344,064 5304.7 155.8

meshes (where cells have a moderate number of faces), the solving time for HHO is
always smaller than that for dG. Instead, on polygonal (Voronoi-like) meshes, the
solving time for dG is smaller for low polynomial degrees (up to 2), whereas the
solving time for HHO becomes again smaller for higher polynomial degrees. The ob-
servation on polygonal meshes and low polynomial degrees indicates that although
the stencil of HHO methods is quite compact, it is still less compact than that of
dG methods. In particular, all the discrete unknowns attached to the faces sharing
a given mesh cell are coupled. Figure 7.5 provides a more thorough viewpoint on
the above results by highlighting the relative efficiency of both methods measured as
the time needed to reach a certain error threshold in the H2-seminorm. The time
is either the assembling time (which is more representative of a serial implementa-
tion) or the solving time (which is more representative of a parallel implementation).
We can see that on triangular and rectangular meshes, for all polynomial orders,
the HHO method reaches an error threshold with less assembling or solving time
than the dG method. The same conclusion is reached on polygonal meshes for the
polynomial degree k = 3 and both times as well as for k \in \{ 0, 1, 2\} and assembling
time, whereas for k \in \{ 0, 1, 2\} and solving time, the efficiency of both methods is
comparable.

Let us now compare the efficiency of the HHO method to the C0-IPDG, Mor-
ley, and HCT methods on a sequence of successively refined triangulations with 32,
128, 512, 2,048, 8,192, and 32,768 cells. As above, the comparison is made between
methods delivering the same decay rates on the H2-error. This means that the HHO
method with polynomial degree k \geq 0 is compared with the C0-IPDG with degree
\ell := k+2. Moreover, the HHO(k = 0) and the C0-IPDG(\ell = 2) methods are compared
with the Morley element, and the HHO(k = 1) and the C0-IPDG(\ell = 3) methods are
compared with the HCT element. Table 7.2 reports the total number of DoFs, the as-
sembling time, and the solving time for all the methods on the finest triangular mesh.
We can see that in the lowest-order case, both the assembling and solving times for
the Morley element are (much) smaller than those for the HHO(k = 0) method, which
are, in turn, smaller than those for the C0-IPDG(\ell = 2) method. The conclusion for
the higher-order case is the same concerning the lower times for HHO(k = 1) with
respect to C0-IPDG(\ell = 3), whereas only the assembling time for HCT is (much)
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Fig. 7.5. Comparison of HHO and dG methods: relative H2-seminorm error as a function
of assembling time (upper row) and solving time (lower row) on a sequence of polygonal (left),
rectangular (center), and triangular (right) meshes and polynomial order k \in \{ 0, 1, 2, 3\} for HHO
and \ell = k + 2 for dG.

Table 7.2
Comparison of total DoFs, assembling time, and solving time for the HHO, C0-IPDG, Morley,

and HCT methods. The polynomial degree is chosen so that all the methods in the same column
deliver the same decay rates on the H2-error. Triangular mesh composed of 32,768 cells, 49,408
edges, and 16,641 vertices.

k = 0 \# DoFs Assembling Solving k = 1 \# DoFs Assembling Solving
Morley 65,025 22.9 4.3 HCT 97,283 169.3 19.8
HHO 146,688 275.5 7.0 HHO 244,480 882.0 18.3

C0-IPDG 65,025 369.5 9.3 C0-IPDG 130,560 1318.8 27.0

smaller than that for HHO(k = 1), the solving time being instead comparable. One
reason for this good performance of HHO compared with HCT can be that the sten-
cil of HCT leads to a more dense system matrix, as a result of the method attaching
DoFs to the mesh vertices. Figure 7.6 reports the error measured in the H2-seminorm
as a function of assembling and solving time, thereby providing a comparison of the
efficiency of the various methods on all the considered triangulations. We notice that
the Morley element is the most efficient among the lowest-order methods, whereas the
efficiency of the HHO method is better than that of C0-IPDG, and it is better than
that of the HCT element if the solving time is considered, whereas the conclusion is
reverted if the assembling time is considered.

7.3. Tests on the HHO-Nitsche method. To conclude, let us briefly illus-
trate that the proposed HHO-N method with a weak enforcement of the boundary
conditions performs as well as the HHO method with a strong enforcement of the
boundary conditions. We select f and the nonhomogeneous boundary data gD and
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Fig. 7.6. Comparison of HHO, C0-IPDG, Morley, and HCT methods: relative H2-seminorm
error as a function of assembling time (upper row) and solving time (lower row) on a sequence of
triangular meshes.
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Fig. 7.7. Convergence of HHO and HHO-N methods in H2- and L2-(semi)norms on polygonal
meshes.

gN such that on \Omega := (0, 1)2, the exact solution is u(x, y) = sin(\pi x)2 sin(\pi y)2 +
exp ( - (x - 0.5)2  - (y  - 0.5)2). We consider the same sequence of polygonal meshes
and the same polynomial degrees as in section 7.1. Figure 7.7 presents the relative
errors measured in the H2-seminorm and the L2-norm using cellwise the reconstruc-
tion operator for their evaluation. We compare the HHO and HHO-N methods.
Both methods employ the same number of globally coupled DoFs. We can see from
Figure 7.7 that the errors produced by both methods are quite close in all cases.
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