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Abstract. We design pairs of six-stage, third-order, alternating implicit Runge--Kutta (RK)
schemes that can be used to integrate in time two stiff operators by an operator-splitting technique.
We also design for each pair a companion explicit RK scheme to be used for a third, nonstiff oper-
ator in an implicit-explicit (IMEX) fashion. The main application we have in mind is (non)linear
parabolic problems, where the two stiff operators represent diffusion processes (for instance, in two
spatial directions) and the nonstiff operator represents (non)linear transport. We identify necessary
conditions for linear sectorial A(\alpha )-stability by considering a scalar ODE with two (complex) ei-
genvalues lying in some fixed cone of the half-complex plane with nonpositive real part. We show
numerically that it is possible to achieve A(0)-stability when combining two operators with negative
eigenvalues, irrespective of their relative magnitude. Finally, we show by numerical examples includ-
ing two-dimensional nonlinear transport problems discretized in space using finite elements that the
proposed schemes behave well.
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1. Introduction. Operator splitting is a well-established and computationally
effective approach to design time-integration techniques for a wide class of systems of
stiff ordinary differential equations (ODEs) and partial differential equations (PDEs)
involving coupled stiff operators. One traditional way to split two stiff operators
consists of using methods like Strang splitting [33] at the time-continuous level or the
Peaceman--Rachford alternating direction implicit method (ADI) at the time-discrete
level [22] (see also Douglas and Rachford [9]). We refer the reader, e.g., to Marchuk
[19] and Yanenko [36] for early surveys on the subject.

The stiff PDE model we have in mind is that of (non)linear parabolic equations,
where two operators are stiff (say (non)linear diffusion in different directions), and a
third one is less stiff (say nonlinear transport). Our objective is to construct a method
that is third-order accurate in time when the two stiff operators are split, while the
nonstiff operator is treated explicitly in an implicit-explicit (IMEX) fashion. This
is a nontrivial task since operator-splitting methods face a second-order accuracy
barrier. More precisely, the accuracy of exponential splitting methods is reduced to
second order if one excludes any strategy requiring backward time integration and
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A1580 ALEXANDRE ERN AND JEAN-LUC GUERMOND

linear combinations of forward-stepping exponential splitting methods with negative
multiplicative coefficients; see Sheng [30], Suzuki [34], Goldman and Kaper [12], and
Blanes and Casas [5]. One remedy to break the second-order barrier consists of
adopting complex time integration. This idea was suggested by Rosenbrock [26] and
Bandrauk and Shen [3]. It was formalized up to fourth order in Gegechkori et al. [11]
and up to order fourteen in Hansen and Ostermann [16] and Castella et al. [6]. A
second class of methods also potentially capable of breaking the second-order barrier
consists of using defect correction strategies, as shown in Christlieb et al. [7].

The third option, which is the one we consider in this paper, consists of inter-
lacing two implicit Runge--Kutta (RK) schemes. By this, we mean that, at every
stage of the method, only one of the two implicit schemes has a nonzero diagonal
entry, and this feature alternates at every stage. The resulting RK scheme is called
alternating-implicit (in short, AIRK). The prototypical second-order example is ac-
tually the Peaceman--Rachford ADI method which is built by combining the implicit
midpoint rule with the Crank--Nicolson scheme. This leads to an A-stable, two-stage,
second-order AIRK scheme, where only one of the two stiff operators is treated im-
plicitly at each of the two stages. Our ambition here is not to be general, but to
demonstrate that the second-order accuracy barrier can be overcome by interlacing
two six-stage, third-order implicit RK schemes, while maintaining some form of A-
stability. In the paper, we provide two examples of such AIRK schemes. For both
examples, the two constitutive implicit RK schemes are singly diagonal and sectorially
A(\alpha )-stable, and, in one of the examples, the two schemes are even sectorially L(\alpha )-
stable. Moreover, for both examples, we propose a companion explicit RK (ERK)
scheme which can be used in conjunction with the AIRK scheme in an IMEX fashion.

The idea of interlacing two (or more) RK schemes has been well explored in the
literature. We refer the reader to Cooper and Sayfy [8], Rentrop [23], and Rice [24] for
early works on the subject, leading in particular to the notion of additive RK (ARK)
methods. An important instance of ARK schemes is the IMEX methods developed
by Ascher et al. [1, 2], Kennedy and Carpenter [17], Pareschi and Russo [20, 21],
and Zhong [37]. The order conditions for ARK schemes are well understood through
the concept of P-trees developed by Hairer [14]. A further important development of
ARK schemes is the class of generalized-structure ARK (GARK) schemes in Sandu
and G\"unther [28], where several copies of the dependent unknowns are advanced at
each stage. We refer the reader, e.g., to Gonz\'alez-Pinto et al. [13], Roberts et al. [25],
Sarshar et al. [29], and Spiteri and Wei [32] for recent developments on the subject.
We observe that the present AIRK schemes can be viewed as a particular instance of
GARK schemes (see Remark 2.2 for further discussion).

GARK schemes constitute an effective framework to devise high-order operator-
splitting techniques. However, establishing some form of stability for high-order
GARK schemes (say, beyond second-order) is still a nontrivial question at the time
of this writing. Indeed, even if the implicit RK schemes considered for each opera-
tor enjoy some form of linear stability, say A(\alpha )-stability or even L(\alpha )-stability, the
linear stability of the resulting AIRK scheme generally remains an open question.
This question can be approached by considering Dahlquist's test problem in various
settings, whereby a scalar ODE is considered with each operator represented by a
complex number in the half-complex plane with nonpositive real part. Quite impor-
tantly, the question also needs to be studied numerically on more realistic situations
beyond linear stability, e.g., for PDEs modeling nonlinear transport.

One important contribution of the paper is to identify some necessary conditions
for sectorial A(\alpha )- and L(\alpha )-stability when combining two implicit RK schemes into
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THIRD-ORDER A-STABLE AIRK SCHEMES A1581

an AIRK scheme, under the assumption that the spectra of the two split operators
lie in some fixed cone around the negative real axis with an acute half angle. This as-
sumption is reasonable for our purposes since the stiff operators represent (non)linear
diffusion processes. Moreover, we verify numerically that, when combining two opera-
tors with negative eigenvalues, the AIRK schemes we propose are indeed A(0)-stable,
uniformly with respect to the relative magnitude of the eigenvalues. Finally, we assess
numerically the performances of the proposed AIRK schemes on a series of challenging
test cases resulting from the finite element discretization of two-dimensional nonlinear
advection-diffusion problems.

The paper is organized as follows. In section 2, we make the setting precise and es-
tablish useful results to study the linear stability of AIRK schemes. Our main result is
Lemma 2.4. In section 3, we focus on six-stage implicit schemes and identify sufficient
conditions to achieve third-order accuracy as well as necessary conditions to achieve
suitable linear stability properties; see, in particular, Lemmas 3.3 and 3.5. We also
discuss the design of the companion ERK scheme to be used for the nonstiff operator.
In section 4, we study numerically the properties of the AIRK and ERK schemes
obtained in the previous section. We perform a series of tests on two-dimensional
advection-diffusion equations and nonlinear transport problems discretized in space
with finite elements. We close this work with two appendices. In Appendix A, we
give two examples of operator-splitting schemes fulfilling the design conditions identi-
fied in section 3; each example comprises an AIRK scheme and one or two companion
ERK scheme(s). In particular, we show numerically that the necessary linear stability
conditions identified in section 3 indeed lead to A(0)-stability when combining two
operators with negative eigenvalues. The A(0)-stability is uniform with respect to the
relative magnitude of the eigenvalues. Finally, in Appendix B, we collect some results
on four-stage, third-order and two-stage, second-order AIRK schemes. We show that
there is a stability barrier for the former, and that the only possible realization for
the latter is essentially the Peacemann--Rachford scheme.

2. Setting. In this section, we introduce some useful notions and derive some
preliminary results on the linear stability of AIRK schemes.

2.1. Model problem. Given a time horizon T > 0, we want to approximate
in time the following nonlinear system of I coupled ODEs, which consists of seeking
\sansU \in C1([0, T ];\BbbR I) so that

\partial t\sansU (t) =L0(t,\sansU (t)) +L1(t,\sansU (t)) +L2(t,\sansU (t)), \sansU (0) =\sansU 0 \in \BbbR I ,(2.1)

where we make the usual assumption on the Lipschitz continuity with respect to \sansU and
continuity with respect to t of L0,L1,L2. We additionally assume that the Lipschitz
constants of L0(t, \cdot ) :\BbbR I \rightarrow \BbbR I and L1(t, \cdot ) :\BbbR I \rightarrow \BbbR I are significantly larger than that
of L2(t, \cdot ) : \BbbR I \rightarrow \BbbR I . Our objective is to design a third-order time-stepping method
where L2 is treated explicitly and L0,L1 are treated implicitly in an alternating fashion
by means of an AIRK scheme.

2.2. Butcher tableaux. To achieve the task described above, we want to com-
bine three Butcher tableaux composed of s+ 1 stages where s\geq 2 is even:

c A0

b0

c A1

b1

c A2

b2
.(2.2)

Notice that the three Butcher tableaux share the same time index vector c (this prop-
erty is called internal consistency in the context of ARK schemes). We additionally
assume that
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A1582 ALEXANDRE ERN AND JEAN-LUC GUERMOND

c1 = 0, cs+1 = 1,(2.3a)

b0 = e\sansT s+1A0, b1 = e\sansT s+1A1, b2 = e\sansT s+1A2,(2.3b)

A0U = c, A1U = c, A2U = c,(2.3c)

where es+1 is the last vector of the canonical Cartesian basis of \BbbR s+1 and U is the
column vector in \BbbR s+1 having all its entries equal to one, i.e., U := (1, . . . ,1)\sansT . In
(2.3b), we request that the line vectors b0, b1, b2 be copies of the last row of the
matrices A0,A1,A2, respectively. This property means that the implicit schemes are
stiffly accurate. Moreover, the identities (2.3c) are Butcher's simplifying assumption.
Notice that the assumptions (2.3) imply that b0U = e\sansT s+1A0U = e\sansT s+1c= cs+1 = 1 and,
similarly, b1U = b2U = 1.

We assume that the matrices A0,A1 are lower triangular with the upper left
entry equal to zero, and the matrix A2 is strictly lower triangular. The scheme
associated with A2 is therefore explicit. The schemes associated with A0,A1 are a
priori diagonally implicit, but we further simplify the method by requesting that the
matrices A0,A1 have alternating nonzero coefficients on the diagonal, i.e., we assume
that

(A0)l,l = 0, mod(l,2) = 1, \forall l \in \{ 1:s+ 1\} ,(2.4a)

(A1)l,l = 0, mod(l,2) = 0, \forall l \in \{ 1:s+ 1\} .(2.4b)

We say that the combined RK scheme is alternating-implicit for this reason.
Let tn be the current discrete time node and \tau n be the current time step. We set

tn+1 := tn + \tau n and tn,m := tn + cm\tau n for all m \in \{ 1:s+1\} . The IMEX RK scheme
associated with (2.2) consists of marching from tn to the next discrete time node tn+1

by performing the following s stages: Given \sansU n, set \sansU n,1 := \sansU n and compute, for all
l \in \{ 2:s+ 1\} ,

\sansU n,l  - \tau n
\Bigl\{ 
(A0)llL0(t

n,l,\sansU n,l) + (A1)llL1(t
n,l,\sansU n,l)

\Bigr\} 
(2.5)

=\sansU n + \tau n
\sum 

m\in \{ 1:l - 1\} 

\Bigl\{ 
(A0)lmL0(t

n,m,\sansU n,m) + (A1)lmL1(t
n,m,\sansU n,m)

+ (A2)lmL2(t
n,m,\sansU n,m)

\Bigr\} 
,

and finally set \sansU n+1 := \sansU n,s+1. Owing to the assumption (2.4), we obtain an AIRK
scheme since, at every stage, only one of the stiff operators L0,L1 is treated implicitly.
The operator L2 is treated explicitly at all stages.

Remark 2.1 (s-stage AIRK). Note that the first stage is trivial (\sansU n,1 :=\sansU n). The
(s + 2)th stage is trivial as well (\sansU n,s+2 = \sansU n,s+1) owing to the assumption (2.3b).
Hence, the scheme is actually composed of s stages.

Remark 2.2 (rewriting in GARK format). Setting s\prime := s
2 , one can distribute

the stage updates (\sansU l)l\in \{ 1:s+1\} (we drop the superscript n to ease the notation) into
the two collections (\sansY 1,l)l\in \{ 1:s\prime +1\} and (\sansY 2,l)l\in \{ 1:s\prime +1\} so that \sansY 1,1 = \sansY 2,1 = \sansU 1 and
\sansY 1,l =\sansU 2l - 2, \sansY 2,l =\sansU 2l - 1 for all l \in \{ 2:s\prime +1\} . Then, (2.5) can be rewritten as follows:
For all l \in \{ 2:s\prime +1\} , solve sequentially for i\in \{ 1,2\} ,

\sansY i,l =\sansU n + \tau n
\sum 

m\in \{ 1:l\} 

\sum 
p,q\in \{ 0,1\} 

\frakA i,pq
lm Lp(t

n,m,\sansY q,m),(2.6)
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THIRD-ORDER A-STABLE AIRK SCHEMES A1583

where the eight arrays (\frakA i,pq)i,p,q\in \{ 0,1\} are all of order (s\prime +1), lower triangular, and
with upper left diagonal entry equal to zero. Moreover, only the arrays \frakA 0,00,\frakA 1,11

and \frakA 1,00,\frakA 1,10 have nonzero diagonal entries (the latter two do not lead to an implicit
treatment owing to the sequential solve in i\in \{ 0,1\} ). Notice that GARK schemes are
often written by discarding the arrays \frakA i,pq with p \not = q. These arrays are nonzero in
the present AIRK formalism. Another significant difference is that the two variables
\sansY 1,l and \sansY 2,l are not synchronized in the present setting. We refer the reader to
section A.4 for an example with a six-stage AIRK scheme.

2.3. Linear stability: Amplification functions. The classical approach to
analyzing the linear stability of a single implicit RK scheme consists of considering
the scalar ODE \partial t\sansu = \lambda \sansu (t) with \lambda \in \BbbC  - := \{ z \in \BbbC | \Re (z) \leq 0\} (this ODE is often
called Dahlquist's test problem). Separately considering the Butcher tableaux in (2.2)
for i= 0 and i= 1 leads to the following two amplification functions for all i \in \{ 0,1\} 
(which we call single-array amplification functions): For all z \in \BbbC  - ,

Ri(z) := 1+
\rho i(z)

det(I  - zAi)
, \rho i(z) := det(I  - zAi)zbi(I  - zAi)

 - 1U,(2.7)

where U := (1, . . . ,1)\sansT . We introduce the function \rho i(z) for later use. Recall that the
implicit RK scheme associated with the ith Butcher tableau is said to be (sectorially)
A(\alpha )-stable if there is an angle \alpha i \in [0, \pi 2 ] such that | Ri(z)| \leq 1 for all z \in C(\alpha i); see
Widlund [35] and Hairer and Wanner 15, Defs. 3.7 and 3.9]. Here, for a generic angle
\beta \in [0, \pi 2 ], we defined the cone C(\beta ) := \{ z \in \BbbC  - | arg( - z)\leq \beta \} . Moreover, the scheme
is said to be L(\alpha )-stable if it is A(\alpha )-stable and \ell i := lim| z| \rightarrow \infty Ri(z) = 0.

In the present setting with two stiff operators, the natural extension of Dahlquist's
test problem is to consider the scalar ODE

\partial t\sansU (t) = \lambda 0\sansU (t) + \lambda 1\sansU (t),(2.8)

with \lambda i \in \BbbC  - for all i \in \{ 0,1\} . The above problem is relevant when the operators
L0 and L1 are linear and can be simultaneously diagonalized (or commute, which is
equivalent); see Remark 2.5 for further discussion. Asking that \lambda i be allowed to span
\BbbC  - is, however, too general for our present purpose, where the two stiff operators are
diffusion operators, so that their spectrum is a discrete subset of the negative real
axis in the complex plane. To allow for a bit more generality at this stage, we assume
that there is an angle \beta \in [0, \pi 2 ) such that \lambda i \in C(\beta ) for all i \in \{ 0,1\} . We have \beta = 0
for diffusion operators. Setting \lambda 12 :=

\lambda 0+\lambda 1

2 , \theta := \lambda 1

\lambda 0+\lambda 1
, 1 - \theta = \lambda 0

\lambda 0+\lambda 1
, (2.8) reduces

to \partial t\sansU (t) = 2\lambda 12

\bigl( 
(1 - \theta )\sansU (t)+ \theta \sansU (t)

\bigr) 
. Observe that both \theta and (1 - \theta ) are in the ball

B(\beta ) centered at 1
2 and of radius 1

2 (1 + tan2(\beta ))
1
2 . Therefore, linear stability can be

studied by assuming that \theta and (1 - \theta ) are uniformly bounded.
The amplification function for the scheme (2.5) applied to the ODE (2.8) is

R\theta (z) := 1+
\rho \theta (z)

det(I  - zA\theta )
, \rho \theta (z) := det(I  - zA\theta )zb\theta (I  - zA\theta )

 - 1U,(2.9)

with A\theta := (1 - \theta )A0+ \theta A1 and b\theta := (1 - \theta )b0+ \theta b1. In the above setting, we can use
the following notion of stability for AIRK schemes.

Definition 2.3 (sectorial A(\alpha )-stability and L(\alpha )-stability for AIRK schemes).
We say that the AIRK scheme (2.5) is sectorial A(\alpha )-stable if there is an angle \alpha \in 
[0, \beta ] s.t. for all \theta \in B(\beta ), | R\theta (z)| \leq 1 for all z \in C(\alpha ). We say that the scheme is
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A1584 ALEXANDRE ERN AND JEAN-LUC GUERMOND

sectorial L(\alpha )-stable if it is A(\alpha )-stable and \ell \theta := lim| z| \rightarrow \infty R\theta (z) = 0 for all \theta \in B(\beta ).
In what follows, to ease the terminology, we simply speak of A(\alpha )- and L(\alpha )-stability.

For a lower-triangular matrix \Lambda of order (s+1) with diagonal entries \{ \lambda i\} i\in \{ 1:s+1\} 
(the example we have in mind is \Lambda =A\theta ), we set

trm(\Lambda ) :=
\sum 

(i1,...,im)\in \{ 1:s+1\} m

i1<...<im

\lambda i1 \times . . .\times \lambda im \forall m\in \{ 1:s+1\} ,(2.10)

and we conventionally set tr0(\Lambda ) := 1. Notice that tr1(\Lambda ) is the usual trace of \Lambda and
trs+1(\Lambda ) = \lambda 1 \times \cdot \cdot \cdot \times \lambda s+1. The characteristic polynomial of the matrix \Lambda is

\pi \Lambda (t) = det(tI  - \Lambda )=
\sum 

k\in \{ 0:s+1\} 

( - 1)s+1 - k trs+1 - k(\Lambda )t
k.(2.11)

The Hamilton--Cayley theorem gives

\pi \Lambda (\Lambda ) =
\sum 

k\in \{ 0:s+1\} 

( - 1)s+1 - k trs+1 - k(\Lambda )\Lambda 
k = 0\in \BbbR s+1,s+1.(2.12)

Finally, we notice that, whenever the matrix \Lambda has only m nonzero diagonal coeffi-
cients with m \leq s, we have trk(\Lambda ) = 0 for all k \in \{ m+1:s+1\} . Notice, in particular,
that trs+1(A\theta ) = 0 and that trm(A0) = trm(A1) = 0 for all m\geq s

2 + 1 owing to (2.4).
To gain some insight into the amplification function R\theta (z), we study the function

\rho \theta (z) defined in (2.9).

Lemma 2.4 (function \rho \theta ). The function \rho \theta defined in (2.9) is a polynomial in z
of degree at most s, \rho \theta (z) =

\sum 
k\in \{ 0:s - 1\} \omega k(\theta )z

k+1, where for all k \in \{ 0:s - 1\} ,

\omega k(\theta ) :=
\sum 

l\in \{ 0:k\} 

\beta k - l(\theta )\tau l(\theta ),(2.13a)

\beta k(\theta ) := b\theta A
k
\theta U, \tau k(\theta ) := ( - 1)k trk(A\theta ).(2.13b)

Moreover, \omega k(\theta ) is a polynomial in \theta of degree at most k with real-valued coefficients.

Proof. Since \Phi \theta (z) := det(I  - zA\theta )(I  - zA\theta )
 - 1 is the transpose of the cofactor

matrix of (I  - zA\theta ) and since the matrix (I  - zA\theta ) is lower triangular with the
upper left entry equal to 1, the entries of the matrix \Phi \theta (z) are all polynomials in z
of degree at most s. Hence, \rho \theta (z) is a polynomial of degree at most (s + 1) in z.
To see that the degree of \rho \theta (z) is actually at most s instead of (s+ 1), we compute
the coefficients of the matrix-valued polynomial \Phi \theta (z). Note that det(I  - zA\theta ) =\sum 

l\in \{ 0:s\} ( - 1)l trl(A\theta )z
l, since trs+1(A\theta ) = 0. Moreover, using the Neumann series

representation of (I  - zA\theta )
 - 1, and recalling that \Phi \theta (z) is a polynomial in z of degree

at most s, we obtain

\Phi \theta (z) =

\Biggl\{ \sum 
l\in \{ 0:s\} 

( - 1)l trl(A\theta )z
l

\Biggr\} \sum 
m\in \BbbN 

zmAm
\theta =

\sum 
k\in \{ 0:s\} 

\Biggl\{ \sum 
l\in \{ 0:k\} 

( - 1)l trl(A\theta )A
k - l
\theta 

\Biggr\} 
zk.

Since \rho \theta (z) = zb\theta \Phi \theta (z)U , we infer using the definitions (2.13b) that

\rho \theta (z) =
\sum 

k\in \{ 0:s\} 

\Biggl\{ \sum 
l\in \{ 0:k\} 

\tau l(\theta )\beta k - l(\theta )

\Biggr\} 
zk+1.
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THIRD-ORDER A-STABLE AIRK SCHEMES A1585

Setting \omega k(\theta ) :=
\sum 

l\in \{ 0:k\} \beta k - l(\theta )\tau l(\theta ) for all k \in \{ 0:s\} as in (2.13a), and observing
that \omega 0(\theta ) = \beta 0(\theta )\tau 0(\theta ) = 1 (notice that \beta 0(\theta ) = b\theta U = (1 - \theta ) + \theta = 1), we conclude
that \rho \theta (z) =

\sum 
k\in \{ 0:s\} \omega k(\theta )z

k+1. Therefore, it only remains to prove that \omega s(\theta ) = 0.

Using (2.3b), i.e., \beta m(\theta ) = b\theta A
m
\theta U = e\sansT s+1A

m+1
\theta U for all m\geq 0, we obtain

\omega s(\theta ) =
\sum 

l\in \{ 0:s\} 

\tau l(\theta )\beta s - l(\theta ) = e\sansT s+1

\Biggl( \sum 
l\in \{ 0:s\} 

( - 1)l trl(A\theta )A
s+1 - l
\theta 

\Biggr) 
U

= e\sansT s+1

\Biggl( \sum 
l\in \{ 1:s+1\} 

( - 1)s+1 - l trs+1 - l(A\theta )A
l
\theta 

\Biggr) 
U

= e\sansT s+1\pi A\theta 
(A\theta )U,

where we used that trs+1(A\theta ) = 0. Owing to the Hamilton--Cayley theorem, we con-
clude that \omega s(\theta ) = 0. Finally, the expressions (2.13) show that \omega k(\theta ) is a polynomial
in \theta of degree at most (k+1) having real-valued coefficients. Since A\theta U = c owing to
(2.3c), the degree is at most k.

Remark 2.5 (stability criteria). The simple stability criterion based on (2.8),
often called scalar or linear stability in the literature, only gives necessary stability
conditions. It is definitely not sufficient. The analysis based on (2.8) is valid for linear
ODE systems if the linear operators L1 and L2 commute, as they are simultaneously
diagonalizable in this case. Hence, the analysis based on (2.8) is not fully satisfactory
as our objective is to construct a method that is stable irrespective of the commuting
properties of L0 and L1. To compensate for this lack of theoretical basis and to
illustrate that the proposed method has reasonable stability properties, all the tests
reported in the paper are done with operators L0 and L1 that do not commute. More
restrictive design conditions could in principle be obtained by enforcing other stability
criteria like nonlinear stability (see Sandu and G\"unther [28, section 4.2]) or matrix
stability (see Kvaern{\e} [18], Sandu [27, section 4.2], and the references cited therein).

3. Six-stage third-order AIRK schemes. The main focus of the paper is
when s= 6, with both A0 and A1 having three nonzero diagonal coefficients interlaced
along the diagonal. Thus, we consider two six-stage implicit RK schemes having the
following structure (we omit the vectors b0, b1 since the schemes are stiffly accurate;
see (2.3b)):

0 0
c2 A0

21 A0
22

c3 A0
31 A0

32 0
c4 A0

41 A0
42 A0

43 A0
44

c5 A0
51 A0

52 A0
53 A0

54 0
c6 A0

61 A0
62 A0

63 A0
64 A0

65 A0
66

1 A0
71 A0

72 A0
73 A0

74 A0
75 A0

76 0

0 0
c2 A1

21 0
c3 A1

31 A1
32 A1

33

c4 A1
41 A1

42 A1
43 0

c5 A1
51 A1

52 A1
53 A1

54 A1
55

c6 A1
61 A1

62 A1
63 A1

64 A1
65 0

1 A1
71 A1

72 A1
73 A1

74 A1
75 A1

76 A1
77

3.1. Third-order conditions. Let U be the column vector in \BbbR 7 having all its
entries equal to 1. Let c2 be the column vector in \BbbR 7 having all its entries equal c2m
for all m\in \{ 1:7\} . The single-array third-order conditions are (2.3c) together with
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A1586 ALEXANDRE ERN AND JEAN-LUC GUERMOND

b0c= b1c=
1

2
,(3.1a)

b0c
2 = b1c

2 =
1

3
,(3.1b)

b0A0c= b1A1c=
1

6
.(3.1c)

Recall that b0U = b1U = 1 follows from (2.3b) and (2.3c). Moreover, the coupling
third-order conditions are

b0A1c= b1A0c=
1

6
.(3.2)

Lemma 3.1 (\beta 0(\theta ), \beta 1(\theta ), \beta 2(\theta )). Assume (2.3c), (3.1), and (3.2). With the
coefficients \beta k(\theta ) defined in (2.13b), the following holds:

\beta 0(\theta ) = 1, \beta 1(\theta ) =
1

2
, \beta 2(\theta ) =

1

6
.(3.3)

Proof. By linearity, we have b\theta U = 1, b\theta c =
1
2 , and A\theta c = U . This shows that

\beta 0(\theta ) = b\theta U = 1 and \beta 1(\theta ) = b\theta A\theta U = b\theta c = 1
2 owing to (2.3c). Finally, a direct

calculation shows that

\beta 2(\theta ) = b\theta A\theta c= (1 - \theta )2b0A0c+ \theta (1 - \theta )(b0A1c+ b1A0c) + \theta 2b1A1c

=
1

6
((1 - \theta ) + \theta )2 =

1

6
,

where we used (2.3c), (3.1c), and (3.2).

3.2. Linear stability. This section collects important results concerning the
amplification function associated with the combined Butcher tableaux and the ampli-
fication functions associated with each tableau individually (which we call single-array
amplification functions).

Lemma 3.2 (function \rho \theta (z)). The function \rho \theta defined in (2.9) is a polynomial in
z of degree at most 6, of the form \rho \theta (z) =

\sum 
k\in \{ 0:5\} \omega k(\theta )z

k+1 with

\omega 5(\theta ) = (b\theta A
4
\theta c) + (b\theta A

3
\theta c)\tau 1(\theta ) + (b\theta A

2
\theta c)\tau 2(\theta ) +

1

6
\tau 3(\theta ) +

1

2
\tau 4(\theta ) + \tau 5(\theta ),(3.4a)

\omega 4(\theta ) = (b\theta A
3
\theta c) + (b\theta A

2
\theta c)\tau 1(\theta ) +

1

6
\tau 2(\theta ) +

1

2
\tau 3(\theta ) + \tau 4(\theta ),(3.4b)

\omega 3(\theta ) = (b\theta A
2
\theta c) +

1

6
\tau 1(\theta ) +

1

2
\tau 2(\theta ) + \tau 3(\theta ),(3.4c)

\omega 2(\theta ) =
1

6
+

1

2
\tau 1(\theta ) + \tau 2(\theta ),(3.4d)

\omega 1(\theta ) =
1

2
+ \tau 1(\theta ),(3.4e)

and \omega 0(\theta ) = 1.

Proof. Combine Lemma 2.4 with Lemma 3.1 and (2.3c) to establish (3.4).

Lemma 3.3 (necessary condition for A(\alpha )-stability, AIRK scheme). A necessary
condition for the A(\alpha )-stability of the AIRK scheme is

\omega 5(\theta ) = 0 \forall \theta \in B(\beta ).(3.5)

Moreover, under this condition, we have \ell \theta = 1 for all \theta \in B\circ (\beta ) :=B(\beta )\setminus \{ 0,1\} .
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THIRD-ORDER A-STABLE AIRK SCHEMES A1587

Proof. We notice that, as | z| \rightarrow \infty , \rho \theta (z) \sim \omega 5(\theta )z
6 for all \theta \in B(\beta ) such that

\omega 5(\theta ) \not = 0, whereas det(I  - zA\theta )\sim \theta 3(1 - \theta )3 tr3(A0) tr3(A1)z
6 for all \theta \in B\circ (\beta ). This

implies that R\theta (z)\sim 1 + \omega 5(\theta )
\theta 3(1 - \theta )3

\bigl( 
tr3(A0) tr3(A1)

\bigr)  - 1
for all \theta \in B\circ (\beta ) s.t. \omega 5(\theta ) \not = 0.

Since \omega 5(\theta ) \in \BbbP 5[\theta ], R\theta (z) can stay bounded as | z| \rightarrow \infty only if (3.5) holds true.
Finally, the fact that \ell \theta = 1 for all \theta \in B\circ (\beta ) readily follows from the above asymptotic
expression for R\theta (z) and \omega 5(\theta ) = 0.

Remark 3.4 (barrier on L(\alpha )-stability). A striking consequence of (3.3) is that
a six-stage third-order AIRK scheme cannot be L(\alpha )-stable since \ell \theta = 1 \not = 0 for all
\theta \not \in \{ 0,1\} . We shall see though that it is still possible to make the two interlaced
implicit RK schemes L(\alpha )-stable (see Remark 3.7 below for further discussion).

Let us now consider the single-array amplification functions. Let i \in \{ 0,1\} and
set \rho i(z) := det(I  - zAi)zbi(I  - zAi)

 - 1U (see (2.7)). We infer from Lemma 3.2 that
\rho i(z) =

\sum 
k\in \{ 0:5\} \omega 

i
kz

k+1 with

\omega i
k := \omega k(i) \forall i\in \{ 0,1\} , \forall k \in \{ 0:5\} .(3.6)

Let us set \tau ik := \tau k(i) (recall that \tau k(\theta ) := ( - 1)k trk(A\theta )).

Lemma 3.5 (necessary condition for A(\alpha )-stability, single RK schemes). A nec-
essary condition for A(\alpha )-stability for each single RK scheme is, for all i \in \{ 0,1\} ,

\omega i
3 = \omega i

4 = \omega i
5 = 0,(3.7a)

\omega i
2 = (1 - \ell i)\tau 

i
3, \ell i \in [ - 1,1].(3.7b)

Proof. The reasoning is similar to that in the proof of Lemma 3.3, the only
difference being that det(I  - zAi) \sim  - tr3(Ai)z

3 as | z| \rightarrow \infty . Therefore, Ri(z) can
stay bounded as | z| \rightarrow \infty only if \omega i

3 = \omega i
4 = \omega i

5 = 0, which gives (3.7a). Moreover, in

this situation, we obtain lim| z| \rightarrow \infty Ri(z) = 1 - \omega i
2

tr3(Ai)
= \ell i \in [ - 1,1] owing to (3.7b).

Owing to (3.4) and since \tau i4 = \tau i5 = 0 (recall that both matrices Ai have only three
nonzero diagonal coefficients), the conditions (3.7a) can be rewritten as follows: For
all i\in \{ 0,1\} ,

(biA
4
i c) + (biA

3
i c)\tau 

i
1 + (biA

2
i c)\tau 

i
2 +

1

6
\tau i3 = 0,(3.8a)

(biA
3
i c) + (biA

2
i c)\tau 

i
1 +

1

6
\tau i2 +

1

2
\tau i3 = 0,(3.8b)

(biA
2
i c) +

1

6
\tau i1 +

1

2
\tau i2 + \tau i3 = 0,(3.8c)

1

6
+

1

2
\tau i1 + \tau i2 + (1 - \ell i)\tau 

i
3 = 0.(3.8d)

Remark 3.6 (singly diagonal case). If the array Ai is singly diagonal with entry
a, (3.8d) readily implies that this entry must be a positive root of the cubic equation
(1 - \ell )x3 - 3x2+ 3

2x - 
1
6 = 0. For \ell = 0, we obtain a= 0.1589 . . .. For \ell = 1, the equation

becomes quadratic and the positive root is a= 1
6 . Notice also that, if both arrays A0

and A1 are singly diagonal and such that \ell 0 = \ell 1, (3.7b) implies that \omega 0
2 = \omega 1

2 . Since
\omega 0
1 = \omega 1

1 = 1
2 + 3a by (3.4e), we infer that the amplification functions R0 and R1 are

the same.

Remark 3.7 (singular limit). Recall that \ell \theta = 1 for all \theta \in B\circ (\beta ) owing to
Lemma 3.3, whereas Lemma 3.5 shows that it is possible to fix \ell i \in [ - 1,1] for all

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

9/
25

 to
 1

28
.9

3.
16

2.
24

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A1588 ALEXANDRE ERN AND JEAN-LUC GUERMOND

Table 3.1
Design conditions for six-stage third-order AIRK schemes.

\#cdts. i= 0 i= 1 ref

12 A0U = c A1U = c (2.3c)

2 b0c=
1
2

b1c=
1
2

(3.1a)

2 b0c2 = 1
3

b1c2 = 1
3

(3.1b)

2 b0A0c=
1
6

b1A1c=
1
6

(3.1c)

6 \omega 0
3 = \omega 0

4 = \omega 0
5 = 0 \omega 1

3 = \omega 1
4 = \omega 1

5 = 0 (3.7a)

2 \omega 0
2 = (1 - \ell 0)\tau 03 \omega 1

2 = (1 - \ell 1)\tau 13 (3.7b)

2 b1A0c= b0A1c=
1
6

(3.2)

4 \omega \prime 
5(0) = \omega \prime \prime 

5 (0) = \omega \prime 
5(1) = \omega \prime \prime 

5 (1) = 0 (3.5)

2 \omega \prime 
4(0) = \omega \prime 

4(1) = 0 --

1 \omega 4(
1
2
) = \epsilon --

i \in \{ 0,1\} . There are, therefore, two somewhat natural choices when it comes to fix-
ing the limits \ell i. The first one is to select \ell 0 = \ell 1 = 0, so that the two constitutive
implicit RK schemes are L(\alpha )-stable, but in this case the limits lim| z| \rightarrow \infty and lim\theta \rightarrow 0

(or lim\theta \rightarrow 1) do not commute. The second one is to enforce \ell 0 = \ell 1 = 1, which leads
to two A(\alpha )-stable implicit RK schemes, and the above two limits commute.

3.3. Summary of devising conditions. The devising conditions on the two
tableaux composing the AIRK scheme are collected in Table 3.1. We first collect in
the two columns labeled i = 0 and i = 1 the design conditions that are specific to
each Butcher tableau. The last four lines of the table (spanning the two columns)
collect the design conditions coupling both Butcher tableaux. The design parameters
are the column vector c \in \BbbR 7 with c1 = 0 and c7 = 1, the limits \ell 0, \ell 1 \in [ - 1,1],
and a small parameter \epsilon \geq 0. Since \omega 5(\theta ) is a polynomial of degree at most 5 in \theta 
having real coefficients, we infer that \omega 5 \equiv 0 iff \omega 5(0) = \omega 5(1) = 0, \omega \prime 

5(0) = \omega \prime 
5(1) = 0,

and \omega \prime \prime 
5 (0) = \omega \prime \prime 

5 (1) = 0, which are indeed the conditions recorded in Table 3.1. As
\omega 4(\theta )z

5 is the dominating factor in \rho (\theta ), one can further reduce the magnitude of
the amplification function by annihilating \rho 4(\theta ). This is achieved by setting \omega 4(0) =
\omega 4(1) = 0, \omega \prime 

4(0) = \omega \prime 
4(1) = 0, and \omega 4(

1
2 ) = \epsilon . Our numerical experiments have shown

that achieving \omega 4(
1
2 ) = 0 is possible if one does not insist on the two tableaux being

singly diagonal. But, if one insists on A0 and A1 being singly diagonal, then one can
only enforce \omega 4(

1
2 ) to be of order 3.8\times 10 - 5 \simeq \epsilon when \ell 0 = \ell 1 = 1 and 7.9\times 10 - 5 \simeq \epsilon 

when \ell 0 = \ell 1 = 0.
There are altogether 48 unknowns (24 for each Butcher tableau), and there are

altogether 35 design conditions in Table 3.1. Moreover, we restrict ourselves to singly
diagonal arrays; i.e., we additionally require that

A0
22 =A0

44 =A0
66, A1

33 =A1
55 =A1

77,(3.9)

giving four additional devising conditions. The above undetermined system of 39
nonlinear equations can be solved. The results reported in Appendix A have been
obtained by using the nonlinear solver nlsolve in Julia. As the problem is highly
nonlinear, the algorithm is first run with \epsilon = 0 without enforcing (3.9). Then, one
uses this solution as initialization to run the algorithm again with (3.9) but ignoring
the constraint \omega 4(

1
2 ) = 0. We refer the reader to Appendix A for two examples and

some implementation details.

3.4. Companion ERK scheme. We now design a companion ERK scheme
that can be used in combination with the above AIRK scheme in the IMEX setting.
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THIRD-ORDER A-STABLE AIRK SCHEMES A1589

Therefore, we consider a third Butcher array in the form (we again omit the vector
b2)

0 0
c2 A2

21 0
c3 A2

31 A2
32 0

c4 A2
41 A2

42 A2
43 0

c5 A2
51 A2

52 A2
53 A2

54 0
c6 A2

61 A2
62 A2

63 A2
64 A2

65 0
1 A2

71 A2
72 A2

73 A2
74 A2

75 A2
76 0

To obtain a third-order scheme, we enforce

A2U = c, b2c=
1

2
, b2c

2 =
1

3
, b2A2c=

1

6
,(3.10)

together with the coupling conditions

b2A0c= b0A2c= b2A1c= b1A2c=
1

6
.(3.11)

This gives altogether 13 conditions for 21 unknowns. In some cases, we enforce the
following three conditions to achieve linear order four:

b2c
3 =

1

4
, b2A2c

2 =
1

12
, b2A2c=

1

24
.(3.12)

The resulting undetermined set of 13 or 16 nonlinear equations can be solved. We
refer the reader to Appendix A for two examples obtained by using the nonlinear
solver nlsolve in Julia.

4. Numerical experiments. In this section, we illustrate numerically the per-
formance of the method described in section 3 using the Butcher tableaux given in
Appendix A. All the tests reported in this section are done in double precision.

4.1. ODEs. We start illustrating the proposed method by solving the following
2\times 2 system of ODEs:

\partial t\sansU (t) =L(\sansU (t)) + \sansF (t), \sansU (0) =\sansU 0 \in \BbbR 2,(4.1)

where L :=L0 +L1 with L0 := - P0D0P
 - 1
0 , L1 := - P1D1P

 - 1
1 , and

P0 :=

\biggl( 
1 3
3  - 1

\biggr) 
, D0 :=

\biggl( 
0.023 0
0 0.073

\biggr) 
,(4.2a)

P1 :=

\biggl( 
2  - 3

 - 1  - 1

\biggr) 
, D1 :=

\biggl( 
0.024 0
0 0.1345

\biggr) 
.(4.2b)

The two matrices L0 and L1 do not commute. More precisely, denoting \| \cdot \| Fr the
Frobenius norm, we have 2\| L0L1  - L1L0\| Fr/\| L0 + L1\| Fr \simeq 0.74. The matrix L is
diagonalizable, and its two eigenvalues are approximately \lambda 0 \approx  - 0.085, \lambda 1 \approx  - 0.17.
Denoting L= PDP - 1 the diagonal decomposition of L, and \sansC 0, \sansC 1 the two columns
of the matrix P , we initialize the system with \sansU 0 := \sansC 0 + 3\sansC 1. When \sansF \equiv 0, the
exact solution to the autonomous system is \sansU auto(t) = \sansC 0e

\lambda 0t + 3\sansC 1e
\lambda 1t. We also

construct a solution with a nonzero source by setting \sansF (t) := \partial t\sansW  - L(\sansW (t)) with
\sansW (t) := (cos(t), sin(2t))\sansT . In this case, the exact solution is \sansU auto(t) +\sansW (t).
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A1590 ALEXANDRE ERN AND JEAN-LUC GUERMOND

Table 4.1
\ell 2-errors and convergence rates for the ODE system (4.1). Butcher tableaux from section A.1.

Autonomous sol. Nonautonomous sol.

i error rate error rate

0 0.1381E-05 -- 0.2062E-02 --

1 0.1690E-06 3.03 0.2119E-03 3.28

2 0.2090E-07 3.02 0.2522E-04 3.07
3 0.2598E-08 3.01 0.3112E-05 3.02

4 0.3239E-09 3.00 0.3875E-06 3.01
5 0.4043E-10 3.00 0.4837E-07 3.00

6 0.5054E-11 3.00 0.6043E-08 3.00

7 0.6673E-12 2.92 0.7552E-09 3.00
8 0.1222E-12 2.45 0.9437E-10 3.00

9 0.7246E-14 4.08 0.1181E-10 3.00

We test the method using the decomposition L=L0+L1 and the Butcher tableaux
from section A.1. The problem is solved over the time interval [0, T ] with T := 10. The
\ell 2-norm of the error divided by the \ell 2-norm of \sansU 0 is measured at T for various time
steps \tau i = 2 - i, i \in \{ 0:9\} . The results are reported in Table 4.1 for the two solutions
(the autonomous one and the nonautonomous one). Up to machine accuracy, we
observe third-order convergence rates as expected.

Remark 4.1 (sources). Notice that there is variety of choices to approximate the
source term in (4.1). For instance, one can regroup L0 and \sansF or regroup L1 and \sansF .
One can also consider a convex combination by regrouping L0 and \alpha \sansF and regrouping
L1 and (1 - \alpha )\sansF for all \alpha \in [0,1]. Finally, one can also treat \sansF by using the companion
matrix A2 for the ERK scheme. The tests reported below are done by regrouping L0

and \sansF . No significant difference is observed when using any of the other choices (not
shown here for brevity).

4.2. Heat equation. We continue with the two-dimensional heat equation

\partial tu(\bfitx , t) - \mu \Delta u(\bfitx , t) = f(\bfitx , t), (\bfitx , t)\in D\times (0, T ), u(\bfitx ,0) = u0(\bfitx ), \bfitx \in D,(4.3)

supplemented with either Dirichlet or Neuman boundary conditions and \mu := 1.

4.2.1. The setting. The tests are done in the unit square D := (0,1)2. We test
homogeneous Dirichlet and homogeneous Neumann boundary conditions. Using the
notation \bfitx := (x, y), the two exact solutions we use are

uDir(\bfitx , t) = (2 + sin(t)) sin(2\pi x) sin(3\pi y) + 64x(1 - x)y(1 - y) sin(x+ y+ t),(4.4)

uNeu(\bfitx , t) = (2+sin(t)) cos(2\pi x) cos(3\pi y)+4x2(1.5 - x)y2(1.5 - y)(2+sin(\pi t)).(4.5)

We apply the operator-splitting method by using the directional decomposition \Delta =
\partial xx+\partial yy, i.e., L0(v) = \partial xxv and L1(v) = \partial yyv. Although, in this case, it is traditional
to use finite differences to realize the approximation in space, we illustrate the method
by using continuous finite elements. Let Vh be the said finite element space and
\{ \varphi i\} i\in \scrV be the associated shape functions. The set \scrV is used to enumerate the shape
functions with \#(\scrV ) = I. Let (g,h)L2(D) :=

\int 
D
g(\bfitx )h(\bfitx )dx be the canonical inner

product in L2(D). We define the bilinear forms a0(uh, vh) := (\mu \partial xuh\partial xvh)L2(D) and
a1(uh, vh) := (\mu \partial yuh\partial yvh)L2(D). Then we consider the semidiscrete problem consisting
of seeking uh \in C1([0, T ];Vh) such that, for all t\in [0, T ],

(\partial tuh(t),\varphi i)L2(D) + a0(uh(t),\varphi i) + a1(uh(t),\varphi i) = (f(t),\varphi i)L2(D) \forall i\in \scrV ,(4.6)
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THIRD-ORDER A-STABLE AIRK SCHEMES A1591

and uh(\cdot ,0) = u0h, where u0h is some quasi-optimal approximation of u0 in Vh. Let \scrM 
be the mass matrix associated with the L2(D)-inner product and \scrS 0, \scrS 1 be the stiffness
matrices associated with the bilinear forms a0 and a1, respectively. Let \sansF (t) be the
vector in \BbbR I with entries (f(t),\varphi i)L2(D). Then, setting uh(\bfitx , t) :=

\sum 
i\in \scrV \sansU i(t)\varphi i(\bfitx ),

the system (4.6) reduces to solving the ODE system

\scrM \partial t\sansU (t) = \scrS 0\sansU (t) + \scrS 1\sansU (t) + \sansF (t).(4.7)

We solve (4.7) using the method presented in this paper. We use continuous finite
elements of degree 2 to match the third-order accuracy in time of the method. We
recall that the theoretical convergence rate for quadratic elements is cubic in the L2-
norm and quadratic in the H1-seminorm, and the Riesz projection of the solution to
(4.3) is superconvergent in theH1-seminorm up to third order. We run the simulations
up to T := 1

2 on six consecutively refined meshes.

4.2.2. Approximation of source term. As mentioned in Remark 4.1, the
source \sansF (t) in the ODE system (4.7) can be handled in a variety of ways. We in-
vestigate in this section the three methods discussed in Remark 4.1 to handle this
situation. We show three series of tests using the Dirichlet solution (4.4). In the
first series of tests, we treat \sansF (t) using the companion Butcher tableau A2; i.e., we
set L2(t) := \sansF (t). In the second series, we regroup \sansF (t) and \scrS 1\sansU (t) (i.e., we set
L1(t,\sansU (t)) := \scrS 1\sansU (t)+\sansF (t)), and in the third series, we combine \sansF (t) and \scrS 0\sansU (t) (i.e.,
we set L0(t,\sansU (t)) := \scrS 0\sansU (t)+\sansF (t)). In all the tests, we use the L-stable pair (A0,A1)
from section A.1. The Dirichlet solution (4.4) has been manufactured to amplify the
phenomenon we are about to discuss now.

The results are reported in Table 4.2. We show both the relative L2-norm and
H1-seminorm of the solution at the final time T = 1

2 . We observe a loss of conver-
gence as the mesh is refined for the first and second methods (see the left and middle
shaded columns in the table). The asymptotic convergence rate in the L2-norm and
H1-seminorm for these two methods is \scrO (h2.25) and \scrO (h1.5), respectively, instead of
the optimal rates \scrO (h3) and \scrO (h2). Visual inspection of the solutions reveals the
formation of spurious boundary layers as often observed for many splitting methods
when enforcing Dirichlet boundary conditions. On the other hand, we observe that
the third method does not suffer from any order reduction (see the rightmost shaded
column in the table). The convergence rate in the H1-seminorm is even superconver-
gent, which is a clear indication that no spurious boundary layer appears.

Table 4.2
Source approximation. \BbbP 2 approximation of (4.3) with the Dirichlet solution (4.4).

L2(t) := F(t)

I L2-err rate
441 2.78E-03 –

1681 2.58E-04 3.55
6561 4.13E-05 2.69

25921 8.45E-06 2.31
103041 1.78E-06 2.26
410881 3.76E-07 2.25

I H1-err rate
441 1.21E-02 –

1681 1.88E-03 2.79
6561 3.95E-04 2.29

25921 1.14E-04 1.81
103041 3.68E-05 1.64
410881 1.22E-05 1.59

L1(t,U(t)) := S1(U(t)) + F(t)

L2-err rate
3.32E-03 –
4.42E-04 3.01
8.67E-05 2.39
1.84E-05 2.26
3.91E-06 2.24
8.29E-07 2.24

H1-err rate
1.35E-02 –
2.99E-03 2.25
9.33E-04 1.71
3.17E-04 1.57
1.10E-04 1.54
3.80E-05 1.53

L0(t,U(t)) := S0(U(t)) + F(t)

L2-err rate
2.19E-03 –
1.23E-04 4.31
9.55E-06 3.76
1.30E-06 2.90
1.83E-07 2.84
2.44E-08 2.91

H1-err rate
1.16E-02 –
1.54E-03 3.01
1.90E-04 3.08
2.28E-05 3.08
2.85E-06 3.01
4.01E-07 2.84
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A1592 ALEXANDRE ERN AND JEAN-LUC GUERMOND

Table 4.3
\BbbP 2 approximation of (4.3) with the Dirichlet solution (4.4).

A-stable L-stable A-stable L-stable

I L2-err rate L2-err rate H1-err rate H1-err rate

441 2.02E-03 -- 2.19E-03 -- 1.14E-02 -- 1.16E-02 --

1681 1.30E-04 4.10 1.23E-04 4.31 1.52E-03 3.01 1.54E-03 3.01

6561 1.65E-05 3.03 9.55E-06 3.76 1.91E-04 3.05 1.90E-04 3.08
25921 2.34E-06 2.85 1.30E-06 2.90 2.53E-05 2.95 2.28E-05 3.08

103041 3.15E-07 2.91 1.83E-07 2.84 4.30E-06 2.57 2.85E-06 3.01
410881 4.41E-08 2.84 2.44E-08 2.91 2.21E-06 0.96 4.01E-07 2.84

Table 4.4
\BbbP 2 approximation of (4.3) with the Neumann solution (4.5).

A-stable L-stable A-stable L-stable

I L2-err rate L2-err rate H1-err rate H1-err rate

441 3.50E-03 -- 3.75E-03 -- 1.80E-02 -- 1.80E-02 --

1681 2.38E-04 4.02 2.33E-04 4.15 2.81E-03 2.77 2.85E-03 2.75
6561 2.79E-05 3.15 1.84E-05 3.73 4.53E-04 2.68 4.50E-04 2.71

25921 3.95E-06 2.85 2.23E-06 3.07 9.35E-05 2.30 7.39E-05 2.63

103041 5.01E-07 2.99 2.98E-07 2.92 1.56E-05 2.60 1.26E-05 2.56
410881 6.39E-08 2.98 3.91E-08 2.94 2.74E-06 2.51 2.19E-06 2.53

Remark 4.2 (order reduction). The order reduction is only observed for the Dirich-
let problem. Systematic tests have shown that this phenomenon does not occur for
the Neuman problem (not shown here). The order reduction for the first method
can be fixed by adding the weak stage order condition described in Biswas et al. [4]
to the order conditions for the companion tableau A2 listed in (3.10)--(3.12). But,
as this series of tests shows that no order reduction is observed when the source is
combined with the operator L0 (i.e., the Butcher tableau A0 is used for the source),
this approach is systematically used in the tests reported in the rest of the paper.

4.2.3. L-stable versus A-stable tableaux. Our next objective is to com-
pare the performances of the two AIRK methods, i.e., the one using the L(\alpha )-stable
tableaux (see section A.1) and the one using the A(\alpha )-stable tableaux (see sec-
tion A.2). We report in Tables 4.3 and 4.4 the relative error in the L2-norm and
the relative error in the H1-seminorm for the Dirichlet and the Neumann solutions,
respectively.

We observe third-order accuracy in the L2-norm for both the L(\alpha )-stable and the
A(\alpha )-stable methods and for both the Dirichlet and the Neumann problems. The
approximation is again superconvergent in the H1-seminorm. We notice a slight loss
of convergence in the H1-seminorm on the finest meshes for the Dirichlet problem
using the method with the A(\alpha )-stable tableaux. This effect is not observed for the
method with the L(\alpha )-stable tableaux. Overall, the method with the two L(\alpha )-stable
tableaux is slightly more accurate than that with the two A(\alpha )-stable tableaux. In
the remainder of the paper, we only report the results obtained with the L(\alpha )-stable
tableaux for brevity.

4.3. Heat equation coupled with (non)linear transport. Here, we consider
the heat equation augmented with a transport term treated explicitly. This term can
be either linear or nonlinear.
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THIRD-ORDER A-STABLE AIRK SCHEMES A1593

Table 4.5
\BbbP 1 and \BbbP 3 approximations of (4.8) using the A2 companion tableaux.

\BbbP 1, Ast \BbbP 3, Ast \BbbP 3, Lst, 3rd \BbbP 3, Lst, 4th

I L2-err rate I L2-err rate L2-err rate L2-err rate

121 5.55E-01 -- 961 9.17E-02 -- 9.96E-02 -- 9.65E-02 --

441 1.58E-01 1.94 3721 1.41E-02 2.76 1.54E-02 2.76 1.52E-02 2.73

1681 3.09E-02 2.44 14641 1.43E-03 3.34 1.87E-03 3.08 1.47E-03 3.41
6561 4.76E-03 2.75 58081 1.01E-04 3.85 2.13E-04 3.15 9.97E-05 3.91

25921 4.79E-04 3.34 231361 4.64E-06 4.45 2.53E-05 3.08 4.36E-06 4.53
103041 3.46E-05 3.81 923521 2.30E-07 4.34 3.16E-06 3.01 2.06E-07 4.41

4.3.1. Linear transport. We start by characterizing the convergence properties
of the companion tableaux A2 presented in Appendix A by solving the linear transport
equation

\partial tu+ \bfitv \cdot \nabla u= 0, (\bfitx , t)\in D\times (0, T ), u(\bfitx ,0) = u0(\bfitx ), \bfitx \in D,(4.8)

supplemented with Dirichlet boundary conditions at the inflow boundary \partial D - :=
\{ \bfitx \in \partial D | \bfitv (\bfitx )\cdot \bfitn (\bfitx ) < 0\} . We consider D := (0,1)2 and \bfitv (\bfitx ) := (1,1)\sansT . The
initial data is u0(\bfitx ) := exp((r(\bfitx )2 + 2a2)/(r(\bfitx )2  - a2)) for r(\bfitx ) \leq a and u0(\bfitx ) = 0
otherwise, with r(\bfitx ) := \| \bfitx  - \bfitx 0\| \ell 2 , \bfitx 0 := ( 14 ,

1
4 )

\sansT , and \bfita := 0.2. The exact solution is
u(\bfitx , t) = u0(\bfitx  - \bfitv t).

We run the simulations using continuous finite elements up to the final time
T := 1

2 . We test the three tableaux A2 from Appendix A using \BbbP 1 and \BbbP 3 finite
elements. Recall that we have three tableaux A2 at our disposal---one for the A-
stable pair (see section A.2), which is fourth-order accurate, and two for the L-stable
pair (see section A.1), one of which is third-order accurate and the other of which
is fourth-order accurate but with a smaller stability region. The results are shown
in Table 4.5. We report the relative L2-norm of the error at T = 1

2 . The results
reported in the first and second columns labelled \BbbP 1, Ast and \BbbP 3, Ast are obtained
with the tableau A2 associated with the A-stable pair. The results shown in the
third columns labelled \BbbP 3, Lst, 3rd and \BbbP 3, Lst, 4th are obtained with the third-order
tableau A2 associated with the L-stable pair, and the results in the fourth table are
obtained with the fourth-order tableau A2 also associated with the L-stable pair. The
expected convergence rate is observed in all cases.

4.3.2. Burgers-like nonlinear transport equation. We now focus our at-
tention on a variation of the viscous Burgers equation

\partial tu - \mu \Delta u+\nabla \cdot \bfitf (u) = 0, \bfitx \in D\infty , t > 0,(4.9)

in the semi-infinite domain D\infty :=\BbbR \times (0,1), with the flux \bfitf (u) := (u(1 - u),0)\sansT . We
enforce homogeneous Neumann boundary conditions on the top and bottom bound-
aries of the domain. Setting \bfitx := (x, y), we also enforce limx\rightarrow  - \infty u(\bfitx , t) = uL and
limx\rightarrow +\infty u(\bfitx , t) = uR. We use the initial data

u0(\bfitx ) := u+ \delta tanh

\biggl( 
\delta 

\mu 
(x - x0)

\biggr) 
, u :=

1

2
(uL + uR), \delta :=

1

2
(uR  - uL).(4.10)

The solution to this Cauchy problem is a wave moving at speed s := 1 - 2u,

u(\bfitx , t) = u0(\bfitx  - \bfits t) with \bfits := (s,0).(4.11)

We set uL :=  - 1 and uR := 1 in the tests reported below so that s = 1. We also set
\mu := 0.01.
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A1594 ALEXANDRE ERN AND JEAN-LUC GUERMOND

Table 4.6
\BbbP 1, \BbbP 2, and \BbbP 3 approximations of (4.9) using the L-stable tableaux (A0,A1) and the third-order

companion tableau A2.

\BbbP 1 \BbbP 2 \BbbP 3

I L2-err rate I L2-err rate I L2-err rate

121 4.11E-01 -- 441 1.30E-01 -- 961 6.73E-02 --

441 1.34E-01 1.73 1681 3.15E-02 2.12 3721 4.92E-03 3.87
1681 4.41E-02 1.66 6561 2.95E-03 3.48 14641 1.78E-03 1.49

6561 8.90E-03 2.35 25921 7.06E-04 2.08 58081 1.83E-04 3.30

25921 2.23E-03 2.02 103041 5.55E-05 3.69 231361 1.09E-05 4.08

We run the simulations in the truncated domain D := (0,1)2 up to the final
time T := 1

2 using continuous finite elements of degrees 1, 2, and 3. We also use the
decomposition L0(u) := \mu \partial xxu, L1(u) := \mu \partial yyu, and L2(u) := - \partial x(

1
2u

2). We compute
the relative L2-norm of the error at T = 1

2 . The results are reported in Table 4.6.
For the sake of brevity, we show the results only for the L-stable pair (A0,A1) with
the third-order companion tableau A2 from section A.1. We observe again that the
expected convergence rates are achieved for all the polynomial degrees. The rate is
close to 2 for the \BbbP 1 approximation and ranges between 2 and 3.5 for the \BbbP 2 and \BbbP 3

approximations.

4.3.3. Nonconservative nonlinear transport equation. We finally consider
a nonlinear advection-diffusion equation with a nonconservative transport term. We
use the Cole--Hopf transformation to manufacture the solution. We first set

w(\bfitx , t) := 2+ \mu + sin(m\pi x) sin(n\pi y)e - kt,(4.12)

with m := 3, n := 2, k := \mu (m2 + n2)\pi 2. Notice that the function w solves the heat
equation \partial tw - \mu \Delta w= 0 and that w(\bfitx , t)\geq 1+ \mu > 1 for all \bfitx and all t. We then set
u= - \mu log(w). The scalar field u(\bfitx , t) solves the nonlinear transport equation

\partial tu - \mu \Delta u+ \bfitv \cdot \nabla 
\biggl( 
1

2
u2

\biggr) 
= 0, (\bfitx , t)\in D\times (0, T ),(4.13)

with the space-time-dependent velocity \bfitv := 1
w log(w)\nabla w.

We solve (4.12) in the unit square D := (0,1)2 using the decomposition L0(u) :=
\mu \partial xxu, L1(u) := \mu \partial yyu, and L2(t, u) := - \bfitv (\cdot , t)\cdot \nabla ( 12u

2). We run the simulations with
\mu := 0.01 up to T := 1

2 . The results are reported in Table 4.7. For the sake of brevity,
we only show the results for the L-stable pair (A0,A1) with the third-order companion
tableau A2 from section A.1. Here again, we observe the expected convergence rates.
We also observe that the \BbbP 2 and \BbbP 3 approximations are superconvergent.

Appendix A. Two examples of six-stage third-order schemes. In this
section, we present two examples of six-stage third-order RK schemes. Each example
comprises an AIRK scheme (based on two implicit, singly diagonal RK schemes) and
a companion ERK scheme. In the first example, the two constitutive implicit schemes
are L(\alpha )-stable (i.e., \ell 0 = \ell 1 = 0), whereas they are only A(\alpha )-stable in the second
example with \ell 0 = \ell 1 = 1. We focus on the equidistributed choice cm = m - 1

6 for
all m \in \{ 1:7\} for the time index array. This has the advantage of maximizing the
efficiency of the ERK scheme; see Shu and Osher [31] and the discussion in [10].

For both examples, we solve first the design conditions identified in section 3.3
to obtain the AIRK scheme. Recall that there are 39 conditions for 48 unknowns.
Then, we solve the conditions identified in section 3.4 to obtain the companion ERK
scheme. Recall that there are 13 or 16 conditions for 21 unknowns depending on the
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Table 4.7
\BbbP 1, \BbbP 2, and \BbbP 3 approximations of (4.12) using the L-stable tableaux (A0,A1) and the third-order

companion tableau A2.

\BbbP 1 \BbbP 2 \BbbP 3

I L2-err rate I L2-err rate I L2-err rate

121 1.80E-02 -- 441 4.95E-04 -- 961 4.44E-05 --

441 5.08E-03 1.96 1681 3.39E-05 4.01 3721 2.76E-06 4.10
1681 1.31E-03 2.03 6561 2.17E-06 4.04 14641 1.76E-07 4.02

6561 3.29E-04 2.03 25921 1.37E-07 4.03 58081 1.25E-08 3.85

25921 8.24E-05 2.02 103041 8.60E-09 4.01 231361 1.49E-09 3.07
103041 2.06E-05 2.01 410881 5.90E-10 3.87 923521 2.86E-10 2.39

accuracy one wants to reach for the ERK scheme. It turns out that for the L(\alpha )-
stable schemes, the third-order ERK array leads to a larger stability region than the
fourth-order one. This is why we present the two possibilities. On the other hand,
for the A(\alpha )-stable schemes, the tableau A2 can be computed to ensure either third-
or fourth-order accuracy, both with a rather large stability region.

In all cases, the resulting sets of coupled nonlinear equations are solved using the
nonlinear solver nlsolve in Julia. The optimization is done in quadruple precision for
the L-stable tableaux (i.e., BigFloat numbers) and double precision for the A-stable
tableaux. The residuals associated with the design conditions are less than 10 - 22 for
the L-stable tableaux and 10 - 17 for the A-stable tableaux. In all cases, we report the
entries of the Butcher arrays with 18 significant digits, consistently with the present
implementation. Furthermore, solving from scratch the coupled nonlinear equations
for the AIRK scheme is somewhat challenging. Thus, the solution procedure employs
an iterative fixed-point strategy, where the array A0 is designed given an array A1

and vice versa, until the prescribed tolerance is achieved.
The resulting Butcher arrays are reported in the following two sections. We

only give the arrays A0,A1,A2 since the line vectors b0, b1, b2 are the last row of the
associated array and are never used; see (2.5). To facilitate the reading, we also
indicate for each row m\in \{ 1:7\} the value of the coefficient cm

A.1. Example 1: L(\bfitalpha )-stable schemes. In this section, we give the L(\alpha )-
stable arrays A0 and A1, together with two possibilities for the companion array A2

mentioned above (one giving third order and one giving linear order four). All the
arrays are obtained using quadruple precision in Julia. The accuracy on the design
conditions is 10 - 22. The half-angle of the cone for A(\alpha )-stability is \alpha \approx 75\circ . The
amplification functions are illustrated in Figures A.1 and A.2 (recall that R0(z) =
R1(z) for singly diagonal tableaux; see Remark 3.6).

(i) Array A0:

0 0
1
6

0.007682766677990120 0.158983899988676547
1
3

0.015365533395673803 0.317967799937659530 0
1
2

0.067134743376864802 0.338274603424258278  - 0.064393246789799627 . . .
2
3

0.179050077617480914 0.169386371595552944  - 0.216637439810267733 . . .
5
6

0.201408968898570210  - 0.018586441143895167 0.081249411695151912 . . .

1 0.055256411220552875  - 0.205127582453523036 1.186467117918441255 . . .

1
2

. . . 0.158983899988676547
2
3

. . . 0.534867657263900542 0
5
6

. . . 0.477549665944474862  - 0.067272172049645030 0.158983899988676547

1 . . .  - 0.381199971239714302  - 0.252773137564567394 0.597377162118810602 0
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A1596 ALEXANDRE ERN AND JEAN-LUC GUERMOND

(ii) Array A1:

0 0
1
6

0.166666666666666667 0
1
3

0.087985748777573975 0.086363684567082812 0.158983899988676547
1
2

0.148272588694077508 0.123809962338217855 0.227917448967704637 0
2
3

0.092684091881748154 0.127270401977042040 0.162221507266258003 . . .
5
6

0.166157946222573266 0.125070105123173022 0.124434611239232582 . . .

1 0.048973226160787361 0.171916361228143705 0.213459859384815078 . . .

2
3

. . . 0.125506765552941923 0.158983899988676547
5
6

. . . 0.184260860904362666 0.233409809843991798 0

1 . . . 0.179406092880142377 0.227260560357434931 0 0.158983899988676547

(iii) Array A2, third order:

0 0
1
6

0.166666666666666667 0
1
3

 - 0.050619531693917875 0.383952865027251208 0
1
2

0.115313313956073817 0.099138194215039115 0.285548491828887068 0
2
3

0.065658564993170963 0.094245074373801537 0.202738372713947835 . . .
5
6

0.062680510743166078 0.208831301672964596 0.168457244447138580 . . .

1 0.187538570996657661 0.031430875635301389 0.109386484984970433 . . .

2
3

. . . 0.304024654585746332 0
5
6

. . . 0.182720713146197586 0.210643563323866492 0

1 . . . 0.107869581266703755 0.392685024987187330 0.171089462129179432 0

(iv) Array A2, linear order four:

0 0
1
6

0.166666666666666667 0
1
3

 - 0.002065923995011051 0.335399257328344385 0
1
2

0.009076043244499938 0.095774428321976104 0.395149528433523958 0
2
3

0.268333342495086566  - 0.084075704836160660 0.076139507867936172 . . .
5
6

0.176995156036447256 0.003750298725649624 0.079363041718674150 . . .

1 0.119787399084949175  - 0.089727659939499215 0.661036648908505113 . . .

2
3

. . . 0.406269521139804589 0
5
6

. . . 0.337529406250193346 0.235695430602368957 0

1 . . .  - 0.142617977938011797 0.062099653483759240 0.389421936400297484 0

We show in the left panel of Figure A.1 the modulus of the amplification function
R0(z) in the half complex plane \{ \Re (z) \leq 0\} (recall that R0(z) = R1(z) because the
tableaux are singly diagonal). We show in the center panel the absolute value of the
amplification function R\theta (x) along the real negative x-axis, for x \leq 0 and \theta \in [0,1];
see (2.9) for the definition of R\theta (z). We show right panel of the figure the modulus of
the amplification function R2(z) in the half complex plane \{ \Re (z)\leq 0\} for the explicit
tableau giving third-order accuracy.

We show in the left panel of Figure A.2 a zoom close to the origin of the modulus of
the amplification function R0(z) in the half complex plane \{ \Re (z)\leq 0\} . The modulus
is larger than 1 only in the white region. We observe that A(\alpha )-stability holds for
\alpha \approx 75\circ . The white line materializes the limit of the stability cone. We show in
the right panel of the figure the amplification function R\theta ( - x) for x \in [0,108] and
\theta \in \{ 0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999,1.0\} . We observe L-stability for
the two extreme tableaux (i.e., \theta \in \{ 0,1\} ), and we observe A(0)-stability for all of the
intermediate values of \theta , as stated in Remark 3.7.
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THIRD-ORDER A-STABLE AIRK SCHEMES A1597

Fig. A.1. L-stable pair. Left: Modulus of the amplification function R0(z) in the half complex
plane \{ \Re (z)\leq 0\} . Center: Absolute value of the amplification function R\theta (x) along the real negative
x-axis for x\leq 0 and \theta \in [0,1]. Right: Modulus of the amplification function R2(z) in the half complex
plane \{ \Re (z)\leq 0\} for the explicit tableau giving third-order accuracy.

Fig. A.2. L-stable pair. Left: Zoom on the modulus of the amplification function R0(z) in
the half complex plane \{ \Re (z) \leq 0\} . The modulus is larger than 1 in the white region only. Here,
A(\alpha )-stability holds for \alpha \approx 75\circ ; see the white dashed line. Right: Amplification function R\theta ( - x)
for x\in [0,108] and \theta \in \{ 0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999,1.0\} .

A.2. Example 2: A(\bfitalpha )-stable schemes with \ell 0 = \ell 1= 1. In this section,
we give the A-stable arrays A0 and A1, together with the companion array A2 giving
linear order four. (Increasing the order from three to four does not affect the stability
region of A2.) All the arrays are obtained using double precision in Julia. The
accuracy on the design conditions is 10 - 17. The half-angle of the cone for A(\alpha )-
stability is \alpha \approx 50\circ . The amplification functions are illustrated in Figures A.3 and A.4
(recall that R0(z) =R1(z) for singly diagonal tableaux; see Remark 3.6).

(i) Array A0:

0 0
1
6 0 0.1666666666666667
1
3 0 0.3333333333333333 0
1
2 0.0881690356651937 0.2077230531651217 0.0374412445030180 . . .
2
3 0.1912570743416719 0.0339232115988989 0.0809855895872098 . . .
5
6 0.2217555743144974  - 0.1981876469320450 0.4032535763162587 . . .
1  - 0.0181549513013415  - 0.0576199238642526 1.1548881877024293 . . .

1
2 . . . 0.1666666666666667
2
3 . . . 0.3605007911388862 0
5
6 . . . 0.3112596743406823  - 0.0714145113727266 0.1666666666666667
1 . . .  - 0.4373955069083602  - 0.2686190973268506 0.6269012916983754 0
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A1598 ALEXANDRE ERN AND JEAN-LUC GUERMOND

(ii) Array A1:

0 0
1
6 0.1666666666666667 0
1
3 0.0961730695098136 0.0704935971568530 0.1666666666666667
1
2 0.3873667070462485 0.0334791581520742 0.0791541348016774 0
2
3 0.0482618178342044 0.0808153322470430 0.2741288261693861 . . .
5
6 0.3340345537873168  - 0.0091489895287693 0.1060064658492590 . . .
1 0.0633044277927422 0.0951956813187544 0.3345863892872825 . . .

2
3 . . . 0.0967940237493665 0.1666666666666667
5
6 . . . 0.1479737995151694 0.2544675037103578 0
1 . . . 0.1253557996315356 0.2148910353030186 0 0.1666666666666667

(iii) Array A2 (linear order four):

0 0
1
6 0.1666666666666667 0
1
3  - 0.0164974824288459 0.3498308157621792 0
1
2 0.1757799381308423 0.0540524791927349 0.2701675826764229 0
2
3  - 0.0229059377360897 0.1748847700986353 0.2836095136036662 . . .
5
6 0.0866385339448006 0.3019999712813553 0.1537929988619701 . . .
1 0.0471394455060848 0.1524277686616651 0.4188944702924878 . . .

2
3 . . . 0.2310783207004548 0
5
6 . . .  - 0.2072244075470651 0.4981262367922724 0
1 . . .  - 0.1426444779083035 0.1831972427620590 0.3409855506860067 0

We show in the left panel of Figure A.3 the modulus of the amplification function
R0(z) in the half complex plane \{ \Re (z) \leq 0\} (recall that R0(z) = R1(z) because the
tableaux are singly diagonal). We show in the center panel the absolute value of the
amplification function R\theta (x) along the real negative x-axis, for x \leq 0 and \theta \in [0,1].
We show in the right panel of the figure the modulus of the amplification function
R2(z) in the half complex plane \{ \Re (z)\leq 0\} for the explicit tableau.

We show in the left panel of Figure A.4 a zoom close to the origin of the modulus of
the amplification function R0(z) in the half complex plane \{ \Re (z)\leq 0\} . The modulus
is larger than 1 only in the white region. We observe that A(\alpha )-stability holds for
\alpha \approx 50\circ . The white line materializes the limit of the stability cone. We show in
the right panel of the figure the amplification function R\theta ( - x) for x \in [0,106] and
\theta \in \{ 0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999,1.0\} . We observe A(0)-stability

Fig. A.3. A-stable pair. Left: Modulus of the amplification function R0(z) in the half complex
plane \{ \Re (z)\leq 0\} . Center: Absolute value of the amplification function R\theta (x) along the real negative
x-axis for x\leq 0 and \theta \in [0,1]. Right: Modulus of the amplification function R2(z) in the half complex
plane \{ \Re (z)\leq 0\} for the explicit tableau.
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THIRD-ORDER A-STABLE AIRK SCHEMES A1599

Fig. A.4. A-stable pair. Left: Zoom on the modulus of the amplification function R0(z) in
the half complex plane \{ \Re (z) \leq 0\} . The modulus is larger than 1 in the white region only. Here,
A(\alpha )-stability holds for \alpha \approx 50\circ ; see the white dashed line. Right: Amplification function R\theta ( - x)
for x\in [0,106] and \theta \in \{ 0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999,1.0\} .

for all of the values of \theta . Since the tableaux A0 and A1 have been computed in double
precision only, A-stability is numerically lost on the tableau A0 for x \geq 106. This
technical problem can be resolved by using quadruple precision as we did for the L-
stable tableaux. We have verified that A-stability still holds for all the other tableaux
up to x= 1010.

A.3. Some implementation details. In this section, we give some details on
how the conditions on \omega 4(\theta ) and \omega 5(\theta ) can be implemented. We first observe that

\tau 1(\theta ) = \zeta 10(\theta )\tau 
0
1 + \zeta 01(\theta )\tau 

1
1 ,

\tau 2(\theta ) = \zeta 20(\theta )\tau 
0
2 + \zeta 11(\theta )\tau 

0
1 \tau 

1
1 + \zeta 02(\theta )\tau 

1
2 ,

\tau 3(\theta ) = \zeta 30(\theta )\tau 
0
3 + \zeta 21(\theta )\tau 

0
2 \tau 

1
1 + \zeta 12(\theta )\tau 

0
1 \tau 

1
2 + \zeta 03(\theta )\tau 

1
3 ,

\tau 4(\theta ) = \zeta 31(\theta )\tau 
0
3 \tau 

1
1 + \zeta 22(\theta )\tau 

0
2 \tau 

1
2 + \zeta 13(\theta )\tau 

0
1 \tau 

1
3 ,

\tau 5(\theta ) = \zeta 32(\theta )\tau 
0
3 \tau 

1
2 + \zeta 23(\theta )\tau 

0
2 \tau 

1
3 ,

\tau 6(\theta ) = \zeta 33(\theta )\tau 
0
3 \tau 

1
3 ,

with \zeta mn(\theta ) = (1 - \theta )m\theta n. Furthermore, we give dp

d\theta p \beta k(\theta ) for all k \in \{ 2,3,4\} and all
p\in \{ 1,2\} using the shorthand notation \delta b := b1  - b0 and \delta A :=A1  - A0:

\beta \prime 
3(\theta ) = \delta bA2

\theta c+ b\theta (A
2
\theta )

\prime c,(A.1a)

\beta \prime \prime 
3 (\theta ) = 2\delta b(A2

\theta )
\prime c+ b\theta (A

2
\theta )

\prime \prime c,(A.1b)

\beta \prime 
4(\theta ) = \delta bA3

\theta c+ b\theta (A
3
\theta )

\prime c,(A.1c)

\beta \prime \prime 
4 (\theta ) = 2\delta b(A3

\theta )
\prime c+ b\theta (A

3
\theta )

\prime \prime c,(A.1d)

\beta \prime 
5(\theta ) = \delta bA4

\theta c+ b\theta (A
4
\theta )

\prime c,(A.1e)

\beta \prime \prime 
5 (\theta ) = \delta b(A4

\theta )
\prime c+ b\theta (A

4
\theta )

\prime \prime c,(A.1f)

with

(A2
\theta )

\prime = \delta AA\theta +A\theta \delta A,(A.2a)

(A3
\theta )

\prime = \delta AA2
\theta +A\theta \delta AA\theta +A2

\theta \delta A,(A.2b)

(A4
\theta )

\prime = \delta AA3
\theta +A\theta \delta AA2

\theta +A2
\theta \delta AA\theta +A3

\theta \delta A,(A.2c)

(A2
\theta )

\prime \prime = 2\delta A2,(A.2d)

(A3
\theta )

\prime \prime = 2(\delta A2A\theta + \delta AA\theta \delta A+A\theta \delta A
2),(A.2e)

(A4
\theta )

\prime \prime = 2(\delta A2A2
\theta + \delta AA\theta \delta AA\theta + \delta AA2

\theta \delta A+A\theta \delta A
2A\theta +A\theta \delta AA\theta \delta A+A2

\theta \delta A
2).
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A1600 ALEXANDRE ERN AND JEAN-LUC GUERMOND

Putting everything together gives

\omega \prime 
5(\theta ) = \beta \prime 

5(\theta ) + \beta \prime 
4(\theta )\tau 1(\theta ) + \beta 4(\theta )\tau 

\prime 
1(\theta ) + \beta \prime 

3(\theta )\tau 2(\theta ) + \beta 3(\theta )\tau 
\prime 
2(\theta )(A.3a)

+
1

6
\tau \prime 3(\theta ) +

1

2
\tau \prime 4(\theta ) + \tau \prime 5(\theta ),

\omega \prime \prime 
5 (\theta ) = \beta \prime \prime 

5 (\theta ) + \beta \prime \prime 
4 (\theta )\tau 1(\theta ) + 2\beta \prime 

4(\theta )\tau 
\prime 
1(\theta ) + \beta 4(\theta )\tau 

\prime \prime 
1 (\theta )(A.3b)

+ \beta \prime \prime 
3 (\theta )\tau 2(\theta ) + 2\beta \prime 

3(\theta )\tau 
\prime 
2(\theta ) + \beta 3(\theta )\tau 

\prime \prime 
2 (\theta )

+
1

6
\tau \prime \prime 3 (\theta ) +

1

2
\tau \prime \prime 4 (\theta ) + \tau \prime \prime 5 (\theta ),

\omega \prime 
4(\theta ) = \beta \prime 

4(\theta ) + \beta \prime 
3(\theta )\tau 1(\theta ) + \beta 3(\theta )\tau 

\prime 
1(\theta ) +

1

6
\tau \prime 2(\theta ) +

1

2
\tau \prime 3(\theta ) + \tau \prime 4(\theta ).(A.3c)

A.4. GARK rewriting. In this section, we illustrate the rewriting of the above
seven-stage AIRK schemes as combinations of four-stage schemes using the GARK
formalism. Specifically, the AIRK scheme with the above Butcher arrays rewrites in
the format (2.6) upon setting

\frakA 0,00 =

\left(    
0
0 A0

22

0 A0
42 A0

44

0 A0
62 A0

64 A0
66

\right)    , \frakA 0,01 =

\left(    
0

A0
21 0

A0
41 A0

43 0
A0

61 A0
63 A0

65 0

\right)    ,

\frakA 0,10 =

\left(    
0
0 0
0 A1

42 0
0 A1

62 A1
64 0

\right)    , \frakA 0,11 =

\left(    
0

A1
21 0

A1
41 A1

43 0
A1

61 A1
63 A1

65 0

\right)    ,

\frakA 1,00 =

\left(    
0
0 A0

32

0 A0
52 A0

54

0 A0
72 A0

74 A0
76

\right)    , \frakA 1,01 =

\left(    
0

A0
31 0

A0
51 A0

53 0
A0

71 A0
73 A0

75 0

\right)    ,

\frakA 1,10 =

\left(    
0
0 A1

32

0 A1
52 A1

54

0 A1
72 A1

74 A1
76

\right)    , \frakA 1,11 =

\left(    
0

A1
31 A1

33

A1
51 A1

53 A1
55

A1
71 A1

73 A1
75 A1

77

\right)    .

Appendix B. Further remarks on AIRK schemes. In this appendix,
we collect two results on four-stage, third-order and two-stage, second-order AIRK
schemes, respectively.

B.1. Four-stage third-order implicit RK schemes. In this section, we show
that there is a barrier to designing four-stage third-order AIRK schemes. Indeed, the
single-array RK schemes cannot be A-stable. We set s= 4 since we consider four-stage
schemes. Since our result concerns any single-array implicit RK scheme having only
two nonzero diagonal coefficients, we drop in this section the subscripts and simply
write A for the Butcher array and set b= e\sansT 5A.

Lemma B.1 (stability barrier on four-stage third-order implicit RK schemes).
Assume that the matrix A \in \BbbR 5,5 is lower-triangular with only two nonzero diagonal
entries, and that the RK scheme is of order three. Then, lim| z| \rightarrow \infty | R(z)| \geq 1 +

\surd 
3.

Proof. Adapting the arguments in the proof of Lemma 2.4, we infer that

\rho (z) := det(I  - zA)zb(I  - zA) - 1U =
\sum 

k\in \{ 0:3\} 

\omega kz
k+1,
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THIRD-ORDER A-STABLE AIRK SCHEMES A1601

with \omega 0 = 1 and (recall that \tau l(A) = ( - 1)l trl(A))

\omega 1 =
1

2
+ \tau 1(A),

\omega 2 =
1

6
+

1

2
\tau 1(A) + \tau 2(A),

\omega 3 = (bA2c) +
1

6
\tau 1(A) +

1

2
\tau 2(A).

Moreover, reasoning as in the proof of Lemma 3.5, a necessary condition to achieve
A(\alpha )-stability is

\omega 1 = (\ell  - 1)\tau 2(A), \ell \in [ - 1,1], \omega 2 = 0, \omega 3 = 0.

The conditions on \omega 1 and \omega 2 determine \tau 1(A) and \tau 2(A):

\tau 1(A) =
1

3

2 + \ell 

1 + \ell 
, \tau 2(A) =

1

6(1 + \ell )
.

The standard inequality \tau 1(A)2 \geq 4\tau 2(A) gives (2+ \ell )2 \geq 6(1+ \ell ), i.e., \ell 2 - 2\ell  - 2\geq 0.
This, in turn, requires \ell \geq 1 +

\surd 
3, which contradicts \ell \in [ - 1,1].

B.2. Two-stage second-order implicit RK schemes. In this section, we
show that any two-stage second-order implicit RK scheme having only one nonzero
diagonal coefficient, say a, must satisfy a= 1

2 and lim| z| \rightarrow \infty R(z) = - 1. We set s= 2
since we consider two-stage schemes, and, as above, we simply write A for the Butcher
array and set b= e\sansT 3A.

Lemma B.2. Assume that the matrix A \in \BbbR 3,3 is lower-triangular with only one
nonzero diagonal entry, say a, and that the RK scheme is of order two. Then, a= 1

2 ,

and the amplification function is given by R(z) =
1+ 1

2 z

1 - 1
2 z
, so that lim| z| \rightarrow \infty R(z) = - 1.

Proof. Reasoning as above shows that

\rho (z) := det(I  - zA)zb(I  - zA) - 1U =
\sum 

k\in \{ 0:1\} 

\omega kz
k+1 = z +

\biggl( 
1

2
 - a

\biggr) 
z2.

Since R(z) = 1+ \rho (z)
1 - az , a necessary condition for A-stability is \omega 2 = 0, i.e., a= 1

2 . This

readily gives R(z) = 1+ z
1 - 1

2 z
=

1+ 1
2 z

1 - 1
2 z
, so that lim| z| \rightarrow \infty R(z) = - 1.

Remark B.3 (combined amplification function). Consider two two-stage second-
order implicit RK schemes, one having the diagonal entry 1

2 on the second line and the
other having the diagonal entry 1

2 on the third line. Reasoning as above, we readily
obtain

\rho \theta (z) = zb\theta 

\Bigl( 
1 + (A\theta + \tau 1(A\theta )I)z

\bigr) \Bigr) 
U = z.

Hence,

R\theta (z) = 1+
z

(1 - 1
2\theta z)(1 - 

1
2 (1 - \theta )z)

.

We immediately recover that \ell \theta = 1 when \theta \not \in \{ 0,1\} , whereas \ell 0 = \ell 1 = - 1.
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Using the second-order conditions (namely (2.3c) together with bc= 1
2 ), we infer

that the two implicit RK schemes take the form

0 0
\gamma \gamma  - 1

2
1
2

1 1 - 1
2\gamma 

1
2\gamma 0

1 - 1
2\gamma 

1
2\gamma 0

0 0
\gamma \gamma 0
1 1

2 0 1
2

1
2 0 1

2

(B.1)

with parameter \gamma \in (0,1). The most natural choice is \gamma = 1
2 , which leads, as expected,

to the midpoint and Crank--Nicolson schemes.
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