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Abstract. We design pairs of six-stage, third-order, alternating implicit Runge-Kutta (RK)
schemes that can be used to integrate in time two stiff operators by an operator-splitting technique.
We also design for each pair a companion explicit RK scheme to be used for a third, nonstiff oper-
ator in an implicit-explicit (IMEX) fashion. The main application we have in mind is (non)linear
parabolic problems, where the two stiff operators represent diffusion processes (for instance, in two
spatial directions) and the nonstiff operator represents (non)linear transport. We identify necessary
conditions for linear sectorial A(a)-stability by considering a scalar ODE with two (complex) ei-
genvalues lying in some fixed cone of the half-complex plane with nonpositive real part. We show
numerically that it is possible to achieve A(0)-stability when combining two operators with negative
eigenvalues, irrespective of their relative magnitude. Finally, we show by numerical examples includ-
ing two-dimensional nonlinear transport problems discretized in space using finite elements that the
proposed schemes behave well.
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1. Introduction. Operator splitting is a well-established and computationally
effective approach to design time-integration techniques for a wide class of systems of
stiff ordinary differential equations (ODEs) and partial differential equations (PDEs)
involving coupled stiff operators. One traditional way to split two stiff operators
consists of using methods like Strang splitting [33] at the time-continuous level or the
Peaceman-Rachford alternating direction implicit method (ADI) at the time-discrete
level [22] (see also Douglas and Rachford [9]). We refer the reader, e.g., to Marchuk
[19] and Yanenko [36] for early surveys on the subject.

The stiff PDE model we have in mind is that of (non)linear parabolic equations,
where two operators are stiff (say (non)linear diffusion in different directions), and a
third one is less stiff (say nonlinear transport). Our objective is to construct a method
that is third-order accurate in time when the two stiff operators are split, while the
nonstiff operator is treated explicitly in an implicit-explicit (IMEX) fashion. This
is a nontrivial task since operator-splitting methods face a second-order accuracy
barrier. More precisely, the accuracy of exponential splitting methods is reduced to
second order if one excludes any strategy requiring backward time integration and

*Submitted to the journal’s Numerical Algorithms for Scientific Computing section April 1, 2024;
accepted for publication (in revised form) January 3, 2025; published electronically May 5, 2025.
https://doi.org/10.1137/24M1650624
Funding: This material is based upon work supported in part by the National Science Founda-
tion grant DMS2110868, the Air Force Office of Scientific Research under contract FA9550-18-1-0397,
the Army Research Office under grant W911NF-19-1-0431, the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract B640889, and INRIA through the Interna-
tional Chair program.
TCERMICS, ENPC, Institut Polytechnique de Paris, 77455 Marne-la-Vallée Cedex 2, France, and
INRIA Paris, 75647, Paris cedex, France (alexandre.ern@enpc.fr).
fDepartment of Mathematics, Texas A&M University, College Station, TX 77843 USA (guer-
mond@tamu.edu).

A1579

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/24M1650624
mailto:alexandre.ern@enpc.fr
mailto:guermond@tamu.edu
mailto:guermond@tamu.edu

Downloaded 08/19/25 to 128.93.162.242 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1580 ALEXANDRE ERN AND JEAN-LUC GUERMOND

linear combinations of forward-stepping exponential splitting methods with negative
multiplicative coefficients; see Sheng [30], Suzuki [34], Goldman and Kaper [12], and
Blanes and Casas [5]. One remedy to break the second-order barrier consists of
adopting complex time integration. This idea was suggested by Rosenbrock [26] and
Bandrauk and Shen [3]. It was formalized up to fourth order in Gegechkori et al. [11]
and up to order fourteen in Hansen and Ostermann [16] and Castella et al. [6]. A
second class of methods also potentially capable of breaking the second-order barrier
consists of using defect correction strategies, as shown in Christlieb et al. [7].

The third option, which is the one we consider in this paper, consists of inter-
lacing two implicit Runge-Kutta (RK) schemes. By this, we mean that, at every
stage of the method, only one of the two implicit schemes has a nonzero diagonal
entry, and this feature alternates at every stage. The resulting RK scheme is called
alternating-implicit (in short, AIRK). The prototypical second-order example is ac-
tually the Peaceman—Rachford ADI method which is built by combining the implicit
midpoint rule with the Crank—Nicolson scheme. This leads to an A-stable, two-stage,
second-order AIRK scheme, where only one of the two stiff operators is treated im-
plicitly at each of the two stages. Our ambition here is not to be general, but to
demonstrate that the second-order accuracy barrier can be overcome by interlacing
two six-stage, third-order implicit RK schemes, while maintaining some form of A-
stability. In the paper, we provide two examples of such ATRK schemes. For both
examples, the two constitutive implicit RK schemes are singly diagonal and sectorially
A(«)-stable, and, in one of the examples, the two schemes are even sectorially L(«)-
stable. Moreover, for both examples, we propose a companion explicit RK (ERK)
scheme which can be used in conjunction with the AIRK scheme in an IMEX fashion.

The idea of interlacing two (or more) RK schemes has been well explored in the
literature. We refer the reader to Cooper and Sayfy [8], Rentrop [23], and Rice [24] for
early works on the subject, leading in particular to the notion of additive RK (ARK)
methods. An important instance of ARK schemes is the IMEX methods developed
by Ascher et al. [1, 2], Kennedy and Carpenter [17], Pareschi and Russo [20, 21],
and Zhong [37]. The order conditions for ARK schemes are well understood through
the concept of P-trees developed by Hairer [14]. A further important development of
ARK schemes is the class of generalized-structure ARK (GARK) schemes in Sandu
and Giinther [28], where several copies of the dependent unknowns are advanced at
each stage. We refer the reader, e.g., to Gonzédlez-Pinto et al. [13], Roberts et al. [25],
Sarshar et al. [29], and Spiteri and Wei [32] for recent developments on the subject.
We observe that the present AIRK schemes can be viewed as a particular instance of
GARK schemes (see Remark 2.2 for further discussion).

GARK schemes constitute an effective framework to devise high-order operator-
splitting techniques. However, establishing some form of stability for high-order
GARK schemes (say, beyond second-order) is still a nontrivial question at the time
of this writing. Indeed, even if the implicit RK schemes considered for each opera-
tor enjoy some form of linear stability, say A(«)-stability or even L(«)-stability, the
linear stability of the resulting AIRK scheme generally remains an open question.
This question can be approached by considering Dahlquist’s test problem in various
settings, whereby a scalar ODE is considered with each operator represented by a
complex number in the half-complex plane with nonpositive real part. Quite impor-
tantly, the question also needs to be studied numerically on more realistic situations
beyond linear stability, e.g., for PDEs modeling nonlinear transport.

One important contribution of the paper is to identify some necessary conditions
for sectorial A(«)- and L(«)-stability when combining two implicit RK schemes into
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an AIRK scheme, under the assumption that the spectra of the two split operators
lie in some fixed cone around the negative real axis with an acute half angle. This as-
sumption is reasonable for our purposes since the stiff operators represent (non)linear
diffusion processes. Moreover, we verify numerically that, when combining two opera-
tors with negative eigenvalues, the AIRK schemes we propose are indeed A(0)-stable,
uniformly with respect to the relative magnitude of the eigenvalues. Finally, we assess
numerically the performances of the proposed AIRK schemes on a series of challenging
test cases resulting from the finite element discretization of two-dimensional nonlinear
advection-diffusion problems.

The paper is organized as follows. In section 2, we make the setting precise and es-
tablish useful results to study the linear stability of AIRK schemes. Our main result is
Lemma 2.4. In section 3, we focus on six-stage implicit schemes and identify sufficient
conditions to achieve third-order accuracy as well as necessary conditions to achieve
suitable linear stability properties; see, in particular, Lemmas 3.3 and 3.5. We also
discuss the design of the companion ERK scheme to be used for the nonstiff operator.
In section 4, we study numerically the properties of the AIRK and ERK schemes
obtained in the previous section. We perform a series of tests on two-dimensional
advection-diffusion equations and nonlinear transport problems discretized in space
with finite elements. We close this work with two appendices. In Appendix A, we
give two examples of operator-splitting schemes fulfilling the design conditions identi-
fied in section 3; each example comprises an AIRK scheme and one or two companion
ERK scheme(s). In particular, we show numerically that the necessary linear stability
conditions identified in section 3 indeed lead to A(0)-stability when combining two
operators with negative eigenvalues. The A(0)-stability is uniform with respect to the
relative magnitude of the eigenvalues. Finally, in Appendix B, we collect some results
on four-stage, third-order and two-stage, second-order AIRK schemes. We show that
there is a stability barrier for the former, and that the only possible realization for
the latter is essentially the Peacemann—Rachford scheme.

2. Setting. In this section, we introduce some useful notions and derive some
preliminary results on the linear stability of AIRK schemes.

2.1. Model problem. Given a time horizon T > 0, we want to approximate
in time the following nonlinear system of I coupled ODEs, which consists of seeking
Ue ([0, T];RY) so that

(2.1) A U(t) = Lo(t,U(t)) + Ly (t,U(t)) + Lo (¢, U(t)), U(0)=U°eR’,

where we make the usual assumption on the Lipschitz continuity with respect to U and
continuity with respect to t of Lg, L1, Lo. We additionally assume that the Lipschitz
constants of Lo (t,-) : R - R! and Ly(t,-) : RY - R’ are significantly larger than that
of La(t,-): R — R’. Our objective is to design a third-order time-stepping method
where Ly is treated explicitly and Lg, L are treated implicitly in an alternating fashion
by means of an AIRK scheme.

2.2. Butcher tableaux. To achieve the task described above, we want to com-
bine three Butcher tableaux composed of s+ 1 stages where s > 2 is even:
C ‘ AO C ‘ A1 C ‘ A2
L L
Notice that the three Butcher tableaux share the same time index vector ¢ (this prop-

erty is called internal consistency in the context of ARK schemes). We additionally
assume that

(2.2)
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(2.3a) c1 =0, Csr1 =1,
(23b) bozel—_,'_le, b1 :€I+1A1, bgzel—+1A2,
(2.3¢) AgU =c, AU =c, AU =c,

where es 1 is the last vector of the canonical Cartesian basis of R**! and U is the
column vector in R*T' having all its entries equal to one, ie., U := (1,...,1)T. In
(2.3b), we request that the line vectors bg,b1,by be copies of the last row of the
matrices Ag, A1, As, respectively. This property means that the implicit schemes are
stiffly accurate. Moreover, the identities (2.3c) are Butcher’s simplifying assumption.
Notice that the assumptions (2.3) imply that boU =e],; AgU =€, ;c=cs11 =1 and,
similarly, bsU = byU = 1.

We assume that the matrices Ag, A; are lower triangular with the upper left
entry equal to zero, and the matrix Ay is strictly lower triangular. The scheme
associated with A, is therefore explicit. The schemes associated with Ag, A1 are a
priori diagonally implicit, but we further simplify the method by requesting that the
matrices Ag, A; have alternating nonzero coefficients on the diagonal, i.e., we assume
that

(2.4a) (Ao)i =0, mod(,2)=1, Wie{ls+1},
(2.4b) (Al)l,l =0, mod(l,2)=0, VlE{l:S—Fl}.

We say that the combined RK scheme is alternating-implicit for this reason.

Let t" be the current discrete time node and 7™ be the current time step. We set
tntli=4" 4+ 7" and "™ == t" + ¢, 7" for all m € {1:s+1}. The IMEX RK scheme
associated with (2.2) consists of marching from t" to the next discrete time node ¢"*!
by performing the following s stages: Given U™, set U™! := U" and compute, for all
lef{2:s+1},

(2.5)  uml— T”{(AO)”LO(t”’l, U™ 4 (A1) Ly (87, u”’l)}

—Ut 3 (A Lot UM + (A Ly (£, U
me{l:l—-1}

+ (Aa)im Lo (™, U™ |

and finally set Unt! := U™**!. Owing to the assumption (2.4), we obtain an ATRK
scheme since, at every stage, only one of the stiff operators Lg, L1 is treated implicitly.
The operator Ls is treated explicitly at all stages.

Remark 2.1 (s-stage AIRK). Note that the first stage is trivial (U™!:=U"). The
(s + 2)th stage is trivial as well (U™*T2 = U™*t1) owing to the assumption (2.3b).
Hence, the scheme is actually composed of s stages.

Remark 2.2 (rewriting in GARK format). Setting s’ := 3, one can distribute
the stage updates (Ul)le{l:s+1} (we drop the superscript n to ease the notation) into
the two collections (Y'),eq1.5413 and (Y21),cq1. 41} so that Y = VY21 = U and
YLl=y2=2 Y2 = U1 for all | € {2:s'+1}. Then, (2.5) can be rewritten as follows:

For all | € {2.3 +1}, solve sequentially for i € {1,2},

(2.6) YO =Ur e N Y AR (e Y,

me{1:1} p,qe{0,1}
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where the eight arrays (Qli’pq)i’p’qe{o’l} are all of order (s’ + 1), lower triangular, and
with upper left diagonal entry equal to zero. Moreover, only the arrays %00, (1:11
and A0 2110 have nonzero diagonal entries (the latter two do not lead to an implicit
treatment owing to the sequential solve in ¢ € {0,1}). Notice that GARK schemes are
often written by discarding the arrays 20?4 with p # q. These arrays are nonzero in
the present AIRK formalism. Another significant difference is that the two variables
YL and Y2! are not synchronized in the present setting. We refer the reader to
section A.4 for an example with a six-stage AIRK scheme.

2.3. Linear stability: Amplification functions. The classical approach to
analyzing the linear stability of a single implicit RK scheme consists of considering
the scalar ODE 0;u = Au(t) with A € C™ := {z € C|R(z) < 0} (this ODE is often
called Dahlquist’s test problem). Separately considering the Butcher tableaux in (2.2)
for i =0 and 7 =1 leads to the following two amplification functions for all ¢ € {0,1}
(which we call single-array amplification functions): For all z€ C™,

(2.7) Ri(z):=1+ det(f.)fi(—Z)zAi)’ pi(2) :=det(I — zA;)2b; (I — 2A;:)7'U,

where U :=(1,...,1)T. We introduce the function p;(z) for later use. Recall that the
implicit RK scheme associated with the ith Butcher tableau is said to be (sectorially)
A(a)-stable if there is an angle a; € [0, 5] such that |R;(2)| <1 for all z € C(ay); see
Widlund [35] and Hairer and Wanner 15, Defs. 3.7 and 3.9]. Here, for a generic angle
B €[0,%], we defined the cone C(f) := {2z € C™ |arg(—z) < 8}. Moreover, the scheme
is said to be L(a)-stable if it is A(a)-stable and £; := lim|,|_ Ri(2) = 0.

In the present setting with two stiff operators, the natural extension of Dahlquist’s
test problem is to consider the scalar ODE

(2.8) B,U(t) = AU(t) + M U(1),

with \; € C™ for all i € {0,1}. The above problem is relevant when the operators
Lo and L; are linear and can be simultaneously diagonalized (or commute, which is
equivalent); see Remark 2.5 for further discussion. Asking that \; be allowed to span
C™ is, however, too general for our present purpose, where the two stiff operators are
diffusion operators, so that their spectrum is a discrete subset of the negative real
axis in the complex plane. To allow for a bit more generality at this stage, we assume
that there is an angle 3 € [0, §) such that \; € C(3) for all i€{0,1}. We have §=0
for diffusion operators. Setting Aio:= A‘H‘)‘l, 0:= /:-A ,1—0= )\0{\;))\1 (2.8) reduces
to O U(t) =2X12((1—0)U(¢t) +6U(t )) Observe that both 6 and (1 —#) are in the ball
B(B) centered at 3 and of radius (1 + tan? (B))2. Therefore, linear stability can be
studied by assummg that 6 and (1 — ) are uniformly bounded.
The amplification function for the scheme (2.5) applied to the ODE (2.8) is

po(2) -1
2. =14+ — = I—zA I—zA
(2.9) Ry (2) + det(I — 2Ag)’ po(z) := det( zAg)zbg( 2A9)" U,
with Ag:=(1—-0)Ag+60A; and by := (1 —0)bg + 0b;. In the above setting, we can use
the following notion of stability for AIRK schemes.
DEFINITION 2.3 (sectorial A(a)-stability and L(a)-stability for AIRK schemes).

We say that the AIRK scheme (2.5) is sectorial A(«)-stable if there is an angle o €
[0,8] s.t. for all @ € B(B), |Rg(z)| <1 for all z € C(a). We say that the scheme is
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sectorial L(a)-stable if it is A(c)-stable and Ly :=lim,| o Rg(2) =0 for all 0 € B(p).
In what follows, to ease the terminology, we simply speak of A(a)- and L(«)-stability.

For a lower-triangular matrix A of order (s+1) with diagonal entries {\; }ic{1:541}
(the example we have in mind is A = Ayp), we set

(2.10) tr (A) = > iy X .o x Ao Vme {lis+1},
(21,5e0sim ) E{L:is+1}™
11 <. <

and we conventionally set tro(A) :=1. Notice that tri(A) is the usual trace of A and
trg41(A) = A1 X -+ X Ag41. The characteristic polynomial of the matrix A is

(2.11) mA(t) =det(tl —A)= > (=17 Ftrgg g (AN
ke{0:s+1}

The Hamilton—Cayley theorem gives

(2.12) WA(A) — Z (_1)S+1_ktr5+1_k(A)Ak ZOERS+1’S+1.
ke{0:s+1}

Finally, we notice that, whenever the matrix A has only m nonzero diagonal coeffi-
cients with m < s, we have tri(A) =0 for all k£ € {m+1:s+1}. Notice, in particular,
that try;1(Ag) =0 and that tr,,(Ag) = tr,, (A1) =0 for all m > J + 1 owing to (2.4).

To gain some insight into the amplification function Ry(z), we study the function
po(z) defined in (2.9).

LEMMA 2.4 (function pg). The function pg defined in (2.9) is a polynomial in z
of degree at most s, pg(z) = Zke{o;s_l}wk(9)3k+l7 where for all k € {0:s—1},

(2.13a) we(0) =D Brea(0)m(0)

le{0:k}
(2.13b) Br(0) == by ALU, 7(0) == (—1)* try(Ay).

Moreover, wy(0) is a polynomial in 0 of degree at most k with real-valued coefficients.

Proof. Since ®y(z) := det(I — zAg)(I — 2Ag)~! is the transpose of the cofactor
matrix of (I — zAy) and since the matrix (I — zAy) is lower triangular with the
upper left entry equal to 1, the entries of the matrix ®4(z) are all polynomials in z
of degree at most s. Hence, pg(z) is a polynomial of degree at most (s + 1) in z.
To see that the degree of py(z) is actually at most s instead of (s+ 1), we compute
the coefficients of the matrix-valued polynomial ®y(z). Note that det(I — zAp) =
Zle{o:s}(fl)ltrl(Ag)zl, since trs+1(Ag) = 0. Moreover, using the Neumann series
representation of (I —zAg) ™!, and recalling that ®4(z) is a polynomial in z of degree
at most s, we obtain

%(z):{ > (=1 tri(Ag)z }sz/w > { > (—1)ltrl(A9)A’gl}zk

le{0:s} meN ke{0:s} \lef{0:k}

Since pg(z) = zbg®Py(z)U, we infer using the definitions (2.13b) that

po(z)= Y { > Tl(H)ﬂk—l(e)}Zk+1~

ke{0:s} \le{0:k}
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Setting wy,(0) == >_c .5y Br—1(0)7i(6) for all k € {0:s} as in (2.13a), and observing
that wo(0) = Bo(0)70(0) =1 (notice that By(0) =bpU = (1 —6) + 6 = 1), we conclude
that pp(2) =3 je(o.) wi (0)2**1. Therefore, it only remains to prove that w,(6) = 0.
Using (2.3b), i.e., B (0) = by AU = el | AJ**'U for all m >0, we obtain

ws(0) = Z Tl(a)ﬁSl(Q)zel—H( Z (—1)ltrl(Aa)A§+1l>U

1€{0:s} le{0:s}

=e1+1< > (—1>S+1-ltrs+u<Ae>Aé>U

le{l:s+1}
= e:er+17TA9 (A9)U>

where we used that trg11(Ag) =0. Owing to the Hamilton—Cayley theorem, we con-
clude that wy(#) =0. Finally, the expressions (2.13) show that wy () is a polynomial
in 6 of degree at most (k4 1) having real-valued coefficients. Since ApU = ¢ owing to
(2.3c), the degree is at most k. |

Remark 2.5 (stability criteria). The simple stability criterion based on (2.8),
often called scalar or linear stability in the literature, only gives necessary stability
conditions. It is definitely not sufficient. The analysis based on (2.8) is valid for linear
ODE systems if the linear operators L; and Ly commute, as they are simultaneously
diagonalizable in this case. Hence, the analysis based on (2.8) is not fully satisfactory
as our objective is to construct a method that is stable irrespective of the commuting
properties of Ly and L;. To compensate for this lack of theoretical basis and to
illustrate that the proposed method has reasonable stability properties, all the tests
reported in the paper are done with operators Ly and L; that do not commute. More
restrictive design conditions could in principle be obtained by enforcing other stability
criteria like nonlinear stability (see Sandu and Giinther [28, section 4.2]) or matrix
stability (see Kvaerng [18], Sandu [27, section 4.2], and the references cited therein).

3. Six-stage third-order ATRK schemes. The main focus of the paper is
when s = 6, with both Ay and A; having three nonzero diagonal coefficients interlaced
along the diagonal. Thus, we consider two six-stage implicit RK schemes having the
following structure (we omit the vectors bg,b; since the schemes are stiffly accurate;
see (2.3b)):

0 0 0 0

Co Agl Ag2 C2 A%l 0

e3 Agl Agz 0 €3 A%l Ail’)2 Aés

C4 Agl A912 A913 A24 C4 Azlu A}m A};s 0

Cs Ag1 Agz A(5)3 Ag4 0 Cs A%1 Aéz A%:s Aé4 A%&a

Co Agl A82 AgB Ag4 A85 Age) Co Aclal Atlsz Aés Aé4 Aé5 0

1| AG A% A%y A% AY A% 0 1| AL A Al Al Al A Al

3.1. Third-order conditions. Let U be the column vector in R” having all its
entries equal to 1. Let ¢2 be the column vector in R” having all its entries equal c2,
for all m € {1:7}. The single-array third-order conditions are (2.3¢c) together with
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1
(3.1a) boc=b1c= >

1
(3.1b) boc® =byc® = 3
(31C) boA()C:blA10: é

Recall that byU = U = 1 follows from (2.3b) and (2.3c). Moreover, the coupling
third-order conditions are

(3.2) boAlc: b]AQC:

| =

LEMMA 3.1 (Bo(8), B1(0), B2(0)). Assume (2.3c), (3.1), and (3.2). With the
coefficients By (0) defined in (2.13b), the following holds:

1 1

57 /62(9):6

Proof. By linearity, we have byU = 1, bgc = %, and Agc = U. This shows that
Bo(0) = bgU = 1 and B1(0) = bpAgU = bgc = 3 owing to (2.3¢c). Finally, a direct

calculation shows that

—~

(3.3) Bo(0) =1, Bi(0)=

Ba(0) = bgAge = (1 — 0)%bg Agc + 0(1 — 0)(bg Arc + by Agc) + 0%b1 A c

1 1
=2((1-0)+0)>2==
S(1-0) 0=,

where we used (2.3c), (3.1c), and (3.2). d

3.2. Linear stability. This section collects important results concerning the
amplification function associated with the combined Butcher tableaux and the ampli-
fication functions associated with each tableau individually (which we call single-array
amplification functions).

LEMMA 3.2 (function pg(2)). The function ps defined in (2.9) is a polynomial in
z of degree at most 6, of the form pe(z) =3 c10:5) Wi (0) 28 with

(34a)  ws(0) = (b Ade) + (b AZ)T1(0) + (by A20)ma(0) + 275(0) + ~74(6) + 75(0),

6 2
(3.40)  wa(6) = (boA}e) + (AR (0) + £7a(6) + L75(6) + 7a(0),
(3c)  ws(6) = (boA3e) + i (6) + S72(0) +73(6),
(34)  wa(6)= ¢ + 37 (0) +72(6),
(340)  wi(0)=3 +m(0),

and wo(0) = 1.
Proof. Combine Lemma 2.4 with Lemma 3.1 and (2.3¢) to establish (3.4). 0

LEMMA 3.3 (necessary condition for A(a)-stability, AIRK scheme). A necessary
condition for the A(«)-stability of the AIRK scheme is

(3.5) ws(0)=0 v € B(f).
Moreover, under this condition, we have g =1 for all € B°(B) := B(8)\{0,1}.
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Proof. We notice that, as |z| — 0o, pg(z) ~ w5(0)z° for all § € B(B) such that
ws(0) # 0, whereas det(I — zAg) ~ 03(1 — )3 tr3(Ag) tr3(A;)2z° for all § € B°(3). This
implies that Ry(z) ~1+ %(tr;;(Ao)trg(Al))_l for all € B°(B) s.t. ws(#) #0.
Since ws(0) € Ps[], Ry(z) can stay bounded as |z| — oo only if (3.5) holds true.
Finally, the fact that £y = 1 for all § € B°(f) readily follows from the above asymptotic
expression for Ry(z) and ws(6) =0. ad

Remark 3.4 (barrier on L(«a)-stability). A striking consequence of (3.3) is that
a six-stage third-order AIRK scheme cannot be L(a)-stable since £y = 1 # 0 for all
0 ¢ {0,1}. We shall see though that it is still possible to make the two interlaced
implicit RK schemes L(a)-stable (see Remark 3.7 below for further discussion).

Let us now consider the single-array amplification functions. Let ¢ € {0,1} and
set pi(2) := det(I — 24;)zb;i(I — 2A;) U (see (2.7)). We infer from Lemma 3.2 that
Pi(2) =2 keqos) wj,2" ! with
(3.6) wi=wr(i)  Vie{0,1}, Vk€{0:5}.

Let us set 77 := 75 (i) (vecall that 74(6) := (—1)* tr(Ay)).

LEMMA 3.5 (necessary condition for A(a)-stability, single RK schemes). A4 nec-
essary condition for A(a)-stability for each single RK scheme is, for all i € {0,1},

(3.7a) w
(3.7b)

— 1_ 7,_
—wi=wl=0,

—(1— )73, 6;e-1,1].

[\Js W

Proof. The reasoning is similar to that in the proof of Lemma 3.3, the only
difference being that det(l — zA;) ~ —trz(A4;)2° as |z| — co. Therefore, R;(z) can
stay bounded as |z| — oo only if wi = w) = wi = 0 which gives (3.7a). Moreover, in

this situation, we obtain lim|,|_ Ri(2) =1 — =/{; €[—1,1] owing to (3.7b). O

tTS(Ai)

Owing to (3.4) and since 7} = 7i = 0 (recall that both matrices A; have only three
nonzero diagonal coefficients), the conditions (3.7a) can be rewritten as follows: For
all i € {0,1},

(3.8) (biALe) + (b ABe)r] + (AZe)rs + <7 =0,
(3.8b) (biAde) + (biAZe)r) + %Tg - %Tg =0,
(3.8¢) (biAZc) + éT{ + %Tﬁ +1i=0,
(3.8d) é+%r{+r§+(1—£i)r§=0.

Remark 3.6 (singly diagonal case). If the array A; is singly diagonal with entry
a, (3.8d) readily implies that this entry must be a positive root of the cubic equation
(1—0)2®—3a?+ 32 —1 =0. For £ =0, we obtain a =0.1589.... For /=1, the equation
becomes quadratic and the positive root is a = %. Notice also that, if both arrays Ag
and A1 are singly diagonal and such that £y = 1, (3.7b) implies that w9 = wi. Since
wd =wl =14 3a by (3.4e), we infer that the amplification functions Ry and R; are
the same.

Remark 3.7 (singular limit). Recall that ¢y = 1 for all § € B°(S
Lemma 3.3, whereas Lemma 3.5 shows that it is possible to fix ¢; € [—

owing to

)
1,1] for all
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TABLE 3.1
Design conditions for siz-stage third-order AIRK schemes.

F#cdts. i=0 i=1 ref
12 AU =c AU=c (2.3¢)
2 boc—% bic= % (3.1a)
2 boc? =1 bic? = % (3.1b)
2 bvoC:é b1Ac= 1 8 (3.1¢)
6 wli=wl=wl=0 wi=wl=wl=0 (3.7a)
2 wd=(1—£o)7d wi= ( —01)Ta (3.7b)
2 b1 Agc=boAi1c= % (3.2)
4 wi(0) =wf(0) =wl(1) =wy (1) =0 (3.5)
2 wy(0)=wj(1)=0 -

1 w4(%) =€ -

i € {0,1}. There are, therefore, two somewhat natural choices when it comes to fix-
ing the limits ¢;. The first one is to select £y = £1 = 0, so that the two constitutive
implicit RK schemes are L(«)-stable, but in this case the limits lim;| o and limg_o
(or limg_,1) do not commute. The second one is to enforce £y = ¢; = 1, which leads
to two A(«)-stable implicit RK schemes, and the above two limits commute.

3.3. Summary of devising conditions. The devising conditions on the two
tableaux composing the AIRK scheme are collected in Table 3.1. We first collect in
the two columns labeled ¢ = 0 and ¢ = 1 the design conditions that are specific to
each Butcher tableau. The last four lines of the table (spanning the two columns)
collect the design conditions coupling both Butcher tableaux. The design parameters
are the column vector ¢ € R” with ¢; = 0 and ¢; = 1, the limits £y, ¢; € [-1,1],
and a small parameter € > 0. Since w;(6) is a polynomial of degree at most 5 in 6
having real coefficients, we infer that ws =0 iff w5(0) =w5(1) =0, wi(0) =wi(1) =0,
and wf(0) = wf (1) = 0, which are indeed the conditions recorded in Table 3.1. As
w4(0)z° is the dominating factor in p(@), one can further reduce the magnitude of
the amplification function by annihilating p4(6). This is achieved by setting w4 (0) =
wy(1) =0, wj(0) =wj(1) =0, and wa(3) = €. Our numerical experiments have shown
that achieving w4(%) = 0 is possible if one does not insist on the two tableaux being
singly diagonal. But, if one insists on Ay and A; being singly diagonal, then one can
only enforce w4( ) to be of order 3.8 x 1075 ~ € when £y =/¢; =1 and 7.9x 1075 ~¢
when 60 = 61 =

There are altogether 48 unknowns (24 for each Butcher tableau), and there are
altogether 35 design conditions in Table 3.1. Moreover, we restrict ourselves to singly
diagonal arrays; i.e., we additionally require that

(3-9) Agz = Ag4 = Ag(w A33 = A55 = A%w

giving four additional devising conditions. The above undetermined system of 39
nonlinear equations can be solved. The results reported in Appendix A have been
obtained by using the nonlinear solver nlsolve in Julia. As the problem is highly
nonlinear, the algorithm is first run with e = 0 without enforcing (3.9). Then, one
uses this solution as initialization to run the algorithm again with (3.9) but ignoring
the constraint w4( ) =0. We refer the reader to Appendix A for two examples and
some 1mp1ementat10n details.

3.4. Companion ERK scheme. We now design a companion ERK scheme
that can be used in combination with the above AIRK scheme in the IMEX setting.
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Therefore, we consider a third Butcher array in the form (we again omit the vector

b2)

0 0

C2 A%l 0

cs | A3 A3 0

C4 A?u A4212 A4213 0

Cs A%l A§2 Agzz A§4 0

C6 A%l A(232 A%:s A§4 A§5 0

1| A3 A%, Af, A3 A% A% O

To obtain a third-order scheme, we enforce
1 1 1
(310) AQU =cC, bQC = 5, b262 = g, bQAQC = 6,

together with the coupling conditions

1
(311) bQAOC:bOAQC:bQAlc:blAQC: 6

This gives altogether 13 conditions for 21 unknowns. In some cases, we enforce the
following three conditions to achieve linear order four:
1

1
b2A202 = ﬁ, bQAQC: —

1
(3.12) boc® == TR

4?
The resulting undetermined set of 13 or 16 nonlinear equations can be solved. We
refer the reader to Appendix A for two examples obtained by using the nonlinear
solver nlsolve in Julia.

4. Numerical experiments. In this section, we illustrate numerically the per-
formance of the method described in section 3 using the Butcher tableaux given in
Appendix A. All the tests reported in this section are done in double precision.

4.1. ODEs. We start illustrating the proposed method by solving the following
2 x 2 system of ODEs:

(4.1) oU(t) = L(U(t)) + F(t), U(0)=U"€eR?

where L := Lo+ Ly with Ly:=—PyDoP; ", L1 := —P,D;P;"!, and

13 0.023 0
(4.22) PO'_<3 —1)’ DO"( 0 0.073)’

2 -3 0024 0
(4.2b) A= (—1 —1)’ Dl'_( 0 0.1345)'

The two matrices Lo and L; do not commute. More precisely, denoting ||-||g: the
Frobenius norm, we have 2||LoL; — L1 Lo||r/|| Lo + L1||pe = 0.74. The matrix L is
diagonalizable, and its two eigenvalues are approximately \g ~ —0.085, \; ~ —0.17.
Denoting L = PDP~! the diagonal decomposition of L, and Cy, C; the two columns
of the matrix P, we initialize the system with U° := Cy + 3C;. When F = 0, the
exact solution to the autonomous system is U,yuto(t) = Coetot 4 3C eMt. We also
construct a solution with a nonzero source by setting F(¢) := O;W — L(W(t)) with
W(t) := (cos(t),sin(2t))T. In this case, the exact solution is Uayto(t) + W(2).
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TABLE 4.1
£2-errors and convergence rates for the ODE system (4.1). Butcher tableauz from section A.1.

Autonomous sol. Nonautonomous sol.
7 error rate error rate
0 0.1381E-05 - 0.2062E-02 —
1 0.1690E-06 3.03 0.2119E-03 3.28
2 0.2090E-07 3.02 0.2522E-04 3.07
3 0.2598E-08 3.01 0.3112E-05 3.02
4 0.3239E-09 3.00 0.3875E-06 3.01
5 0.4043E-10 3.00 0.4837E-07 3.00
6 0.5054E-11 3.00 0.6043E-08 3.00
7 0.6673E-12 2.92 0.7552E-09 3.00
8 0.1222E-12 2.45 0.9437E-10 3.00
9 0.7246E-14 4.08 0.1181E-10 3.00

We test the method using the decomposition L = Lo+ L1 and the Butcher tableaux
from section A.1. The problem is solved over the time interval [0, 7] with T := 10. The
£2-norm of the error divided by the ¢?>-norm of U° is measured at T for various time
steps 7; = 27%, i € {0:9}. The results are reported in Table 4.1 for the two solutions
(the autonomous one and the nonautonomous one). Up to machine accuracy, we
observe third-order convergence rates as expected.

Remark 4.1 (sources). Notice that there is variety of choices to approximate the
source term in (4.1). For instance, one can regroup Lo and F or regroup L; and F.
One can also consider a convex combination by regrouping Ly and aF and regrouping
L; and (1—a)F for all a € [0,1]. Finally, one can also treat F by using the companion
matrix Ao for the ERK scheme. The tests reported below are done by regrouping Lg
and F. No significant difference is observed when using any of the other choices (not
shown here for brevity).

4.2. Heat equation. We continue with the two-dimensional heat equation
(4.3) Owu(z,t) — pAu(x,t) = f(x,t), (x,t) € Dx(0,T), u(x,0) =ug(x), z € D,
supplemented with either Dirichlet or Neuman boundary conditions and p:=1.

4.2.1. The setting. The tests are done in the unit square D := (0,1)2. We test
homogeneous Dirichlet and homogeneous Neumann boundary conditions. Using the
notation « := (z,y), the two exact solutions we use are

(4.4)  upir(x,t) = (2+sin(t)) sin(2mx) sin(3ry) + 642 (1 — 2)y(1 — y)sin(x + y + t),
(4.5) uNeu(z,t) = (24 sin(t)) cos(2mx) cos(3my) +4a? (1.5—x)y? (1.5—y) (2+ sin(7t)).

We apply the operator-splitting method by using the directional decomposition A =
Oz + Oyy, 1.€., Lo(v) = Opov and L (v) = Oyyv. Although, in this case, it is traditional
to use finite differences to realize the approximation in space, we illustrate the method
by using continuous finite elements. Let Vj be the said finite element space and
{pi}icy be the associated shape functions. The set V is used to enumerate the shape
functions with #(V) = I. Let (g,h)r2(p) := [, g(x)h(x)dz be the canonical inner
product in L?(D). We define the bilinear forms ag(up,vs) = (102 upOzvk) 2 (p) and
a1 (un,vn) := (OyunOyvn)2(py. Then we consider the semidiscrete problem consisting
of seeking uy, € C1([0,T); V4) such that, for all ¢t € [0, 7],

(4.6)  (Qeun(t), pi)r2(py + ao(un(t), pi) + ar(un(t), vi) = (f(t), pi)L2(p)y Vi€V,
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and up, (-, 0) = ugp, where ugy, is some quasi-optimal approximation of ug in V3. Let M
be the mass matrix associated with the L%(D)-inner product and Sy, S; be the stiffness
matrices associated with the bilinear forms ag and aq, respectively. Let F(¢) be the
vector in R? with entries (f(t),0i)p2(py- Then, setting up(x,t) := >, ), Us(t)pi(x),
the system (4.6) reduces to solving the ODE system

(4.7) MBU(E) = SoU(E) + S U (L) + F(2).

We solve (4.7) using the method presented in this paper. We use continuous finite
elements of degree 2 to match the third-order accuracy in time of the method. We
recall that the theoretical convergence rate for quadratic elements is cubic in the L?-
norm and quadratic in the H'-seminorm, and the Riesz projection of the solution to
(4.3) is superconvergent in the H'-seminorm up to third order. We run the simulations
up to T := % on six consecutively refined meshes.

4.2.2. Approximation of source term. As mentioned in Remark 4.1, the
source F(t) in the ODE system (4.7) can be handled in a variety of ways. We in-
vestigate in this section the three methods discussed in Remark 4.1 to handle this
situation. We show three series of tests using the Dirichlet solution (4.4). In the
first series of tests, we treat F(¢) using the companion Butcher tableau As; i.e., we
set Lo(t) := F(¢). In the second series, we regroup F(¢) and S;U(¢) (i.e., we set
Ly(t,U(t)) :=S1U(t) + F(t)), and in the third series, we combine F(t) and SoU(¢) (i.e.,
we set Lo(t,U(t)) :=SoU(¢) + F(¢)). In all the tests, we use the L-stable pair (Ao, A1)
from section A.1. The Dirichlet solution (4.4) has been manufactured to amplify the
phenomenon we are about to discuss now.

The results are reported in Table 4.2. We show both the relative L?-norm and
H'-seminorm of the solution at the final time T = % We observe a loss of conver-
gence as the mesh is refined for the first and second methods (see the left and middle
shaded columns in the table). The asymptotic convergence rate in the L2-norm and
H'-seminorm for these two methods is O(h??%) and O(h'®), respectively, instead of
the optimal rates O(h®) and O(h?). Visual inspection of the solutions reveals the
formation of spurious boundary layers as often observed for many splitting methods
when enforcing Dirichlet boundary conditions. On the other hand, we observe that
the third method does not suffer from any order reduction (see the rightmost shaded
column in the table). The convergence rate in the H'-seminorm is even superconver-
gent, which is a clear indication that no spurious boundary layer appears.

TABLE 4.2
Source approzimation. Py approzimation of (4.3) with the Dirichlet solution (4.4).

La(t) := F(2) Li(t,U@)) := S1(U@) +F(t)  _Lo(t, U®)) := So(U(t)) + F(¢)
I L2-err L2-err
441 2.78};—03 3.32}(33—03 2.19E-03

1681 | 2.58E-04 4.42E-04 1.23E-04
6561 | 4.13E-05 8.67E-05 9.55E-06
25921 | 8.45E-06 1.84E-05 1.30E-06
103041 | 1.78E-06 3.91E-06 1.83E-07

410881 | 3.76E-07 8.29E-07 2.44E-08
I Hl-err Hl-err
441 | 1.21E-02 1.35E-02
1681 | 1.88E-03 2.99E-03

6561 | 3.95E-04
25921 | 1.14E-04
103041 | 3.68E-05
410881 | 1.22E-05

9.33E-04
3.17E-04
1.10E-04
3.80E-05

4.01E-07
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TABLE 4.3
Py approzimation of (4.3) with the Dirichlet solution (4.4).

A-stable L-stable A-stable L-stable
1 L2-err rate L2-err rate Hl-err rate Hl-err rate
441  2.02E-03 - 2.19E-03 - 1.14E-02 - 1.16E-02 -

1681 1.30E-04 4.10 1.23E-04 4.31 1.52E-03 3.01 1.54E-03 3.01
6561 1.65E-05 3.03 9.55E-06 3.76 1.91E-04 3.05 1.90E-04 3.08
25921  2.34E-06 2.85 1.30E-06 2.90 2.53E-05 295 2.28E-05 3.08
103041  3.15E-07 2.91 1.83E-07 2.84 4.30E-06 2.57 2.85E-06 3.01
410881 4.41E-08 2.84 244E-08 291 221E-06 096 4.01E-07 2.84

TABLE 4.4
Py approxzimation of (4.3) with the Neumann solution (4.5).

A-stable L-stable A-stable L-stable
1 L2-err rate L2-err rate H'-err rate Hl-err rate
441  3.50E-03 - 3.75E-03 - 1.80E-02 — 1.80E-02 -

1681  2.38E-04 4.02 2.33E-04 4.15 281E-03 2.77 285E-03 2.75
6561 2.79E-05 3.15 1.84E-05 3.73 4.53E-04 2.68 4.50E-04 2.71
25921  3.95E-06  2.85 2.23E-06 3.07 9.35E-05 2.30 7.39E-05 2.63
103041  5.01E-07 2.99 2.98E-07 292 1.56E-05 2.60 1.26E-05 2.56
410881 6.39E-08 2,98 3.91E-08 294 2.74E-06 2.51 2.19E-06 2.53

Remark 4.2 (order reduction). The order reduction is only observed for the Dirich-
let problem. Systematic tests have shown that this phenomenon does not occur for
the Neuman problem (not shown here). The order reduction for the first method
can be fixed by adding the weak stage order condition described in Biswas et al. [4]
to the order conditions for the companion tableau As listed in (3.10)—(3.12). But,
as this series of tests shows that no order reduction is observed when the source is
combined with the operator Ly (i.e., the Butcher tableau Ay is used for the source),
this approach is systematically used in the tests reported in the rest of the paper.

4.2.3. L-stable versus A-stable tableaux. Our next objective is to com-
pare the performances of the two AIRK methods, i.e., the one using the L(«a)-stable
tableaux (see section A.l) and the one using the A(a)-stable tableaux (see sec-
tion A.2). We report in Tables 4.3 and 4.4 the relative error in the L?-norm and
the relative error in the H'-seminorm for the Dirichlet and the Neumann solutions,
respectively.

We observe third-order accuracy in the L?-norm for both the L(«)-stable and the
A(«)-stable methods and for both the Dirichlet and the Neumann problems. The
approximation is again superconvergent in the H'-seminorm. We notice a slight loss
of convergence in the H'-seminorm on the finest meshes for the Dirichlet problem
using the method with the A(«)-stable tableaux. This effect is not observed for the
method with the L(«)-stable tableaux. Overall, the method with the two L(«a)-stable
tableaux is slightly more accurate than that with the two A(a)-stable tableaux. In
the remainder of the paper, we only report the results obtained with the L(«a)-stable
tableaux for brevity.

4.3. Heat equation coupled with (non)linear transport. Here, we consider
the heat equation augmented with a transport term treated explicitly. This term can
be either linear or nonlinear.
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TABLE 4.5
P1 and P3 approzimations of (4.8) using the Aa companion tableauz.

Py, Ast P3, Ast P3, Lst, 3rd P3, Lst, 4th
I L2-err rate 1 L2-err rate L2-err rate L2-err rate
121 5.55E-01 - 961 9.17E-02 - 9.96E-02 - 9.65E-02 -
441 1.58E-01 1.94 3721 1.41E-02 2.76 1.54E-02 2.76 1.52E-02 2.73

1681 3.09E-02 2.44 14641 1.43E-03 3.34 1.87E-03 3.08 1.47E-03 3.41
6561 4.76E-03 2.75 58081 1.01E-04 3.85 2.13E-04 3.15 9.97E-05 3.91
25921 4.79E-04 3.34 231361 4.64E-06 4.45 2.53E-05 3.08 4.36E-06 4.53
103041 3.46E-05 3.81 923521 2.30E-07 4.34 3.16E-06 3.01 2.06E-07 4.41

4.3.1. Linear transport. We start by characterizing the convergence properties
of the companion tableaux As presented in Appendix A by solving the linear transport
equation

(4.8) Ou+v-Vu=0, (x,t) € Dx(0,T), u(x,0) =uo(x), z € D,

supplemented with Dirichlet boundary conditions at the inflow boundary 0D~ :=
{z € D |v(z)n(z) < 0}. We consider D := (0,1)? and v(x) := (1,1)T. The
initial data is ug(z) := exp((r(x)? + 2a2)/(r(z)? — a?)) for r(z) < a and ug(x) =0
otherwise, with r(x) := ||& — xol|s2, xo:=( T and @ :=0.2. The exact solution is
u(x,t) = ugp(x — vt).

We run the simulations using continuous finite elements up to the final time
T := % We test the three tableaux A, from Appendix A using P; and Ps finite
elements. Recall that we have three tableaux As at our disposal—one for the A-
stable pair (see section A.2), which is fourth-order accurate, and two for the L-stable
pair (see section A.1), one of which is third-order accurate and the other of which
is fourth-order accurate but with a smaller stability region. The results are shown
in Table 4.5. We report the relative L?-norm of the error at T = % The results
reported in the first and second columns labelled Py, Ast and P3, Ast are obtained
with the tableau Ao associated with the A-stable pair. The results shown in the
third columns labelled P3, Lst, 3rd and P3, Lst, 4th are obtained with the third-order
tableau A, associated with the L-stable pair, and the results in the fourth table are
obtained with the fourth-order tableau A, also associated with the L-stable pair. The
expected convergence rate is observed in all cases.

_T

=~

)

I

4.3.2. Burgers-like nonlinear transport equation. We now focus our at-
tention on a variation of the viscous Burgers equation

(4.9) Ou— pAu+V-f(u)=0, x€ Dy, t>0,

in the semi-infinite domain D, :=Rx(0,1), with the flux f(u):= (u(1 —u),0)T. We
enforce homogeneous Neumann boundary conditions on the top and bottom bound-
aries of the domain. Setting @ := (z,y), we also enforce lim,_, o u(z,t) = uy and
limg 1 oo u(,t) =ugr. We use the initial data

1) 1 1
(4.10)  wo(x):=u-+ dtanh ((a? - xo)) , W= §(uL +ug), d:= §(uR —ur).
1
The solution to this Cauchy problem is a wave moving at speed s:=1 — 2u,
(4.11) u(x,t) =uo(x — st) with s:=(s,0).
We set uy, := —1 and ug :=1 in the tests reported below so that s =1. We also set

f0:=0.01.
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TABLE 4.6
P1, P2, and P approzimations of (4.9) using the L-stable tableauz (Ao, A1) and the third-order
companion tableau As.

Py Py Ps
I L2-err rate I L2-err rate I L2-err rate
121 4.11E-01 - 441 1.30E-01 - 961 6.73E-02 -
441 1.34E-01 1.73 1681 3.15E-02 2.12 3721 4.92E-03 3.87
1681 4.41E-02 1.66 6561 2.95E-03 3.48 14641 1.78E-03 1.49

6561 8.90E-03 2.35 25921 7.06E-04 2.08 58081 1.83E-04 3.30
25921 2.23E-03 2.02 103041 5.55E-05 3.69 231361 1.09E-05 4.08

We run the simulations in the truncated domain D := (0,1)% up to the final
time T := % using continuous finite elements of degrees 1, 2, and 3. We also use the
decomposition Lo (u) := p0zzu, Ly (u) := pdyyu, and Ly(u) :== —9,(3u?). We compute
the relative L?-norm of the error at T = % The results are reported in Table 4.6.
For the sake of brevity, we show the results only for the L-stable pair (Ag, A1) with
the third-order companion tableau Ay from section A.1. We observe again that the
expected convergence rates are achieved for all the polynomial degrees. The rate is
close to 2 for the P; approximation and ranges between 2 and 3.5 for the Py and P

approximations.

4.3.3. Nonconservative nonlinear transport equation. We finally consider
a nonlinear advection-diffusion equation with a nonconservative transport term. We
use the Cole-Hopf transformation to manufacture the solution. We first set
(4.12) w(x,t) =2+ p + sin(mnz) sin(nry)e*,
with m =3, n:=2, k := u(m? + n®)m%. Notice that the function w solves the heat
equation dyw — pAw =0 and that w(x,t) > 1+ p>1 for all & and all t. We then set

u= —plog(w). The scalar field u(a,t) solves the nonlinear transport equation
1

(4.13) Oru — pAu+v-V (Zuz) =0, (x,t) € Dx(0,T),

with the space-time-dependent velocity v := me.

We solve (4.12) in the unit square D := (0,1)? using the decomposition Lg(u) :=
10zzu, Ly (u) := pdyyu, and La(t,u) := —v(-,t)-V(3u?). We run the simulations with
@:=0.0lup to T := % The results are reported in Table 4.7. For the sake of brevity,
we only show the results for the L-stable pair (Ag, A1) with the third-order companion
tableau As from section A.1. Here again, we observe the expected convergence rates.
We also observe that the Py and P35 approximations are superconvergent.

Appendix A. Two examples of six-stage third-order schemes. In this
section, we present two examples of six-stage third-order RK schemes. Each example
comprises an AIRK scheme (based on two implicit, singly diagonal RK schemes) and
a companion ERK scheme. In the first example, the two constitutive implicit schemes
are L(a)-stable (i.e., o = ¢; = 0), whereas they are only A(a)-stable in the second
example with ¢y = ¢; = 1. We focus on the equidistributed choice ¢, = mT_l for
all m € {1:7} for the time index array. This has the advantage of maximizing the
efficiency of the ERK scheme; see Shu and Osher [31] and the discussion in [10].

For both examples, we solve first the design conditions identified in section 3.3
to obtain the AIRK scheme. Recall that there are 39 conditions for 48 unknowns.
Then, we solve the conditions identified in section 3.4 to obtain the companion ERK
scheme. Recall that there are 13 or 16 conditions for 21 unknowns depending on the
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TABLE 4.7
P1, P2, and P3 approzimations of (4.12) using the L-stable tableauz (Ao, A1) and the third-order
companion tableau As.

Pl IFD2 PP’

1 L2-err rate 1 L2-err rate I L2-err rate
121 1.80E-02 - 441 4.95E-04 - 961 4.44E-05 -
441 5.08E-03 1.96 1681 3.39E-05 4.01 3721 2.76E-06 4.10

1681 1.31E-03 2.03 6561 2.17E-06 4.04 14641 1.76 E-07 4.02

6561  3.29E-04  2.03 25921 1.37E-07  4.03 58081 1.25E-08  3.85
25921  8.24E-05  2.02 103041  8.60E-09  4.01 231361 1.49E-09  3.07
103041 2.06E-05 2.01 410881 5.90E-10  3.87 923521  2.86E-10  2.39

accuracy one wants to reach for the ERK scheme. It turns out that for the L(«)-
stable schemes, the third-order ERK array leads to a larger stability region than the
fourth-order one. This is why we present the two possibilities. On the other hand,
for the A(«a)-stable schemes, the tableau Ay can be computed to ensure either third-
or fourth-order accuracy, both with a rather large stability region.

In all cases, the resulting sets of coupled nonlinear equations are solved using the
nonlinear solver nlsolve in Julia. The optimization is done in quadruple precision for
the L-stable tableaux (i.e., BigFloat numbers) and double precision for the A-stable
tableaux. The residuals associated with the design conditions are less than 10722 for
the L-stable tableaux and 1077 for the A-stable tableaux. In all cases, we report the
entries of the Butcher arrays with 18 significant digits, consistently with the present
implementation. Furthermore, solving from scratch the coupled nonlinear equations
for the AIRK scheme is somewhat challenging. Thus, the solution procedure employs
an iterative fixed-point strategy, where the array Ag is designed given an array A;
and vice versa, until the prescribed tolerance is achieved.

The resulting Butcher arrays are reported in the following two sections. We
only give the arrays Ag, A1, A2 since the line vectors by, b1,bs are the last row of the
associated array and are never used; see (2.5). To facilitate the reading, we also
indicate for each row m € {1:7} the value of the coefficient ¢,

A.1. Example 1: L(a)-stable schemes. In this section, we give the L(«)-
stable arrays Ag and Aj, together with two possibilities for the companion array A,
mentioned above (one giving third order and one giving linear order four). All the
arrays are obtained using quadruple precision in Julia. The accuracy on the design
conditions is 10722, The half-angle of the cone for A(a)-stability is o ~ 75°. The
amplification functions are illustrated in Figures A.1 and A.2 (recall that Ry(z) =
Ry (z) for singly diagonal tableaux; see Remark 3.6).

(i) Array Agp:

0 0

11°0.007682766677990120 0.158983899988676547

g 0.015365533395673803 0.317967799937659530 0

i 0.067134743376864802 0.338274603424258278  —0.064393246789799627

% 0.179050077617480914 0.169386371595552944  —0.216637439810267733

¢ | 0.201408968898570210 —0.018586441143895167 0.081249411695151912

1 | 0.055256411220552875 —0.205127582453523036 1.186467117918441255

1 0.158983899988676547

2 0.534867657263900542 0

% 0.477549665944474862 —0.067272172049645030  0.158983899988676547
1 —0.381199971239714302  —0.252773137564567394  0.597377162118810602 0
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(ii) Array A;:

[ [SEIIS STV e [ an)

= oW

0
0.166666666666666667
0.087985748777573975
0.148272588694077508
0.092684091881748154
0.166157946222573266
0.048973226160787361

0
0.086363684567082812
0.123809962338217855
0.127270401977042040
0.125070105123173022
0.171916361228143705

0.158983899988676547
0.227917448967704637
0.162221507266258003
0.124434611239232582
0.213459859384815078

0.125506765552941923  0.158983899988676547
0.184260860904362666  0.233409809843991798 0

0.179406092880142377  0.227260560357434931

(iii) Array Ag, third order:

[ [SIEIIS STV e [ an)

0
0.166666666666666667
—0.050619531693917875
0.115313313956073817
0.065658564993170963
0.062680510743166078
0.187538570996657661

0
0.383952865027251208
0.099138194215039115
0.094245074373801537
0.208831301672964596
0.031430875635301389

0
0.285548491828887068
0.202738372713947835
0.168457244447138580
0.109386484984970433

0

0 0.158983899988676547

0.304024654585746332 0
0.182720713146197586  0.210643563323866492 0
0.107869581266703755  0.392685024987187330 0.171089462129179432 0

= oluw(N

(iv) Array A, linear order four:

0 0

L 0.166666666666666667 0

,i —0.002065923995011051 0.335399257328344385 0

i 0.009076043244499938 0.095774428321976104  0.395149528433523958 0
3 0.268333342495086566 —0.084075704836160660 0.076139507867936172

% 0.176995156036447256 0.003750298725649624  0.079363041718674150

1 0.119787399084949175 —0.089727659939499215 0.661036648908505113

2 0.406269521139804589 0

% 0.337529406250193346  0.235695430602368957 0

1 —0.142617977938011797  0.062099653483759240  0.389421936400297484 0

We show in the left panel of Figure A.1 the modulus of the amplification function
Ry(z) in the half complex plane {f(z) < 0} (recall that Ry(z) = R1(z) because the
tableaux are singly diagonal). We show in the center panel the absolute value of the
amplification function Rp(z) along the real negative x-axis, for z < 0 and 6 € [0, 1];
see (2.9) for the definition of Ry(z). We show right panel of the figure the modulus of
the amplification function Ry(z) in the half complex plane {(z) <0} for the explicit
tableau giving third-order accuracy.

We show in the left panel of Figure A.2 a zoom close to the origin of the modulus of
the amplification function Ry(z) in the half complex plane {R(z) <0}. The modulus
is larger than 1 only in the white region. We observe that A(a)-stability holds for
a =~ 75°. The white line materializes the limit of the stability cone. We show in
the right panel of the figure the amplification function Ry(—x) for x € [0,10%] and
6 € {0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999,1.0}. We observe L-stability for
the two extreme tableaux (i.e., # € {0,1}), and we observe A(0)-stability for all of the
intermediate values of , as stated in Remark 3.7.
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Fic. A.1. L-stable pair. Left: Modulus of the amplification function Ro(z) in the half complex
plane {RN(z) <0}. Center: Absolute value of the amplification function Rg(z) along the real negative
z-axis for x <0 and 0 € [0,1]. Right: Modulus of the amplification function Ra(z) in the half complex
plane {R(z) <0} for the explicit tableau giving third-order accuracy.

20

%0 -15 -10 -s 0 10710742071 1¢° 10* 10% 10° 10* 16° 10° 107 10°

Fic. A.2. L-stable pair. Left: Zoom on the modulus of the amplification function Ro(z) in
the half complex plane {R(z) < 0}. The modulus is larger than 1 in the white region only. Here,
A(a)-stability holds for a = T5°; see the white dashed line. Right: Amplification function Rg(—x)
for x €[0,108] and 6 € {0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999, 1.0} .

A.2. Example 2: A(a)-stable schemes with £o = ¢;=1. In this section,
we give the A-stable arrays Ag and A;, together with the companion array As giving
linear order four. (Increasing the order from three to four does not affect the stability
region of As.) All the arrays are obtained using double precision in Julia. The
accuracy on the design conditions is 107!7. The half-angle of the cone for A(a)-
stability is a =~ 50°. The amplification functions are illustrated in Figures A.3 and A .4
(recall that Ry(z) = Ry(z) for singly diagonal tableaux; see Remark 3.6).

(i) Array Ayp:

0 0

i 0 0.1666666666666667

i 0 0.3333333333333333 0

1 0.0881690356651937  0.2077230531651217 0.0374412445030180

3 0.1912570743416719  0.0339232115988989  0.0809855895872098

% 0.2217555743144974 —0.1981876469320450 0.4032535763162587

1 | —0.0181549513013415 —0.0576199238642526 1.1548881877024293

2 0.1666666666666667

3 0.3605007911388862 0

% 0.3112596743406823 —0.0714145113727266 0.1666666666666667
1 —0.4373955069083602 —0.2686190973268506 0.6269012916983754 0
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(ii) Array A;:

0 0

11 0.1666666666666667 0

g 0.0961730695098136 0.0704935971568530 0.1666666666666667

1 0.3873667070462485 0.0334791581520742 0.0791541348016774 0
: 0.0482618178342044 0.0808153322470430 0.2741288261693861

% 0.3340345537873168 —0.0091489895287693 0.1060064658492590

1 10.0633044277927422  0.0951956813187544  0.3345863892872825

% 0.0967940237493665 0.1666666666666667

3 0.1479737995151694  0.2544675037103578 0

1 0.1253557996315356  0.2148910353030186 0 0.1666666666666667

(iii) Array Ay (linear order four):

0
0.1666666666666667 0
—0.0164974824288459  0.3498308157621792 0
0.1757799381308423 0.0540524791927349 0.2701675826764229 0
—0.0229059377360897  0.1748847700986353 0.2836095136036662
0.0866385339448006 0.3019999712813553 0.1537929988619701
0.0471394455060848 0.1524277686616651 0.4188944702924878

0.2310783207004548 0
—0.2072244075470651  0.4981262367922724 0
—0.1426444779083035 0.1831972427620590 0.3409855506860067 0O

= O] TR N | 0| = = O

[ =21 [S1eN] [ ]

We show in the left panel of Figure A.3 the modulus of the amplification function
Ry(2) in the half complex plane {f(z) < 0} (recall that Ry(z) = Ri(z) because the
tableaux are singly diagonal). We show in the center panel the absolute value of the
amplification function Ry(x) along the real negative x-axis, for x < 0 and 6 € [0, 1].
We show in the right panel of the figure the modulus of the amplification function
R5(z) in the half complex plane {R(z) <0} for the explicit tableau.

We show in the left panel of Figure A.4 a zoom close to the origin of the modulus of
the amplification function Ry(z) in the half complex plane {R(z) <0}. The modulus
is larger than 1 only in the white region. We observe that A(a)-stability holds for
a =~ 50°. The white line materializes the limit of the stability cone. We show in
the right panel of the figure the amplification function Ry(—x) for x € [0,10°] and
9 € {0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999,1.0}. We observe A(0)-stability

100 1.0 1.0 1.0 5 .
0.9 0.9 0.9
80 0.8 0.8 0.8 0.8
0.7 0.7 0.7
60 0.6 0.6 0.6 0.6
0.5 0.5 0.5
40 04 04 0.4 0.4
0.3 0.3 0.3
20 0.2 0.2 0.2 0.2
0.1 0.1 0.1

0 0.0 0 0 0

5 -4 -3 -2 -1 0

0,
-100 =75 =50 =25 0 —1000 -800 -600 -400 -200 [ -

FiGc. A.3. A-stable pair. Left: Modulus of the amplification function Ro(z) in the half complex
plane {N(z) <0}. Center: Absolute value of the amplification function Rg(z) along the real negative
z-azis for x <0 and 0 € [0,1]. Right: Modulus of the amplification function Ra(z) in the half complex
plane {R(z) <0} for the explicit tableau.
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Fic. A.4. A-stable pair. Left: Zoom on the modulus of the amplification function Ro(z) in
the half complex plane {R(z) < 0}. The modulus is larger than 1 in the white region only. Here,
A(a)-stability holds for a = 50°; see the white dashed line. Right: Amplification function Rg(—x)
for x €]0,10%] and 6 € {0,0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999, 1.0} .

for all of the values of #. Since the tableaux Ay and A; have been computed in double
precision only, A-stability is numerically lost on the tableau Ay for > 10%. This
technical problem can be resolved by using quadruple precision as we did for the L-
stable tableaux. We have verified that A-stability still holds for all the other tableaux
up to = = 10'°.

A.3. Some implementation details. In this section, we give some details on
how the conditions on wy(6) and ws(6) can be implemented. We first observe that

71(0) = Cro(0) 71 + Co1 (0) 71,

72(0) = Co0(0) 75 + C11(0) 707 + Co2(0) 73,

73(6) = (30(0) 75 +C21(9)7271 + Cr2(0) )75 + Co3(0) 73,
74(0) = (31 ()57 + Coa(0) 7579 + C13(0) 7073,

75(0) = (32(0) 1575 + C23(0) 5 73,

76(0) = (33(0) 573,

with (pmn(0) = (1 — 0)™6™. Furthermore, we give %Bk(ﬁ) for all k € {2,3,4} and all
p € {1,2} using the shorthand notation §b:=b; — by and dA:= A; — Ag:

(A.1a) 5;,( )= 0bAjc+be(A3) ¢,

(A.1b) 5 (0) = 20b(AZ) ¢+ by(A3)c,

(A.1c) Bi(0) = 6bAec+ bo(A3) e,

(A.1d) B1(0) = 20b(A)"c + by (A5)"c,

(A.le) BL(0) = 5bAjc + be(Ag) e,

(A.1f) B3 (0) = b(A5)"c + bo(Ag)"c,

with

(A.2a) (A2) =G6AAg + ApdA,

(A.2b) (A3) =06AA} + AgSAAg + A3SA,

(A.2c) (A§) =G0AAS + ApdAAZ + AZ6A Ay + AJSA,

(A.2d) (A2)"=206A?,

(A.2e) (A})"=2(0A*Ag + 6AApSA + AgdA?),
(A3)"=2(0A% A2 + 6AApAAg + GAAZSA + AgdA% Ag + AgdAAgSA + A25A?)
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Putting everything together gives

(A.3a) ws(0) = B5(0) + B1(0)71(0) + Ba(0)71(0) + B5(6)72(0) + B(6)72(0)
+ 2T (0) + 57i(0) +74(6),

(A.3b) ws (0) = B () + By (0)71(6) + 2B3,(0)7((6) + Ba(0) 71 ()
+ B3 (6)72(0) + 283(0)73(0) + B3(0) 75 (6)

1 1
27 (0)+ 57 (6) +72(0),

(A30)  wh(6)=F4(6) + BAOIT(6) + Bs(O)rd(6) + Sh(6) + 57H(0) + 7i(6).

A.4. GARK rewriting. In this section, we illustrate the rewriting of the above
seven-stage ATRK schemes as combinations of four-stage schemes using the GARK
formalism. Specifically, the AIRK scheme with the above Butcher arrays rewrites in
the format (2.6) upon setting

7'2(9) +

0 0
90,00 _ 0 A%Q o 9(0-01 _ A§1 (())
o Al Al a ) AR e o
0 A62 A64 A66 A61 A63 A65 0
0 0
0 0 Al 0
9(0:10 _ ’ Q011 _ | 421 :
i A
0 A62 A64 0 A61 A63 A65 0
0 0
911,00 — 0 Ag2 2[1,01 — Agl 0
0 A, Ay | Ay oAy 0 |
0 b, Al ap, AL A% A% 0
0 0
(1,10 _ 0 A:},z . i1l — A%1 A:},?, .
|0 A, A ’ A Al A
0 A?2 A?4 Al A?1 A‘;)3 A?5 Al
72 74 76 71 73 75 7

Appendix B. Further remarks on AIRK schemes. In this appendix,
we collect two results on four-stage, third-order and two-stage, second-order AIRK
schemes, respectively.

B.1. Four-stage third-order implicit RK schemes. In this section, we show
that there is a barrier to designing four-stage third-order AIRK schemes. Indeed, the
single-array RK schemes cannot be A-stable. We set s = 4 since we consider four-stage
schemes. Since our result concerns any single-array implicit RK scheme having only
two nonzero diagonal coefficients, we drop in this section the subscripts and simply
write A for the Butcher array and set b= e] A.

LEMMA B.1 (stability barrier on four-stage third-order implicit RK schemes).
Assume that the matriz A € R>® is lower-triangular with only two nonzero diagonal
entries, and that the RK scheme is of order three. Then, lim, o [R(2)] > 1+ V3.

Proof. Adapting the arguments in the proof of Lemma 2.4, we infer that

p(2) :=det(I — zA)2b(I — 2A)"'U = Z w2t
ke{0:3}
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with wp =1 and (recall that 7;(A) = (—1)! tr;(A))
1

w1 = 3 +71(A),
= =+ 3n(4) +7(4)
w2—6 271 T2 ,
1 1
w3 = (bAQC) + 67'1(14) + 57’2(/1)

Moreover, reasoning as in the proof of Lemma 3.5, a necessary condition to achieve
A(«)-stability is

wlz(ﬁ—l)TQ(A), 66[—1,1], we =0, ws =0.

The conditions on wy and ws determine 71 (A4) and 72 (A):

1244 1

“3ire WS gaaa

71(A)
The standard inequality 71(A)? > 472 (A) gives (2+ €)% > 6(1+4), i.e., 2 —20—2>0.
This, in turn, requires £ > 1 + /3, which contradicts £ € [—1,1]. O

B.2. Two-stage second-order implicit RK schemes. In this section, we
show that any two-stage second-order implicit RK scheme having only one nonzero
diagonal coefficient, say a, must satisfy a = % and lim|;_, o R(z)=—-1. We set s =2
since we consider two-stage schemes, and, as above, we simply write A for the Butcher

array and set b= el A.

LEMMA B.2. Assume that the matriz A € R*® is lower-triangular with only one

nonzero diagonal entry, say a, and that the RK scheme is of order two. Then, a = %,

1
and the amplification function is given by R(z) = i_iz, s0 that lim|,|_,o R(z) = —1.
2

Proof. Reasoning as above shows that

1
p(2) :=det(I — zA)zb(I — zA)~'U = Z wpe T =2 4 (2 - a) 22,
ke{0:1}

Since R(z) =1+ {’f—z)z, a necessary condition for A-stability is wo =0, i.e., a = % This

readily gives R(z) =1+ 54— = 422 5o that limy;| 00 R(2) = —1. 0

—_I, 711
1-5z 1-352

Remark B.3 (combined amplification function). Consider two two-stage second-
order implicit RK schemes, one having the diagonal entry % on the second line and the
other having the diagonal entry % on the third line. Reasoning as above, we readily
obtain

po(2) = Zbg(l + (Ap + Tl(Ag)I)Z))UZ z.

Hence,

62)(1— 5(1—0)2)

1
2

We immediately recover that £y =1 when 0 ¢ {0,1}, whereas £y =¥¢; = —1.
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Using the second-order conditions (namely (2.3c) together with bc= 1), we infer
that the two implicit RK schemes take the form

(B.1)

o o 00
-5 3 0

i-d 2o J1 g
D 3

[1-5 3 0 7 0 3

with parameter v € (0,1). The most natural choice is v = %, which leads, as expected,
to the midpoint and Crank—Nicolson schemes.
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