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DISCONTINUOUS GALERKIN METHODS FOR FRIEDRICHS’
SYSTEMS. I. GENERAL THEORY™

A. ERNt AND J.-L. GUERMOND#

Abstract. This paper presents a unified analysis of discontinuous Galerkin methods to ap-
proximate Friedrichs’ systems. An abstract set of conditions is identified at the continuous level
to guarantee existence and uniqueness of the solution in a subspace of the graph of the differential
operator. Then a general discontinuous Galerkin method that weakly enforces boundary conditions
and mildly penalizes interface jumps is proposed. All the design constraints of the method are fully
stated, and an abstract error analysis in the spirit of Strang’s Second Lemma is presented. Fi-
nally, the method is formulated locally using element fluxes, and links with other formulations are
discussed. Details are given for three examples, namely, advection-reaction equations, advection-
diffusion-reaction equations, and the Maxwell equations in the so-called elliptic regime.
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1. Introduction. Discontinuous Galerkin (DG) methods were introduced in the
1970s, and their development has since followed two somewhat parallel routes depend-
ing on whether the PDE is hyperbolic or elliptic.

For hyperbolic PDEs, the first DG method was introduced by Reed and Hill in
1973 [28] to simulate neutron transport, and the first analysis of DG methods for
hyperbolic equations in an already rather general and abstract form was performed
by Lesaint and Raviart in 1974 [23, 24]. The analysis was subsequently improved by
Johnson, Névert, and Pitkdranta who established that the optimal order of conver-
gence in the L2-norm is p + 3 if polynomials of degree p are used [21]. More recently,
DG methods for hyperbolic and nearly hyperbolic equations experienced a significant
development based on the ideas of numerical fluxes, approximate Riemann solvers,
and slope limiters; see, e.g., Cockburn et al. [9] and references therein for a thorough
review. This renewed interest in DG methods is stimulated by several factors includ-
ing the flexibility offered by the use of nonmatching grids and the possibility to use
high-order hp-adaptive finite element methods; see, e.g., Siili et al. [30].

For elliptic PDEs, DG methods originated from the early work of Nitsche on
boundary-penalty methods [25] and the use of interior penalties (IP) to weakly enforce
continuity conditions imposed on the solution or its derivatives across the interfaces
between adjoining elements; see, e.g., Babuska [4], Babuska and Zldmal [3], Douglas
and Dupont [13], Baker [6], Wheeler [31], and Arnold [2]. DG methods for elliptic
problems in mixed form were introduced more recently. Initially, a discontinuous
approximation was used solely for the primal variable, the flux being still discretized in
a conforming fashion; see, e.g., Dawson [11, 12]. Then, a discontinuous approximation
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of both the primal variable and its flux has been introduced by Bassi and Rebay
[7] and further extended by Cockburn and Shu [10] leading to the so-called local
discontinuous Galerkin (LDG) method. Around the same time, Baumann and Oden
[8] proposed a nonsymmetric variant of DG for elliptic problems. This method was
further developed and analyzed by Oden, Babuska, and Baumann [26] and by Riviére,
Wheeler, and Girault [29].

The fact that several DG methods (including IP methods) share common features
and can be tackled by similar analysis tools called for a unified analysis. A first
important step in that direction has been recently accomplished by Arnold et al.
[1] for elliptic equations. It is shown in [1] that it is possible to cast many DG
methods for the Poisson equation with homogeneous Dirichlet boundary conditions
into a single framework amenable to a unified error analysis. The main idea consists
of using the mixed formulation of the Poisson equation to define numerical fluxes and
to locally eliminate these fluxes so as to derive a method involving only the primal
variable.

The goal of the present paper is to propose a unified analysis of DG methods
that goes beyond the traditional hyperbolic/elliptic classification of PDEs by making
systematic use of the theory of Friedrichs’ systems [17] to formulate DG methods and
to perform the convergence analysis. This paper, which concentrates on first-order
PDEs, is the first part of a more comprehensive study on DG methods for Friedrichs’
systems. The forthcoming second part will deal more specifically with Friedrichs’
systems associated with second-order PDEs. Some preliminary results on Friedrichs’
systems related to this work can be found in [15, p. 227].

The paper is organized as follows. In section 2 we investigate the well posedness
of Friedrichs’ systems in graph spaces. Originally, Friedrichs addressed the ques-
tion of the uniqueness of strong solutions in ¢! and that of the existence of weak
solutions in L? [17]. The analysis of Friedrichs’ systems in graph spaces has been
undertaken by Rauch [27] and more recently by Jensen [20]. The main novelty of
the present approach is that we avoid invoking traces at the boundary by introducing
a bounded linear operator from the graph space to its dual that satisfies sufficient
conditions ensuring well posedness. In section 3 we illustrate the abstract results
of section 2 on three important examples of Friedrichs’ systems, namely, advection-
reaction equations, advection-diffusion-reaction equations, and a simplified version
of the Maxwell equations in the so-called elliptic regime. Drawing on earlier ideas
by Lesaint and Raviart [23, 24] and Johnson et al. [21], we propose in section 4
a general framework for DG methods. This section contains three main contribu-
tions. First, the generic DG method is formulated in terms of a boundary operator
enforcing boundary conditions weakly and in terms of an interface operator penal-
izing the jumps of the solution across the mesh interfaces. Second, the convergence
analysis is performed in the spirit of Strang’s Second Lemma by using two different
norms, namely, a stability norm for which a discrete inf-sup condition holds and an
approximability norm ensuring the continuity of the DG bilinear form. All the de-
sign constraints to be fulfilled by the boundary and the interface operators for the
error analysis to hold are clearly stated. Finally, using integration by parts, the DG
method is reinterpreted locally by introducing the concept of element fluxes and el-
ement adjoint-fluxes, thus providing a direct link with engineering practice where
approximation schemes are often designed by specifying such fluxes. Finally, section
5 reviews various DG approximations for the model problems investigated in sec-
tion 3. In all the cases, the degrees of freedom in the design of the DG method are
underlined.
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2. Friedrichs’ systems. The goal of this section is to reformulate Friedrichs’
theory by giving special care to the meaning of the boundary conditions. The main
results of this section are Theorems 2.5 and 2.8. Theorem 2.8 will be the starting
point of the DG method developed in section 4.

2.1. The setting. Let € be a bounded, open, and connected Lipschitz domain
in RY. We denote by D(Q) the space of € functions that are compactly supported
in Q. Let m be a positive integer. Let K and {A*}1<x<4 be (d + 1) functions on
with values in R™"™. Following Friedrichs [17], we assume that

(A1) KeL=@)mm, ,
(A2)  Vke{l,....d}, A€ [LO@))™™ and Y 9pAR € [LZ(Q)]™,

k=1
(A3) Vk e {1,...,d}, 2419 = (AF)! ae. in Q,

(A4) Z=K+K - Z O A* > 2u0T,, a.e. on Q,
k=1

where Z,, is the identity matrix in R™™. Set L = [L?(Q2)]™. We say that a function
w in L has an A-weak derivative in L if the linear form

d
(2.1) D@ 30— = [ Suon(A) e R
k=1

is bounded on L, and we denote by Au the function in L that can be associated with
the above linear form by means of the Riesz representation theorem. Clearly, if u is
smooth enough, e.g., u € [€1(Q)]™,

d
(2.2) Au=>" A*du.

k=1

Define the graph space

(2.3) W ={weL; Aw € L},
and equip W with the graph norm

(2.4) lwllw = [[Aw||L + [lwl|z,

and the associated scalar product. W is a Hilbert space. Indeed, let v,, be a Cauchy
sequence in W; i.e., v, and Av, are Cauchy sequences in L. Let v and w be the
corresponding limits in L. Let ¢ € [D(2)]™. Then, using the symmetry of A* and
an integration by parts yields

d d
[ v« [ Yoo = - [ v - - [ o,
Q Q- Q Q

k=1

which means that v has an A-weak derivative in L and Av = w. Since [D(Q)]™ C W
and [D(Q)]™ is dense in L, W is dense in L; as a result, we shall henceforth use L
as a pivot space, i.e., W C L = L' C W’. Note that owing to (A2), [H}(Q)]™ is a
subspace of W.
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Let K € L(L; L) be defined such that K : L 5 v +— Kv € L and set
(2.5) T=A+K.

Then, T € L(W;L). Let K* € L(L;L) be the adjoint operator of K, i.e., for all
veL, K*v=K'. Let T € L(W; L) be the formal adjoint of T,

d
(2.6) Tw=—-> 0p(A'w)+ K*w VYweW.
k=1

In this definition EZ:1 Ok (A*w) is understood in the weak sense. It can easily be
verified that this weak derivative exists in L whenever w is in WW. Moreover, the usual
rule for differentiating products applies. In particular, upon introducing the operator
V-A € L(L; L) such that (V-A)w = (ZZ:1 O AF)w for all w € L, the following holds

(2.7) VweW, Tw+Tw=(K+K*—V-A)w.
Observe that (A4) means that
(2.8) Yw e W, (Tw,w) + (w, Tw)y, > 2uoljw|?.

DEFINITION 2.1. Let D € L(W; W) be the operator such that

(2.9) Y(u,v) e W x W, (Du,v)ww = (Tu,v)r — (u, Tv) .

This definition makes sense since both T and T are in £(W; L). Note that D is
a boundary operator in the sense that [D(Q)]™ C Ker(D); see also Remark 2.1. A
more precise result (see [14]) is that Ker(D) = Wy and Im(D) = W3-, where Wy is
the closure of [D(2)]™ in W and for any subset E C W’ we denote by E+ the polar
set of E, i.e., the set of the continuous linear forms in W/ = W that are zero on E.

LEMMA 2.2. The operator D is self-adjoint.

Proof. Let (u,v) € W x W and set Z = K + K* — V-A. A straightforward
calculation yields

(Du, v)wr.w — (Dv,wywrw = (Tu,v)r, — (u,TU)L — (Tv,u)p, + (v,Tu)L
= (ZU,U)L - (U'a ZU)L =0,

since Z is self-adjoint. a

Remark 2.1. Let n = (nq,...,ng)" be the unit outward normal to 2. The usual
way of presenting Friedrichs’ systems consists of assuming that the fields {Ak}lgkgd
are smooth enough so that the matrix D = ZZ:1 npA* is meaningful at the boundary.
Then, the operator D can be represented as follows

d

(Du, v)wr.w = thnk/lku = / v'Du,
09 1] 90

whenever u and v are smooth functions. Provided [€!(Q)]™ is dense in [H!(Q2)]™
and in W, it can be shown that Du € [H~2(dQ)]™. Further characterization and
regularity results on Du can be found in [27] and in [20].
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2.2. The well posedness result. Consider the following problem: For f in L,
seek u € W such that Tu = f. In general, boundary conditions must be enforced for
this problem to be well posed. In other words, one must find a closed subspace V' of
W such that the restricted operator T': V — L is an isomorphism.

The key hypothesis introduced by Friedrichs to select boundary conditions con-
sists of assuming that there exists a matrix-valued field at the boundary, say, M :
09 — R™™  such that a.e. on 0F),

(2.10) M is positive, i.e., (M, &)rm > 0 for all £ in R™,
(2.11) R™ = Ker(D — M) + Ker(D + M),

where D is defined in Remark 2.1. Then, it is possible to prove uniqueness of the
so-called strong solution u € [€1(£2)]™ of the PDE system Tu = f supplemented with
the boundary condition (D — M)u|sq = 0. Moreover, it is also possible to prove
existence of a weak solution in L, namely, of a function u € L such that the relation
(u,Tv)g, = (f,v)r holds for all v € [€!(Q)]™ such that (D + M")v|sq = 0; see [27].
In this paper, we want to investigate the bijectivity of T" in a subspace V of the graph
W, and it is not possible to set V = {v € W; (D — M)v|gq = 0} since the meaning
of traces is not clear.

To overcome this difficulty, we modify Friedrichs’ hypothesis by the following
assumption: there exists an operator M € L(W; W') such that

(M1) M is positive, i.e., (Mw, w)w, w > 0 for all w in W,
(M2) W =Ker(D — M) + Ker(D + M).

Let M* € L(W;W’) be the adjoint operator of M, i.e., for all (u,v) € W x W,
(M*u,v)w' w = (Mv,u)w w. Then, one can prove (see [14]) that (M1)-(M2) imply
that Ker(D) = Ker(M), Im(D) = Im(M), and

(2.12) W =Ker(D — M*) + Ker(D + M™).
Since Ker(D) = Ker(M), M is a boundary operator. Set
(2.13) V=Ker(D-M) and V*=ZKer(D+ M),

and equip V and V* with the graph norm (2.4). The following result is proven in [14].
LEMMA 2.3. Assume (M1)-(M2). Then,

(2.14) DV)r=V* and DVt =V

LEMMA 2.4. Assume (Al)-(A4) and (M1)-(M2). Then, T is L-coercive on V
and T is L-coercive on V*.
Proof. Using (2.8) and (2.9) yields

1
(Tw,w) > pollw|| + §<Dwvw>wxwv
N 1
(Tw,w) > pollwl|7 — §<Dwvw>w',W-

Use (2.13) and (M1) to conclude. d

THEOREM 2.5. Assume (Al)—(A4) and (M1)-(M2). Let V and V* be defined
in (2.13). Then,

(i) T:V — L is an isomorphism.

(ii) T : V* — L is an isomorphism.
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Proof. We only prove (i) since the proof of (ii) is similar.

(1) Owing to (2.13), V is closed in W; hence, V is a Hilbert space. As a result,
showing that T': V' — L is an isomorphism amounts to proving statement (ii) in
Theorem 2.6 below with L = L'.

(2) Proof of (2.15). Let u € V. Observe that sup,er. (o Tuoe — Ty,

Mol
Lemma 2.4 implies || Tu||r > pollu]|r. Furthermore,

1K 2(zr
ITullz > [|Aull, — | K|z lulle > | Aulln — #HMHL.

This readily yields ||Au||r < ¢||Tul|r and thus |Ju|lw < ¢||TullL.

(3) Proof of (2.16). Assume that v € L is such that (T'u,v);, =0 for all u € V.
Since [D(Q)]™ C V, a standard distribution argument shows that Tv = 0 in [D’(€)]™.
Still in the distribution sense, this means that ZZ:l AFOpv = K*v — (V-A)v. Since
the right-hand side is a bounded linear functional on L, v has an A-weak derivative
in L,ie.,v€W. As aresult, (Du,v)y w =0 for all u € V, i.e., v € D(V)*. Owing
to Lemma 2.3, v € V*. Finally, since (Tv,v)L =0 and v € V*, Lemma 2.4 implies
that v is zero. ]

THEOREM 2.6 (Banach—Necas—Babuska (BNB)). Let V, L be two Banach spaces,
and denote by (-,-) .1, the duality pairing between L' and L. The following statements
are equivalent:

(i) T € L(V; L) is bijective.

(ii) There exists a constant o > 0 such that

Tu) L
(2.15) vuev, osup LWL
vernfoy vl
(2.16) Vwel, ((v,Tuyp=0YueV) = (v=0).

As an immediate consequence of Theorem 2.5, the following problems are well
posed: For f in L,

(2.17) seek u € V such that Tu = f,
(2.18) seek u* € V* such that Tu* = f.

Remark 2.2. To guarantee that T : V — L and T:V* — L are isomorphisms,
it is also possible to specify assumptions on the spaces V and V* without using the
boundary operator M. Introduce the cones C* = {w € W; + (Dw,w)w w > 0}.
Then, under the following assumptions:

(V1) VcChandV*CO™,
(V2) V*=D(V)t and V = D(V*)*,
T:V — LandT : V* — L are isomorphisms [14]. This way of introducing Friedrichs’

systems seems to be new. We think that assumptions (V1)-(V2) are more natural
than (M1)—(M2) since they do not involve the somewhat ad hoc operator M.

2.3. Boundary conditions weakly enforced. As we have in mind to solve
(2.17) by means of DG methods with the boundary conditions weakly enforced, we
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now propose alternative formulations of (2.17) and (2.18). Define the bilinear forms
(2.19) a(u,v) = (Tu, v)p + %((M D), ),

(2.20) a* (u,v) = (T, )1, + %((M* + D), )
It is clear that a and a* are in L(W x W;R). A remarkable property is the following

lemma.
LEMMA 2.7. Under assumption (A4), the following holds for all w € W,

1

(2.21) a(w,w) > pollwl[z + 5 (Mw, ww,w,
* 1

(2.22) a* (w,w) > pol|wl|3 + §<Mw7w>W/7W.

As a result, a and a* are L-coercive on W whenever (A4) and (M1) hold.
Proof. Let w € W. Owing to (2.9),

1 1
a(w,w) = (Tw,w)y, — §<Dw,w)wgw + §<Mw,w>wf,w

1 ~ 1
5((T + T)w,w)L + §<M’w,w>wl7w.

Hence, (2.21) follows from (2.8). The proof of (2.22) is similar. d
Consider the following problems: For f € L,

(2.23) seek u € W such that a(u,v) = (f,v) Yv € W,
(2.24) seek u* € W such that a*(u*,v) = (f,v)r Yv € W.

THEOREM 2.8. Assume (A1)—(A4) and (M1)—(M2). Then,

(i) There is a unique solution to (2.23) and this solution solves (2.17);

(ii) There is a unique solution to (2.24) and this solution solves (2.18).

Owing to Theorem 2.5, there is a unique u € V solving Tu = f. Moreover, since u
isin V, (D — M)u = 0. Hence, a(u,v) = (f,v)r for all v € W, i.e., u solves (2.23). In
addition, since a is L-coercive on W owing to Lemma 2.7, it is clear that the solution
to (2.23) is unique. This proves statement (i). The proof of the second statement is
similar. ]

Remark 2.3. Neither the bilinear form a nor the bilinear form a* induce an isomor-
phism between W and W’. In particular, there is no guarantee that (2.23) or (2.24)
has a solution if the right-hand side is replaced by (f, v)w+ w whenever f € W'.

3. Examples. This section discusses admissible boundary conditions for three
important examples of Friedrichs’ systems: advection-reaction equations, advection-
diffusion-reaction equations, and a simplified version of the Maxwell equations in the
elliptic regime. We stress the fact that the existence of an operator M € L(W; W)
such that (M1)—(M2) hold provides sufficient conditions for well posedness. Although
the existence of M € L(W;W’) may not be granted in all cases (this is reflected,
for instance, in the necessity to make assumption (H2) to treat advection-reaction
equations; see section 3.1), the formalism appears to be general enough to treat
advection-diffusion-reaction equations, and Maxwell’s equations in the elliptic regime;
see sections 3.2 and 3.3.
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3.1. Advection-reaction. Let 3 be a vector field in RY, assume 8 € [L>(2)]4,
V-8 € L>®(Q), and define

(3.1) 00F = {2 € 0Q; + B(x)n(x) > 0},

as well as 90° = 9Q\(9Q~ U IQT); 90 is the inflow boundary, I the outflow
boundary, and 99° the interior of the set {x € 9Q; B(z)-n(x) = 0}.
Let p be a function in L% () such that

1
(3.2) w(x) — §V-ﬂ(m) > 1o >0 ae in Q,
and consider the advection-reaction equation

(3.3) pu + B-Vu = f.

This PDE falls into the category studied above by setting Kv = pv for all v € L?(Q),
and A¥ = g* for k € {1,...,d}. It is clear that (A1)—(A4) hold with m = 1. The
graph space is W = {w € L?(Q); 8-Vw € L?(Q2)}.

Henceforth, we assume that
(H1) ¢(RY) is dense in W,
(H2) 092~ and 90T are well separated, i.e., dist(9Q~,90") > 0.

Hypothesis (H1) is a regularity assumption on €. It can be shown to hold by using
Friedrichs’ mollifier whenever 2 and 3 are smooth. Let L?(9€;|3-n|) be the space of
real-valued functions that are square integrable with respect to the measure |5-n|dx
where dz is the Lebesgue measure on 0f).

LEMMA 3.1. Provided (H1)-(H2) hold,

(i) The trace operator vy : €5(RY) 3 v — v € L2(09; |B-n|) extends uniquely to a
continuous operator on W ;

(ii) The operator D has the following representation: for all u,v € W,

(3.4) (Du, v)wr.w = wv(Bn).
o0
Proof. Since 90~ and 907" are well separated, there are two nonnegative functions
¥~ and Y7 in €}(R?) such that
(3.5) YT 4+y9t =1 onQ, Y7 aq+ =0, P oo = 0.
Let u be a function in ¢§(R?). Then,

213 | — 20— VB | — 2.= 4. 2.7F13.
/muwm /muw 44 Ben] /mww|ﬂn\+/mw%w|ﬁn|
_ 2 5 — . 2 .+ . — _ . 2 ) — . 2, .+
_ /8uw<ﬂn>+/muw<ﬂn> /vaw ﬂ>+/ﬂvww 8).

Q

Hence, 0 < [, u?|3-n| < c(@F,97)||ullfy. Statement (i) follows from the density of
¢} (R?) in W. The proof of (ii) is an immediate consequence of the existence of traces
in L2(09; |B-n|). a

To specify boundary conditions, define for u,v € W,

(3.6) (M, 0)wr = /8 il
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LEMMA 3.2. Let M € L(W;W') be defined in (3.6). Then,

(i) (M1)-(M2) hold;

(ii) V={v e W;v|ga- =0} and V* = {v € W; v|gq+ = 0}.

Proof of (i). (M1) directly results from (3.6). Let ¢)*, ¢~ be the partition of unity
introduced in (3.5). Let w € W and write w = 7w + ¢ ~w. It is clear that ¢¥Tw €
Ker(D—M) since for allv € W, ((D—M)pTw,v)wrw = [+ ¥ ow(8-n—|3-n]) = 0.
Similarly, ¥~ w € Ker(D + M). Hence, (M2) holds.

Proof of (ii). Let v € Ker(D — M). Then, for all w € W, =2 [,,_ |3-n[vw = 0.
Take w = v to infer v|yn- = 0; thus, Ker(D — M) C V. Conversely, if v|gq- = 0,
it is clear that for all w € W, (D — M)v,w)w'.w = =2 [,o- |B-njow = 0, ie.,
v € Ker(D — M). Proceed similarly to prove that V* = {v € W; v|gq+ = 0}. |

3.2. Advection-diffusion-reaction equations. Let 5 : Q@ — R¢ be a vector
field such that 8 € [L*°(Q)]¢ and V-3 € L>(Q). Let u be a function in L>(Q) such
that (3.2) holds, and consider the advection-diffusion-reaction equation

(3.7) —Au+ 8-Vu+ pu = f.

This equation can be written as a system of first-order PDEs in the form

(3.8) {0+Vu=0,

pu—+V-o+ 8-Vu=f.

The above differential operator can be cast into the form of a Friedrichs’ operator by
setting K (o,u) = (0, pu) for all (o,u) € [L*(Q)]4F!, and for k € {1,...,d},

(3.9) A [0.6’“] |

where €* is the kth vector in the canonical basis of R?. It is clear that hypotheses
(A1)—(A4) hold with m = d 4 1. Upon observing the norm equivalence

ci(Vulzz) + IV-allLz) < [IVullLz) + 18-Vu + Voo 2
< co([[Vull 2y + IV-allL2 ),

it is inferred that the graph space is W = H (div; Q) x H*(£2). Moreover, the boundary
operator D is such that for all (o,u), (1,v) € W,

(3.10) (D(o,u), (T, 0))wr,w = (on,v) 1 1+ (rnu) 11+ /m(ﬁ'n)um

where (, >7%)% denotes the duality pairing between H~2 (9Q) and Hz (99). Note that

(3.10) makes sense since functions in H!(£) have traces in H2 (9Q) and vector fields
in H(div; Q) have normal traces in H ™~z (99).

3.2.1. Dirichlet boundary conditions. A suitable operator M to weakly en-
force Dirichlet boundary conditions is such that for all (o,u), (7,v) € W,

(3.11) (M(o,u), (T,v))wr,w = (on,v) 11— (Tn,u) 11
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LEMMA 3.3. Let M € L(W;W’) be defined in (3.11). Then,

(i) (M1)-(M2) hold;

(ii) V=V*={(0,u) € W; u|aq = 0}.

Proof of (i). (M1) clearly holds since M + M* = 0. Let w = (o,u) € W and
write w = wt 4+ w™ with w™ = (=1Bu,u) and w~ = (o + 35u,0). By assumption
on f3, the vector-valued field fu is in H(div; Q) if u € H'(Q); hence, w* are in W.
Moreover, a straightforward calculation shows that w* € Ker(D 4+ M). Hence, (M2)
holds.

Proof of (ii). The identity V' = V* results from the fact that M + M* = 0.
Moreover, observe that for all (o,u), (7,v) € W,

(D = M), (7 0hwraw =2y y + [ (Bpun,

Let (o,u) € Ker(D — M). Let v € H™2(8Q). There exists 7 € H(div; ) such that
T-n =~ in H=2(0). Then, using (7,0) in the above equation yields (7, u)_11=0
Since v is arbitrary, this implies u|pq = 0. Hence, V C {(o,u) € W; u|spq = 0}.
Conversely, let (o,u) € W be such that u|gg = 0. Then, the above equation shows
that (o,u) € Ker(D — M) =V. O

Remark 3.1. The choice of the operator M to enforce homogeneous Dirichlet
boundary conditions is not unique. For instance, one can take (M (o, u), (7, v))w'.w =
<a-n,v>7%7% - (T~n,u>7%’% + faﬂ suv, where ¢ is a nonnegative real number.

3.2.2. Neumann and Robin boundary conditions. Let ¢ € L%°(99Q) be
such that 2p + B-n > 0 a.e. on 9. Neumann and Robin boundary conditions are
treated simultaneously, the choice ¢ = 0 yielding a Neumann boundary condition (in
this case, S-n > 0 a.e. on 99 corresponding to an outflow boundary). A suitable

operator M to weakly enforce Neumann or Robin boundary conditions is such that
for all (o,u), (1,v) € W,

(3.12)  (M(o,u), (r,0))wrw = (Tn,u)_1 1 —(on,v)_11+ /aQ(QQJr B-n)uv.

303
LEMMA 3.4. Let M € L(W;W') be defined in (3.12). Then,

(i) (M1)-(M2) hold;

(ii) V={(o,u) € W; o-n=ogulsa} and V*={(o,u) € W;on=—(o+ B-n)ulsa}.
Proof. (M1) holds since 2¢p + S-n > 0 a.e. on 9. Furthermore, observe that

(D = M)(o,u), (1,0))wrw = 2(0n,0) _1 1 — 2 [, ouv,
(D + M)(o,u), (1,v))w.w = 2(Tn, u)_%é + QIBQ(Q + B-n)uv,
(D + M*)(o,u), (1,0))w'w = 2{on,v)_1 1+ 2 [4o(0+ Bn)uv.

Let w = (o,u) € W. Since guloq € H™2(89), there is oo € H(div; ) such that
oo'n = oulspq. Then, setting wt = (¢ — 7¢,0) and w™ = (09, u), it is easily verified
that w* € Ker(D 4+ M) and, hence, (M2) holds. Finally, proceed as in the proof of
Lemma 3.3 to prove (ii). a

3.3. Maxwell’s equations in the elliptic regime. We close this series of ex-
amples by considering a simplified form of Maxwell’s equations in R® in the elliptic
regime, i.e., when displacement currents are negligible. Let o and p be two posi-
tive functions in L*°(€2) uniformly bounded away from zero. Consider the following
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problem

(3.13) {,uH—i-VxE—f,

ocE —VxH=g.

This problem can be cast into the form of a Friedrichs’ system by setting K (H, E) =
(uH,oE) for all (H,E) € [L*(Q)]? x [L?(Q)]® and for k € {1,2,3},

. A= Lm);o] -

The entries of the matrices R* € R33 are those of the Levi-Civita permutation tensor,
ie., Rfj = €;; for 1 < 4,7,k < 3. Hypotheses (A1)—(A4) hold with m = 6. The graph
space is W = H(curl; Q)x H(curl; ), and the boundary operator D is such that for
all (H, E), (h,e) € W,

<D(H, E), (h76)>w/’w = (VXE7h)[L2(Q)]3 — (E,VXh)[Lz(Q)]S

(3.15)
+ (H,Vxe) 2@y — (VXH, e)ir2a)s-

When H and E are smooth the above duality product can be interpreted as the
boundary integral [, (nxE)-h+ (nxe)-H.

Let us now define acceptable boundary conditions for (3.13). One possibility
(among many others) consists of setting for all (H, F), (h,e) € W

(M(H,E), (h,e))ww = — (VXE,h)r2(qys + (E, Vxh)L2@)s

3.16
( ) + (H7VX6)[L2(Q)]3 — (VxH, e)[LQ(Q)]3'

LEMMA 3.5. Let M be defined in (3.16). Then,

(i) (M1)—(M2) hold;

(i) V = V* = {(H,E) € W; (Exn)|sq = 0}.

Proof of (i). Observe that M + M* = 0; hence, M is positive. Let w = (H, E) €
W. Write w = wt +w™ with wt = (0, E) and w™ = (H,0). One easily verifies that
wt € Ker(D + M), i.e., (M2) holds.

Proof of (ii). The identity V' = V* results from the fact that M + M* = 0. Let
(H,E) € Ker(D — M). Then, for all (h,e) € W,

(D —M)(H,E),(h,e))yww = 2(VXE,h)p2ays — 2(E, VXh)2(a)s = 0.

Since vector fields in H (curl; ) have tangential traces in [H ™= (9Q)]?, we infer that
for all h € [HY(Q)]?, ((Exn),h)_ 1.1 = 0. Since h is arbitrary and the traces of

vector fields in [H(Q)]? span [H2(8Q)]3, we conclude that (Exn)|sg = 0. Con-
versely, let (H,E) € W be such that (Exn)|gq = 0. Then, it is clear that ((D —
M)(H,E),(h,e))ww = 0 for all h € [HY(Q)]?® and all e € H(curl;Q2). Since
[H1(Q)]? is dense in H(curl; Q) and both D and M are in L(W;W’), it follows that
(H,E) € Ker(D — M). O

4. Discontinuous Galerkin. The goal of this section is to introduce a generic
DG method to approximate the abstract problem (2.23). The fact that the boundary
conditions are enforced weakly through the boundary operator M is a key to the
theory. The discrete problem is stated in (4.12)—(4.13). The design constraints of the
method are (DG1) to (DG8). The main convergence result is stated in Theorem 4.6.
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4.1. The discrete setting. Let {7, },~0 be a family of meshes of Q. The meshes
are assumed to be affine to avoid unnecessary technicalities, i.e., €2 is assumed to be
a polyhedron. However, we do not make any assumption on the matching of element
interfaces.

Let p be a nonnegative integer. Define

(4.1) Wy, = {vn € [L2(Q)]™; VK € Ty, vn|k € [Pp]™},
(4.2) W (h) = [H*(Q)]™ + Wh,.

We denote by Fi the set of interior faces (or interfaces), i.e., F € F} if F is a
(d—1)-manifold and there are K1 (F'), K2(F) € Tp, such that F' = K (F)NKo(F). We
denote by }",? the set of the faces that separate the mesh from the exterior of 2, i.e.,
F € F? if F is a (d—1)-manifold and there is K(F) € 7}, such that F = K(F) N 0.
Finally, we set F;, = Fi U F?. Since every function v in W (h) has a (possibly two-
valued) trace almost everywhere on F € F}, it is meaningful to set

(4.3) vl (z) = lim  v(y), v (z) = lim  v(y), for a.e. x € F,
yEyKl(F) yeJKg(F)

(4.4) [v] = v! — o2, {v}= %(vl +v?), a.e. on F.

The arbitrariness in the choice of K;(F') and Ko(F) could be avoided by choosing
an intrinsic notation that would, however, unnecessarily complicate the presentation.
For instance, we could have chosen to set [v] = vt@n! + v?®@n? where n!, n? are the
unit outward normals of K7 (F') and K»(F), respectively. Although having to choose
K1(F) and K5(F) may seem cumbersome, nothing that is said hereafter depends on
the choice that is made.

For any measurable subset of 2 or Fy, say E, (-,-)r g denotes the scalar product
induced by [L2(2)]™ or [L?(F)]™ on E, respectively, and || - || g the associated

norm. Similarly, || - |« gz denotes the norm induced by [L?(€2)]™*% or [L?(F,)]™*¢
on E. For K € T}, (vesp., F' € Fy,), hk (resp., hr) denotes the diameter of K (resp.,

The mesh family {7, }n~0 is assumed to be shape-regular so that there is a con-
stant ¢, independent of h = maxge7, hi, such that for all v, € W}, and for all
K €T,

(4.5) IVonllpe i < ehictonlle x,
_1
(4.6) lonller < chilonlle ¥F C OK.
4.2. Boundary operators. Henceforth we denote Dyq = ZZZI niA* and we
assume that the boundary operator M is associated with a matrix-valued field M :

9Q — R™™, Hence, for all functions u, v smooth enough (e.g., u,v € [H}(Q)]™),
the following holds:

(4.7) (Du, v)wr .w z/ v Daqu, (Mu,v)ww = v Mu.
a0 a0

To enforce boundary conditions weakly, we introduce for all F' € F, ,? a linear oper-
ator Mg € L([L?(F)]™;[L*(F)]™). The design of the boundary operators {Mp}pero
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must comply with the following conditions: For all F € F¢ and for all v,w € [L?(F)]™,

(DG1) (Mp(v),v)L.r >0,

(DG2) (Mv = Dggv) = (Mp(v) = Daqu),
(DG3) |(MFp(v) — Doqu, w)r,r| < clvlm,rlwlL,F,
(DG4) [(MFp(v) + Doqu, w)r,r| < cl|lv|,rlwlr,r,

where ¢ is a mesh-independent constant and where we have introduced for all v € W (h)
the following seminorms:

(4.8) wlir= > Wlige  with  |l} = (Mp(v),0)L.r.
FeF?

Remark 4.1.

(i) Examples of boundary operators Mp are presented in section 5 for all the
model problems introduced in section 3.

(ii) Assumption (DG2) is a consistency assumption while assumptions (DG3)
and (DG4) are related to the stability and continuity of the discrete bilinear form; see
the analysis in section 4.5.

4.3. Interface operators. For K € 7, define the matrix-valued field Dy :
0K — R™™ ag

d
(4.9) Dok (z) = Z ng pA"(x) a.e. on 0K,
k=1
where ng = (nk.1,...,nK,q4)" is the unit outward normal to K on K. Note that this

definition is compatible with that of Dyq in (4.7) if 9K N IN # . Moreover, observe
that for all u, v in W(h) and for all K € 7y,

(410) (DaKU, 'U)L,GK = (TU, U)L,K — (u, T’U)LyK.

We denote by D the matrix-valued field defined on F), = Fi U F? as follows. On
}-}? , D is single-valued and coincides with Dyg. On ]-",il, D is two-valued and for all
F € Fl, its two values are Dok, (r) and Dy, (ry. Note that {D} = 0 a.e. on Fi.

To control the jumps of functions in W), across mesh interfaces, we introduce
for all F € F a linear operator Sp € L([L*(F)]™;[L*(F)]™). The analysis below
will show that the design of the interface operators {Sp} e must comply with the

following conditions. For all F € F} and for all v,w € [L*(F)]™,

(DG5) (Sp(v),v)LF >0,

(DG6) 1SF()llL,r < cllvlL,F,

(DGT) |(SF(v),w)r,r| < clv]s,rlwls,F,
(DGS8) |(Dox(ryv,w)r,r| < clv|s,rllwllr,F,

where ¢ is a mesh-independent constant, K (F') denotes any of the two elements sharing
F and 0K(F) its boundary, and where we have introduced for all v € W (h) the
following seminorms:

(4.11) s =Y e with oS = (Sp(v),0)rr.
FeF)
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Remark 4.2.

(i) Examples of interface operators Sg are presented in section 5 for all the model
problems introduced in section 3.

(ii) Since SF is positive, a sufficient condition for (DG7) to hold with ¢ =1 is Sp
be self-adjoint.

4.4. The discrete problem. We now turn our attention to the construction of
a discrete counterpart of (2.23). To this end we introduce the bilinear form aj such
that for all v, w in W (h),

ap(v,w) = Z (Tv,w)r, k + Z %(MF(U) —Dv,w)L F

KeTy, FeF?
(4.12) "
- Z 2({Dv} ,{w})r.Fr + Z (Sr([v]), [w])L,F-
FEF! FeF,

Then, we construct an approximate solution to (2.23) as follows. For f € L,

(4.13) {Seek up, € Wy, such that

ah(uh,vh) = (f, Uh)L V’Uh S Wh.

Remark 4.3. In the definition of ay, the second term weakly enforces the boundary
conditions. The purpose of the third term is to ensure that a coercivity property
holds, see Lemma 4.1. The last term controls the jump of the discrete solution across
interfaces. Some user-dependent arbitrariness appears in the second and fourth term
through the definition of the operators Mpr and Sr. The design constraints on Mp
and Sp are (DG1)-(DG4) and (DG5)-(DGS), respectively.

4.5. Convergence analysis. To perform the error analysis we introduce the
following discrete norms on W (h),

(4.14) lolffa = lolg + [olF + o3 + Y bl Avli
KeTy,
(4.15) lollf s = lollf 4+ D (R 10012, + 0117 o],
KeTy,

where we have introduced the jump seminorms

(4.16) =" Wle  with  Jolir=[[]lsr.
FeF
The norm || - [|n,4 is used to measure the approximation error, and the norm | - [|;, 1

serves to measure the interpolation properties of the discrete space Wj,.
Throughout this section, we assume that:
e Problem (2.23) is well-posed.
e The mesh family {73 }r>0 is shape-regular so that (4.5) and (4.6) hold.
e The design assumptions (DG1)-(DG8) on M and SF hold.
e Forall ke {1,...,d}, AF € [€%2(Q)]™™.
LEMMA 4.1 (L-coercivity). For all h and for all v in W(h),

1
(4.17) an(v,0) = pollvllz + [of7 + 5lvl3r
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Proof. Let v in W (h). Using (4.10) and summing over the mesh elements yields

Z %(DU,U)L,F + Z /F{Utpv} = % Z [(Tv,v)1.x — (v,T)L k.

FeFp FeF} KeT,

Subtracting this equation from (4.12) and using the fact that {v'Dv} = 2 {v'} {Dv}
leads to

1 ~ 1
ap(v,v) = 3 Z [(TU,U)LJ{ + (0, Tv) x| + V|5 + 5\1}\?\4

KeTy,
Then, the desired result follows using (A4). a

LEMMA 4.2. There is ¢ > 0, independent of h, such that for all F' in ]-',il and for
all v,w € W(h),

(4.18)  |(Sr([e]), [wD e rl + [({Dv}, {wh)r,rl < clolsr ([ {w} ]

.r + [[fw]llz,F)-

Proof.
(1) Owing to (DGT7), (Sr([v]), [w]r.r < clv|sr|lw|sr, and owing to (DG6),
jwlsr < ellfw]llz,p. Hence, (Sk([v]), [w])r,r < clvlsrl[w]z.F-

(2) Let K1 (F') and K2(F') be the two mesh elements such that F' = Ky (F)NK2(F).
Then, 2 {Dv} = Dk, (p)[v] since {D} = 0. Using (DG8) yields

|({Dv}  {w})r, rl = [(Pk,(r)[v], {w}) L, rl < clolsrll{w} |z F-

The proof is complete. 0
LEMMA 4.3 (stability). There is ¢ > 0, independent of h, such that

ap(vp, wp)

(4.19) inf sup TR
€W} wy, ew,\ {0} [[Unl[n.allwn]n,a

Proof.
(1) Let v, be an arbitrary element in W),. Let K € 7,. Denote by A% the
mean-value of A*¥ on K; then,

R 1
(4.20) A* = AR g o < IAM T g 3 e PR

Set Agv, = Zzzl E@kvh and 7, = ZKETh hixAgvy. Clearly, m, € Wy. Using
(4.20), together with the inverse inequalities (4.5) and (4.6), leads to

— 1 .
(4.21) |ArvnllL,r < chy® | Axonllr, i ) if FeFy,
I {Axvn} lo.r + I[AxvnlllL.F < chi? |Axonlxok,  if F € F,

— _1
(4.22) [[Agvnlz,x < cmin(|Ava|lz,x + b vl bt lonll o x)-
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Note that (4.22) implies |74 ||z < ¢||vp||L. From the definition of ay, it follows that

1
> bkl Avall g = an(vn, ™) — (Kvn, ma)p — > 5 (Mr(vn) = Dop, mh),p

KeTh FeF?
+ Y 2({Pvn} Amn D Lr — (Se([val), [mn])1.F]
FeF,
+ Z hi(Avy, (A — Ag)vn) L.k
KeTy,

= ap(vp, ) + R1 + Ro + R3 + Ry,

where Ry, Ry, R3, and R4 denote the second, third, fourth, and fifth term in the
right-hand side of the above equation, respectively. Each of these terms is bounded
from above as follows. Using (4.22) yields ||7|| < ¢||lvn||z and hence,

|R1| < clonllclimallz < cllonllz-

Using (DG3) together with (4.21) and (4.22) leads to

[Ral < D ey (Mp(on),vn) e +3llmallZ, pl
FeF?

< c(lonllf + vali) + D hillAvklF k.
KeTy,

where v > 0 can be chosen as small as needed. For the third term, use Lemma 4.2,
together with inequalities (4.21) and (4.22), as follows:

[Rs| < > eylonlir+v Y hlAxvnll? x

FeF) KeT,
< cllonll + fonl3) +7 Y bl Avall? k-
KeT,

For the last term, (4.5) and (4.20) yield

1
[Ral < D hicl|Aval ok chi || Von | Lo,

KeTy,
1
<c > hillAvnllnglonllg < clonlli +7 D hxllAvall «-
KeT, KeT,

Using the above four bounds, v = %, and Lemma 4.1 leads to
1
(4.23) 5 > hillAvpll7 i < an(on, mh) + can(vn, va).
KeTy,

(2) Let us now prove that ||74|ln,a < c|lvn|ln,a. We have already seen that
l7rllz < cllvnlln. Using (4.5), together with inequalities (4.20) and (4.22), leads to

D hicllAmalf i < e Rt mall ke <€) lhxl|Avsl
KeTy, KeTy, KeTy,

%,K + th||2LK]
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Moreover, the inverse inequality (4.6), assumption (DG6), and inequalities (4.21) and
(4.22) yield

mals = > Imalge <c > htlmlli e <c Y [kl Avall? x + lvall? &)
Fe]—‘}L KeTy, KeTy,

Proceed similarly to control |7 |as. In conclusion,
(4.24) [7nllna < clloalln,a-
(3) Owing to (4.17) and (4.23), there is ¢; > 0 such that
lvalli 4 < cran(va, vi) + an(vn, ) = an(va, T + c1op).
Then, setting wy, = 7, + c1vp, and using (4.24) yields

Uh||h,A||Wh||h,A S C||Uh||h.A S CAR(Vp, Wh ).
[onlln, allwnlln,a < ¢ llonllf 4 < can )

The conclusion is straightforward. |
Remark 4.4. Note that (4.5) and (4.17) readily imply coercivity in the weaker
norm [|v]|} o = [[vll] +[v]5 + [v[}; + X ger, MillAv|7 k. but this property is not

sufficient to prove an optimal convergence rate in the broken graph norm; see (4.32).
LEMMA 4.4 (continuity). There is ¢, independent of h, such that

(4.25) V(v,w) € W(h) x W(h), ap(v,w)<c H’UHh’%Hth,A.

Proof. The general principle of the proof is to integrate by parts a(v,w) by
making use of the formal adjoint T'. Observing that

Z [(Tv,w)px — (v, Tw)p k] = Z (Dv,w)r,r + Z /FQ{thv},

KeTy, FeF] FeF}

and 2 {w'Dv} = 2{w'} {Dv} + L[w!][Dv], it is clear that

ap(v,w) = Z (v,Tw)LK—l— Z %(MF(U)—FDU,UJ)L,F

KeT, FeF?
(4.26) ) "
+ Y S0 e+ 3 (Se(@el): [l
FeF), FeF)

Let R; to R4 be the four terms in the right-hand side. Using the Cauchy—Schwarz
inequality yields

(Rl <c D [ollex(lwlle,x + [[Aw] £, k) < cllolly, 3 l[wln,a-
KeTy,

Use (DG4) together with the Cauchy—Schwarz inequality to infer

[Rol < e Y Nollz,rlwlarr < cllolly g Jwln.a.

FeFp
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For the third and fourth term, use (DG6) and (DGT), together with the fact that
[Dv] = 2D8K1(F) {v}, to obtain

[Rs| +|Ral <c > (H{v} o+ 1]l )wlie < cllvllyzlwlna-
FeF}

The result follows easily. 0
LEMMA 4.5 (consistency). Let u solve (2.23) and let uj, solve (4.13). If u €
Q)] then,

(4.27) Yop, € Wy, ap(u — up,vp) = 0.
Proof. Since u € [H(2)]™ solves (2.23), Mu = Du a.e. on 9Q and Tu = f in L.

Assumption (DG2) yields Mp(u|r) = Dul for all F € F?. Moreover, u € [H*(Q)]™
implies that {Du} = 0 and [u] =0 a.e. on F}. As a result,

Vo, € Wi, an(u,vn) = (Tw,vp)r = (f,vn)r = an(un, vs).

The conclusion follows readily. 1]
THEOREM 4.6 (convergence). Let u solve (2.23) and let up, solve (4.13). Assume
that w € [HY(Q)]™. Then, there is c, independent of h, such that

4.2 — < inf — .
(4.28) lu = unllna <c inf flu—ovnlly 3

h
Proof. Simple application of Strang’s Second Lemma; see, e.g., [15, p. 94]. Let
vy, € Wy. Owing to Lemmas 4.3, 4.4, and 4.5,

an(vn — up, wp
[vn — unlln,a <c  sup (v = Un, n)

wp €EWR\{0} ”wh”h,A
<e osup W)
wnew\{0}  [wnlln.a 2
Conclude using the triangle inequality. |

Owing to the definition of W}, and the regularity of the mesh family {7 },>0,
the following interpolation property holds. There is ¢, independent of h, such that for
all v € [HPT1(Q)]™, there is v, € W), satisfying

1
(4.29) o= onlln g < P H ol s oy
COROLLARY 4.7. If u is in [HPY1(Q)]™, there is c, independent of h, such that
(4.30) ||u—uh||h’A S Chp+%||u||[HP+l(Q)]m.
In particular,
1
(4.31) lu —unlz < ch?*2|ullgrer)m,

and if the mesh family {Tp}nh>o s quasi-uniform,
1

2
(4.32) ( > Aw - uh)||2L7K> < chPlull o ())m-

KeTy,

The above estimates show that, provided the exact solution is smooth enough, the
method yields optimal order convergence in the broken graph norm and (p+ %)—order
convergence in the L-norm.
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Remark 4.5. The estimates (4.30) to (4.32) are identical to those that can be
obtained by other stabilization methods like GaLS [5, 19, 21] or subgrid viscosity [18]
and many other methods.

Finally, when the exact solution is not smooth enough to be in [H(€)]™ but only
in the graph space W, we use a density argument to infer the convergence of the DG
approximation in the L-norm.

COROLLARY 4.8. Let u solve (2.23) and let up solve (4.13). Assume that
[HY(Q)]™ NV is dense in V. Then,

4.33 li — =0.
( ) hli% ||U uh||L

Proof. Let € > 0. There is uc € [H'(Q2)]™ NV such that |lu — ucllw < §. Let
Uep, be the unique solution in W}, such that ap (tep, vn) = (Tue, vp)r for all v, € W,
From the regularity of u. together with Theorem 4.6 and Corollary 4.7 applied with
p = 0, it is inferred that limp_o ||tep, — welln,4a = 0. Furthermore, using the discrete

inf-sup condition (4.19) yields

_ T(u. —
lven — unlr < sup an(Ueh, vn) — an(tn, vn) _ sup (T'(ue —w), vn)r

onE€Wn\{0} [vnlln, o onE€Wn\{0} v lln,

Vh|lL
< T -w)ly sup
v eWR\{0} ||”h||h,A

€
S ||u_ueHW S §a

where we have used the fact that for all v, € Wy, ap(up,vn) = (Tu,vp)r. Finally,
using the triangle inequality

lu —unllL < [lu—wuelr + lue — ven|lr + ||ten — unllL,

it is deduced that limsup;,_,q [|u — un||L <e. d

4.6. Localization, fluxes, and adjoint-fluxes. The purpose of this section is
to discuss briefly some equivalent formulations of the discrete problem (4.13) in order
to emphasize the link with other formalisms derived previously for DG methods,
namely that of Lesaint and Raviart [23, 24] and Johnson et al. [21, 22] for Friedrichs’
systems. To this end, we rewrite the bilinear form (4.12) in various equivalent ways
and introduce the concept of element fluxes and that of element adjoint-fluxes.

Let K € 7. Define the operator MY, € L([L*(0K)]™;[L*(0K)]™) as follows.
For v € [L?(0K)]™ and a face F C 0K, set

MF(’U|F) lfFEf;?,

4.34 MY = :
(4.34) o (v)lF {QSF(U|F) it FeF.

Furthermore, for v € W(h) and = € 0K, set

(435)  vi(z) = lim o(y), o (2) = lim o(y),
yeEK ygK
(4.36) [v]ox (z) = v'(2) — v¥(x), {v}ox (x) = %(vi(fv) +v(2)),

with v¢(x) = 0 if x € Q. Then, a straightforward calculation shows that the bilinear
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form ay, defined in (4.12) can be rewritten as follows:

(437) an(uw,v) = Y (Tw,v)x+ Z (MY ([u]ox) — Do [ulor, v') .ok

KeT, KETh
(4.38) = Z (u, T’U )oKk + Z MaK([[u]]aK) + 2Dsx {u}aK, ')L,é)K-
KeT, KETh

The bilinear form (4.37) is that analyzed by Lesaint and Raviart [24, 23] and further
investigated by Johnson et al. [21] in the particular case where the operator M, 5}(
is defined pointwise using a matrix-valued field on JK; see section 5.1 for further
discussion.

DEFINITION 4.9. Let K € T, and let v € W(h). The element flux of v on 0K,
say dox (v) € [L2(OK)|™, is defined on a face F C OK by

1MF(UIF) + 1Dam if F cOK?,
(4.39) dox (0)]p = { 2 2 |
Sp([v]ox|r) + Dox{v}yx if F COK',

where 0K denotes that part of OK that lies in Q and OK? denotes that part of K that
lies on 09). Likewise, the element adjoint-flux of v on K, say, ok (v) € [L*(OK)]™
is defined on a face F C 0K by

5 %MF(MF) - %DBQU if F c OK?,
(4.40) ok (V)|F = . |
Sr([vlox|r) — §D8K[['U]]6K if Fc oK'

The relevance of the notion of flux and adjoint-flux is clarified by the following
proposition.

PROPOSITION 4.10. The discrete problem (4.13) is equivalent to each of the
following two local formulations.

(4.41) Seek uy, € Wy, such that VK € 7, and Vv, € [P,(K)]™,
: (un, Tvp) L,k + (Yo (un),vn) .ok = (f,vn) L K-

(4.42) Seek uy, € Wy, such that VK € 7, and Vv, € [P,(K)]™,
‘ (Tun,vn)r,x + (Pok (un),vn) Lok = (fsvn)L,K-

Proof. Localize the test functions in (4.13) to the mesh elements and use the
fact that pox (v)|r = 5 Myw([v]ox) + Dox{v}yx and ok (v)|r = 5 M ([v]ox) —
Dok [v]ox. O

Let v be a function in W(h). We define the interface fluzes (resp., interface
adjoint-flures) of v, say, ¢'(v), (resp., say, P (v)), to be the two-valued function defined
on F, that collects all the element fluxes (resp., adjoint-fluxes) of v on the interior
faces. Likewise we define the boundary fluzes (vesp., boundary adjoint-fluves) of v,
say, ¢?(v), (resp., say, ¢?(v)), to be the single-valued function defined on F? that
collects all the element fluxes (resp., adjoint-fluxes) of v on the boundary faces.

Remark 4.6.

(i) The link between DG methods and the concept of element fluxes has been
explored recently by Arnold et al. [1] for the Poisson equation (in [1], the terminology
“numerical fluxes” is employed instead).
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(ii) In engineering practice, approximation schemes such as (4.41) are often de-
signed by a priori specifying the element fluxes. The above analysis then provides a
practical means to assess the stability and convergence properties of the scheme. In-
deed, once the element fluxes are given, the boundary operators My and the interface
operators Sg can be directly retrieved from (4.39). Then, properties (DG1)—(DGS)
provide sufficient conditions to analyze the scheme.

(iii) The interface fluxes are such that {¢'(v)} = 0 a.e. on F},. Approximation
schemes where the interface fluxes satisfy this property are often termed conservative.
Note that the concept of conservativity as such does not play any role in the present
analysis of the method, although it can play a role when deriving improved L2-error
estimates by using the Aubin—Nitsche lemma; see, e.g., Arnold et al. [1] and the sec-
ond part of this work [16].

(iv) The following relation links the element fluxes and the element adjoint-fluxes

(4.43) bor(v) — dox (v) = Daorv’.

In particular, the element adjoint-fluxes are not conservative.

(v) Both the element fluxes and the element adjoint-fluxes are associated with the
operator T, i.e., they are derived from a DG discretization of (2.23). It is also possible
to design a DG discretization of the adjoint problem (2.24) involving the operator T
and the bilinear form a*. This would lead to two new families of fluxes, the element
fluxes for T and the element adjoint-fluxes for 7. It should be noted that the element
adjoint-fluxes for T are not the element fluxes for T'. In particular, the former are not
conservative whereas the latter are conservative.

5. Applications. This section shows how the conditions (DG1)-(DG8) can be
used to design DG approximations of the model problems introduced in section 3.

5.1. Pointwise boundary and interface operators. For ease of presenta-
tion, the boundary and interface operators discussed in this section are constructed
from matrix-valued fields defined on all the mesh faces. This simpler construction
is sufficient to recover several DG methods considered in the literature. Examples
where a more general form for the boundary and interface operators is needed will be
presented in a forthcoming work [16].

For all F € F?, let Mp be a matrix-valued field such that for all £,¢ € R™,

M is positive,
Ker(/\/l — Dgg) C Ker(J\/lF — D@Q),

¢ M p — Dog)é| < (6 Mpé)?|¢[lrm,
ICH M p + Dag)€| < e(CPMpC)F|I€]

g g
Q@
W N
&

( )
( )
( )
( )

DG4a

Rm 3

where || - ||gm denotes the Euclidean norm in R™. Similarly, for all F € F}, let Sg be
a matrix-valued field such that for all £, € R™,

(DGba
(DG6a

(DG7a
(DG8a

Sp is positive,

Sp is uniformly bounded,
IC'SpE| < ¢(£'SpE)2 (¢'Sk()?,
ICPDE| < (£181€) 7 ||C |-

A straightforward verification yields the following proposition.

)
)
)
)
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PROPOSITION 5.1. For all F € F?, define Mp : [L*(F)|™ 2 v — Mg|pv €
[L2(F)]™, and for all F € Fi, define Sp : [L*(F)|™ 2 v +— Sp|pv € [L2(F)|™. Then,
(DG1)—~(DGS8) hold.

Remark 5.1.

(i) Whenever the matrix-valued field M defined in (4.7) satisfies (DG3a)—-(DG4a),
one simply sets Mp = M; otherwise, it is necessary to strengthen M. This last situ-
ation occurs, for instance, when approximating advection-diffusion-reaction problems
and the Maxwell equations in the elliptic regime; see sections 5.3 and 5.4.

(ii) One possible way of constructing Sg follows. Since D is symmetric, D is
diagonalizable; hence, the absolute value of D, say, |D|, can be defined. Moreover,
observing that |D| is single-valued on JF}, one can set Sy = |D|.

5.2. Advection-reaction. Consider the advection-reaction problem introduced
in section 3.1. Assume that all the faces in F? are in 9Q, in 9Q", or in 9Q\ (90~ U
ON"). The integral representation (4.7) holds with

(51) Doaq = ﬂn and M= |ﬂn|
Let o > 0 (this design parameter can vary from face to face) and for all F' € F},, set
(5.2) Mp =M =|5n| and  Sp = a|Bnr|,

where np is a unit normal vector to F (its orientation is clearly irrelevant). It is
straightforward to verify the following proposition.

PROPOSITION 5.2. Properties (DGla)-(DG8a) hold.

Remark 5.2. The specific value a = % has received considerable attention in the
literature. When working with the local formulation (4.42), the interface and bound-
ary fluxes are given by

&' (un)|ox = <a|ﬂ'nK| - ;ﬂ*m) [un]ox,

0% (un) = —|B-njunlsq-,
where 150- denotes the characteristic function of Q™. Setting o = %, one obtains
the DG method analyzed by Lesaint and Raviart [24, 23]; in this case the interface
adjoint-flux ¢' is nonzero only on that part of the boundary K where S-ng < 0.
Similarly, when working with the local formulation (4.41), the interface and boundary
fluxes are given by

¢ (un)lox = (Bnr) {un} + a|Bnk|[un]ox,

0% (up) = |Bnluplyg+,

where 150+ denotes the characteristic function of 9QF. Setting a = % leads to

& (un)|orr = (6~nK)uL, where ulb = ul if Bng > 0 and ulb = uj otherwise, i.e.,

the well-known upwind flux is recovered as a particular case of the above analysis
which is valid for any a > 0. This coincidence has led many authors to believe
that DG methods are methods of choice to solve hyperbolic problems. Actually DG
methods, as presented herein, are tailored to solve symmetric positive systems of
first-order PDEs, and as pointed out by Friedrichs, the notion of symmetric systems
goes beyond the hyperbolic/elliptic traditional classification of PDEs. Moreover, the
presence of the user-dependent interface operator Sr (see (DG5)—(DG8)) points to
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the fact that DG methods are merely stabilization techniques. This fact is even clearer
when one realizes that the error estimates (4.30)—(4.32) are identical to those that can
be obtained by using other stabilization techniques like GaLS (also sometimes called
streamline diffusion) [5, 19, 21] or subgrid viscosity [18] methods.

5.3. Advection-diffusion-reaction. Consider the advection-diffusion-reaction
problem introduced in section 3.2. The integral representation (4.7) for D holds with

£ 3 oo |2
( . ) o0 — ntiﬂn .

To simplify, we assume that the parameters § and p are of order 1, i.e., we hide the
dependency on these coefficients in the constants. Special cases such as advection-
dominated problems go beyond the scope of the present work. We begin with the
interface operator since its design is independent of the boundary conditions imposed.
Let a > 0,7 >0, and 6 € R%. For all F € Fi, define

(5-4) Sp = |t

PROPOSITION 5.3. Properties (DG5a)—-(DG8a) hold.

Proof. For & € R denote by ¢ = (&,,&,) its decomposition in R? x R and
use a similar notation for ¢ = ((,,¢,) € R4, The field Sr is clearly positive and
bounded, i.e., (DG5a) and (DG6a) hold. Moreover, for &, ¢ € R4+

CtSFg = Oé(fg"l’l/) (Ca'n) + (6n)(<0n)€u - (6n)(§an)<u + nfqu
and £'Spé = a(&,-n)? +ng2, when (DGTa) is readily deduced. Finally, since

Ct,D(?Kg = (go'nK)Cu + (Ca'nK)fu + (ﬁnK)fuCuv

(DG8a) holds. |

Remark 5.3.

(i) We stress the fact that the above DG method yields (p + % )-order estimates
in the L-norm for both u; and oy,.

(ii) The o- and u-component of the interface fluxes are given by

7 (on, un)lox = ({un} + ang-[on]ox + (6nx)[un]or)nx,
" on,un)lorx = ni-{on} — (8nr)nw-[onlox + nlurlorx + B {un}.

Owing to the fact that a # 0, the local formulation (4.41) or (4.42) cannot be used
to derive a local reconstruction formula where op|x is expressed solely in terms of
up. To this end, the coefficient o has to be set to zero, and this requires a nontrivial
modification of the analysis that will be reported in [16]. With this modification,
the DG approximation does no longer yield a (p + %)—order estimate for oy in the
L-norm.

(iii) The design parameters «, 6, and 1 can vary from face to face. In particular,
one can take 6 to be any bounded vector-valued field on .’F}L; 6 = 0 is a suitable
choice. Other particular choices lead to DG methods already reported in the literature
for advection-diffusion-reaction problems. A more detailed discussion, including a
comparison with methods where the unknown o}, |k is eliminated locally, is postponed
to [16].
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5.3.1. Dirichlet boundary conditions. The integral representation (4.7) of
the boundary operator M defined in (3.11) holds with

0:i—n

5.5 M= |- )

55 {nt 0 ]

Let ¢ > 0 (this design parameter can vary from face to face). For all F' € ]—";? , define
0i—n

(5.6) Mp = [ ,,,,,, } ,
n 9

It is straightforward to verify the following proposition.

PROPOSITION 5.4. Properties (DGla)—-(DG4a) hold.

Remark 5.4. Observe that setting Mp = M is not adequate here since with this
choice (DG3a) does not hold.

5.3.2. Neumann and Robin boundary conditions. The integral represen-
tation (4.7) of the boundary operator M defined in (3.12) holds with

0 n
- e[

Consider first Neumann boundary conditions, i.e., ¢ = 0. Let A > 0 (this design
parameter can vary from face to face). For all F' € }";?, define

,,,,,,,,,,,,,,

(5.8) Mp =

It is straightforward to verify the following proposition.

PROPOSITION 5.5. Properties (DGla)—-(DG4a) hold.

Consider next Robin boundary conditions and assume that ¢ + min(3-n,0) > 0
(this assumption is not restrictive since Robin boundary conditions are often enforced
on inflow boundaries by setting o = —3-n). Let A € ]0, %[ (A €]0,+0) if p = 0),
0 =1—\o, and o = —\g?. For all F € F?, define

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(5.9) Mp = _ont 12‘94_@”_’_0{

PROPOSITION 5.6. Properties (DGla)—-(DG4a) hold.

Proof. Since p + 6-n > 0 by assumption and since g + o > 0 by construction, it
is inferred that for all £ € R4 EEMpg > e((€,-n)? +€2) with ¢ > 0. The rest of the
proof is straightforward. 0

Remark 5.5. The bilinear forms (u,v) — [, v"Mpu considered above cannot
be extended to W x W due to the presence of the upper-left block in Mg. The
difficulty stems from the fact that vector fields in H(div; ) may not have normal
traces in L?(09). As a consequence, the approximate method is meaningful only if
the exact solution is smooth enough; see the definition of W (h) in (4.2).

5.4. Maxwell’s equations in the elliptic regime. We close this series of
applications with Maxwell’s equations in the elliptic regime; see section 3.3. The
integral representation (4.7) holds with the R%5-valued fields

(5.10) Do — {
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where N = 320 nyRF € R®3 and n = (ny,n9,n3)" is the unit outward normal to Q2
on 0. Observe that N'¢ = nx¢ for all € € R3.

Let ¢ > 0, a; > 0, and as > 0 (these design parameters can vary from face to
face) and set

(5.11) Mp = { ””” poeee e ] and Sp = |-t 777777777777777 ,

where Nr is defined as A by replacing n by ng. It is straightforward to verify the
following proposition.
PROPOSITION 5.7. Properties (DGla)-(DG8a) hold.
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