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Abstract

We analyze finite-element-based stabilization techniques for first-order PDEs
within the framework of symmetric Friedrichs systems, including residual-based
methods like Galerkin Least Squares (GaLS) and fluctuation-based methods
like Continuous Interior Penalty (CIP), Local Projection Stabilization (LPS)
and Subgrid Viscosity (SGV).
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1. Friedrichs’ systems

The objective of this section is to present the theory of the symmetric positive
systems of first-order linear PDEs. This theory has been developed in 1958
by Friedrichs [18] to study transonic flows. Friedrichs wanted to handle within a
single functional framework PDEs that are partly elliptic and partly hyperbolic,
and for this purpose he developed a formalism that goes beyond the traditional
classification of PDEs into elliptic, parabolic, and hyperbolic types. Friedrichs’
formalism is very powerful and encompasses several model problems. Important
examples are the advection-reaction equation, the div-grad problem related to
Darcy’s equations, and the curl-curl problem related to Maxwell’s equations.
This theory is an important key to understand stabilization techniques for first-
order PDEs. All the theoretical arguments are presented assuming that the
functions are complex-valued.

1.1. Basic ideas and model problem

Let D be a strongly Lipschitz domain in Rd. We consider functions defined
over D with values in Cm, m ≥ 1. Let B, C ∈ Cm×m be two Hermitian matrices,
i.e., B = BH, C = CH, where ZH is the Hermitian transpose of Z; we say that
B ≥ C if and only if XHBX ≥ XHCX for all X ∈ Cm.

Email addresses: alexandre.ern@enpc.fr (Alexandre Ern), guermond@math.tamu.edu
(Jean-Luc Guermond)

Preprint submitted to Elsevier November 18, 2016



Let K, {Ak}k∈{1:d} be a family of (d+ 1) fields on D with values in Cm×m.
We assume that these fields satisfy the following key assumptions:

Boundedness: K, {Ak}k∈{1:d}, and X are in L∞(D;Cm×m), (1a)

Symmetry: Ak = (Ak)H for all k ∈ {1:d}, a.e. in D, (1b)

Positivity: ∃µ0 > 0 s.t. K +KH −X ≥ 2µ0Im a.e. in D. (1c)

In (1c), Im denotes the identity matrix in Cm×m and X :=
∑d
k=1 ∂kAk where

∂k := ∂
∂xk

. Note that X = XH owing to (1b). We now define two differential
operators A and A1 such that

Av := Kv +A1v, A1v :=
∑

k∈{1:d}

Ak∂kv, ∀v ∈ C1(D;Cm). (2)

In what follows, we assume that the fields {Ak}k∈{1:d} have a bounded trace
at the boundary ∂D, and we introduce the boundary field N ∈ L∞(∂D;Cm×m)
such that N :=

∑
k∈{1:d} nkAk|∂D, where (nk)k∈{1:d} are the Cartesian compo-

nents of the outward unit normal n. Note that N = NH owing to (1b).
Let L := L2(D;Cm) and let us denote (f, g)L :=

∫
D
gHf dx for any f, g ∈

L; note that (f, g)L = (g, f)L. Similarly we introduce L∂ := L2(∂D;Cm)
with the inner product (f, g)L∂ :=

∫
∂D

gHf ds. Integration by parts using the
(Hermitian) inner product in L is a key tool in the analysis of Friedrichs’ systems.
To formalize this idea we define the formal adjoint Ã of A such that

Ãv := (KH −X )v −A1v = (K +KH −X )v −Av, ∀v ∈ C1(D;Cm). (3)

Lemma 1.1 (Integration by parts). The following holds for all v, w ∈ C1(D;Cm):

(Av,w)L = (v, Ãw)L + (N v, w)L∂ , (4)

< ((Av, v)L) ≥ µ0‖v‖2L +
1

2
(N v, v)L∂ . (5)

The lower bound (5) says that the sesquilinear form (Av,w)L is L-coercive up
to a boundary term. The key idea of Friedrichs is to enforce a suitable boundary
condition to gain positivity on the boundary term. This is done by assuming
that there exists another boundary field M ∈ L∞(∂D;Cm×m) satisfying the
following two algebraic properties a.e. on ∂D:

M is non-negative: <(ξHMξ) ≥ 0 for all ξ ∈ Cm, (6a)

ker(M−N ) + ker(M+N ) = Cm. (6b)

Since any function v satisfying (M−N )v|∂D = 0 also verifies (Mv, v)L∂ ∈ R,
we infer using (6a) in (5) that

< ((Av, v)L) ≥ µ0‖v‖2L +
1

2
(Mv, v)L∂ ≥ µ0‖v‖2L. (7)
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Given f ∈ L, our goal is to find a function u : D → Cm such that

Au = f in D, (M−N )u = 0 on ∂D. (8)

Under the assumptions (1) and (6), Friedrichs proved: (i) the uniqueness of the
strong solution u ∈ C1(D;Cm) satisfying (Au, v)L = (f, v)L for all v ∈ L and
(M−N )u = 0 on ∂D; (ii) the existence of a so-called ultraweak solution u ∈ L
such that (u, Ãv)L = (f, v)L for all v ∈ C1(D;Cm) such that (MH+N )v = 0 on
∂D. In §2, we introduce a mathematical setting relying on boundary operators
instead of boundary fields to define a notion of weak solution for (8), and we
prove well-posedness of the said formulation by using the BNB Theorem.

1.2. Example 1: advection-reaction equation

Let µ ∈ L∞(D;R) and let β ∈ L∞(D;Rd) be such that ∇·β ∈ L∞(D;R).
Given f ∈ L := L2(D;R), we want to find u : D → R such that

µu+ β·∇u = f in D. (9)

This equation models the transport of a solute of concentration u by a flow field
with velocity β, linear reaction coefficient µ (µ ≥ 0 corresponds to depletion),
and source term f . To recover Friedrichs’ formalism, we set m = 1, K = µ, and
Ak = βk for all k ∈ {1:d}, where (βk)k∈{1:d} denote the Cartesian components
of β. The assumption (1a) holds since µ ∈ L∞(D;R), βk ∈ L∞(D;R) for all
k ∈ {1:d}, and X = ∇·β ∈ L∞(D;R). The assumption (1b) is trivially satisfied
since m = 1. Finally, the assumption (1c) is satisfied provided we assume that

µ0 := ess inf
x∈D

(µ− 1
2∇·β)(x) > 0. (10)

The boundary field is N = β·n, and the integration by parts formula (4) is a
reformulation of

∫
D

((∇·β)vw + v(β·∇w) + w(β·∇v)) dx =
∫
∂D

(β·n)vw ds.
To enforce a suitable boundary condition, we need to consider the sign

of (β·n) at the boundary. We define the inflow boundary ∂D− = {x ∈
∂D | (β·n)(x) < 0}, the outflow boundary ∂D+ = {x ∈ ∂D | (β·n)(x) > 0},
and the characteristic boundary ∂D0 = {x ∈ ∂D | (β·n)(x) = 0}. Then, the
inflow boundary condition u = 0 on ∂D− can be enforced by using the bound-
ary field M = |β·n| which satisfies (6). Finally, the L-coercivity property (7)
becomes

(Av, v)L ≥ µ0‖v‖2L +
1

2

∫
∂D

|β·n|v2 ds.

1.3. Example 2: Maxwell’s equations

We consider the time-harmonic version of Maxwell’s equations in the low-
frequency regime where the displacement currents are negligible. Let σ be the
electrical conductivity, µ the magnetic permeability, ω > 0 the angular fre-
quency, and i2 = −1. We assume that µ, σ ∈ L∞(D;R), and for simplicity,
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that both µ and σ are real-valued. Given j ∈ L2(D) := L2(D;C3) and setting
µ̃ = ωµ, we want to find functions E : D → C3 and H : D → C3 such that

σE −∇×H = j in D, iµ̃H +∇×E = 0 in D. (11)

To recover Friedrichs’ formalism, we set m = 6, u := (E,H), K = eiθ
(
σI3 O3

O3 µ̃I3

)
with θ = π

4 , and Ak =
(

O3 −eiθJk

e−iθJk O3

)
, for all k ∈ {1:d}, where I3 and O3 are

the identity and null matrix in C3×3, respectively, and Jkij = εikj , for all i, j, k ∈
{1, 2, 3}, with εikj the Levi-Civita symbol. The assumption (1a) holds since
σ, µ ∈ L∞(D;R) and X is the null matrix in C6×6. The assumption (1b) holds
since, Jk being skew-symmetric, we have (−eiθJk)H = −e−iθ(Jk)T = e−iθJk.
Finally, the assumption (1c) is satisfied provided we assume that

σ[,D := ess inf
x∈D

σ(x) > 0, µ̃[,D := ess inf
x∈D

µ̃(x) > 0. (12)

The boundary field isN =
(

O3 eiθT
−e−iθT O3

)
, where Tij =

∑3
k=1 nkεijk, for all i, j ∈

{1, 2, 3}. Note that the definition of T implies that Tξ = ξ×n for all ξ ∈ C3. The
integration by parts formula (4) results from

∫
D

(b·(∇×E)−E·(∇×b)) dx =∫
∂D
b·(n×E) ds.

The boundary conditions H×n|∂D = 0 and E×n|∂D = 0 can be enforced,

respectively, by using the boundary fields MH =
(

O3 −eiθT
−e−iθT O3

)
and ME =(

O3 eiθT
e−iθT O3

)
, which both satisfy (6), and the coercivity property (7) becomes

<(A(E,H), (E,H))L2(D;C6) ≥
1√
2

(
σ[,D‖E‖2L2(D) + µ̃[,D‖H‖2L2(D)

)
.

2. Weak formulation and well-posedness for Friedrichs’ systems

The aim of this section is to devise a weak formulation of Friedrichs’ sys-
tems for which well-posedness can be established by using the Banach–Nečas–
Babuška (BNB) Theorem which provides necessary and sufficient conditions
for well-posedness in the form of inf-sup conditions, see [12, Thm. 2.6]. The
material is inspired from a series of papers by the authors [13, 14].

2.1. The graph space

We consider the space S := C∞0 (D;Cm), composed of the smooth Cm-valued
fields compactly supported in D, and the Hilbert space L := L2(D;Cm), which
we use as pivot space (i.e., L ≡ L′). While other functional settings could be
considered, we will see in the forthcoming sections that L2 plays a prominent
role in a large class of stabilized finite element techniques.

The operators A and Ã defined in (2) and (3), respectively, are each bounded
in S with values in L and the following holds: There is c such that

(Aφ,ψ)L = (φ, Ãψ)L, ∀φ, ψ ∈ S, (13a)

‖(A+ Ã)φ‖L ≤ c ‖φ‖L ∀φ ∈ S. (13b)
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The equality (13a) follows from Lemma 1.1, while (13b) follows from the defi-
nitions of A and Ã and the boundedness property (1a). Let us define the inner
product (·, ·)V := µ0(·, ·)L + µ−1

0 (A1(·), A1(·))L and let the induced norm be
denoted by ‖ · ‖V with ‖·‖2V = µ0‖·‖2L+µ−1

0 ‖A1(·)‖2L (the scaling factors µ0 and
µ−1

0 are introduced so that both terms have coherent units).
Let VS be the completion of S with respect to the norm ‖·‖V , i.e., VS = SV .

Using L as pivot space leads to S ⊂ VS ↪→ L ≡ L′ ↪→ V ′S ⊂ S′, where S′ is the
algebraic dual of S and L′, V ′S are topological duals. By density, the operators
A and Ã can be extended to bounded linear operators from VS to L; we say
that VS is the minimal domain of A and Ã. Owing to (13), we infer by density
that (Aφ,ψ)L = (φ, Ãψ)L, for all φ, ψ ∈ VS . Let now v ∈ L; then, Av can be
defined in V ′S by setting 〈Av, φ〉V ′S ,VS = (v, Ãφ)L, for all φ ∈ VS . This definition
allows us to extend A to a bounded linear operator from L to V ′S . Similarly we
define 〈Ãv, φ〉V ′S ,VS = (v,Aφ)L, for all v ∈ L and all φ ∈ VS . Since L ⊂ V ′S , it

makes sense to define the graph space (or maximal domain of A and Ã) as

V := {v ∈ L; A1v ∈ L}. (14)

By construction, A ∈ L(V ;L), Ã ∈ L(V ;L).

Proposition 2.1 (Hilbert space). The graph space V is a Hilbert space when
equipped with the inner product (·, ·)V . The norm ‖·‖V is called the graph norm.

2.2. The boundary operators

Since A1 is a first-order differential operator, defining the trace at the bound-
ary of a function in the graph space V is not straightforward. The trace can
be given a meaning in H−

1
2 (∂D;Cm), see Rauch [27]. However, this meaning

is not suitable for the weak formulation we have in mind; this is why we now
introduce two additional operators N and M to replace the boundary fields N
and M. We define the operator N ∈ L(V ;V ′) by (compare with (4))

〈Nv,w〉V ′,V := (Av,w)L − (v, Ãw)L, ∀v, w ∈ V. (15)

This definition makes sense since both A and Ã are in L(V ;L). Moreover, the
operator N is self-adjoint since (15) can be rewritten as

〈Nv,w〉V ′,V = (X v, w)L + (A1v, w)L + (v,A1w)L, (16)

so that 〈Nv,w〉V ′,V = 〈Nw, v〉V ′,V . Furthermore, we have VS ⊂ ker(N) and
im(N) ⊂ V ⊥S = {v′ ∈ V ′ | ∀φ ∈ VS , 〈v′, φ〉V ′S ,VS = 0}. Actually, as proved

in [17], the following holds: ker(N) = VS , im(N) = V ⊥S . The fact that ker(N) =
VS means that N is a boundary operator.

Boundary conditions in Friedrichs’ systems can be formulated by assuming
that there exists an operator M ∈ L(V ;V ′) such that

M is monotone, i.e., <(〈Mv, v〉V ′,V ) ≥ 0 for all v ∈ V , (17a)

ker(N −M) + ker(N +M) = V. (17b)
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Let M∗ ∈ L(V ;V ′) denote the adjoint operator of M , so that 〈M∗w, v〉V ′,V =

〈Mv,w〉V ′,V . It is proved in [17] that, under the assumptions (17),

ker(N) = ker(M) = ker(M∗), and im(N) = im(M) = im(M∗).

In particular, M is a boundary operator, just like N .

2.3. Well-posedness

Given f ∈ L, the problem we want to solve (compare with (8)) is to find

u ∈ V0 := ker(M −N) such that Au = f in L. (18)

To recast this problem into a weak form, we introduce the sesquilinear form
a(v, w) := (Av,w)L, for all (v, w) ∈ V×L. Letting `(w) := (f, w)L, we consider
the following weak problem:{

Find u ∈ V0 such that

a(u,w) = `(w), ∀w ∈ L.
(19)

Theorem 2.2 (Well-posedness). Let N be defined by (15) and assume (1), then
<(a(v, v)) ≥ µ0‖v‖2L + 1

2 〈Nv, v〉V ′,V ,∀v ∈ V. Moreover, let M satisfy (17), then
<(a(v, v)) ≥ µ0‖v‖2L+ 1

2<(〈Mv, v〉V ′,V ) ≥ µ0‖v‖2L, ∀v ∈ V0. If (1) and (17) hold,
then the model problem (19) is well-posed, i.e., A : V0 → L is an isomorphism.

Remark 2.3 (Positivity assumption (1c)). This assumption can be relaxed if
the missing control on ‖v‖L can be recovered from an estimate on ‖A1v‖L. This
is possible in the context of elliptic PDEs in mixed form by invoking a Poincaré-
type inequality. Furthermore, everything that is said hereafter holds true by
assuming that A = K +A1 where K is a bounded operator on L satisfying the
assumption ((K+K∗)v−X v, v)L ≥ 2µ0‖v‖2L. The formal adjoint is then defined
by Ãv = K∗v−X v+A1v. For instance let D = (0, a)×(−1, 1), a > 0, and let K :

L → L, with L = L2(D;R), be such that Kv(x, y) = v(x, y) − σ
2

∫ +1

−1
v(x, ξ) dξ

where σ ∈ [0, 1). Then ((K + K∗)v, v)L = 2(Kv, v)L ≥ 2‖v‖2L − 2σ‖v‖2L =
2(1 − σ)‖v‖2L. This is the type of structure one encounters when solving the
neutron transport equation.

Example 2.4 (Advection-reaction). The bilinear form a is

a(v, w) =

∫
D

(µvw + (β·∇v)w) dx, ∀v ∈ V, ∀w ∈ L2(D;R),

with V = {v ∈ L2(D;R) | β·∇v ∈ L2(D;R)}. Moreover,

〈Nv,w〉V ′,V =

∫
D

((∇·β)vw + w(β·∇v) + v(β·∇w)) dx.

A result on traces of functions in V is needed to link N with N = β·n. Such a
result is not straightforward, since the trace theorem for functions in Hs(D;R),
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s > 1
2 , cannot be applied. It is shown in [14] that if the inflow and outflow

boundaries are well-separated, i.e., min(x,y)∈∂D−×∂D+ ‖x − y‖`2(Rd) > 0, then

the trace operator γ : C0(D)→ C0(∂D) such that γ(v) = v|∂D can be extended
to a bounded linear operator from V to L2

|β·n|(∂D;R), where the subscript |β·n|
means that the measure ds is replaced by |β·n|ds. This result implies that
〈Nv,w〉V ′,V =

∫
∂D
N vw ds for all v, w ∈ V . Furthermore, the inflow boundary

condition u = 0 on ∂D− can be enforced by means of the boundary operator
M ∈ L(V ;V ′) defined by 〈Mv,w〉V ′,V =

∫
∂D
|β·n|vw ds, which satisfies (17).

Note that the separation assumption cannot be circumvented if one wishes to
work with traces in L2

|β·n|(∂D;R), regardless of the regularity of β. For instance,

let D = {(x1, x2) ∈ R2 | 0 < x2 < 1 and |x1| < x2} with β = (1, 0)T. One
can verify that the function u(x1, x2) = xα2 is in V for α > −1, but u|∂D ∈
L2(|β·n|; ∂D) only if α > − 1

2 .

Example 2.5 (Maxwell). The sesquilinear form a is

a(v, w) =

∫
D

(
eiθσE·e+ ie−iθµ̃H·b− eiθ(∇×H)·e+ e−iθ(∇×E)·b

)
dx,

for all v = (E,H) ∈ V and all w = (e, b) ∈ L (note that we use the Eu-
clidean dot product and write the complex conjugate explicitly), with V =
H(curl;D)×H(curl;D), H(curl;D) = {A ∈ L2(D;C3);∇×A ∈ L2(D;C3)},
and L = L2(D;C6). Moreover,

〈N(E,H), (e, b)〉V ′,V = eiθt(H, e)− e−iθt(E,h),

where t(A,a) =
∫
D

(A·(∇×a) − (∇×A)·a) dx. Since E×n and H×n are

in H−1/2(∂D), if e and b are in H1(D), we have 〈N(E,H), (e, b)〉V ′,V =
eiθ〈H×n, e〉

H−
1
2 ,H

1
2
−e−iθ〈E×n, b〉

H−
1
2 ,H

1
2

. The boundary conditionH×n =

0 can be enforced by means of the boundary operator 〈M(E,H), (e, b)〉V ′,V =
−eiθt(H, e)− e−iθt(E,h), which satisfies (17).

3. Residual-based stabilization

This section is concerned with the approximation of Friedrichs’ systems using
H1-conforming finite elements in a standard Galerkin setting. The main issue
one faces in this context is to achieve stability. At the continuous level, the
proof of Theorem 2.2 shows that one needs to consider the first-order derivative
A1v as test function to control the graph norm of a function v. Unfortunately,
this possibility is lost when working with H1-conforming finite elements since
the first-order derivative of v can no longer be represented by discrete test func-
tions. As a result, one needs to devise suitable stabilization mechanisms. Those
presented in this section are inspired by the Least-Squares (LS), or minimial
residual, technique from linear algebra. The LS approximation gives optimal
error estimates in the graph norm, but, unfortunately, gives suboptimal L2-error
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estimates in most situations. The Galerkin/Least-Squares (GaLS) method im-
proves the situation by combining the standard Galerkin approach with the LS
technique and mesh-dependent weights. GaLS gives quasi-optimal L2-error es-
timates and optimal graph-norm estimates. We further improve GaLS in the
next section by introducing a boundary penalty technique that enforces bound-
ary conditions weakly in the spirit of the theory of Friedrichs’ sytstems.

3.1. Least-Squares formulation

Given f ∈ L, let us consider the model problem (19). This problem is
well-posed, see Theorem 2.2. The LS version of problem (19) is the following:{

Find u ∈ V0 such that

aLS(u,w) := (Au,Aw)L = (f,Aw)L, ∀w ∈ V0.
(20)

Observe that the test space is the same as the solution space in (20). Since
A : V0 → L is an isomorphism, requiring that (Au,Aw)L = (f,Aw)L for all
w ∈ V0 is equivalent to ask that (Au,w)L = (f, w)L for all w ∈ L. Hence, the
problems (19) and (20) are equivalent. Actually, the well-posedness of (20) is
a direct consequence of the Lax–Milgram Lemma, since there are real numbers
0 < α ≤ $ <∞ such that α‖v‖V ≤ ‖Av‖L ≤ $‖v‖V for all v ∈ V0.

Proposition 3.1 (V0-coercivity). aLS is bounded and coercive on V0.

Remark 3.2 (Minimal residual). Consider the functional J : V0 → R defined
by J(v) := 1

2‖Av − f‖
2
L for all v ∈ V0. The Fréchet derivative of J is such that

DJ(v)(w) = <((Av− f,Aw)L) for all w ∈ V0, i.e., the problem (20) amounts to
DJ(v) = 0. Since the functional J is strictly convex, the solution u of (20) is
the global minimizer of J over V0. This LS technique is well-known in the linear
algebra context where it can be traced back to Gauss and Legendre. Starting
from the linear system AU = B with A invertible and multiplying by AH leads
to the so-called normal equations (AHA)U = AHB where the matrix AHA is
Hermitian positive-definite.

3.2. Least-Squares approximation using Finite Elements

We assume that, for all h > 0, we have at hand a finite-dimensional space
Vh0 ⊂ V0 built by using a shape-regular mesh sequence (Th)h>0 and a finite
element of degree k ≥ 1. For simplicity, we consider the equal-order case for
all the solution components. The space Vh0 is H1-conforming and composed of
continuous, piecewise polynomial functions in D. Let us assume now that we
have at hand a quasi-interpolation operator Ih0 : V0 → Vh0 with optimal local
approximation properties: There is a uniform constant c such that

‖v − Ih0(v)‖L(K) + hK‖∇(v − Ih0(v))‖L(K) ≤ c h1+r
K |v|H1+r(DK ,Cm), (21)

for all r ∈ [0, k], all v ∈ H1+r(D,Cm) ∩ V0, and all K ∈ Th, with L(K) :=
L2(K;Cm) and where DK is the interior of the set composed of all the mesh
cells having a non-empty intersection with K.
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We construct a discrete counterpart of (20) as follows:{
Find uh ∈ Vh0 such that

aLS(uh, wh) = (f,Awh)L, ∀wh ∈ Vh0.
(22)

Theorem 3.3 (Well-posedness and error bound). The problem (22) has a
unique solution uh, and the following error bound holds:

‖u− uh‖V ≤
$

α
inf

vh∈Vh0
‖u− vh‖V . (23)

Using (21), we infer the following approximation result in the graph norm:

‖u−Ih0(u)‖V ≤ c µ
− 1

2
0 φDh

r|u|H1+r(D;Cm), with φD := max(βD, µ0h) and βD =

maxk∈{1:d} ‖Ak‖L∞(D;Cm×m). Assuming u ∈ H1+r(D;Cm) and using the above
approximation result, we infer that

µ
1
2
0 ‖u− uh‖L + µ

− 1
2

0 ‖A1(u− uh)‖L ≤ c µ
− 1

2
0 φDh

r|u|H1+r(D;Cm). (24)

When r = k, the estimate on ‖A1(u − uh)‖L is optimal, but the estimate on
‖u−uh‖L is suboptimal by one order. It is sometimes possible to improve the L-
norm error estimate by means of the Aubin–Nitsche duality argument, but this
is not systematic since, very often, first-order PDEs do not have a smoothing
property. For instance, this improvement is possible for the one-dimensional
transport equation and for Darcy’s equation.

The LS technique has gained popularity in the numerical analysis community
at the beginning of the 1970s following a series of papers by Bramble and Schatz
[3, 4], although it was already popular in the Russian literature (see Džǐskariani
[11], Lučka [24]).

3.3. Galerkin/Least-Squares

In this section, we devise and analyze a Galerkin Least-Squares (GaLS) ap-
proximation of the model problem (19) introduced in Hughes et al. [22]. A non-
symmetric variant known under the names Streamline Upwind Petrov–Galerkin
(SUPG) or streamline diffusion method has been introduced in Brooks and
Hughes [5] and analyzed in Johnson et al. [23], see Example 3.6.

We define the following local quantities:

βK = max
k∈{1:d}

‖Ak‖L∞(K;Cm×m), (25)

τK =
(
max(βKh

−1
K , µ0)

)−1
= min(β−1

K hK , µ
−1
0 ), (26)

for all K ∈ Th, where µ0 is defined in (1c) (the second equality is meaningful
if βK is nonzero; if βK = 0, then τK = µ−1

0 ). For instance, for the advection-
reaction equation, µ0 is the reciprocal of a time, βK is a local velocity, and τK
is a local time scale. With a slight abuse of notation, we define the piecewise
constant function τ : D → R such that τ|K = τK for all K ∈ Th. In what follows,
we consider the Euclidean (or Hermitian) norm denoted ‖·‖`2 for Cm×m-valued
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fields, we set ‖ · ‖L∞(D;Cm×m) = ‖ ‖ · ‖`2 ‖L∞(D;R), and we assume for simplicity
that

max(‖K‖L∞(D;Cm×m), ‖X‖L∞(D;Cm×m)) ≤ cK,Xµ0, (27)

and we hide the factor cK,X in the generic constants used in the error analysis.
We consider the finite element setting of §3.2. We define the following dis-

crete sesquilinear forms on Vh0 × Vh0:

ah(vh, wh) := (Avh, wh)L + rh(vh, wh), rh(vh, wh) := (Avh, τAwh)L. (28)

The sesquilinear form (Avh, wh)L is the Galerkin part of the formulation and
the term rh(vh, wh) is the least-squares part. The role of rh is to stabilize the
formulation. We consider the following discrete problem:{

Find uh ∈ Vh0 such that

ah(uh, wh) = `h(wh) := (f, wh + τAwh)L, ∀wh ∈ Vh0.
(29)

As usual the four steps of the analysis consist of (i) establishing stability,
(ii) estimating the consistency error, (iii) proving a boundedness estimate, and
(iv) using the approximation properties of finite elements. We set V[ = V0 +Vh0

and observe that V[ = V0 since the approximation is V0-conforming. Proceeding
in the spirit of Strang’s Second Lemma for the error analysis, we extend the
sesquilinear form ah to V0 × Vh0, and we equip the space V0 with the norms:

‖v‖2V[ := µ0‖v‖2L +
1

2
|v|2M + ‖τ 1

2Av‖2L, ‖v‖2V[] := ‖v‖2V[ + ‖τ− 1
2 v‖2L, (30)

with the boundary semi-norm |v|2M := <(〈Mv, v〉V ′,V ).

Theorem 3.4 (Convergence). (i) The discrete sesquilinear form ah satisfies
<(ah(vh, vh)) ≥ ‖vh‖2V[ , for all vh ∈ Vh0. Consequently, the discrete prob-
lem (29) is well-posed. (ii) The discrete problem (29) is exactly consistent. (iii)
There is c, uniform with respect to h, such that, |ah(v, wh)| ≤ c ‖v‖V[]‖wh‖V[
for all (v, wh) ∈ V0×Vh0. (iv) Let u be the unique solution to (19) and let uh be
the unique solution to (29). There is c, uniform with respect to h, such that

‖u− uh‖V[ ≤ c inf
vh∈Vh0

‖u− vh‖V[] . (31)

Moreover ‖u − uh‖2V[ ≤ c
∑
K∈Th max(βK , µ0hK)h2r+1

K |u|2H1+r(DK ;Cm) if u ∈
H1+r(D;Cm), for all r ∈ [0, k]. Upon denoting φD := max(βD, µ0h) and βD :=

maxK∈Th βK , this implies in particular that ‖u−uh‖V[ ≤ c φ
1
2

Dh
r+ 1

2 |u|H1+r(D;Cm).

Assuming u ∈ Hk+1(D;Cm), the above result implies that

µ
1
2
0 ‖u− uh‖L + ‖τ 1

2A1(u− uh)‖L ≤ c φ
1
2

Dh
k+ 1

2 |u|Hk+1(D;Cm).

Observe that the estimate on ‖u − uh‖L is improved by half a power in h
when compared to that obtained with the LS technique, and the estimate on
‖A1(u− uh)‖L is now a localized version of the LS estimate (24).
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Example 3.5 (Advection-reaction). Consider the PDE µu + β·∇u = f with
the inflow boundary condition u = 0 on ∂D−, see §1.2. Assume that all the
mesh boundary faces are a subset of either ∂D− or ∂D \ ∂D−. Let P g

k (Th) be
the H1-conforming finite element space constructed on the mesh Th using finite
elements of degree k ≥ 1 [16]. Set Vh0 := {vh ∈ P g

k (Th) | vh|∂D− = 0}. The
GaLS discretization consists of seeking uh ∈ Vh0 such that∫

D

(µuh + β·∇uh)wh dx+

∫
D

τ(µuh + β·∇uh)(µwh + β·∇wh) dx = `h(wh),

for all wh ∈ Vh0, with τK = min(β−1
K hK , µ

−1
0 ), βK = ‖β‖L∞(K), and with

right-hand side `h(wh) =
∫
D
fwh dx +

∫
D
τf(µwh + β·∇wh) dx. Provided u ∈

H1+r(D), r ∈ [0, k], and with φD := max(‖β‖L∞(D), µ0h), Theorem 3.4 gives

µ
1
2
0 ‖u− uh‖L2(D) + ‖τ 1

2β·∇(u− uh)‖L2(D) ≤ c φ
1
2

Dh
r+ 1

2 |u|H1+r(D).

Example 3.6 (SUPG). Assume that hK ≤ βKµ
−1
0 min(1, 1

2
µ2
0

µ2
∞

) with µ∞ =

‖K‖L∞(D;Cm×m), for allK ∈ Th. The same error estimate as in the GaLS approx-
imation is obtained by considering the following discrete problem: Find uh ∈ Vh0

such that aSUPG

h (uh, wh) = (f, wh + τA1wh)L for all wh ∈ Vh0 with the SUPG-
stabilized sesquilinear form aSUPG

h (vh, wh) = (Avh, wh)L + (Avh, τA1wh)L.

Example 3.7 (Maxwell). Consider the PDEs σE − ∇×H = f and iµ̃H +
∇×E = 0 with the boundary condition H×n = 0. Define the reference
length scale `∗ = (σ[,Dµ̃[,D)−

1
2 . Set Wh := P g

k (Th) and Wh0 := {bh ∈
Wh | bh×n|∂D = 0}. The GaLS approximation amounts to finding (Eh,Hh) ∈
Vh0 := Wh×Wh0 such that∫

D

(
(σEh −∇×Hh)·eh + (iµ̃Hh +∇×Eh)·bh

)
dx

+

∫
D

µ̃−1
[,Dτ(iµ̃Hh +∇×Eh)·(−iµ̃bh +∇×eh) dx

+

∫
D

σ−1
[,Dτ(σEh −∇×Hh)·(σeh −∇×bh) dx = `h(wh),

for all wh = (eh, bh) ∈ Vh0, with local weights τK = min(`−1
∗ hK , 1), and

right-hand side `h(wh) =
∫
D
j·eh dx +

∫
D
σ−1
[,Dτj·(σeh − ∇×bh) dx. Provided

(E,H) ∈ H1+r(D)×H1+r(D), r ∈ [0, k], Theorem 3.3, combined with the
approximation properties of Vh0, yields

σ
1
2

[,D‖E −Eh‖L2(D) + µ̃
1
2

[,D‖H −Hh‖L2(D) + µ̃
− 1

2

[,D‖τ
1
2∇×(E −Eh)‖L2(D)

+ σ
− 1

2

[,D‖τ
1
2∇×(H −Hh)‖L2(D) ≤ cφ

1
2

Dh
r+ 1

2

(
|E|H1+r(D) + |H|H1+r(D)

)
,

with φD = max(`∗, µ0h).

11



4. Boundary penalty for Friedrichs’ systems

It is not always possible, or easy, to build V0-conforming finite elements;
think for instance of a boundary condition enforcing the value of the normal
or tangential component of a vector field at the boundary of a domain that is
not a rectangular parallelepiped. The goal of this section is twofold: First, to
show how to enforce boundary conditions weakly in Friedrichs’ systems; second,
to combine this approach with the GaLS stabilization. The boundary penalty
technique introduced herein will be used again in Section 5.

4.1. Model problem

We now consider the sesquilinear form

ã(v, w) := (Av,w)L +
1

2
〈(M −N)v, w〉V ′,V , ∀v, w ∈ V. (32)

The last term on the right-hand side is used to enforce the boundary condition
u ∈ ker(M −N) weakly. Owing to this additional term, the test functions are
now restricted to be in the graph space V ; i.e., taking test functions in L is no
longer legitimate. The model problem that we consider is the following:{

Find u ∈ V such that

ã(u,w) = (f, w)L, ∀w ∈ V.
(33)

If u solves (33), taking w in C∞0 (D;Cm) implies that Au = f in L2(D;Cm);
then, we have 〈(M −N)u,w〉V ′,V = 0 for all w ∈ V , i.e., u ∈ ker(M −N).

Lemma 4.1 (L-coercivity and well-posedness). The sesquilinear form ã defined
by (32) is such that <(ã(v, v)) ≥ µ0‖v‖2L + 1

2 |v|
2
M , for all v ∈ V . Problem (33)

is well-posed, and its unique solution is the unique solution to (19).

4.2. Boundary penalty method

We are interested in a V -conforming approximation of the model prob-
lem (33). For this purpose, we assume that, for all h > 0, we have at hand
an H1-conforming finite-dimensional space Vh ⊂ V , built by using a shape-
regular mesh sequence (Th)h>0 and a finite element of degree k ≥ 1, and a
quasi-interpolation operator Ih : V → Vh with optimal local approximation
properties: There is a uniform constant c such that

‖v − Ih(v)‖L(K) + hK‖∇(v − Ih(v))‖L(K) ≤ c h1+r
K |v|H1+r(DK ,Cm), (34)

for all r ∈ [0, k], all v ∈ H1+r(D,Cm), and all K ∈ Th.
Our starting point is the sesquilinear form ã defined in (32). At the discrete

level, we would like to localize the term 〈(M − N)v, w〉V ′,V at the boundary
faces F ∈ F∂h . Therefore, we assume that there are boundary fields M and N
in L∞(∂D;Cm×m) such that

〈Mv,w〉V ′,V = (Mv, w)L∂ , 〈Nv,w〉V ′,V = (N v, w)L∂ , (35)
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for all v, w ∈ V s := Hs(D;Cm) with s > 1
2 and L∂ := L2(∂D;Cm); whence,

ã(v, w) = (Av,w)L +
1

2
((M−N )v, w)L∂ , (v, w) ∈ V s × V s. (36)

The fieldM is such that <((Mv, v)L∂ ) ≥ 0, since the operator M is monotone.
But it may occur that <((Mv, v)L∂ ) = 0 (this happens for second-order PDEs
in mixed form). To gain some control on the boundary values, we introduce
an additional boundary penalty field S∂ ∈ L∞(∂D;Cm×m), and we define the
following sesquilinear form on V s × V s:

ǎ(v, w) := ã(v, w) + (S∂v, w)L∂

= (Av,w)L +
1

2
((M−N )v, w)L∂ + (S∂v, w)L∂ . (37)

In what follows, we use a subscript F to denote the restriction of a boundary
field to F ∈ F∂h , and we set L(F ) := L2(F ;Cm). We define the local boundary
semi-norm |v|2MF

:= (MF v, v)L(F ) and we set ρF := ‖MF ‖L∞(F ;Cm×m). We
assume for simplicity that

ρF ≤ cMβKF , ∀F ∈ F∂h , (38)

where KF ∈ Th is the mesh element such that F = ∂KF ∩ ∂D. The design
conditions on S∂ are as follows: There is c, uniform with respect to h, such that
the following holds for all v, w ∈ L(F ) and all F ∈ F∂h .

S∂F is Hermitian and positive semi-definite, (39a)

ker(MF −NF ) ⊂ ker(S∂F ), (39b)

|v|S∂F ≤ c ρ
1
2

F ‖v‖L(F ), (39c)

|((MF −NF )v, w)L(F )| ≤ c (|v|MF
+ |v|S∂F )ρ

1
2

F ‖w‖L(F ), (39d)

|((MF +NF )v, w)L(F )| ≤ c ρ
1
2

F ‖v‖L(F )(|w|MF
+ |w|S∂F ). (39e)

The assumption (39a) implies that the local boundary semi-norm |y|2S∂F :=

(S∂F v, v)L(F ) is well-defined and that (S∂F v, w)L(F ) ≤ |v|S∂F |w|S∂F . The assump-

tion (39b) is tailored to ensure exact consistency. The other assumptions (39c)-
(39d)-(39e) are stability properties. Note that (39d)-(39e) turn out to be equiv-
alent; both properties are presented since they are useful in the analysis.

Example 4.2 (Advection-reaction). Since MF = |β·nF | for all F ∈ F∂h , we
can take S∂F = 0. The properties (39a), (39b), and (39c) are obvious, and (39d)
results from the Cauchy–Schwarz inequality since 1

2

∫
F

(|β·nF | −β·nF )vw ds ≤
‖|β·nF |

1
2 v‖L2(F )ρ

1
2

F ‖w‖L2(F ).

Example 4.3 (Maxwell). Consider the boundary condition H×n = 0 on ∂D.
Recalling the matrix T ∈ R3×3 from §1.3, the properties (39) are satisfied by

taking S∂F =
(
O3 O3

O3 αTTT

)
, for all F ∈ F∂h , with a parameter α > 0. This means

that the tangential component of H is penalized at the boundary.
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4.3. Galerkin/Least-Squares stabilization with boundary penalty

We define the following discrete sesquilinear form on Vh × Vh:

ǎh(vh, wh) = ã(vh, wh) + (Avh, τAwh)L, (40)

that is to say ǎh(vh, wh) = (Avh, wh)L+ 1
2 ((M−N )vh, wh)L∂ +(S∂vh, wh)L∂ +

(Avh, τAwh)L. We consider the following discrete problem:{
Find uh ∈ Vh such that

ǎh(uh, wh) = (f, wh + τAwh)L, ∀wh ∈ Vh.
(41)

Let us set V[ = V s + Vh. Notice that V[ = V s since the approximation is H1-
conforming. We extend the sesquilinear form ǎh to V s × Vh, and we equip the
space V s with the following norms:

‖v‖2V[ := µ0‖v‖2L +
1

2
|v|2M + |v|2S∂ + ‖τ 1

2Av‖2L, (42a)

‖v‖2V[] := ‖v‖2V[ + ‖τ− 1
2 v‖2L + ‖ρ 1

2 v‖2L∂ , (42b)

with boundary semi-norms |v|2M := <((Mv, v)L∂ ) and |v|2S∂ := <((S∂v, v)L∂ ),
and ρ ∈ L∞(∂D) is defined by ρ|F := ρF for all F ∈ F∂h .

Theorem 4.4 (Convergence). (i) The discrete sesquilinear form ǎh satisfies
<(ǎh(vh, vh)) ≥ ‖vh‖2V[ , for all vh ∈ Vh. Consequently, the discrete problem (41)
is well-posed. (ii) Assume that the exact solution u is in V s. Then, the discrete
problem (41) is exactly consistent. (iii) There is c, uniform with respect to
h, such that |ǎh(v, wh)| ≤ |ǎ(v, wh)| + |(Av, τAwh)L| ≤ c ‖v‖V[]‖wh‖V[ for all
(v, wh) ∈ V s×Vh. (iv) Let u and uh be the unique solutions to (19) and (41),
respectively. Then, there is c, uniform with respect to h, such that

‖u− uh‖V[ ≤ c inf
vh∈Vh

‖u− vh‖V[] . (43)

Moreover, ‖u − uh‖2V[ ≤ c
∑
K∈Th max(βK , µ0hK)h2r+1

K |u|2H1+r(DK ;Cm) if u ∈

H1+r(D;Cm), r ∈ [0, k]. This implies that ‖u−uh‖V[ ≤ cφ
1
2

Dh
r+ 1

2 |u|H1+r(D;Cm).

5. Fluctuation-based stabilization

This section presents a unified analysis of various techniques for the approxi-
mation of first-order PDEs using H1-conforming finite elements. The gradient of
a function in an H1-conforming space generally exhibits jumps across the mesh
interfaces. This means that only one part of the gradient can be controlled by
test functions from this space; the remainder, which can be viewed as a fluctu-
ation, needs to be controlled by some stabilization mechanism. Three stabiliza-
tion techniques are considered herein: the Continuous Interior Penalty (CIP),
the Local Projection Stabilization (LPS), and the Subgrid Viscosity (SGV). CIP
penalizes the jump of the gradient across the mesh interfaces. LPS and SGV
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are both based on a two-scale decomposition of the discrete space consisting
of a sum of resolved scales and fluctuations. LPS penalizes the fluctuations of
the gradient, whereas SGV penalizes the gradient of the fluctuations. Through-
out this section, the boundary conditions are enforced weakly by the boundary
penalty technique introduced in §4.2.

5.1. Abstract theory for fluctuation-based stabilization

Let us consider the finite element setting introduced in §4.2. Let βK and
τK as defined in (25) and (26). Recall that βK is a local velocity scale and τK
is local time scale. We define the global quantity βD = maxK∈Th βK , and we
introduce a second local weighting parameter τ̌K such that

min(β−1
D hK , µ

−1
0 ) ≤ τ̌K ≤ τK , ∀K ∈ Th. (44)

We will take τ̌K = min(β−1
D hK , µ

−1
0 ) for the CIP stabilization and τ̌K = τK for

the LPS and SGV stabilizations. With a slight abuse of notation, we define the
piecewise constant function τ̌ : D → R such that τ̌|K = τ̌K for all K ∈ Th; the
piecewise constant function τ : D → R is defined similarly.

We additionally assume that all the fields {Ak}k∈{1:d} are piecewise Lips-
chitz on a partition of D and that the meshes are compatible with this partition,
implying that the fields {Ak|K}k∈{1:d} are Lipschitz for all K ∈ Th. We denote
by LA the largest Lipschitz constant of these fields. To simplify the tracking of
the model parameters in the analysis, we assume that

max(‖K‖L∞(D;Cm×m), ‖X‖L∞(D;Cm×m), LA) ≤ cK,X ,Aµ0, (45)

and we hide the non-dimensional factor cK,X ,A in the generic constant c.
The boundary conditions are enforced by using the boundary penalty method

from §4.2, i.e., we assume that there is S∂ ∈ L∞(∂D;Cm×m) satisfying (39) for
any boundary face F ∈ F∂h , with ρF = ‖MF ‖L∞(F ;Cm×m). We assume that

there is a uniform constant cM such that ρF ≤ cMβKF for all F ∈ F∂h with
F = ∂KF ∩ ∂D, see (38); we will hide the non-dimensional factor cM in the
generic constant c. Our starting point is the following sesquilinear form, see (37):

ǎ(v, w) = (Av,w)L+
1

2
((M−N )v, w)L∂+(S∂v, w)L∂ , ∀(v, w) ∈ V s×V s. (46)

The main idea is to augment the sesquilinear form ǎ with a stabilization
sesquilinear form sh and to consider the following discrete problem:{

Find uh ∈ Vh such that

ah(uh, wh) = (f, wh)L, ∀wh ∈ Vh,
(47)

with
ah(vh, wh) := ǎ(vh, wh) + sh(vh, wh). (48)

To stay somewhat general, we only require that sh be defined on Vh×Vh. Loosely
speaking, the purpose of sh is to control the difference between A1vh and a suit-
able representative of A1vh in Vh. We consider the following design requirements
on the bilinear form sh, where c1, c2, c3 > 0 are uniform with respect to h:
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(i) sh is Hermitian positive semi-definite and satisfies |vh|S := sh(vh, vh)
1
2 ≤

c1‖τ̌−
1
2 vh‖L for all vh ∈ Vh.

(ii) There exists a linear map Jh : Vh → Vh such that, for all vh ∈ Vh,

c2‖τ̌−
1
2Jh(vh)‖2L ≤ ‖τ̌

1
2A1vh‖2L + µ0‖vh‖2L + |vh|2S , (49a)

c2‖τ̌
1
2A1vh‖2L ≤ <((A1vh,Jh(vh))L) + µ0‖vh‖2L + |vh|2S . (49b)

(iii) |Ih(v)|S ≤ c3
(∑

K∈Th(τ̌−1
K hK)h2r+1

K |v|2H1+r(DK ;Cm)

) 1
2

for all r ∈ [0, k] and

all v ∈ H1+r(D;Cm) with Ih satisfying (34).

The error analysis is done in the spirit of Strang’s First Lemma. This approach is
the most general since it does not require that sh be extended beyond Vh×Vh.
We consider the space V[ = V s + Vh; note that V[ = V s since Vh is H1-
conforming. We define the following norms on V s:

‖v‖2V[ := µ0‖v‖2L +
1

2
|v|2M + |v|2S∂ + ‖τ̌ 1

2A1v‖2L, (50a)

‖v‖2V[] := ‖v‖2V[ + ‖τ̌− 1
2 v‖2L + ‖ρ 1

2 v‖2L∂ . (50b)

The first norm is used to establish the inf-sup stability of ǎ on Vh×Vh (and
well-posedness) and the second one to prove the boundedness of of ǎ on V s×Vh.
Up to the change of τ by τ̌ , these norms are the same as those used in §4.3 for
the GaLS stabilization with boundary penalty.

Theorem 5.1 (Convergence). (i) Under the design conditions (i)-(ii)-(iii) for
sh, there is α > 0, uniform with respect to h, such that the following holds:

α(‖vh‖V[ + |vh|S) ≤ sup
wh∈Vh

<(ah(vh, wh))

‖wh‖V[ + |wh|S
, ∀vh ∈ Vh. (51)

Consequently, the discrete problem (47) is well-posed. (ii) There is c, uniform
with respect to h, such that |ǎ(v, wh)| ≤ c‖v‖V[]‖wh‖V[ holds for all (v, wh) ∈
V s × Vh. (iii) Let u be the unique solution to (19) and let uh be the unique
solution to (47) with sh satisfying the design conditions (i)-(ii)-(iii) above. There
is c, uniform with respect to h, such that

‖u− uh‖V[ ≤ c inf
vh∈Vh

(
‖u− vh‖V[] + |vh|S

)
. (52)

Moreover, ‖u−uh‖2V[ ≤ c
∑
K∈Th(τ̌−1

K hK)h2r+1
K |u|2H1+r(DK ;Cm) if u ∈ H1+r(D;Cm),

r ∈ [0, k] (note that max(βK , µ0hK) ≤ τ̌−1
K hK ≤ max(βD, µ0hK)).

In the next section we show how the above theory can be used to analyze the
stability and convergence properties of the Continuous Interior Penalty (CIP),
the Local Projection Stabilization (LPS), and the Subgrid Viscosity (SGV).
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5.2. Continuous Interior Penalty

The key idea in CIP stabilization (also termed edge stabilization in the
literature) is to penalize the jump of A1vh across the mesh interfaces. This idea
has been introduced in Burman [6], Burman and Hansbo [9]. We refer to [7, 8]
for the hp analysis and extensions to Friedrichs’ systems, and we refer to [15]
for extensions in the context of nonlinear conservation laws.

We set τ̌K := min(β−1
D hK , µ

−1
0 ) for all K ∈ Th. Let us take Vh = P g

k (Th;Cm).
Let J g,av

h be the nodal averaging operator mapping onto P g
k (Th;Cm) defined and

analyzed in [16], and let φ ∈ P g
1 (Th;R) be defined by φ(z) = card(Tz)−1

∑
K∈Tz τ̌K

with Tz := {K ∈ Th | z ∈ K} for any mesh vertex z.

Lemma 5.2. Define (A1vh)|K :=
∑
k∈{1:d}A

k
K∂kvh|K for all K ∈ Th and all

vh ∈ Vh, where AkK := 1
|K|
∫
K
Ak dx. Let τ̌F := max(τ̌Kl , τ̌Kr ) and βF :=

max(βKl , βKr ) for all F = ∂Kl ∩ ∂Kr ∈ F◦h. Then the sesquilinear forms

sCIP

h (vh, wh) =
∑
F∈F◦h

τ̌FhF ([[A1vh]]F , [[A1wh]]F )L(F ), (53a)

sCIP

h (vh, wh) =
∑
F∈F◦h

τ̌FhF ([[A1vh]]F , [[A1wh]]F )L(F ), (53b)

sCIP

h (vh, wh) =
∑
F∈F◦h

βFh
2
F ([[∇vh]]F , [[∇wh]]F )L(F ), (53c)

all satisfy the conditions (i)-(ii) with Jh(vh) = J g,av
h (φA1vh), and the condi-

tion (iii) for r ≥ 1.

Remark 5.3 (Time-dependent case). The choice (53c) is interesting for time-
dependent fields Ak since the matrix associated with (53c) can then be assem-
bled only once, which is not the case for (53a)-(53b). Note that in (53c), only
the normal component of the gradient can actually jump across F since func-
tions in Vh are continuous.

5.3. Two-scale stabilization: Local Projection and Subgrid Viscosity

We present in this section two closely related stabilization techniques known
in the literature as Local Projection Stabilization (LPS) and Subgrid Viscosity
(SGV). The SGV technique has been introduced in Guermond [19, 20, 21] for
monotone operators and semi-groups. The LPS technique has been introduced
in Becker and Braack [1], Braack and Burman [2] for Stokes and convection-
diffusion equations; see also Matthies et al. [25, 26]. LPS and SGV both rely
on a two-scale decomposition of the discrete space Vh, leading to the notions
of resolved and fluctuating (or subgrid) scales. Both stabilization techniques
introduce a least-squares penalty: LPS penalizes the fluctuation of the gradient
and SGV penalizes the gradient of the fluctuation. The notion of scale sepa-
ration and subgrid scale dissipation is similar in spirit to the spectral viscosity
technique introduced by Tadmor [28] to approximate nonlinear conservation
equations by means of spectral methods. This notion is also found in the Or-
thogonal Subscale Stabilization technique of Codina [10].
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5.3.1. The two-scale decomposition

The starting point is a two-scale decomposition of Vh into the form

Vh = Rh +Bh, (54)

where the sum is not necessarily direct. The discrete space Rh is viewed as the
space of the resolved scales, and Bh is viewed as the space of the fluctuating (or
subgrid) scales. It is important to realize that the degrees of freedom attached to
Bh only serve to achieve stability, and that the approximation error is controlled
by the best approximation in the space of the resolved scales Rh (and not in the
full space Vh). We assume the following local approximation property in Rh:
There is a quasi-interpolation operator IRh : V → Rh and a constant c, uniform
with respect to h, such that

‖v − IRh (v)‖L(K) + h‖∇(v − IRh (v))‖L(K) ≤ c h1+r|v|H1+r(DK ;Cm), (55)

for all r ∈ [0, k], all v ∈ H1+r(D;Cm), and all K ∈ Th.
Since functions in Rh are continuous, piecewise polynomials, the components

of their gradients belong to a broken finite element space Gh =
⊕

K∈Th GK ,
where functions in GK are supported in K, i.e., ∂irh ∈ Gh for all rh ∈ Rh
and all i ∈ {1:d}. We assume that the space of the fluctuating scales can
also be localized in the form Bh =

⊕
K∈Th BK , where the functions in BK are

supported in K (one may think of members of BK as bubble-type functions,
see the examples below). We define the local L-orthogonal projections πBK :
L(K)→ BK and πGK : L(K)→ GK for all K ∈ Th and the global counterparts
πBh : L→ Bh and πGh : L→ Gh such that πBh|K = πBK and πGh|K = πGK .

The key assumption linking the local gradient space GK to the local fluctu-
ation space BK is the following inf-sup condition introduced in [19, 20] (see also
[25]): There is γ > 0, uniform with respect to h, such that, for all K ∈ Th,

inf
g∈GK

sup
b∈BK

<(
∫
K
bHg dx)

‖g‖L(K)‖b‖L(K)
≥ γ, (56)

or, equivalently, γ‖g‖L(K) ≤ ‖πBKg‖L(K) for all g ∈ GK . In what follows, we

consider the local weighting parameter τ̌K = τK = min(βKh
−1
K , µ−1

0 ) for all
K ∈ Th.

We now describe three constructions of H1-conforming finite element spaces
of degree k ≥ 1 which all satisfy the above assumptions. (1) In the first ex-
ample, the space of the resolved scales is defined by Rh = P g

k (Th;Cm), the
H1-conforming finite element space based on Th, so that Gh = P b

k−1(Th;Cm)
and GK is composed of Cm-valued polynomials of degree at most (k − 1) on
affine meshes. Following [19] for k ∈ {1, 2} and [25] for all k ≥ 1, we take
BK = bKGK where bK is the H1

0 (K)-bubble function proportional to the prod-
uct of the (d + 1) barycentric coordinates over K; see the panels in the upper
row in Figure 1. (2) Instead of working with bubble functions, one can use
hierarchical meshes [19, 25]. In this case, the construction starts from the mesh
defining the space of the resolved scales, say Ťh. Assume for simplicity that Ťh
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Figure 1: Examples of two-scale finite elements. In each panel, the resolved scales are on the
left and the fluctuating scales are on the right. The resolved scales are either P1 (left column)
or P2 (right column) Lagrange elements. The upper panels illustrate the use of a standard
bubble function to build the fluctuating scales; the central and lower panels illustrate the use
of piecewise polynomial bubble functions on a submesh with the same size (central panel) or
half the size (bottom panel) as that of the resolved scales space.

is composed of simplices, then the mesh Th defining Vh is built by barycentric
refinement, i.e., for any K ∈ Ťh, (d + 1) new simplices are created by joining
the barycenter of K to its (d+ 1) vertices. Then we take Vh = P g

k (Th;Cm) and
Rh = P g

k (Ťh;Cm), so that Gh = P b
k−1(Ťh;Cm), see the panels in the second row

in Figure 1. For any K ∈ Ťh, choose g := dim(GK) shape functions of Vh with
support in K, say ϕK1 , . . . , ϕ

K
g and set BK = span{ϕK1 , . . . , ϕKg }. The practical

advantage of this construction is that Vh is a standard finite element space. (3)
Finally, we mention the two-scale decomposition considered in [19] for k ∈ {1, 2}
which also offers the advantage of Vh being a standard finite element space; a
schematic representation of the scale decomposition is shown in the panels in
the last row in Figure 1. The analysis (not considered herein) is somewhat
more involved since the fluctuating scales are represented by functions possibly
supported on two adjacent mesh cells.

5.3.2. Local Projection Stabilization

Lemma 5.4. Assume that (56) holds. Let A1vh be defined as in Lemma 5.2
and β : D → R be such that β|K := βK for all K ∈ Th. Define the fluctuation
operator κGh = IL − πGh , where IL is the identity operator in L. Then, the
sesquilinear forms

sLPS

h (vh, wh) = (τ̌κGh (A1vh), κGh (A1wh))L, (57a)

sLPS

h (vh, wh) = (β2τ̌κGh (∇vh), κGh (∇wh))L, (57b)

both satisfy the assumptions (i)-(ii)-(iii) with Jh(vh) = τ̌πBh π
G
h (A1vh).

Remark 5.5 (Use of κGh (A1vh)). When the fields Ak are not piecewise con-
stant, setting sLPS

h (vh, wh) = (τ̌κGh (A1vh), κGh (A1wh))L is somewhat delicate

19



since |IRh (u)|S no longer vanishes. Bounding this quantity requires strong reg-
ularity assumptions on the fields Ak.

5.3.3. Subgrid Viscosity

In the SGV method, the two-scale decomposition of Vh is assumed to be
direct and L-stable, i.e., it is assumed that there is γR > 0, uniform with
respect to h, such that

Vh = Rh ⊕Bh, γR‖πRh vh‖L ≤ ‖vh‖L, ∀vh ∈ Vh. (58)

Letting πRh : Vh → Rh be the oblique projector based on (58), we define the
fluctuation operator κRh := IVh − πRh , where IVh the identity in Vh. Just as for
LPS stabilization, we can choose Rh = P g

k (Th). Then, Gh is the broken finite
element space P b

k−1(Th), i.e., GK = Pk−1,d on simplicial affine meshes (d-variate
polynomials of order at most k − 1). The simple choice BK = bKGK is only
possible for k ≤ d, since otherwise the decomposition (58) is no longer direct.
For k ≥ d + 1, a simple possibility to get around this technicality is to set
BK = bαKGK with α equal to k+1

d+1 or to the smallest integer larger than k
d+1 ,

see also [19, Prop. 4.1].

Lemma 5.6. Assume that (56) holds. Let β : D → R be such that β|K := βK
for all K ∈ Th. Then the sesquilinear forms

sSGV

h (vh, wh) = (τ̌A1(κRh vh), A1(κRhwh))L, (59a)

sSGV

h (vh, wh) = (τ̌A1(κRh vh), A1(κRhwh))L, (59b)

sSGV

h (vh, wh) = (β2τ̌∇(κRh vh),∇(κRhwh))L, (59c)

all satisfy the assumptions (i)-(ii)-(iii) with Jh(vh) = τ̌πBh A1(πRh (vh)).

References

[1] R. Becker and M. Braack. A finite element pressure gradient stabilization for the Stokes
equations based on local projections. Calcolo, 38(4):173–199, 2001.

[2] M. Braack and E. Burman. Local projection stabilization for the Oseen problem and its
interpretation as a variational multiscale method. SIAM J. Numer. Anal., 43(6):2544–2566,
2006.

[3] J. H. Bramble and A. H. Schatz. Rayleigh-Ritz-Galerkin-methods for Dirichlet’s problem using
subspaces without boundary conditions. Comm. Pure Appl. Math., 23:653–675, 1970.

[4] J. H. Bramble and A. H. Schatz. Least squares for 2mth order elliptic boundary-value problems.
Math. Comp., 25:1–32, 1971.

[5] A. Brooks and T. Hughes. Streamline Upwind/Petrov–Galerkin formulations for convective
dominated flows with particular emphasis on the incompressible Navier–Stokes equations.
Comput. Methods Appl. Mech. Engrg., 32:199–259, 1982.

[6] E. Burman. A unified analysis for conforming and nonconforming stabilized finite element
methods using interior penalty. SIAM J. Numer. Anal., 43(5):2012–2033 (electronic), 2005.

[7] E. Burman and A. Ern. Continuous interior penalty hp-finite element methods for advection
and advection-diffusion equations. Math. Comp., 76(259):1119–1140, 2007.

[8] E. Burman and A. Ern. A continuous finite element method with face penalty to approximate
Friedrichs’ systems. M2AN Math. Model. Numer. Anal., 41(1):55–76, 2007.

[9] E. Burman and P. Hansbo. Edge stabilization for Galerkin approximations of convection-
diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg., 193(15-16):1437–1453,
2004.

[10] R. Codina. Stabilized finite element approximation of transient incompressible flows using
orthogonal subscales. Comput. Methods Appl. Mech. Engrg., 191(39-40):4295–4321, 2002.

20
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