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Hybrid high-order (HHO) methods ...

e in a nutshell
e on unfitted meshes
e for wave propagation (fitted meshes)

e for wave propagation (unfitted meshes)
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@ Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
@ Degrees of freedom (dofs) located on mesh cells and faces

@ Let us start with polynomials of the same degree £ > 0 on cells and

faces
mesh k=0 k=1 k=2
[ele] Jafal il

@ In each cell, one devises a local gradient reconstruction operator

@ One adds a local stabilization to weakly enforce the matching of cell
dofs trace with face dofs

@ The global problem is assembled cellwise as in FEM
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@ Mesh cell T € T, cell dofs ur € PK(T), face dofs 157 € PX(7or)
ity = (ur, uor) € Ur := PXT) x PX(For)
@ Local potential reconstruction Ry : [/ — P*1(T) s.t.
(VR (itr), Vg)r = —(ur, Ag)r + (o1, Vgnr)ar,  ¥q € PI(T)/R
together with (Ry(iir), )7 = (ur, )7
@ Local gradient reconstruction Gr(iiy) := VRr(ii7) € VPI(T)

@ Local stabilization operator acting on § := ur|gy — iyr

Sar(iir) = Ty (6 = (1 = TEIR7(0.9)lor )

high-order correction
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Local bili

@ Local bilinear form for Poisson model problem
ar(iir, Wr) = (Gr(iir), Gr(vr)r + by (Sar(iir), Sor(r))ar
@ Stability and boundedness
a”ﬁT“?]T < ar(ir, iir) < w”ﬁT”%T’ Vir € Ur
with ”ﬁT”?]T = IVur |7 + b lurlor = wor |3,

@ Reduction operator I7(v) := (IIk(v), T15 . (vlar)) € Uz, Vv € H'(T)

@ Main consistency properties
o izt lv = Re(Ir)lir + IV = Re(Trm)lir < B vlgeear,

-1 .
o hp 2 [Sar(r(llar < W Vi)
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Assembly

L]
[0

o% Cell unknowns « « Face unknowns

@ Global dofs i1, = (uq, 14) (7 := {mesh cells}, ¥ := {mesh faces})
Uy :=PXT) x P (F), PKT):= >< PAT), PHF) = X P
TeT FeF
@ Global assembly: Y 7cqar(iir, Wr) = Yreq(f, wr)r
@ Dirichlet conditions can be directly enforced on the face boundary dofs

@ Cell dofs are eliminated locally by static condensation
o global problem couples only face dofs
o cell dofs recovered by local post-processing
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Main charasterisics

@ General meshes: polytopal cells, hanging nodes

@ Optimal error estimates

o O(W**1y H!-error estimate (face dofs of order k > 0)
o O(KK*2) [2-error estimate (with full elliptic regularity)

@ Local conservation

e optimally convergent and algebraically balanced fluxes on faces
e as any face-based method, balance at cell level

@ Attractive computational costs

o only face dofs are globally coupled
e compact stencil
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varants

@ Variant on gradient reconstruction Gy : /7 — PX(T;R?) s.t.
(Gr(iir), @1 = —(ur, div @7 + (o7, qnr)ar,  Vq € PXT;RY)

e same scalar mass matrix for each component of Gr(iir)
e useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]

@ Variant on cell dofs and stabilization

e mixed-order setting: k& > O for face dofs and (k + 1) for cell dofs
o this variant allows for the simpler Lehrenfeld—Schoberl HDG stabilization

Sar(ir) = T15,.(5)

e another variant is £ > | for face dofs and (k — 1) for cell dofs
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Link to other methods

@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

@ HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
e novel HHO idea: use reconstruction in the stabilization
o HHO allows for a simpler analysis based on L2-projections: avoids
invoking the special HDG projection

@ Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
e weak gradient <> HHO grad. rec.
o WG uses suboptimal or LS stabilization [Mu, Wang, Ye 15]

@ HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
e HHO dof space (/7 isomorphic to virtual space Vy

PMUT) € Vp o= {v e HY(T) | Av € PK(T), n-Vv|gr € PK(Fyr)}

e HHO grad. rec. <> computable gradient projection
o stabilization controls energy-norm of noncomputable remainder
@ see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]

@ Different devising viewpoints should be mutually enriching
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@ Broad area of applications (non-exhaustive list...)

o solid mechanics: nonlinear elasticity [Botti, Di Pietro, Sochala 17],
hyperlasticity and plasticity [Abbas, AE, Pignet 18/19], contact, Tresca
friction [Chouly, AE, Pignet 20], obstacle pb. [Cicuttin, AE, Gudi 20]

o fluid mechanics: Stokes [Di Pietro, AE, Linke, Schieweck 16], NS [Di Pietro,
Krell 18], Brinkman [Botti, Di Pietro, Droniou 18]

e porous media: poroelasticity [Boffi, Botti, Di Pietro 16; Botti, Di Pietro,
Sochala 20], fractures [Chave, Di Pietro, Formaggia 18; Hédin, Pichot, AE 21]

o Leray-Lions [Di Pietro, Droniou 17], spectral pb. [Calo, Cicuttin, Deng, AE 19],
magnetostatics [Chave, Di Pietro, Lemaire 20], H ~1Joads [AE, Zanotti 20]

@ Libraries
o industry (code_aster, code_saturne, EDF R&D), ongoing
developments at CEA
e academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse),
HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)
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Elliptic interface problem

Q

nr

@ Polytopal domain Q c R?, d € {2,3}
@ Subdomains Qp, Q, c Q with different (contrasted) material properties
@ Curved interface I, jump [a]r = ajq, — aja,
@ Model problem
—div («Vu) = f inQ; UQ,
[ulr = gp, [kVu]rnr =gy onT
u=0 on 0Q
@ Everything can be adapted to a single domain with curved boundary
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@ Use of unfitted meshes for interface problems

o curved interface can cut arbitrarily through mesh cells
o numerical method must deal with badly cut cells

@ Classical FEM on unfitted meshes
o double unknowns in cut cells and use a consistent Nitsche’s penalty
technique to enforce jump conditions [Hansbo, Hansbo 02]
o ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across
faces near curved boundary/interface)

@ An alternative to ghost penalty: local cell agglomeration

e natural for polytopal methods as dG [Sollie, Bokhove, van der Vegt 11;
Johansson, Larson 13]
o cG agglomeration procedure in [Badia, Verdugo, Martin 18]
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@ Main ideas [Burman, AE 18 (SINUM)]

o double cell and face dofs in cut cells, no dofs on curved boundary/interface
e mixed-order setting: k& > 0 for face dofs and (k + 1) for cell dofs
@ local cell agglomeration to counter bad cuts

-] Improvements in [Burman, Delay, AE 20 (SISC)]

e novel gradient reconstruction, avoiding that the penalty parameter in
Nitsche’s method is large enough
o robust cell agglomeration procedure (guaranteeing locality)

@ Stokes interface problems [Burman, Delay, AE 20 (IMANUM)]
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cut cell uncut cell

@ Mesh still composed of polytopal cells (with planar faces)
@ Decomposition of cut cells: T= Tl U Tz, m=Tnr

@ Decomposition of cut faces: d(T;) = (0T UT', i € {1,2}
@ Local dofs (no dofs on 771)

ﬁT = (MTI, Ur,, M((')T)l 5 M((')T)Z) € Pk+1 (Tl)XPk+] (TZ)XPk(ﬁaT)I )XPk(ﬁaT)z)
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Gradient reco

r

@ Gradient reconstruction Gr,(ii7) € P*(T;; RY) in each subcell

e (Option 1) Independent reconstruction in each subcell

(Gr,(ii7), 1, = —(ur;, div Q)7; + (157 )5 AOT) 97y + (T, q0T;) 7T

e (Option 2) Reconstruction mixing data from both subcells

(Gr, (i), @1, = =(ur,, div @7, + (457, 40T )97y + (U734 @OT) T

@ Both options avoid Nitsche’s consistency terms
@ no penalty parameter needs to be taken large enough!
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@ Local bilinear form

A A A ~ 1.2/~ A
aT(uT, WT) = Z K,'(GTi(uT), GT,(WT))T, + SI;(MT, WT) + St (MT, WT)
ie{1,2}

sl;(uT, wr) = nklh}l([[ur]]r, [wr]r)zr with = O(1)

@ LS stabilization inside each subdomain

L2,n o~y -
sy (i, Wr) = Z Kith(HicaT)i(uTil(ﬁT)"_M((')T)f)’ wrlary —Wory (ary
ie{1,2}

@ The use of two gradient reconstructions allows for robustness
w.r.t. contrast (k; < k»)

e use option 1 in Q1 and option 2 in Q)
@ ar is symmetric, but Q; /€, do not play symmetric roles
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5 o O AT
o.:.o o
.;.0.;.0 ()

o.E. S ¢ o0 ?
@

@ The global dofs are in
iy € Uy = >< P (T x >< P U(T,) x >< P*(F) x >< P*(Fy)
TeT! TeT? FeF! FeF?

@ We set to zero all the face components attached to 9Q
@ We collect in 77 all the global unknowns related to a mesh cell T
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@ Global problem: Find 1, € U}, such that
an(itp, Wp) = G0vy), Vi, € U,

with ah(ﬁh, Wh) = ZTG‘T aT(ﬁT, WT) and fh(ﬁ/h) = ZTGT fT(WT) with the
consistent rhs

tr(Ovr) = (f, wr, )Tl +(f, WTz)Tz +(gn WTz)Tr
— k1(gp, Gr, (vr)nr + nhy! fwr])pr
@ All the cell dofs are eliminated locally by static condensation

@ Only the face dofs are globally coupled
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Two technical lemmas Burman, A€ 18]

@ Interface: class C2 and well resolved (mesh fine enough)

o for any cut cell T, there is a ball 7T of size O(ht) containing T and a finite
number of its neighbors, and s.t. all T N T is visible from a point in 7"

@ There are no small cut cells

o small ball with diameter O(h7) present on both sides of interface
o achievable using local cell agglomeration if mesh fine enough

Multiplicative trace inequality
Letie {1,2}. Forall T € 7 and all v € H'(TT), we have

_1 L
IWllaryorr < €(fz? vl + B2 19wl

Discrete trace inequality
Let £ € Nandi € {1,2}. Forall T € 7 and all v, € P/(T;), we have

_1
vz llaryurr < Chy*|lvrlz;
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@ The discrete problem is coercive

@ Reduction operator projects onto PX*!(77) and onto PX(Fa7y)
e optimal approximation properties

@ Optimal bound on consistency error

Error estimate

Assuming that ulg, € H'™(Q;) with t € (%, k+ 1],

DD wllVe—un)lf, < CR* Y kilul g,

T ie{l1,2} ie{l,2}

@ Convergence order O(h**!) if ulg, € H**2(Q;)

@ For error analysis on fitted meshes and ¢ € (0, %), cf. [AE, Guermond 18]
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@ Three-stage procedure with proven locality in the agglomeration
@ for any cell KO in Qy, find matching partner OK in Q,
@ for any cell KO in Q, not matched, find matching partner OK in Q
@ rearrange locally partnerships to avoid propagation

initial mesh
|

stage 2 stage 3
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Agglomeration procedure (2/3)

@ A 16x16 mesh with circular interface
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Agglomeration procedure (3/3) _

@ A 16x16 mesh with flower-like interface
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exi=lLk=10"gp=gy=0,7=1
@ Circular interface (2 = (x; — 0.5)> + (x, — 0.5)?)

. 6 6
@ Exact solution: u; := ;—1, up := :—2 +R6(% - %)

102

A
e

wNRo

1081

error H! seminorm_
< < <
\
\

\

1081 _

0.0078125 0.015625 0.03125 0.0625 0.125
h
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Test case with jump

@ Flower-like interface, k; = ko = 1

@ Exact solution with jump

sin(7zrx) sin(7rx;) in Q
M(X1,xz) = . . 3.3 .
sin(zxy) sin(rxp) + 2 + X7y in
[T 11
wfio— T ]
Pk=2 ="
102 k=3 e
£10° T
.gw"’
?:,10'5
10
107
0%278125 0.01‘5625 0.0(;125 0.062¢
h
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@ Second-order formulation in time: Newmark schemes
@ First-order formulation in time: RK schemes

@ Introduced in [Burman, Duran, AE 21 (CAMC)], error analysis in [Burman,
Duran, AE, Steins 21 (JSC)]
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@ Domain Q c R?, time interval J := (0, Tt), Tt > 0
@ Acoustic wave equation with wave speed ¢ := y/«/p
L8up — div (})Vp) =f inJxQ
Everything can be extended to elastodynamics

e Weak form: Assuming f € CO(J; L*(Q)) and po, vo € H)(Q),
(@up(1), W) 1.0 + (Vp(0), VW) 1. = (1 w)a,  Vw € Hy(Q)Vi € J
K P
e Energy balance: €(r) = €(0) + [ (f(s). dip(s))ads with

(1) = 5llapOI7 , + 5IVPOIS
K’ p>
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@ Local cell dofs in PX(T), k’ € {k, k + 1}, and local face dofs in P*(757)
iir = (ur, uor) € Ur = PX(T) x PX(For)
@ Local gradient reconstruction G7(iiy) € PK(T;RY) (or in VP**1(T))

@ Local stabilization acting on 6 := urlgr — uor

1, (6 — (1 - TR (0,6))lor) itk =k

Sor(iir) =
or(ir) {ngT(a) itk =kt 1

@ Local bilinear form
ar(iir, wr) := (Gr(ir), Gr(Wr)) 1p + Tor(Sar(ir), Sor(r))ar

with 757 = (phy)~!
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HHO sp

@ Global dofs i1, = (ur, us) € Uy, := PK(T) x PX(7)

@ Global assembly leading to

an(ine ) 1= ) ar(irvr) = (Gor(n). Gr(n) g + (i, 1)
TeT

@ Dirichlet conditions can be directly enforced on the face boundary dofs
Uh() = Pk/((r) X Pk((f’vo)

with F° := {mesh interfaces}
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 HHO spece cemtchereteat o

@ Wave equation in space semi-discrete form: py, € C2(.7; Uho) s.t.
@up7(1), W) 1.0 + an(Pu(0), i) = (1), wr)a,  Vivy, € UnVteld
o Encrgy balance: €4(r) = €4(0) + [ (F(s). dpr(s))ads with
Cu(1) = %Ilazpfr(t)llzﬁ;Q + %IIG'r(ﬁh(t))IIZ%;Q + 35n(Pn(2), pu1))

Stabilization is taken into account in the energy definition
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@ Bases for P¥(77) and P*(7"), component vector (Po(), P (t)) € RN

[MTTattPT(t)] N [K'rfr KTT] [P'r(t)] _ [FT(t)]
0 K Kee| |Po(2) 0

@ Mass matrix Mg and stiffness submatrix K¢ are block-diagonal

@ Stiffness submatrix K& is only sparse: face dofs from the same cell are
coupled together owing to reconstruction

@ HDG methods for wave equation in second-order form [Cockburn, Fu,
Hungria, Ji, Sanchez, Sayas 18]
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Error an

@ Assuming a smooth solution,

”atp - 6tp7“”Loo(J;L2(£;Q)) + ||VP - GT(ﬁh)”LZ(J;Lz(/l);Q)) decays as O(hk+l)
||H';,.(p) - prll Lo (L) decays as O(h**2) under (full) elliptic reg.

@ Some comments on proofs

adapt ideas for FEM analysis from [Dupont 73; Wheeler 73; Baker 76]
simpler than for HDG (avoids HDG projection, requiring a special
initialization in HDG scheme)

could be re-used in DG setting using discrete gradients (revisiting [Grote,
Schneebeli, Schétzau 06])
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@ Newmark scheme with parameters (8,7y) = (+ I 2

e implicit, second-order, unconditionally stable

® p, 0ip, Oyp are approximated by hybrid pairs p, ¥, a) € Uho,¥n 20

@ Each time-step proceeds as follows:
@ Predictor step: p;" = p)) + At} + %(1 - 2,B)A12&Z
@ Linear solve to ﬁnd acceleration &Z” € Uy sit.

(a';fl,wfr)l +BARan (@) ) = (P w)a—an(p) ). Vi, € Ugg

Static condensation can be performed on the cell dofs
© Corrector step: p A”“ =p" +[3At2A”+1 AZ“ =)+ At(ya"+1 +(1=y)a,

@ Discrete energy is exactly conserved

@ Central FD scheme is not efficient: inversion of stiffness submatrix K¢
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@ Introduce velocity v := 9;p and dual variable o := %Vp

0,0 —Vv=0
{pt inJ xQ

%6,v —divo =f
o Weak form: ¥(r,w) € L*(Q;RY) x H)(Q), Vi € J,

(0,07 (1), T)ps2 = (VW(1), T)a = 0
((9;V(t), W)%;Q + (O-(t)’ VW)Q = (f(t)9 W)Q

@ Energy balance: €(f) = €(0) + /Ot(f(s), v(s))ads with

€(1) := IV, + 510Dl
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HHO spa

@ 9, € C'(J; Uy) and o4 € C'(J;S7) with S¢ := PK(7T;RY)
@ Space semi-discrete form:

007 (1), T7)p2 = (G (Vn(0), T7)a = 0
@70 wr) 1. + (@ 7(), Gr(vn))a + 3a(Pu(2), Wa) = (F(), wr)a

@ Stabilization 5 (-, -) with weight T = (pc)~!, i.e., To7 = O(1)
@ Energy balance: €,(¢) + fot Sh(Dn(s), Dp(s))ds = €,(0) + /g(f(s), vy(s))ads
Cu(r) := %Il\ﬂfr(t)llzl;Q + 3o @)I.q

Stabilization acts as a dissipative mechanism
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@ Component vectors Zs(¢) € RY7 and (V(2), V(1)) € RN7>V7

M7, Z7(1) 0 -Gy -G#| [z 0
My-7-0, V(1) | + G} Srr Srs| V)| = [Fr()
0 GT S See| [V 0

@ Mass matrices M?]'.,]. and Mg are block-diagonal

@ Key point: stab. submatrix S¢## block-diagonal only if &’ = k + 1

o for k” = k, high-order HHO correction in stabilization destroys this
property (couples all faces of the same cell!)

@ HDG methods for wave equation in first-order form [Nguyen, Peraire,
Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]
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@ Natural choice for first-order formulation in time

e single diagonally implicit RK: SDIRK(s, s + 1) (s stages, order (s + 1))
o explicit RK: ERK(s) (s stages, order s)

@ ERK schemes subject to CFL stability condition CTA’ < B(s)u(k)
o B(s) slightly increases with s € {2, 3,4}
o u(k) essentially behaves as (k + 1)~! w.r.t. polynomial degree
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Num

@ Smooth solution

@ Newmark scheme (equal-order, quadrilateral mesh)

Cv. 1In Space cv. in time energy cons.
0010 Ll
e
0.001 s
1074 /,’ /’
B e
10| ~ a
Newmark-(3=025, 205): R
. ey R
i 1 07) T
w
% Koo e
07 e H' ka1 OF) o
H k200 107}
005 010 050 0001 0,005 0.010 0.050 0.4
h a
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@ SDIRK(3,4) and ERK(4) schemes (mixed-order, quad/poly meshes)
o recall that 757 = O(1) (Fa7 = (pc)™)
e we also consider over-penalty with 7oy = O(h}l) (Tor = (oc)~"Y(tq/hr))

757 = O(1), ERK(4), poly mesh Tor = O(h;l ), ERK(4), poly mesh energy, SDIRK(3,4), quad mesh
1

005 010 015 020 025 005 010 015 020 025 0 02 04 08 08 1
h h

@ Energy dissipation strongly tempered by increasing polynomial degree

@ Discussion on Ty7
e energy-error decays optimally as O(h%*1) for both 757
= proof for (HHO, O(h}l)) and HDG, but using different tools
o L2-error decays optimally as O(h**2) only for 757 = O(h;l)
= HDG, 757 = O(1), special post-proc. [Cockburn, Quenneville-Bélair 12]
o Tyr = O(h}l) worsens CFL condition for ERK schemes
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@ 1D test case, Q; = (0,0.5), Q, = (0.5,1), ¢;/cr = 10
o initial Gaussian profile in Q
o analytical solution available (series)

@ Benefits of increasing polynomial degree

o Newmark scheme, equal-order, k € {1,2,3}, h=0.1 X 278 Ar=0.1x2"
e HHO-Newmark solution at ¢ = % (after reflection/transmission at x = %)

Velocity
P
S
Velocity
Y
S
e
S
Velocity
o 4 n
| ———
——
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Numer

@ 2D test case, Ricker (Mexican hat) wavelet
e Q=0.Dx01).0%=01xE D c1/c2=5
o po=0,vp= —14—0\/133(1600 2o 1) 7T exp (—800r2),
== x)? + (=3 (e ye) = (5. 1) € Q)

e semi-analytical solution (infinite media): garémore2d software (INRIA)

@ HHO-SDIRK(3,4) velocity profiles

e mixed-order, k = 5, polygonal (fitted) meshes
o Ar=0.025 x 279 (four times larger than Newmark for similar accuracy)

t=0.015 t=0.031 t=0.25
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Numerical results: heterogeneous media (3/3)

@ Comparison of computational efficiency

all schemes tuned to comparable max. rel. error on a sensor at (%, %)
if no direct solvers allowed, ERK(4) wins despite CFL restriction
with direct solvers, SDIRK(3,4) wins
RK schemes more efficient than Newmark scheme
for SDIRK(3.4), Tor = O(h}l) is more accurate and only a bit more
expensive than 757 = O(1)

’ scheme \ (K, k) stab solver \ t/step  steps time err ‘
] ERK(4) \ 6,5 01 n/a \ 0410 5,120 2,099 2.23 ‘
Newmark (7,6) O(h}l) iter | 56.74 2,560 58265 2.15
SDIRK(3,4) | (6,5) O(h;l) iter | 31.24 640 5,639 221
SDIRK(3,4) | (6,5) 0O(1) iter | 22.52 640 2,200 4.45
Newmark (7,6) O(h;l) direct | 0.515 2,560 1,318 2.15
SDIRK(3,4) | (6,5) O(h;] ) direct | 1.579 640 1,010 221
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@ can we do the same on media with curved interfaces?

@ design and analysis in [Burman, Duran, AE 21] hal-03086432
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@ Subdomains Q, Q, c Q, interface I', jump [a]r = aj, — ajq,
@ Acoustic wave propagation across interface
L6,p — div (5Vp) =7 inJ x(Q; UQ,)
{[[p]]r =0, [[%Vp]]r-nr =0 onJxT
@ Example: propagation of a Ricker wavelet centered at origin across a

flower-like interface, ¢ /c; = V3
1=0.25
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@ Main ideas as for elliptic interface problems
o mixed-order setting kK’ = & + 1
e distinct gradient reconstructions Gr; in PK(T;RY), i e {1,2}
o LS stabilization on (dT), i € {1,2} = slT’z(-, 4

@ Local bilinear form

A A . L2/n A
ar(iir, ivr) = ) (Gr,(iir), Gr,(v1)) 1, + splur, wr) + sp* (i o)
ie{1,2} !

sy(ur, wr) := (prhr) ™ (Jur]r, [wrlr)zr

@ Cellwise assembly, algebraic realization, and Newmark time-stepping
as in fitted case
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Error analysis

@ Focus on space semi-discrete setting and energy-error

@ Energy-error ||0,p — afp'T”Lm(];LZ(%;Q)) +1|Vp - GT(I,)h)”LZ(j;Lﬁ(%;Q))
decays as O(hF*1) if p e C3(J; H**2(Q))

@ Technical comment
e cellwise reduction operator I7-(p)|7, = H% (Ef.‘“(p,-))lTl. with stable
extension operator Ef.‘“ s H*1(@Qy) - HL(RD)
e ensures optimal polynomial approximation in cut cells

o leads to stronger regularity assumption (p € C3(...) vs. p € C1(...))
@ requires a slight modification of IC for analysis
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@ Introduce velocity v := 9;p and dual variable o := %Vp
pdo —Vv=0, Loy —divo =f inJx(Q UQ)
[vlr =0, J[o]rmar =0 onJxTI

@ HHO space semi-discretization

{(3t0' 7, T — (Gr (1), T7)a =0

@vr(D.wr) 1g + (@7 (0. Gr(n)a + 5, (v (0. wr) + 5,2 (40 1) = (F(0. wr)a

with EZ(VT(I)’ wy) = ZTG’];', ng([[VT]]r, IIWT]]I")TF

@ Algebraic realization and RK time-stepping as in fitted case
° ‘?gT =(pic1) 7L e, ‘r = O(1) for ERK and TaT = O(hy 1) for SDIRK
e similar choices in LS stablhzatlon
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@ 2D heterogeneous test case with flat interface

Q1 =(-3.3)%(=3,0.,Q = (-3.3)x(0.3)

¢2/c1 = V3 (low contrast, left) or ¢ /c; = 8V3 (high contrast, right)
Ricker wavelet centered at (0, %) € Qy, sensor S| = (%, —%) € Q

fitted and unfitted HHO behave similarly, both benefit from increasing k

@ HHO-Newmark, o, signals
e comparison of semi-analytical and HHO (fitted or unfitted) solutions
e k=1 (top) and k = 3 (bottom)

Newmark:
— Garbmore2D — Fit-HHO k=1 — Cut-HHO k=1

Newmark:
—— Garbmore2D — Fit-HHO k=1 — Cul-HHO k=1

Time Time




@ Homogeneous test case, flat interface

@ CFL condition for ERK(s): CTAI < B(s)u(k)
e f(s) mildly depends on the number of stages
o u(k) behaves as (k + 1)~! and is quantified by solving a generalized
eigenvalue problem with the mass and stiffness matrices

@ Additional jump penalties in unfitted HHO only mildly impact u(k)

k 0 1 2 3
Fitted-HHO 0.118 0.0522 0.0338 0.0229
Unfitted-HHO | 0.0765 0.0373 0.0232 0.0159
Ratio 1.5 14 1.5 14
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CFLcondiion for ERK (22)

@ Homogeneous test case, circular interface

e study of impact of agglomeration parameter 6,5, on (k)
e “badly cut” flag if relative area of any subcell falls below 8,50

@ Agglomerated cells for 8,5, = 0.3 on a sequence of refined quad meshes

g a0 I T, VN

= = f ‘%E,
S I
i 0 1] Iy %h]E‘:l]:x:D:‘]dj{TI H“"\hn: dﬁ““f
@ Behavior of hu(k) and impact of 0,4 on pu(k)
o tolerating badly cut cells deteriorates CFL condition
o [k [ o i 2 3]

0ae = 0.5 | 0.042 0022 0014  0.0099
Oae =03 | 0.030 0015 00094 0.0065
Ratio 14 1.5 1.5 1.5
e “0 | [Ogg =0.1 | 0017 0.0087 0.0055 0.0039
== Ratio 25 2.6 2.6 25

0001

510
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@ Agglomerated cells for a flower-like interface (quad mesh, 1 = 279),
HHO-SDIRK(3,4) signal for o, at two sensors, k € {1,2,3}

sork e

@ Computational efficiency: conclusions similar to fitted case

| scheme | sol. stab. [ time/step  steps time [ e S e S, |

[ERK@) [ na_ O() | 0194 5120 4956 | 016 _ 0.02 |
Newmark di. O(i;1) | 0633 2560 16200 | 1.64 142
SDIRK(3,4) | dir.  O(hz!) | 0717 640 4589 | 032 0.3
SDIRK(3,4) | iter. O(h;)) | 1018 640 6517 | 032 0.3
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@ Fitted and unfitted HHO methods for wave propagation

@ Further points concerning analysis
e choices of Ty for first-order formulation
e improve time-regularity requirement for unfitted second-order formulation
o analyze condition number with small faces

@ Perspectives regarding implementation
o 3D setting with 2D interface(s), allow for more complex cuts
o higher-order representation of geometry for quadratures
o industrial applications in geophysics (coll. CEA)

e
/
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@ Unfitted HHO

o devising and basic analysis [Burman, AE 18 (SINUM)]
e improvements on elliptic interface pbms [Burman, Delay, AE 20 (SISC)]
o Stokes interface problems [Burman, Delay, AE 20 (IMANUM)]

@ HHO for wave propagation

o devising and analysis, fitted meshes [Burman, Duran, AE 21 (CAMC);
Burman, Duran, AE, Steins 21 (JSC)]
e extension to unfitted meshes [Burman, Duran, AE 21] hal-03086432

@ New Finite Element book(s) (Springer, TAM vols. 72-74, 2021)

83 chapters of 12/14 pages plus about 500 exercises

Finite Elements | Finite Elements Il
[h———— TV ———,

Dy Dy Dy

Thank you for your attention!
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