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1 Introduction

Discontinuous Galerkin (dG) methods can be viewed as finite element methods allowing for
discontinuities in the discrete trial and test spaces. Localizing test functions to single mesh el-
ements and introducing numerical fluxes at interfaces, they can also be viewed as finite volume
methods in which the approximate solution is represented on each mesh element by a polyno-
mial function and not only by a constant function. From a practical viewpoint, working with
discontinuous discrete spaces leads to compact discretization stencils and, at the same time,
offers a substantial amount of flexibility, making the approach appealing for multi-domain and
multi-physics simulations. Moreover, basic conservation principles can be incorporated into the
method. Applications of dG methods cover a vast realm in engineering sciences. Examples can
be found, e.g., in the conference proceedings edited by Cockburn, Karniadakis, and Shu [39].
There is also an increasing number of open source libraries implementing dG methods. A non
exhaustive list includes deal.II [9], Dune [12], FEniCS [71], freeFEM [@5], 1ibmesh [63], and
Life [74].

A brief historical perspective

Although dG methods have existed in various forms for more than thirty years, they have
experienced a vigorous development only over the last decade, as illustrated in Figure [l

The first dG method to approximate first-order PDEs has been introduced by Reed and
Hill in 1973 [75] in the context of steady neutron transport, while the first analysis for steady
first-order PDEs was performed by Lesaint and Raviart in 1974 [63], [66, 67]. The error estimate
was improved by Johnson and Pitkdranta in 1986 [G1] who established an order of convergence
in the L?-norm of (k + %) if polynomials of degree k are used and the exact solution is smooth
enough. A few years later, dG methods were extended to time-dependent hyperbolic PDEs
by Chavent and Cockburn [28] using the forward Euler scheme for time discretization together
with limiters. The order of accuracy was improved by Cockburn and Shu [41], @2] using explicit
Runge—Kutta schemes for time discretization, while a convergence proof to the entropy solution
was obtained by Jaffré, Johnson, and Szepessy [60]. Extensions are discussed in a series of papers
by Cockburn, Shu, and coworkers; see, e.g., [33], B0, 44].

For PDEs with diffusion, dG methods originated from the work of Nitsche on boundary-
penalty methods in the early seventies [69, [[0] and the use of Interior Penalty (IP) techniques to
weakly enforce continuity conditions imposed on the solution or its derivatives across interfaces,

'Lecture Notes for the Spring School on Numerical Fluid Mechanics, Roscoff June 2011. A more elaborate
and thorough presentation of the material can be found in the book Mathematical Aspects of Discontinuous
Galerkin Methods by D. Di Pietro and A. Ern, volume 69 of SMAI Mathématiques & Applications, Springer,
2012.
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Figure 1: Yearly number of entries with the keyword ‘discontinuous Galerkin’ in the MathSciNet
database

as in the work of Babugka [6], Babuska and Zlamal [7], Douglas and Dupont [A7], Baker [§],
Wheeler [82], and Arnold [2]. In the late nineties, following an approach more closely related
to hyperbolic problems, dG methods were formulated using numerical fluxes by considering the
mixed formulation of the diffusion term. Examples include the work of Bassi and Rebay [10]
on the compressible Navier—Stokes equations and that of Cockburn and Shu [43] on convection-
diffusion systems, leading to a new thrust in the development of dG methods. A unified analysis
of dG methods for the Poisson problem can be found in the work of Arnold, Brezzi, Cockburn,
and Marini [3], while a unified analysis encompassing both elliptic and hyperbolic PDEs in the
framework of Friedrichs’ systems has been derived by Ern and Guermond [0, BT, 52].

Overview

Section B introduces the basic concepts to formulate and analyze dG methods, namely (i) the
basic ingredients related to meshes and polynomials to build discrete functional spaces and, in
particular, broken polynomial spaces, (ii) the three key properties for the convergence analy-
sis of dG methods in the context of nonconforming finite elements, namely discrete stability,
consistency, and boundedness, (iii) the basic analysis tools, in particular inverse and trace in-
equalities needed to assert discrete stability and boundedness, together with optimal polynomial
approximation results, thereby leading to the concept of admissible mesh sequences. We focus
on mesh refinement as the main parameter to achieve convergence. Convergence analysis using,
e.g., high-degree polynomials is possible; important tools in this direction can be found, in the
context of dG methods, in the recent textbook of Hesthaven and Warburton [R9].

Section Bl focuses on the steady advection-reaction equation as a simple first-order model
problem. Therein, we indetify some key ideas to design dG methods. Two methods are analyzed,
which correspond in the finite volume terminology to the use of centered and upwind fluxes.

Section Bl is concerned with the Poisson problem as the basic model problem with diffusion.
We first present a heuristic derivation and a convergence analysis to smooth solutions using the
Symmetric Interior Penalty (SIP) dG method of Arnold [2]. Then, we introduce the concept of
discrete gradients and present some important applications, including the link with the mixed
dG approach and the local formulation of the discrete problem using numerical fluxes.

Section Bl is devoted to incompressible flows. Focusing first on the steady Stokes equations,
we examine how the divergence-free constraint on the velocity field can be tackled using dG
methods. We detail the analysis of equal-order approximations using both discontinuous ve-
locities and pressures, whereby pressure jumps need to be penalized, and then briefly discuss
alternative formulations avoiding the need for pressure jump penalty. The next step is the
discretization of the nonlinear convection term in the momentum equation. To this purpose,
we derive a discrete trilinear form that leads to the correct kinetic energy balance, using the



so-called Temam’s device to handle the fact that discrete velocities are only weakly divergence-
free.

2 Basic concepts

This section introduces the basic concepts to build discontinuous Galerkin (dG) methods.

2.1 The domain {2
To simplify the presentation, we focus, throughout this lectures notes, on polyhedra.

Definition 2.1 (Polyhedron in RY). We say that the set P is a polyhedron in R? if P is an
open, connected, bounded subset of R such that its boundary OP is a finite union of parts of
hyperplanes, say {H;}1<i<ng- Moreover, for all 1 < i < ng, at each point in the interior of
OP N H;, the set P is assumed to lie on only one side of its boundary.

Assumption 2.2 (Domain Q). The domain §) is a polyhedron in RY. The boundary of Q is
denoted by O and its (unit) outward normal, which is defined a.e. on 02, by n.

The advantage of Assumption is that polyhedra can be exactly covered by a mesh
consisting of polyhedral elements. PDEs posed over domains with curved boundary can also be
approximated by dG methods using, e.g., isoparametric finite elements to build the mesh near
curved boundaries as described, e.g., by Ciarlet [29, p. 224] and Brenner and Scott [T5, p. 117].

2.2 Meshes

The first step is to discretize the domain 2 using a mesh. Various types of meshes can be
considered. We examine first the most familiar case, that of simplicial meshes. Such meshes
should be familiar to the reader since they are one of the key ingredients to build continuous
finite element spaces.

Definition 2.3 (Simplex). Given a family {ao,...,aq} of (d+1) points in R? such that the vec-
tors {a1—ao, . ..,aqg—ag} are linearly independent, the interior of the convex hull of {ag, . .., aq}
is called a non-degenerate simplex of R, and the points {ao, ...,aq} are called its vertices.

By its definition, a non-degenerate simplex is an open subset of R?. In dimension 1, a non-
degenerate simplex is an interval, in dimension 2 a triangle, and in dimension 3 a tetrahedron.
The unit simplex of R? is the set

Sy = {(xl,...,xd)E[Rd; Vied{l,...,d}, z; > 0; $1+...+xd<1}.

Any non-degenerate simplex of R? is the image of the unit simplex by a bijective affine trans-
formation of R?.

Definition 2.4 (Simplex faces). Let S be a non-degenerate simplex with vertices {ag,...,aq}-
For each i € {0,...,d}, the convex hull of {a,...,aq} \ {a;} is called a face of the simplex S.

Thus, a non-degenerate simplex has (d + 1) faces, and, by construction, a simplex face is
a closed subset of R%. A simplex face has zero d-dimensional Hausdorff measure, but positive
(d — 1)-dimensional Hausdorff measure. In dimension 2, a simplex face is also called an edge,
while in dimension 1, a simplex face is a point and its O-dimensional Hausdorff measure is
conventionally set to 1.

Definition 2.5 (Simplicial mesh). A simplicial mesh 7 of the domain Q is a finite collection
of disjoint non-degenerate simplices T = {T'} forming a partition of Q,
=T (1)
TeT

Each T € T is called a mesh element.



While simplicial meshes are quite convenient in the context of continuous finite elements,
dG methods more easily accommodate general meshes.

Definition 2.6 (General mesh). A general mesh 7 of the domain Q is a finite collection of
disjoint polyhedra T = {T} forming a partition of Q as in (). Fach T € T is called a mesh
element.

Obviously, a simplicial mesh is just a particular case of a general mesh.

Definition 2.7 (Element diameter, meshsize). Let T be a (general) mesh of the domain ).
For all T € T, hy denotes the diameter of T', and the meshsize is defined as the real number

h := maxhr.
TeT

We use the notation Ty, for a mesh T with meshsize h.

Definition 2.8 (Element outward normal). Let 7, be a mesh of the domain Q and let T € Ty,
We define nr a.e. on 0T as the (unit) outward normal to T

Faces of a single polyhedral mesh element can be defined. Such faces are not needed in what
follows, and we prefer to leave them undefined to avoid confusion with the important concept
of mesh faces introduced in §Z3 (Mesh faces depend on the way neighboring mesh elements
come into contact.)

2.3 Mesh faces, averages, and jumps

The concepts of mesh faces, averages, and jumps play a central role in the design and analysis
of dG methods.

Definition 2.9 (Mesh faces). Let 7, be a mesh of the domain Q. We say that a (closed) subset
F of Q is a mesh face if F' has positive (d— 1)-dimensional Hausdorff measure (in dimension 1,
this means that F is nonempty) and if either one of the two following conditions is satisfied:

(i) There are distinct mesh elements Ty and T> such that F' = 0Ty N 0Ts; in such a case, F
is called an interface.

(ii) There is T € Ty, such that F = 9T N 8Y; in such a case, F is called a boundary face.

Interfaces are collected in the set F}, and boundary faces are collected in the set Fy. Henceforth,
we set ‘
Fn=FLUF.

Moreover, for any mesh element T € Ty, the set

Fr={Fe€F|Fcor}

collects the mesh faces composing the boundary of T. The mazimum number of mesh faces
composing the boundary of mesh elements is denoted by

Ny := max card(Fr). (2)

Finally, for any mesh face F € F},, we define the set
Tr={T €T, |FCoT}, (3)

and observe that Tr consists of two mesh elements if F € F} and of one mesh element if
FeF.



Figure 2: Examples of interface for a simplicial mesh (left) and a general mesh (right)
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Figure 3: One-dimensional example of average and jump operators; the face reduces to a point
separating two adjacent intervals

FigureB depicts an interface between two mesh elements belonging to a simplicial mesh (left)
or to a general mesh (right). We observe that in the case of simplicial meshes, interfaces are
always parts of hyperplanes, but this is not necessarily the case for general meshes containing
nonconvex polyhedra. We now define averages and jumps across interfaces of piecewise smooth
functions; cf. Figure B for a one-dimensional illustration.

Definition 2.10 (Interface averages and jumps). Let v be a scalar-valued function defined on
Q and assume that v is smooth enough to admit on all F' € ]—'}; a possibly two-valued trace. This
means that, for all T € Ty, the restriction v|r of v to the open set T can be defined up to the
boundary OT. Then, for all F € F} and a.e. © € F, the average of v is defined as

b = 5 (vln (@) + ol @),

and the jump of v as
[v]r(z) := vl (x) — |z, (2).
When v is vector-valued, the above average and jump operators act componentwise on the func-

tion v. Whenever no confusion can arise, the subscript F' and the variable x are omitted, and
we simply write {v} and [v].

Definition 2.11 (Face normals). For all F' € Fj, and a.e. © € F, we define the (unit) normal
ng to F' at x as

(i) nr,, the unit normal to F at x pointing from Ty to Ty if F € F} with F = 0Ty N 0T%; the
orientation of ng is arbitrary depending on the choice of Ty and Ts, but kept fized in what
follows.

(ii) n, the unit outward normal to Q at x if F € F}.



k d=1 d=2 d=3
0 1 1 1
1 2 3 4
2 3 6 10
3 4 10 20

Table 1: Dimension of the polynomial space PX for d € {1,2,3} and k € {0,1,2,3}

2.4 Broken polynomial spaces

After having built a mesh of the domain ), the second step in the construction of discrete
function spaces consists in choosing a certain functional behavior within each mesh element.
For the sake of simplicity, we restrict ourselves to polynomial functions; more general cases
can also be accommodated (see, e.g., Yuan and Shu [83]). The resulting spaces, consisting of
piecewise polynomial functions, are termed broken polynomial spaces.

Let k£ > 0 be an integer. We focus for simplicity on the simplest polynomial space consisting
of polynomials of d variables of total degree at most k. Letting

d
AT = {a e N¢ | |at]r < m}, leelgr == Zau (4)

this polynomial space is defined as

Pk .= p:[RdeHp()€[R|EI{~ya}a€Ak€[Rc"“d(d s.t. p(z Z%‘ ,
acAk
with the convention that, for z = (z1,...,74) € RY, 2% := H?:l x{". The dimension of the

vector space [Pd is

. ky _ o (k+d\  (E+a)
dim(Pg) = card(4;) = < )T (5)
The first few values of dim(P¥) are listed in Table [l
We consider the broken polynomial space
PE(Th) := {v € L*(Q) | VT € Ty, v|r € PH(T)}, (6)

where PX(T') is spanned by the restriction to T of polynomials in P%. It is clear that
dim(P%(7;,)) = card(7;,) x dim(P%),

since the restriction of a function v € P¥(7},) to each mesh element can be chosen independently
of its restriction to other elements.

2.5 Abstract nonconforming error analysis

The goal of this section is to present the key ingredients for the error analysis when approxi-
mating linear model problems by dG methods. The error analysis presented in this section is
derived in the spirit of Strang’s Second Lemma [77] (see also Ern and Guermond [49, §2.3]).
The three ingredients are (i) discrete stability, (ii) (strong) consistency, and (iii) boundedness.

2.5.1 Well-posedness for linear model problems

Let X and Y be two Banach spaces equipped with their respective norms ||-||x and ||-|y and
assume that Y is reflexive. In many applications, X and Y are actually Hilbert spaces. We



recall that £(X,Y") is the vector space spanned by bounded linear operators from X to Y, and
that this space is equipped with the usual norm

[ Aoy

lAllzcx,y) == sup VA e L(X,Y).
vex\{o} lIvllx
We are interested in the abstract linear model problem
Find v € X s.t. a(u,w) = (f,w)y,y forall we Y, (7)

where a € L(X x Y,R) is a bounded bilinear form, f € Y’ := L(Y,R) is a bounded linear form,
and (-, )y y denotes the duality pairing between Y’ and Y.

Problem (@) is said to be well-posed if it admits one and only one solution u € X. The key
result for asserting well-posedness is the so-called Banach-Necas-Babugka (BNB) Theorem. We
stress that this result provides necessary and sufficient conditions for well-posedness.

Theorem 2.12 (Banach—Necas—Babuska (BNB)). Let X be a Banach space and let Y be a
reflexive Banach space. Let a € L(X X Y,R) and let f € Y'. Then, problem (@) is well-posed if
and only if:

(i) there is Csta > 0 such that

weX, Culvlx< sup A2
weY\{0} [|wlly

(ii) ForallweY,
(Ve X, a(v,w) =0) = (w=0). 9)

Moreover, the following a priori estimate holds true:

1
U <
lullx < &

£ 1l

Remark 2.13 (Inf-sup condition). Condition (&) is often called an inf-sup condition since it is
equivalent to
a(v,w
Cita < Inf sup #
veX\{0} weyvr{oy lvllxflwlly

A simpler, yet less general, condition to assert the well-posedness of (@) is provided by the
Lax—Milgram Lemma [64]. In this setting, X is a Hilbert space, Y = X, and a coercivity
property is invoked.

Lemma 2.14 (Lax—Milgram). Let X be a Hilbert space, let o € L(X x X,R), and let f € X'.
Then, problem (@) is well-posed if the bilinear form a is coercive on X, that is, if there is
Csta > 0 such that

Yo e X, Cstal|v]|% < alv,v).

Moreover, the following a priori estimate holds true:

1
Csta

11l x-

[Jullx <

2.5.2 The discrete problem

Let V,, C L?(Q) denote a finite-dimensional function space; typically, V}, is a broken polynomial
space. We are interested in the discrete problem

Find up, € Vi, s.t. ap(up, wp) = lp(wp,) for all wy, € Vi, (10)



with discrete bilinear form a;, defined (so far) only on V}, x V}, and discrete linear form ;, defined
on V. We observe that we consider the so-called standard Galerkin approximation where the
discrete trial and test spaces coincide. Moreover, since functions in V}, can be discontinuous
across mesh elements, V;, ¢ X and Vj, ¢ Y in general; cf., e.g., LemmaZ34 In the terminology
of finite elements, we say that the approximation is nonconforming.

We are concerned with model problems where Y — L?(Q)) with dense and continuous
injection. Identifying L?(Q) with its topological dual space L?(Q2)" by means of the Riesz—
Fréchet representation theorem, we are thus in the situation where

Y — L*(Q) = L*(Q) — Y/,

with dense and continuous injections. For simplicity, we assume that the datum f is in L?(Q),
so that the right-hand side of the model problem (@) becomes ( f, w)LZ(Q), while the right-hand
side of the discrete problem () becomes

In(wn) = (f,wn)r2(9)-

2.5.3 Discrete stability
To formulate discrete stability, we introduce a norm, say ||-||, defined (at least) on V},.

Definition 2.15 (Discrete stability). We say that the discrete bilinear form aj, enjoys discrete
stability on V3, if there is Cgta > 0, independent of h, such that

Yon €V, Cualn] < sup lomh) (11)

wnevi\{0}  llwall

Property () is referred to as a discrete inf-sup condition since it is equivalent to

Con < inf gy Gn(vnwn)
o€V} wpevin (03 1Un ]l TTwn

An important fact is that (Il is a necessary and sufficient condition for discrete well-posedness.

Lemma 2.16 (Discrete well-posedness). The discrete problem [[) is well-posed if and only if
the discrete inf-sup condition [) holds true.

We observe that discrete well-posedness is equivalent to only one condition, namely (),
while two conditions appear in the continuous case. This is because, in finite dimension, injec-
tivity is equivalent to bijectivity.

A sufficient, and often easily verified, condition for discrete stability is coercivity. This
property can be stated as follows: There is Cyta > 0 such that

Yoy, € Vi, Catallvnll® < an(vn, vp). (12)
Discrete coercivity implies the discrete inf-sup condition () since, for all vy, € V}, \ {0},

Cutallon]] < an(Vn, vn) < an(0n, wn)

flonl wnevinfoy  llwnll

Property (@) is the discrete counterpart of that invoked in the Lax-Milgram Lemma.

2.5.4 Consistency

For the time being, we consider a rather strong form of consistency, namely that the exact
solution u satisfies the discrete equations in ([I). To formulate consistency, it is thus necessary
to plug the exact solution into the first argument of the discrete bilinear form ay, and this may
not be possible in general since the discrete bilinear form ay, is so far defined on V;, x V}, only.
Therefore, we assume that there is a subspace X, C X such that the exact solution u belongs
to X, and such that the discrete bilinear form aj, can be extended to X, x V}, (it is not possible
in general to extend ap to X X V},). Consistency can now be formulated as follows.



Definition 2.17 (Cousistency). We say that the discrete problem () is counsistent if for the
exact solution u € X,
ah(u,wh) = lh(wh) Ywy, € Vi (13)

Remark 2.18 (Galerkin orthogonality). Consistency is equivalent to the usual Galerkin orthog-
onality property often considered in the context of finite element methods. Indeed, ([I3) holds
true if and only if

ah(u — uh,wh) =0 Ywy, € Vi,
2.5.5 Boundedness

The last ingredient in the error analysis is boundedness. We introduce the vector space
X*h = X* + Vh7

and observe that the approzimation error (u — uy) belongs to this space. We aim at measuring
the approximation error using the discrete stability norm ||-||. Therefore, we assume in what
follows that this norm can be extended to the space X,;. In the present setting, we want to
assert boundedness in the product space X.p X V},, and not just in Vj, x V3. It turns out that in
most situations, it is not possible to assert boundedness using only the discrete stability norm
IIIl. This is the reason why we introduce a second norm, say ||-||.

Definition 2.19 (Boundedness). We say that the discrete bilinear form ap is bounded in
Xin X Vi if there is Cpna, independent of h, such that

V(v,wn) € Xun X Vi, lan (v, wn)| < Conallvll«llwrl,

for a norm ||-||« defined on X.p, and such that, for all v € X.p, 0| < |v]«-

2.5.6 Error estimate

We can now state the main result of this section.

Theorem 2.20 (Abstract error estimate). Let u solve (@) with f € L*(Q2). Let uy, solve ([0).
Let X, C X and assume that u € X,. Set X, = X, + V), and assume that the discrete bilinear
form ayp, can be extended to Xy, X V. Let ||| and |||« be two norms defined on X.p and such
that, for all v € X, ||v|| < ||vll«. Assume that discrete stability, consistency, and boundedness
hold true. Then, the following error estimate holds true:

lu—unll <C inf flu—ynl-, (14)
Yn€Vh

with C =1+ Cjr Cina-
Proof. Let y;, € Vj,. Owing to discrete stability and consistency,

B 1 an(Un — Yn, Wn) 1 an(u — Yn, W)
|||Uh yh”' S Csta sup - Csta Sup
w €Vl \{0} llwnl wi €V \{0} llwnl

Hence, owing to boundedness,
lun = ynll < CiaComallu =yl

Estimate ([[d) then results from the triangle inequality, the fact that ||u — yn| < |lu — yn|«, and
that vy is arbitrary in Vj. O



2.6 Admissible mesh sequences

The goal of this section is to derive some technical, yet important, tools to analyze the con-
vergence of dG methods as the meshsize goes to zero. We are thus led to consider a mesh
sequence

T = (Tn)nen,

where H denotes a countable subset of Rso := {x € R | x > 0} having 0 as only accumu-
lation point. The analysis tools are, on the one hand, inverse and trace inequalities that are
instrumental to assert discrete stability and boundedness uniformly in h and, on the other hand,
optimal polynomial approximation properties so as to infer from error estimates of the form (I
h-convergence rates for the approximation error whenever the exact solution is smooth enough.

2.6.1 Shape and contact regularity

A useful concept encountered in the context of conforming finite element methods is that of
matching simplicial meshes.

Definition 2.21 (Matching simplicial mesh). We say that 7}, is a matching simplicial mesh if
it is a simplicial mesh and if for any T € Ty, with vertices {ao,...,aq}, the set 9T N OT’ for
any T' € Ty, T' £ T, is the convex hull of a (possibly empty) subset of {ag,...,aq}-

For instance, in dimension 2, the set 9T N 9T’ for two distinct elements of a matching
simplicial mesh is either empty, or a common vertex, or a common edge of the two elements.
We now turn to the matching simplicial submesh of a general mesh.

Definition 2.22 (Matching simplicial submesh). Let 7;, be a general mesh. We say that &y, is
a matching simplicial submesh of 7}, if

(i) &), is a matching simplicial mesh,
(ii) for all T" € &y, there is only one T € T, such that T C T,

(iii) for all F' € &, the set collecting the mesh faces of &y, there is at most one F € Fy, such
that F' C F.

The simplices in &y, are called subelements, and the mesh faces in §n are called subfaces. We
set, for all T € Tp,

Sp = (T' €&y | T C T),
Sr:={F €| F CIT}.

We also set, for all F' € Fy,
Spi={F €%y | F' CF}.

Figure B illustrates the matching simplicial submesh for two polygonal mesh elements, say
Ty and T3, that come into contact. The triangular subelements composing the sets &, and
S, are indicated by dashed lines. We observe that the mesh face F' = 077 N 975 (highlighted
in bold) is not a part of a hyperplane and that the set §r contains two subfaces.

Definition 2.23 (Shape and contact regularity). We say that the mesh sequence Ty is shape-
and contact-regular if for all h € H, 7T}, admits a matching simplicial submesh &y, such that

(i) the mesh sequence &y is shape-regular in the usual sense of Ciarlet [29], meaning that
there is a parameter o1 > 0, independent of h, such that, for all T' € &,

o1hrr < hip,

where hr: is the diameter of T' and h?p, the diameter of the largest ball inscribed in T,

10



Figure 4: Two polygonal mesh elements that come into contact with corresponding subelements
indicated by dashed lines and interface indicated in bold

(ii) there is a parameter g > 0, independent of h, such that, for all T € T, and for all
T € Gr,
o2hr < by

Henceforth, the parameters o1 and oo are called the mesh regularity parameters and are collec-
tively denoted by the symbol o. Finally, if Ty, is itself matching and simplicial, then & = Tp,
and the only requirment is shape-regularity with parameter o1 > 0 independent of h.

The two conditions in Definition allow one to control the shape of the elements in 75
and the way these elements come into contact. Indeed, let 73, be a shape- and contact-regular
mesh sequence. Then, for all h € H and all T € Tp,,

1. card(Syr) is bounded uniformly in h;
2. card(Fr), card(Fr), and Ny are bounded uniformly in h;
3. all F € Fr, dp > p102hr, where dr denotes the diameter of F', and this implies that the
diamters of neighboring mesh elements are uniformly comparable.
2.6.2 Inverse and trace inequalities

Lemma 2.24 (Inverse inequality). Let T3¢ be a shape- and contact-regular mesh sequence with
reqularity parameters 0. Then, for all h € H, all vy, € P%(T},), and all T € Ty,

IVorllracrye < Cinvhg lonllr2cr), (15)
where Ciny only depends on o, d, and k.

Lemma 2.25 (Discrete trace inequality). Let Ty be a shape- and contact-regular mesh sequence
with regularity parameters o. Then, for all h € H, all vy, € PX(7), all T € Ty, and all F € Fr,

hL2onll 2y < Coellvnll z2(rys (16)

where Cy, only depends on o, d, and k.

2.6.3 Polynomial approximation

To infer from estimate (4] a convergence rate in h for the approximation error (u—uy) measured
in the ||-||-norm when the exact solution u is smooth enough, we need to estimate the right-hand
side given by
inf |lu— ,
it -l
when V}, is typically the broken polynomial space PX(7;,) defined by (f); other broken polynomial
spaces can be considered. Since uy € V},, we infer from () that

inf — <Ju - < C inf — . 17
Jnt Ju— gl < Jlu—unl £C ot Ju— gl (1)

11



Definition 2.26 (Optimality, quasi-optimality, and suboptimality of the error estimate). We
say that the error estimate () is

(i) optimal f ||-|| = |-l

(ii) quasi-optimal if the two norms are different, but the lower and upper bounds in ()
converge, for smooth enough u, at the same convergence rate as h — 0,

(iii) suboptimal if the upper bound converges at a slower rate ’than the lower bound.

The analysis of the upper bound inf,, cv;, |lu — yn||« depends on the polynomial approxima-
tion properties that can be achieved in the broken polynomial space V}. The approximation
error is measured using Sobolev norms that are defined in §7 In what follows, 7, denotes
the L2(Q)-orthogonal projection onto Vj,, that is, 7, : L?*(Q2) — V}, is defined so that, for all
v € L3(Q), mpv € Vj, with

(Thv, yn) L2 = (U yn) L2 Yyn € Vi (18)

We observe that the restriction of 7mpv to a given mesh element 7' € 7, can be computed
independently from other mesh elements. For instance, if V}, = [Pf} (7), we obtain that, for all
T € Ty, mpvlr € PE(T) is such that

(mhvlT, &) 2y = (v, &) L2(1) V€ € [P’é(T)-

Definition 2.27 (Optimal polynomial approximation). We say that the mesh sequence Ty has
optimal polynomial approximation properties if, for all h € H, all T € T}, all polynomial degree
k, all s€{0,...,k+1}, and all v € H*(T), there holds

_ < ! s—m .
= Va
|v — Tl gmry < Capphy " v|Es (1) vm € {0, ..., s}, (19)

where Cypp @5 independent of both T and h. Moreover, for all F' € Fr, there holds

—1
lv = mnolla(ry < Chpphiy [0l (),

and if s > 2,
s—3
IV (v — )l rnr |l pegmy < Cltohi 0] ge oy

where Cp,, and Cy are independent of both T' and h.

Definition 2.28 (Admissible mesh sequences). We say that the mesh sequence Tp; is admissible
if it is shape- and contact-regular and if it has optimal polynomial approzimation properties.

On general meshes, asserting optimal polynomial approximation is a delicate question since
this property depends on the shape of mesh elements. In practice, meshes are generated by
successive refinements of an initial mesh, and the shape of mesh elements depends on the
refinement procedure. It is convenient to identify sufficient conditions on the mesh sequence
T3 to assert optimal polynomial approximation in broken polynomial spaces. One approach
is based on the star-shaped property with respect to a ball (see, e.g., Brenner and Scott |13,
Chapter 4]).

Definition 2.29 (Star-shaped property with respect to a ball). We say that a polyhedron P is
star-shaped with respect to a ball if there is a ball Bp C P such that, for all x € P, the convex
hull of {x} UBp is included in P.

Figure Bl displays two polyhedra. The one on the left is star-shaped with respect to the ball
indicated in black. Instead, the one on the right is not star-shaped with respect to any ball.

Lemma 2.30 (Mesh sequences with star-shaped property). Let 7 be a shape- and contact-
reqular mesh sequence. Assume that, for all h € H and all T € T}, the mesh element T
is star-shaped with respect to a ball with uniformly comparable diameter with respect to hr.
Then, the mesh sequence Ty is admissible.
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Figure 5: Example (left) and counter-example (right) of a polyhedron which is star-shaped with
respect to a ball

Another sufficient condition ensuring optimal polynomial approximation, but somewhat less
general than the star-shaped property, is that of finitely shaped mesh sequences. A simple ex-
ample is that of shape- and contact-regular mesh sequences whose elements are either simplices
or parallelotopes in R?.

Lemma 2.31 (Finitely shaped mesh sequences). Let 73 be a shape- and contact-regular mesh
sequence. Assume that Ty is finitely shaped in the sense that there is a finite set R = {f}
whose elements are reference polyhedra in RY and such that, for all h € H, each T € Ty, is the
image of a reference polyhedron in R by an affine bijective map Fr. Then, the mesh sequence
T is admissible.

2.7 Some background on functional analysis

In this section, we briefly present two important classes of function spaces, namely Lebesgue
and Sobolev spaces. We only state the basic properties of such spaces, and we refer the reader
to Evans [53, Chapter 5] or Brézis [I6, Chapters 8 and 9] for further background. We also
introduce broken Sobolev spaces.

2.7.1 Lebesgue spaces

We consider functions v : @ — R that are Lebesgue measurable and we denote by fQU the
(Lebesgue) integral of v over Q. Let 1 < p < oo be a real number. We set

1/p
ol e = ( / |v|p> 1 <p< oo,
Q

[v]| Lo (@) = supess{|v(z)| a.e. z € O}
=inf{M > 0] v(z)] < M ae. z € Q}.

and

In either case, we define the Lebesgue space
L?(Q) := {v Lebesgue measurable | ||v]|1»q) < 0o}
Equipped with the norm [|-[z»q), LP(£2) is a Banach space for all 1 < p < oo (see Evans [53,

p. 249] or Brézis [16, p. 150]). In the particular case p = 2, L?(2) is a (real) Hilbert space when
equipped with the scalar product

(v, w)r2(q) ::/vw.
Q

The Cauchy—Schwarz inequality states that, for all v, w € L*(Q),

(v, w)r2() < [JvllL2@)llwllL2)-
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2.7.2 Sobolev spaces

On the Cartesian basis of R? with coordinates (x1,...,x4), the symbol 9; with i € {1,...,d}

denotes the distributional partial derivative with respect to z;. For a d-uple a € N¢, 9%

denotes the distributional derivative 0y ...95v of v, with the convention that 9 9v = v.
Let m > 0 be an integer. We define the Sobolev space

H™(Q) ={veL*Q)|Vaec A}, 0% € L*(Q)},

with A" defined by @). H™(Q) is a Hilbert space when equipped with the scalar product

(v, w) gm (@) = Z (0%, 0%w) 2(q,

€A
leading to the norm and seminorm
1/2 1/2
ol = D 10%0lFey |+ Wlam@ = D 10%ll72
acAm aca™

The seminorm is obtained by restricting the summation to the set Ay := {a € N | |a[,s = m},
that is, by keeping only the derivatives of global order m. To allow for a more compact notation
in the case m = 1, we consider the gradient Vv = (010, ...,qv)? with values in R?, yielding

(v, w)E1 () = (v,w)r2(Q) + (Vv, Vw)12(q))a.

Boundary values of functions in the Sobolev space H'({) can be given a meaning (at least) in
L?(99)). More precisely (see, e.g., Brenner and Scott [I5, Chap. 1]), there is C' such that

1 1
Iollz2o0) < Cllol 3oVl iy Yo € HY(Q). (20)

2.7.3 Broken Sobolev spaces and broken gradient

Let 75, be a mesh of the domain 2. For any mesh element T € 7j, the Sobolev spaces H™(T)
can be defined as above by replacing €2 by T'. We then define the broken Sobolev spaces

H™(Tp,) == {v e L*(Q) |VT € Ty, v|r € H™(T)}, (21)

where m > 0 is an integer. It is natural to define a broken gradient operator acting on the
broken Sobolev space H'(7;). In particular, this operator also acts on broken polynomial
spaces.

Definition 2.32 (Broken gradient). The broken gradient Vj : H(7,) — [L?(Q)]? is defined
such that, for all v € H(Tp,),

VT €T, (Va)lr = Vulr). (23)

In what follows, we drop the index h in the broken gradient when this operator appears inside
an integral over a fixed mesh element T € Ty,.

It is important to observe that the usual Sobolev spaces are subspaces of the broken Sobolev
spaces, and that on the usual Sobolev spaces, the broken gradient coincides with the distribu-
tional gradient.

Lemma 2.33 (Broken gradient on usual Sobolev spaces). Let m > 0. There holds H™(Q) C
H™(T3,). Moreover, for all v € H*(Q), Viv = Vv in [L2(Q)]%.
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The reverse inclusion of Lemma does not hold true in general (except obviously for
m = 0). The reason is that functions in the broken Sobolev space H!(7;) can have nonzero
jumps across interfaces, while functions in the usual Sobolev space H'(Q2) have zero jumps
across interfaces. We now give a precise statement of this important result.

Lemma 2.34 (Characterization of H'(Q)). A function v € H'(7,) belongs to H(Q) if and

only if
[v] =0  VFeF. (24)

3 Advection-reaction
The steady advection-reaction equation with homogeneous inflow boundary condition

BVu+pu=f inQ, (25a)
u=0 ondQ, (25b)

is one of the simplest model problems based on a linear, scalar, steady first-order PDE. Here,
the unknown function w is scalar-valued and represents, e.g., a solute concentration; g is the
Re-valued advective velocity, u the reaction coefficient, f the source term, and 9Q~ denotes the
inflow part of the boundary of €2, namely

00~ :={z € 90| B(x)n(z) < 0}. (26)

The goal of this section is to design and analyze dG methods to approximate the model
problem [£3). Since dG methods are essentially tailored to approximate PDEs in an L2-setting
where discrete stability is enhanced by suitable least-squares penalties, the most natural weak
formulation at the continuous level is that based on the concept of graph space. Moreover, we
formulate the boundary condition ([250) weakly in the continuous problem since this is the way
boundary conditions are enforced in dG methods. Then, we present a step-by-step derivation
of suitable dG bilinear forms that match the discrete stability, consistency, and boundedness
properties outlined in §Z3 for nonconforming finite element error analysis. We also discuss
an alternative viewpoint using local (elementwise) problems and numerical fluxes. Two dG
methods are analyzed, resulting from the use of so-called centered or upwind fluxes.

3.1 Assumptions on the data

We assume that
peL®Q), pBe[LipQ) (27)

where Lip(€2) denotes the space spanned by Lipschitz continuous functions, that is, v € Lip(Q)
means that there is L, such that, for all z,y € Q, |v(z) —v(y)| < Ly|z —y| where |z —y| denotes
the Euclidean norm of (z — y) in RY. The quantity L, is called the Lipschitz module of v. In
what follows, we set Lg := maxi<i<q Lg,. In addition to 1), we assume that there is a real
number pp > 0 such that

1
A=p— Ev-ﬁ > [ a.e. in Q. (28)
Concerning the source term f, we assume that
feL?9).

Finally, we recall that 2 is a polyhedron in R? (cf. Definition EZT)). This assumption is solely
made to facilitate the meshing of Q.
We consider a reference time 7. and a reference velocity 3. defined as

7o = {max(||pl L=y, Lg)} ", Be = ||Bll[zo()2- (29)
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Since p and Lg scale as the reciprocal of a time, 7. can be interpreted as the (fastest) time
scale in the problem. Moreover, §. represents the maximum velocity. We observe that 7. is
finite since ||p|/z~(Q) = Lg = 0 implies A = 0 which contradicts @8). We keep track of the
parameters 7, and . in the convergence analysis of dG approximations. This allows us to work
with norms consisting of terms having the same physical dimension. Keeping track of these
parameters is also useful when dealing with singularly perturbed regimes. For simplicity, the
reader can assume that both parameters are of order unity and discard them in what follows.

3.2 The continuous setting

Our first goal is to specify the functional space in which the solution to the model problem (23)) is
sought. Let C§°(Q2) denote the space of infinitely differentiable functions with compact support
in Q and recall that this space is dense in L?*(Q2). For a function v € L?((2), the statement
B-Vv € L?(£2) means that the linear form

CF@) 3 p— - [V-(3p) € R
Q
is bounded in L?(Q), that is, there is C, such that
Ve eCF@). [ vV80) < Cullelza

The function 3-Vwv is then defined as the function representing this linear form in L?(Q) by
means of the Riesz—Fréchet theorem.

Definition 3.1 (Graph space). The graph space is defined as
Vi={ve*(Q)|BVveL*(0)}, (30)

and is equipped with the natural scalar product: For all v,w €V,

(v,w)y = (v,w)r2(Q) + (B-Vv, B-Vw) 2 (), (31)
and the associated graph norm |jv]ly = (v, v)if.

Proposition 3.2 (Hilbertian structure of graph space). The graph space V' defined by B0) and
equipped with the scalar product [B) is a Hilbert space.

The next step is to specify mathematically the meaning of the boundary condition (250).
To this purpose, we need to investigate the trace on 952 of functions in the graph space V. Our
aim is to give a meaning to such traces in the space

L*(|pn);09) := {v is measurable on 0f) | /89 |Bn|v? < oo} . (32)

Recalling definition (Z8) of the inflow boundary, we also define the outflow boundary as
o0t == {z € 9Q | B(x)n(x) > 0},
and following [50], we assume that the inflow and outflow boundaries are well-separated, namely

dist(0Q~,007") = min |z —y| > 0.
(z,y) €00~ x N+

The following result is very important since it allows us to define traces of functions belonging
to the graph space and to use an integration by parts formula.
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Lemma 3.3 (Traces and integration by parts). In the above framework, the trace operator
7 :C%(Q) 3 v — 7(v) := v|oq € L*(|fn|; 00)
extends continuously to V, meaning that there is C, such that, for allv eV,
Y @)l L2(8n1500) < Cyllvllv-.
Moreover, the following integration by parts formula holds true: For all v,w €V,

/ [(B-Vo)w + (B-Vw)o + (V-B)ow] = / (Bn)ow. (33)
Q

1)
For a real number x, we define its positive and negative parts respectively as

1 1
2% = §(|x| + z), 2° = §(|CE| — ). (34)

We observe that both quantities are, by definition, nonnegative. We introduce the following
bilinear form: For all v,w € V,

a(v,w) := /Q pow + /Q(ﬁ'Vv)w + /BQ(ﬁﬂ)evw. (35)

This bilinear form is bounded in V' x V owing to Lemma Precisely, for all v,w € V, the
Cauchy—Schwarz inequality yields
|a(v, w)| < (1+ [|ll o 0) 2 l0llv w2 () + Cyllolv[lw]lv-

Using the graph space V' and the bilinear form a, the model problem (23] can be cast into
the weak form

Find v € V s.t. a(u,w) = [ fw forallw e V. (36)
Q

This problem turns out to be well-posed (cf. Theorem Bf). Before addressing this, we examine
in which sense does a solution to (BH) solve the original problem ([£3). In particular, we observe
that the boundary condition is weakly enforced in (BH).

Proposition 3.4 (Characterization of the solution to ([B8)). Assume that u € V solves B0).
Then,

B-Vu+pu=f ae. in€Q, (37)
u=0 ae. in0N". (38)

An important (yet, not sufficient) ingredient for the well-posedness of the weak problem (B8
is the L2-coercivity of a in the graph space V.

Lemma 3.5 (L2-coercivity of a). The bilinear form a defined by B3) is L?-coercive on V,
namely,

1
Yv eV, a(v,v) > u0||v||%2(ﬂ) —I—/ 5|ﬁ.m|v2. (39)
00

Proof. This is a straightforward consequence of assumption ([28) and of the integration by parts
formula (B3)) since, for all v € V,

a(v,v) = /Q (u - %V-ﬁ) v? + /m %(6-1{1)1}2 + /BQ(ﬁ-n)ev2

1 1
= [a s [ Jgal 2 pollole + [ Floah?,
Q o0 oQ
completing the proof. O

A consequence of Lemma is that the weak problem (Bl admits at most one solution.
We are now in a position to state the main result of this theoretical section.

Theorem 3.6 (Well-poseduess). Problern [B8) is well-posed.
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/7

Figure 6: Fitted (left) and unfitted (right) simplicial mesh; the partition Pq consists of two
polygons, and the exact solution can jump across the thick line

3.3 Centered fluxes

The goal of this section is to design and analyze the simplest dG method to approximate
the model problem (BH). Referring the reader to §€3 the method is designed so as to be
consistent, and a minimal discrete stability is ensured by L2-coercivity. Using the terminology
of Definition 228, the resulting error estimate turns out to be suboptimal. Alternatively, the
method can be viewed as based on the use of centered fluxes.

We seek an approximate solution in the broken polynomial space [P’;(’Z}L) defined by [@). We
assume k > 1 and that 7 belongs to an admissible mesh sequence. We set

Vi, = PE(T},)

and consider the discrete problem:

Find up € V, s.t. ap(up,vn) = | fop for all v, € V,
Q

for a discrete bilinear form a;, yet to be designed.

To analyze the method, we make a slightly more stringent regularity assumption on the
exact solution u rather than just belonging to the graph space V. This assumption is needed
to formulate the consistency of the method by directly plugging in the exact solution into the
discrete bilinear form ay. In particular, we need to consider the trace of the exact solution on
each mesh face.

Assumption 3.7 (Regularity of exact solution and space Vi). We assume that there is a
partition Po = {Qi}1<i<ng of Q into disjoint polyhedra such that, for the exact solution u,

u€ V=V nHY(Py).
In the spirit of §3, we set Vip := Vi + V.

Assumption B implies that, for all T € 7}, the restriction u|r has traces a.e. on each face
F € Fr, and these traces belong to L*(F).

Lemma 3.8 (Jumps of w across interfaces). The ezact solution u € V. is such that, for all
FecFy,

(Bnp)[u](z) =0 for a.e. x € F. (40)
Remark 3.9 (Singularities of exact solution). Condition (@) does not say anything on the jumps
of the exact solution across interfaces to which the advective velocity ( is tangential. We also

observe that Assumption B does not require the mesh to be fitted to solution singularities,
that is, both situations depicted in Figure [l are admissible.
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3.3.1 Heuristic derivation

The main idea in the design of the discrete bilinear form ay is to mimic at the discrete level
the L2-coercivity that holds at the continuous level (cf. (89)), while, at the same time, ensuring
consistency. Our starting point is a discrete bilinear form ago) simply derived from the exact
bilinear form a by replacing the exact gradient by the broken gradient (cf. (23)) for its definition),

namely, we define on V. x Vp,,
aéo)(v,wh) ;:/ {;wwh—i— (B-th)wh} +/ (B1)Cvwy,.
Q o9

That ago) yields consistency is clear since the exact solution satisfies (B7) and (BY).

Let us now focus on discrete coercivity. An important observation is that this property is

not transferred from a to a% ) Indeed, integration by parts on each mesh element yields, for all

v, € Vi,
ap (vn, vn) = / {MU}% + (B-thh)vh} + /m(ﬁ-n)evi
/Mvh-i- > / (B-Voy, Uh+/ (B-)%vi,

TEeT,

/Avh-i- > / (B-n7)vj + /m(ﬁ-n)ev,%,

TeT),

where we recall that A = p — %V-ﬁ and that np denotes the outward normal to T on 9T. The
second term on the right-hand side can be reformulated as a sum over mesh faces. Indeed,
exploiting the continuity of (the normal component of) 3 across interfaces leads to

TGZTh/ (B-nr)v Fezf/ (Bnp)[vi] +Fesz/

For all F € F} with F = 0Ty N 9Ty, v; = , @ € {1,2}, there holds

1

5 (W1 —wv2)(v1 +v2) = [on]{vn}-

1 1
5[[1’}21]] = 5(”% —Ug) = )

As a result,

aglo)(vh,vh): /Avh—|- Z / (Bnp)[vn]{vn}

FEF}

+Z/ (B-n)of + /Q(ﬁ-n)evi,

FeF}
and combining the two rightmost terms, we arrive at
1
o) = [ dk+ [ Boo)onlfod+ [ 51
Q FEF;

The second term on the right-hand side, involving interfaces, has no sign a priori. Therefore,
it must be removed, and this can be achieved while maintaining consistency if we set, for all
(v,wh) € Vi X Vh,

azf(u,wh) = / {/wwh-i-(ﬁ.th)wh}—i-/aQ(ﬁ.n)evwh
- Y [ Ganiiuw, ()

FeF}
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since (B-np)[u] =0 for all F € F} owing to (). The superscript indicates the use of centered
fluxes, as detailed in §833

We can now summarize the properties of the discrete bilinear form aff established so far.
The coercivity of a$! is expressed using the following norm defined on Vip:

_ 1
lole = 7 ol + | 5180l (12)

with the time scale 7. defined by ([3). We observe that ||-||cf is indeed a norm since it controls
the L2-norm.

Lemma 3.10 (Consistency and discrete coercivity). The discrete bilinear form a§ defined

by (D)

(i) is consistent, namely for the exact solution u € Vi,
aff(u,vh) = / fon Yo, € Vi,
Q

(ii) is coercive on Vi, with respect to the ||| ct-norm, namely
Yor € Vi, @ (vn, o) 2 CstallonllZs,
with Csga = min(1, 7).

Before proceeding further, we record an equivalent expression of the discrete bilinear form
a$t obtained after integrating by parts the advective derivative in each mesh element. This
expression is useful when introducing the notion of fluxes in §833 and when analyzing the dG
method based on upwinding in §841 For all (v, wp) € Vip X Vi, there holds

a5t (v, wp) = /Q {(,u — V-Bowy, — v(ﬁ-Vhwh)} + /BQ(ﬂn)@vwh
+ 3 [ Guotebul. (43)

FeF}

3.3.2 Error estimates

We consider the discrete problem:
Find up € Vj, s.t. a'flf(uh,vh) = / fop, for all v, € V4. (44)
Q

This problem is well-posed owing to the discrete coercivity of aflf on Vj. Our goal is to estimate
the approximation error (u — uy) in the ||-||cr-norm. The convergence analysis is performed in
the spirit of Theorem Owing to Lemma BI{ it only remains to address the boundedness
of the discrete bilinear form azf. To this purpose, we define on V,j;, the norm

lollze. = MolZ + D mellB-Voliey + D 7eBehz [0l 72(om),
TeT, TeT),

with time scale 7. and reference velocity 8. defined by 2%). There holds
(v, wh) € Van X Vi, @ (v,wn) < Conallollet i lwn llet,

with Cpnq independent of h and of the data p and 3.
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Theorem 3.11 (Error estimate and convergence rate). Let u solve B8) and let up, solve @)
where aff is defined by @) and V,, = [P’j(Th) with k > 1 and 7T, belongs to an admissible mesh
sequence. Then, there holds

lu—unller < C inf flu—ynller, (45)
Yyn€Vh

with C independent of h and depending on the data only through the factor {min(1, 7o)} L.
Moreover, if u € H*1(Q),

lu = unller < Cuh®, (46)
with Cu = C||u||Hk+1(Q).

Estimate {8) yields the convergence of the dG approximation for k¥ > 1. The result is not
quasi-optimal, but suboptimal since the L?-norm of the error should converge with order (k+1)
and the boundary contribution with order (k + 1/2) if the exact solution is smooth enough. A
sharper estimate is obtained in §84 using upwinding.

3.3.3 Numerical fluxes

It is instructive to consider an alternative viewpoint based on numerical fluxes. Because we are
working with broken polynomial spaces, the discrete problem [Ed]) admits a local formulation
obtained by considering an arbitrary mesh element T € 7}, and an arbitrary polynomial & €
P%(T). For a set S C €2, we denote by xs its characteristic function, namely

() 1 ifzes,
xTr) =
XS 0 otherwise.

Then, using the test function v, = {xr in the discrete problem (E4), observing that

[Exr] = er,ré with €r,F = 07NF,

and owing to the expression @) for the discrete bilinear form a§', we infer

[ {u=vous—uevo}+ ¥ enr [ orte= [ s (47)

FeFr

where the numerical fluzes ¢p(up) are given by

) Bup){un} ifFe Fi,

b (un) = ) . g

(Bn)®Puy, it FeF;.
The numerical fluxes ¢ (up,) are called centered fluzes because the average value of uy, is used on
each F' € F}. Since these fluxes are single-valued and since for all F' € F} with F' = 9Ty N 9T,
er,.r + €, r = 0, the local formulation {Z) is conservative in the sense that whatever “flows”
out of a mesh element through one of its faces “flows” into the neighboring element through

that face. Finally, taking £ = 1 in [#1) leads to the usual balance formulation encountered in
finite volume methods, namely

/(/L = V-Blun + Z €T,F/ or(un) = / I
T FEFr E T
A useful concept in practical implementations is that of stencil.

Definition 3.12 (Stencil). For a given element T € 7Ty, we define the elementary stencil

S(ast; T) associated with the bilinear form a$' as

S(a5'sT) :={T" € Tp | 3 € P4(T), 3r € PG(T"), o (qxr. rxr) # 0},
where xr and x7 denote characteristic functions.

Owing to the local formulation (D), the stencil of a given element T € 7}, consists of T
itself and its neighbors in the sense of faces. For instance, on a matching simplicial mesh, the
stencil contains (d 4+ 2) mesh elements; cf. Figure [ for a two-dimensional illustration.
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Figure 7: Example of stencil of an element T € 7;, when 7}, is a matching triangular mesh; the
mesh element is highlighted in dark, and its three neighbors, which all belong to the stencil,
are highlighted in light; the other triangles do not belong to the stencil

3.4 Upwinding

The goal of this section is to strengthen the stability of the dG bilinear form so as to arrive at
quasi-optimal error estimates in the sense of Definition This goal is achieved by penalizing
in a least-squares sense the interface jumps of the discrete solution. In terms of fluxes, this
approach can be interpreted as upwinding. We keep assumptions ([Z) and ([EZ8) on the data u
and 3 as well as Assumption B on the regularity of the exact solution u, but the polynomial
degree k is here such that £ > 0. For k£ = 0, the dG method considered in this section coincides
with a finite volume approximation with upwinding.

The idea of presenting dG methods with upwinding through a suitable penalty of interface
jumps has been highlighted recently by Brezzi, Marini, and Siili [20]. Therein, a quasi-optimal
error estimate on the L2-error and the jumps is derived, hinging on discrete coercivity to
establish stability. To tighten the error estimate further by including an optimal bound on the
advective derivative of the error, a discrete inf-sup condition is needed; this condition, stated
in 84 has been derived by Johnson and Pitkdranta [61].

3.4.1 Tightened stability using penalties
We consider the new bilinear form

azpw (vha wh) = azf(vha wh) + sn (vha wh)a (48)

with the stabilization bilinear form

(o) = 30 [ Fisnrilo o, (49)

FeF}

where 1 > 0 is a user-dependent parameter. Specifically, using (EII),

ap™" (vp, wp) = /Q {uvhwh + (5-thh)wh} + /BSZ(ﬂ-n)evhwh (50)
n
B Fz; /F (B-np)[on] {wn} + Fz; /F 1 e o]
or, equivalently, using (3,
ap,™" (vn, wp) = /Q {(N — V-B)vpwy, — Uh(ﬁ'vhwh)} i Aﬂ(ﬁ'n)®vhwh 1)
n
> [ Gne) ol + by [ il
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We observe that the discrete bilinear forms a§' and a,"" lead to the same stencil. The nu-
merical flux associated with the discrete bilinear form a;"" depends on the penalty parameter

1. Choosing n = 1 is particularly interesting since it leads to the usual upwind fluxes in the

context of finite volume schemes. More generally, the discrete bilinear form a,”™ is henceforth

referred to as the upwind dG bilinear form.
We consider the discrete problem:

Find up, € Vj, s.t. ap™ (up, vp) = / fop, for all v, € Vj,. (52)
Q

We first examine the consistency and discrete coercivity of the upwind dG bilinear form. Re-
calling definition (@) of the discrete coercivity norm |||t considered for centered fluxes, we
now assert coercivity with respect to the following stronger norm, also defined on V,j,:

n
003w, = o2 + > / 2 80| [o]*. (53)
FeF} £

Lemma 3.13 (Consistency and discrete coercivity). The upwind dG bilinear form a,"" defined
by B3)-ET)

(i) is consistent, namely for the exact solution u € Vi,
ap™" (u,vp) = / fon Yo, € Vi,
Q

(ii) s coercive on Vj, with respect to the |- ||uws-norm, namely

Yop € Vi, ap™ (vn, va) = Costallvnll2gs»

with Csta = min(1, 7ep0) as in Lemma BI0

The discrete coercivity of a;”™" on V3, implies the well-posedness of the discrete problem (52).

3.4.2 Error estimates based on inf-sup stability

Recalling the definition (B3) of the ||||uwb-norm, we introduce the stronger norm

IolZg = N0l2es + D B hrll3-Vol 22
TeT),

Lemma 3.14 (Discrete inf-sup condition). Assume h < B.7.. There is CL., > 0, independent
of h, u, and B, such that

, ap™" (v, wp)
Vop € Vi, ChaCstallvnlluws < sup  —H——m—,
wrevi\{0})  Nwnlluwg

with Csa = min(1, 7ep0) as in Lemma B3

To formulate a boundedness result, we define the following norm:

L L (h:FlHUll%z(T) + ||U||%2<a:r)> :
TeT),

There holds
V(v,wn) € Vin X Vi, |a,™ (v, wn)| < Conallvlluwt,«llwn lluwt

with C independent of h, u, and .
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Theorem 3.15 (Error estimate and convergence rate). Let u solve B8) and let up, solve (B2)
where a,*" is defined by @) and Vi, = P5(T3) with k > 1 and T, belongs to an admissible
mesh sequence. Then, there holds

ot = wnlhuws < C_inf = gl (59
Yh€Vh

with C independent of h and depending on the data only through the factor {min(1, 7o)} L.
Moreover, if u € H*1(Q),
Ju = unlluwe < Cub®+72, (55)

with Cu = C||u||Hk+1(Q).

Estimate (53 improves estimate (@) by a factor /> for the L?-norm and since it provides
a quasi-optimal convergence estimate for the advective derivative.

3.4.3 Numerical fluxes

To conclude this section, we examine how the additional penalty term on the interface jumps
modifies the numerical fluxes. Proceeding as in §833 we obtain the following local formulation:
For all T € 7;, and all £ € PE(T),

[ {w-vnus—ueve}+ ¥ ene [ ortue= [ s (56)

FeFr

where the numerical fluxes now take the form

_ JBnpfund + gulBapllun] i F e 7,
or(un) = {(5.n)®uh : if Fe 7},

The choice n = 1 leads to the so-called upwind fluzes

Bupu)  if F e F,

¢F(Uh) = {(ﬁ.n)@uh it e .7:,1;,

where uL = up|p, if fnp > 0 and uL = up |7, otherwise (recall that F' = 90T1 N 97> and that

np points from 77 toward 75). The upwind fluxes can also be written as

(Bnp)Pup|r, — (B0p)%un|r, if F e Ff,

or(un) = {(ﬁ-n)@uh if e Fb.

4 Diffusion

We consider the Poisson problem with homogeneous Dirichlet boundary condition

—Au=f inQ, (57a)
u=0 on 99, (57Db)

and source term f € L2(Q).

4.1 The continuous setting

The weak formulation of (&) is classical:

Find u € V s.t. a(u,v) = / fvforallveV, (58)
Q
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with energy space V = Hg(Q) := {v € H'(Q) | v|sg = 0} and bilinear form

a(u,v) ::/QVu-Vv. (59)

Recalling the Poincaré inequality (see, e.g., Evans [B3, p. 265] or Brézis [16, p. 174]) stating
that there is Cq such that, for all v € Hj (),

lvllz2(0) < CallVulliz2)e, (60)

we infer that the bilinear form « is coercive on V. Therefore, owing to the Lax—Milgram Lemma,
the weak problem (B8) is well-posed.
The PDE ([BZa) can be rewritten in mized form as a system of first-order PDEs:

c+Vu=0 inQ, (61a)
Vio=f inf. (61b)

Definition 4.1 (Potential and diffusive flux). In the context of the mized formulation (EI),
the scalar-valued function u is termed the potential and the vector-valued function o := —Vu
is termed the diffusive flux.

The derivation of dG methods to approximate the model problems (&) on a given mesh 7j,
hinges on the fact that the jumps of the potential and of the normal component of the diffusive
flux vanish across interfaces. To allow for a more compact notation, we define boundary averages
and jumps.

Definition 4.2 (Boundary averages and jumps). For a smooth enough function v, for all
F € F}, and for a.e. v € F, we define the average and jump of v as

fobr(z) = [v]F(z) == v(2).
The subscript as well as the dependence on x are omitted unless necessary.
For simplicity, we enforce a somewhat strong regularity assumption on the exact solution.

Assumption 4.3 (Regularity of exact solution and space Vi). We assume that the exact solu-
tion u is such that
u€ V.=V nHQ).

In the spirit of §3, we set Vip := Vi + V.

Lemma 4.4 (Jumps of potential and diffusive flux). Assume u € V,.. Then, there holds

[ul =0  VF & Fy, (62a)
[elnp =0  VF € F}. (62b)

4.2 Symmetric Interior Penalty

Our goal is to approximate the solution of the model problem (B) using dG methods in the
broken polynomial space P%(7},) defined by @). We set

Vi = [PI;(’];L)v

with polynomial degree £ > 1 and where 7} belongs to an admissible mesh sequence. The
focus of this section is on a specific dG method, the Symmetric Interior Penalty (SIP) method
introduced by Arnold [2].
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4.2.1 Heuristic derivation

To derive a suitable discrete bilinear form, we loosely follow the same path of ideas as in
Section Bl aiming at a discrete bilinear form that satisfies the consistency requirement (&) and
enjoys discrete coercivity. Moreover, we add a (consistent) term to recover, at the discrete level,
the symmetry of the continuous problem.

We begin localizing gradients to mesh elements in the exact bilinear form a, that is, we set,
for all vy, wp € Vy,

0
LL;L )(vh, wp) = / Vyon-Vywy, = Z / Vo, -Vuwy,.
Q TeT), T
To examine the consistency requirement ([[3)), we integrate by parts on each mesh element. This

leads to
aglo)(vh,wh) = — Z /T(Avh)wh—F Z /aT(V’UhﬂT)wh.

TeT, TeT,

The second term on the right-hand side can be reformulated as a sum over mesh faces in the
form

Z / (Vvh-nT)wh = Z / [[(thh)wh]]-np + Z / (Vvh-np)wh,

TeT;, * 9T reF; 't rery ¥

since for all F' € -7:;1 with F' = 011 N 0T,, np = nyy, = —ng,. Moreover,
[(Vivn)wn] = {Vron}wn] + [Vavn]{wn},
since letting a; = (Vup)|1y, bi = wy|ry, @ € {1,2}, yields

[(Vhon)wn] = a1b1 — azbs

= %(al + az)(bl — bg) —+ (al — az)%(bl + b2)
= {Vror}wn] + [Vrvn] {ws }.

As a result, and accounting for boundary faces using Definition EE2) yields

Z /aT(V’Uh'HT)U/h: Z /F{[thh}}-nF[[whﬂ—i— Z /F[[thh]]-n}r{wh}}.

TET, FEF, FeF}

Hence,

azo)(vh,wh): — Z /T(Avh)wh—l— Z /F{{thh}'np[[wh]]

TET, FEF,
+ [Vrop] npfwn}. (63)
F;:h/F AUR] ME{Wh

To plug the exact solution u into the above expression, we extend the bilinear form aglo) to
Vin X Vi, and set vy, = in ([B3)). A consequence of @2H) is that, for all wy, € Vj,

azo)(u,wh):/ﬂfwh—k Z /F(Vu-nF)[[wh]].

FeFn

In order to match the consistency requirement (), we are prompted to modify ago) as follows:
For all (v, wp) € Vip X Vi,

ag)(v,wh) ::/thU'Vhwh— Z /F{{th}}-nF[[wh]].

FeFn
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)

It is clear that a; ’ is consistent in the sense of (), i.e., for all wy, € V},

1
ot (w,wn) = [ fuwn.
Q
A desirable property of the discrete bilinear form is to preserve the original symmetry of
the exact bilinear form. Indeed, symmetry can simplify the solution of the resulting linear
system and furthermore, it is a natural ingredient to derive optimal L?-norm error estimates

(cf. EZA). In view of this remark, we set, for all (v, wp) € Vip X Vi,

as’(v,wy) = / V- Viywy, — Z / {Vrv}npfwn] + [v]I{Vrwn}nr), (64)

FeFy

so that af® is symmetric on Vj, x V4 The bilinear form a$® remains consistent owing to (62al).
The superscript in af’ indicates the consistency and symmetry achieved so far. For future use,
we record the followmg equivalent expression of af® resulting from (&3],

agi(v,wn) = — Y / (Avywn + > /[[thﬂ npfwn}

TeT, FeF}

- Y [ 11T (65)

FeFn

The last requirement to match is discrete coercivity on the broken polynomial space V;, with
respect to a suitable norm. The difficulty with the discrete bilinear form a§® defined by @4 is
that, for all v, € V4,

a5 (vn, on) = | Vavn|Fzye =2 Y /{{thh} npva],

FeFy

and the second term on the right-hand side has no a priori sign. To achieve discrete coercivity,

we add to a§® a term penalizing interface and boundary jumps, namely we set, for all (v, wp) €
‘/*h X Vh;

a;;p(v,wh) = a5’ (v, wp) + sp(v,wp), (66)

with the stabilization bilinear form

o) = 32 7 [ plfun] (67

FeFy

where n > 0 is a user-dependent parameter and hr a local length scale associated with the
mesh face F' € F;,. We observe that, owing to [€Zd), adding the bilinear form s, to af® does
not alter the consistency and symmetry achieved so far. Moreover, Lemma ET0 belqw shows
that, provided the penalty parameter 7 is large enough, the discrete bilinear form a;* enjoys
discrete coercivity on V.

We now present a simple choice for the local length scale hp. Other choices are possible;
cf. Remark EE6

Definition 4.5 (Local length scale hr). For all F € Fp,, in dimension d > 2, we set hp to
be equal to the diameter of the face F, while, in dimension 1, we set hp := min(hp, hr,) if
Fe ]—",il with F = 0Ty N 0T and hp == hy if F € ]—"}; with B = 90T N dQ. In all cases, for a
mesh element T € Ty, hp denotes its diameter (cf. Definition 21).

Remark 4.6 (Local length scale hr). Other choices are possible for the local length scale hp
weighting the face penalties in the stabilization bilinear form sy, e.g., the choice hp = {h}} :=

$(hr, + hp,) for all F € Fj, or the choice hp = F}ﬁi}f (that is, the mean value of the d-
dimensional Hausdorff measures of the neighboring elements divided by the (d—1)-dimensional
Hausdorff measure of the face, recalling that for d =1, |F|p = 1). Incidentally, we observe that
modifying the choice for the local length scale impacts the value of the minimal threshold on

the penalty parameter n for which discrete coercivity is achieved.
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Combining (66) with (&7) yields, for all (v, wp) € Vip, X Vi,

azip(v,wh) = [ Vpuo-Vywy — Z / EVrvnplwn] + [{Vrwn}nr)
Q Fer, ¥

+ 3 i [, (68)

FeFy

or, equivalently using (63),

afjp(v,wh) = - Z /T(Av)wh+ Z /F[[thﬂ'nF{{wh}}

TET, FeF}
Ui
- F; /F [V hun}up + F; - /F [o][wn]- (69)

Henceforth, afzp is called the SIP bilinear form. In the present context, interior penalty means

interior as well as boundary penalties.

Definition 4.7 (Consistency, symmetry, and penalty terms). The second, third, and fourth
terms on the right-hand side of @R) are respectively called consistency, symmetry, and penalty
terms.

4.2.2 The discrete problem

The discrete problem is
Find up, € V}, s.t. azip(uh,vh) = / fup, for all v, € Vj,. (70)
Q

Lemma T below states that provided the penalty parameter 7 is large enough, the SIP bilinear
form is coercive on V. Thus, owing to the Lax—Milgram Lemma, the discrete problem (Z0) is
well-posed. Moreover, a straightforward consequence of the above derivation is consistency.

Lemma 4.8 (Consistency). Assume u € Vi.. Then, for all v, € Vj,

azip(u,vh) = [ fop.
Q

Remark 4.9 (Stencil). With an eye toward implementation, we identify the elementary stencil
(cf. Definition BI2) associated with the SIP bilinear form. For all T' € 7}, the stencil of the
volume contribution is just the element 7', while the stencil associated with the consistency,
symmetry, and penalty terms consists of 7' and its neighbors in the sense of faces. Thus, the
elementary stencil is that depicted in Figure [

4.2.3 Basic energy-error estimate

Let u solve the weak problem (B) and let wy, solve the discrete problem ([[ll). The aim of this
section is to estimate the approximation error (u — up,). The convergence analysis is performed
in the spirit of Theorem We recall that the space V, is specified in Assumption and
that Vip = Vi + V.

We aim at asserting discrete coercivity using the following norm: For all v € Vp,

1/2
Polsip = (IVa0 gy + 013) (71)

with the jump seminorm

/2
o]y := (0 sn(v,v)) " = ( > %Ilﬂvﬂllizm) : (72)

FeFy
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We observe that |-||sip is indeed a norm on Vi, and even on the broken Sobolev space H*(7y,).
The only nontrivial property to check is whether, for all v € H'(7;,), ||lv|lsip = 0 implies v = 0.
Clearly, [[v]lsip = 0 implies ||[V4v[[z2(qy« = 0 and |v|; = 0. The first property yields Vv = 0
so that v is piecewise constant. The second property implies that the interface and boundary
jumps of v vanish. Hence, v = 0.

We can now turn to the discrete coercivity of the SIP bilinear form. We recall that Ny,
defined by (@), denotes the maximum number of mesh faces composing the boundary of a
generic mesh element and that this quantity is bounded uniformly in h.

Lemma 4.10 (Discrete coercivity). For all 1) > 1 := CZNp where Cy, results from the discrete
trace inequality [I8) and the parameter Ny is defined by ®), the SIP bilinear form defined
by @) is coercive on Vi, with respect to the ||||sip-norm, i.e.,

Yoy, € Vp, Gzip(vhvvh) > Cyllon |||§ipa
with Cyy := (n — C&Np)(1 +n) L.

We define on V,; the norm

1/2
Iollsip,« == <|||v|||§ip+ > hT||Vv|T'nT||2L2(aT)> : (73)

TeT),
There is Cynq, independent of A, such that
Y(v,wn) € Vin x Vi, a3 (,wp) < Conallvllsip.« lwn lsip- (74)

Theorem 4.11 (||-||sip-norm error estimate and convergence rate). Let u € Vi solve (). Let

up, solve (@) with a}® defined by @) and penalty parameter as in Lemma BEEID Then, there
is C, independent of h, such that

lw —unllsip < C inf flu = vn[lsip,«- (75)
VR EVh

Moreover, if u € H*1(Q),
lw —unllsip < Cuh?”, (76)

with Ou = C||U||Hk+1(Q).

4.2.4 L?-norm error estimate

To derive an optimal L2-norm error estimate, it is possible to resort to a duality argument (the
so-called Aubin—Nitsche argument [E]) under the following assumption.

Definition 4.12 (Elliptic regularity). We say that elliptic regularity holds true for the model
problem @R) if there is Cep, only depending on €2, such that, for all 1 € L*(Q)), the solution to
the problem:

Find ¢ € H}(Q) s.t. a(¢,v) = / Yo for all v € HY(Q),
Q
is in Vi and satisfies
<l a2 < Cenll¥lL2(0)-

Elliptic regularity can be asserted if, for instance, the polygonal domain (2 is convex; see
Grigvard [57].

Theorem 4.13 (L?*norm error estimate). Let u € V. solve (88). Let uy, solve [[0) with a}”
defined by BR). Assume elliptic regularity. Then, there is C, independent of h, such that

llw = unllL2(0) < Chllu = unllsip,«- (77)
Therefore, under the hypotheses of Theorem Bl and if u € H*1 (1),
lw = unllp2) < Cuh* (78)

with Ou = C||U||Hk+1(Q).
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Estimate ([8) is optimal. We emphasize that the symmetry of afzp is used in the proof of
Theorem

4.3 Liftings and discrete gradients

Liftings are operators that map scalar-valued functions defined on mesh faces to vector-valued
functions defined on mesh elements. In the context of dG methods, liftings act on interface and
boundary jumps. They were introduced by Bassi, Rebay, Mariotti, Pedinotti, and Savini [I0}, [T]
in the context of compressible flows and analyzed by Brezzi, Manzini, Marini, Pietra, and
Russo [I8, [19)] in the context of the Poisson problem (see also Perugia and Schétzau [73] for the
hp-analysis). Liftings have many useful applications. They can be combined with the broken
gradient to define discrete gradients. Discrete gradients play an important role in the design and
analysis of dG methods. Indeed, they can be used to formulate the discrete problem locally on
each mesh element using numerical fluxes. Moreover, they are instrumental in the derivation of
discrete functional analysis results, that, in turn, play a central role in the convergence analysis
to minimal regularity solutions (see Di Pietro and Ern [46]). Liftings can also be employed
to define the stabilization bilinear form [I1]], yielding a more convenient lower bound for the
penalty parameter 7.

4.3.1 Main definitions

As before, we assume that the mesh 75, belongs to an admissible mesh sequence. For any mesh
face F' € F}, and for any integer | > 0, we define the (local) lifting operator

rp + L2(F) — [Po(Tw))*

as follows: For all p € L?(F),
/ (i) mh = / {rhure V€ PYTI (79)
Q F

We observe that the support of rﬁm(gb) consists of the one or two mesh elements of which F' is
part of the boundary; using the set 7 defined by (@) yields

supp(rp) = | J T. (80)
TeTr

Moreover, whenever the mesh face F' is a portion of a hyperplane (this happens, for instance,

when working with simplicial meshes or with general meshes consisting of convex elements),

rh.(¢p) is colinear to the normal vector ng.

For any integer [ > 0 and for any function v € H'(7},), we define the (global) lifting of its
interface and boundary jumps as

Ry([o]) == Y rh([v]) € [PY(Tn))", (81)

FeFy
being implicitly understood that r}. acts on the function [v]r (which is in L?(F) since v €
HY(Th)).
For any integer [ > 0, we define the discrete gradient operator
Gl HY(Th) — [L*(Q))7,
as follows: For all v € H(7,),

G} (w) = Vi — R (). (s2)
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4.3.2 Reformulation of the SIP bilinear form

Let [ € {k—1,k} and set, as in §£3 V}, = P%(7},) where k > 1 and 7}, belongs to an admissible
mesh sequence. The bilinear form aj® can be equivalently written as follows: For all vy, wy, € Vj,

a'ff(vh,wh):/Qthh-Vhwh—/thvh-Rﬁl([[whﬂ)—/QVhwh-Rﬁl([[vh]]). (83)

This results from definitions (%) and &) and the fact that V,v;, and Vjwy, are in [P4(7,)]?
since [ > k — 1, so that, for all F' € F},

[ Asondurlund = [ Vioner(QunD.

Starting from (B3) and using the definition (B2) of the discrete gradient, we infer, for all vy, w;, €
Vh7
i) = [ Gh(un)Ghiwn) = [ R[] R ([unD).

As a result, recalling that the SIP bilinear form considered in §E2is such that a}* = a$® + sy,
with s, defined by ([@d), we obtain, for all vy, wy, € Vj,

a5® (vn, wp) = QGﬁl(vh)-GZ(wh)+§7’jp(uh,wh), (84)
with
5 nwn) = 30 7 [ fonllon] = | R(Qon) Ry ([ D). (35)

FeFy

The most natural choice for | appears to be [ = k—1 since the broken gradient is in [[PS_1 (7))

The choice I = k can facilitate the implementation of the method in that it allows one to use
the same polynormial basis for computing the liftings and assembling the matrix.

The interest in using discrete gradients to formulate dG methods has been recognized re-
cently in various contexts, e.g., by Lew, Neff, Sulsky, and Ortiz [68] and Ten Eyck and Lew [R0]
for linear and nonlinear elasticity, Buffa and Ortner [2T] and Burman and Ern [22] for nonlinear
variational problems, and the authors [46] for the Navier—Stokes equations.

It is interesting to notice that, for all v, € V},,

@y (vn, o) = (|G} (n) [ F2eypa + (1 — C&-Na)lonl -

In view of this result, the expression (&) for azip consists of two terms, both yielding a nonneg-
ative contribution whenever wy, = v, and, as in Lemma B0, > C2 Njy. The first term can be
seen as the discrete counterpart of the exact bilinear form a (such that a(v,w) = fQ Vu-Vw)
and provides a control on the discrete gradient in [L?(2)]¢. The role of the second term is to
strengthen the discrete stability of the method.

Remark 4.14 (Extension to broken Sobolev spaces). We emphasize that the definition (Bd)
of azip is equivalent to (B) only at the discrete level. Differences occur when extending the
definitions (68) and (&) to larger spaces, e.g., broken Sobolev spaces. The SIP bilinear form
defined by ([B8) cannot be extended to the minimum regularity space H'(f2) because traces of
gradients on mesh faces are used. Instead, the bilinear form defined by (B4 can be extended
to the broken Sobolev space H'(7;,). We denote this extension by d;ip. Incidentally, d;ip is no
longer consistent. For convergence analysis to smooth solutions, Strang’s First Lemma (see [{7]
or, e.g., Braess [I4], p. 106]) dedicated to nonconsistent finite element methods can be used,
whereby the consistency error is estimated for u € H*T1(Q) as follows: For all vy, € V},,

ai‘p(u — Up, Vp) Z /{{Vu — 1 (V) ynpfon] < Cuh|unls,
FeF,

where 7, denotes the L2-orthogonal projection onto V},. As a result, the consistency error tends
optimally to zero as the meshsize goes to zero.
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4.3.3 Numerical fluxes

Discontinuous Galerkin methods can be viewed as high-order finite volume methods. The aim
of this section is to identify the local conservation properties associated with dG methods.
Such properties are important when the diffusive flux is to be used as an advective velocity
in a transport problem, e.g., in the context of coupled porous media flow and contaminant
transport.

Let T € 7;, and let £ € P%(T). Integration by parts shows that, for the exact solution u,

/T fe= - /T (Au)é = /T VuvE - /6 (Vunge

Therefore, defining on each mesh face F' € F;, the exact flux as
Op(u) := —Vunpg, (86)

and recalling the notation er p = ny-np introduced in §833, we infer

/TVu-Vf—f— Z €T,F/F‘1’F(U)§:/Tf§-

FeFr

This is a local conservation property satisfied by the exact solution. Our goal is to identify a
similar relation satisfied by the discrete solution uy, solving [{d). Using vy, = {xr as test function
in ([[{) (where xr denotes the characteristic function of T'), observing that V, ({xr) = (V&) xT,
and recalling the definition @) of afzp, we obtain

| re=arunean = [ vuve- 3 [ (Viundurlenl

FeFr

=S /F (O hnelu] + 3 o /F [unllExz].

FeFr FeFr

Let [ € {k—1,k}. The first and third terms on the right-hand side sum up to [, Gy (up,)-VE

since V& € [PA~1(T)]% and | > k — 1, while in the second and fourth terms, we observe that
[€xT] = er.ré. As aresult, for all T € Tj, and all € € PX(T),

! . € up )€ =
/TGh(Uh) V§+F;T T,F/FébF( )& /Tfﬁ, (87)

with the numerical flux ¢p(up) defined as
ér(un) == —{Vaur}nr + %[[uhﬂ. (88)

We notice that the two contributions to ¢ (up) in (BF) respectively stem from the consistency
term and the penalty term (cf. Definition EE7)). Equation (&) is the local conservation property
satisfied by the dG approximation. Interestingly, the expression (BH) is consistent with (BB
since, for the exact solution u, ¢r(u) = ®r(u). We also observe that the local conservation
property (&) is richer than that encountered in finite volume methods, which can be recovered

by just taking £ =1, i.e.,
E = . 89
ar /F o (un) /T / (89)

FeFr

4.4 Mixed dG methods

In this section, we discuss mixed dG methods, that is, dG approximations to the mixed formu-
lation (1)) with the homogeneous Dirichlet boundary condition (BZH). Such methods produce
an approximation uy for the potential v and an approximation o for the diffusive flux o.
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Definition 4.15 (Discrete potential and discrete diffusive flux). The scalar-valued function up
is termed the discrete potential and the vector-valued function o, the discrete diffusive flux.

First, we reformulate the SIP method of §£2 as a mixed dG method and show how the
discrete diffusive flux can be eliminated locally. Then, we formulate more general mixed dG
methods in terms of local problems using numerical fluxes for the discrete potential and the
diffusive flux following Bassi, Rebay and coworkers [I1I, [[0]. This leads, in particular, to the
LDG methods introduced by Cockburn and Shu [@3]. In these methods, the discrete diffusive
flux can also be eliminated locally. Finally, we discuss hybrid mixed dG methods methods where
additional degrees of freedom are introduced at interfaces, thereby allowing one to eliminate
locally both the discrete potential and the discrete diffusive flux.

4.4.1 The SIP method as a mixed dG method

One possible weak formulation of the mixed formulation (BI) with the homogeneous Dirichlet
boundary condition (BZH) consists in finding (o, u) € X := [L2(Q)]¢ x H}(Q) such that

m(o,7) +b(r,u) =0 V71 € [L3(Q)],

90
—b(o,v) z/fv Vv € HE(Q), (90)
Q
where, for all o, 7 € [L?(Q2)]¢ and for all v € Hg(Q), we have defined the bilinear forms
m(o,T) = / o-T, b(r,v) := / 7-Vo.
Q Q
It is easily seen that (o,u) € X solves @) if and only if ¢ = —Vu and u solves the weak

problem (GJ).
At the discrete level, a mixed dG approximation can be designed as follows. We consider

a polynomial degree k& > 1 for the approximation of the potential and choose the polynomial
degree for the approximation of the diffusive flux, say [, such that ! € {k — 1, k}. The relevant
discrete spaces are

Y = [PL(TH)]4, U, = PX(T}), X, =3, x Up.
The discrete problem consists in finding (o, up) € X}, such that

m(Uh,Th)—l—bh(Th,uh):O VThEEh,

Asi 91
—bn(on,vn) + 8, (up,vp) = / fon Noup € Uy, (1)
Q

with discrete bilinear form

bh(Th,’Uh) = / Th-GZ(’Uh),
Q
where the discrete gradient operator G, is defined by ([2) and the stabilization bilinear form
5" by [E3).
Proposition 4.16 (Elimination of discrete diffusive flux). The pair (o}, up) € X), solves (@)

if and only if
on = —Gi(un), (92)

and up, € Uy, is such that
/ GY (un)-GY (vn) + 8P (up, vn) = / fon Vo, € Up. (93)
Q Q
Proposition EETH shows that the mixed dG method (@) is in fact equivalent to a problem

in the sole unknown uy. In particular, the above choice for by, and §Zip yields the SIP method

of @A
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4.4.2 Numerical fluxes

We focus for simplicity on equal-order approximations for the potential and the diffusive flux,
that is, we set | = k so that ¥y, := [P%(75,)]¢, while, as before, Uy, := PX(7},). Similarly to 33,
we can derive a local formulation by localizing test functions to a single mesh element. Let
T € Ty, let ¢ € [PX(T)]4, and let ¢ € PX(T). Integrating by parts in 7', splitting the boundary
integral on 0T as a sum over the mesh faces F' € Fr, and setting er r = np-np, we infer for
the exact solution that

/TU-C—/TuV-C—i— Z GT,F/FUF(C'HF) =0,

FeFr
—/ o-VE+ Z GT,F/(UF'HF)fz/ fé€,
T FeFr F T
since 0 = —Vu and V-0 = f. The traces up and op-np are single-valued on each interface;

cf. Lemma EEQl At the discrete level, the general form of the mixed dG approximation is
derived by introducing numerical fluxes for the discrete potential and for the discrete diffusive
flux. These two numerical fluxes, which are denoted by 4r and 6p for all F' € F},, are single-
valued on each F' € Fj. The numerical flux @ is scalar-valued and the numerical flux g is
vector-valued. We obtain, for all T € 7y, all ¢ € [P5(T)]%, and all £ € PX(T),

/Tah~<—/TuhV-<—|— > eT,F/FaF(c-nF):o, (94a)

FeFr

- [onver ¥ e [(@rnrre= [ se (940)

FeFr

For the SIP method, the numerical fluxes are given by

VF € F}

ip = fun} € A (95a)
0 VE € Fp,

or = —{Vrun} +nhp' [unlop VF € F. (95b)

A first possible variant of the SIP method consists in keeping the definition ([@2al) for the
numerical flux 4 and defining the numerical flux 6 as

6r = {on} +nhp' [un]np.

The resulting dG method belongs to the class of LDG methods. The discrete diffusive flux
oy, can still be eliminated locally (since the numerical flux 4 only depends on uy), and the
discrete potential up € Uy, is such that

1d,
ahg(uh,vh) = f’Uh Yy, € Uh,
Q

with the discrete bilinear form

alhdg(uh,vh) = ‘/Q Vwup-Vyon — Z /F({[thh}}-np[[vh]] —i—{[thh}}-nF[[uh]})

FeFy

+ /Q RE(lunl) RE(Qon]) + Y - /F [un][on]

FeFn

- /Qag(uh)-Gij(vhH > %/F[[Uh]}[[vh]]-

FeFy,

A nice feature of the discrete bilinear form afg is that discrete coercivity holds on U, with
respect to the |||sip-norm for any n > 0 (a simple choice is n = 1). The drawback is that
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the elementary stencil associated with the term [, Ry ([un])- Ry ([vn]) consists of a given mesh
element, its neighbors, and the neighbors of its neighbors in the sense of faces; cf. Figure
Such a stencil is considerably larger than that associated with the SIP method (compare with

Figure [0).

Figure 8: Example of LDG stencil of an element T' € 73, when 7}, is a matching triangular mesh;
the mesh element is highlighted in dark, and all the nine other elements, highlighted in light,
also belong to the stencil

More general forms of the LDG method can be designed with the numerical fluxes

G = {un} + T npfus] VFEf,i,
"o VF € Fb,

5o — d onk = Ylon]np + nhi![unlne  VF € F,
r on +nhptupn VF € 7},

where T is vector-valued and n > 0 is scalar-valued (in LDG methods, nh}l is often denoted by
C11 and T by C12). Since the numerical flux 4z only depends on uy,, the discrete diffusive flux oy,
can be eliminated locally. The above form of the diffusive fluxes ensures symmetry and discrete
stability for the resulting dG method. A simple choice for the penalty parameter is again n = 1,
while the auxiliary vector-parameter Y can be freely chosen. LDG methods for the Poisson
problem have been extensively analyzed by Castillo, Cockburn, Perugia, and Schotzau [24].
Variants of the LDG method aiming at reducing the stencil have been discussed by Sherwin,
Kirby, Peir6, Taylor, and Zienkiewicz [[Z6], Peraire and Persson [72], and Castillo [25].

A further variant of the SIP and LDG methods consists in considering the numerical fluxes

- {uh}}'i_na[[o'hﬂ'nF VFE]‘-}ZL,
o VF € F},

op = {{Uh}} + nu[[uhﬂnF VF € Fy.

Here, the penalty parameters 7, and 7, are positive user-dependent real numbers, and a simple
choice is to set 17, = 7, = 1. This method can be analyzed in the more general context of
Friedrichs’ systems (see Ern and Guermond [50]). Because the numerical flux % r depends on
on, [@a) can no longer be used to express locally the discrete diffusive flux oj in terms of
the discrete potential uj. This precludes the local elimination of o} and, therefore, enhances
the computational cost of the approximation method. The approach presents, however, some
advantages since it can be used with polynomial degree k£ = 0 and there is no minimal threshold
on the penalty parameters (apart from being positive). Moreover, the approximation on the
diffusive flux is more accurate yielding convergence rates in the L2-norm of order h**+'/> for
smooth solutions, as opposed to the convergence rates of order h* delivered by the SIP method.

Finally, we mention that an even more general presentation can allow for two-valued nu-
merical fluxes at interfaces; see Arnold, Brezzi, Cockburn, and Marini [3] for a unified analysis
of dG methods.
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4.4.3 Hybrid mixed dG methods

The key idea in hybrid mixed dG methods is to introduce additional degrees of freedom at
interfaces, thereby allowing one to eliminate locally both the discrete potential and the discrete
diffusive flux. Herein, we focus on the HDG methods introduced by Cockburn, Gopalakrishnan,
and Lazarov [31]; see also Causin and Sacco [27] for a different approach based on a discontinuous
Petrov—Galerkin formulation, Droniou and Eymard [48] for similar ideas in the context of hybrid
mixed finite volume schemes, and Ewing, Wang, and Yang for hybrid primal dG methods [54].

In the HDG method, the additional degrees of freedom are used to enforce the continuity
of the normal component of the discrete diffusive flux. These additional degrees of freedom act
as Lagrange multipliers in the discrete problem and can be interpreted as single-valued traces
of the discrete potential on interfaces. We introduce the discrete space

A= @ Pi_(F).

FeF}

A function uj, € Ay is such that, for all F' € .7-',2, Unlp € [P’;fl(F). The discrete unknowns
(Oh, un, An) € Ep x Up, x Ay, satisfy the following local problems: For all T € 7, all ¢ € [[PZ (1)),
and all £ € PA(T),

/TU}L'C—/TU}IV-C—F Z GT,F‘/F’ELF(C'DF):Ou (963)

FeFr

- [onver X e [@remee= [ e (96b)

FeFr

while normal diffusive flux continuity is enforced by setting, for all F € Fr N Fj and all
HE [Psfl(F):

/ [[c}T,FﬂnFu =0. (97)
F

Here, the numerical fluxes are such that

A\, VE € .7:i,

ap =4 " n (98a)
0 VFeZ#,

or.r = oplr + mr(up|r — 4p)ny  VF € Fp, (98b)

with penalty parameter 7 defined elementwise. We observe that (@2) indeed enforces [61, r] np =
0 for all F € F} since [67.r]nr € P5_(F). As a result, the quantity (67 rnp) in (@8D) is
indeed single-valued.

Lemma 4.17 (HDG as mixed dG method). Let (op,, un, An) € Zp X Up X Ay solve (@8)—@1).
Then, the pair (op,un) € X x Uy, solves the local problems of the mized dG formulation (G4)
with numerical fluxes such that, for all F' € ]—",i with F = 0T, N 015,

ip = {url + Cra-[un]nr + Cofon] nr, (99a)
or = {on} + Cu[un]nr — Ci2lon] nr, (99b)
with the parameters
T1T2 T — T2 1
C - 5 C = — 7 s C = s
un= 12 2m+ 7_2)HF 2=

where 7, == Tr,, i € {1,2}. Moreover, for all F € F¢ with F = 0T N 0L, ir = 0 and
Op = Op + TTUpR.
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We observe that the numerical flux @p in ([@3a) depends on oy, since Co2 # 0. As a result,
the discrete diffusive flux cannot be eliminated locally to derive a discrete problem for the
sole discrete potential. Instead, a computationally efficient implementation of HDG methods
consists in using (@) to eliminate locally both the discrete potential and the discrete diffusive
flux, so as to obtain, using ([@0), a discrete problem where the sole unknown is A, € A,. For a
given interface F' € .7-'}'1 with F' = 9T N 015, the stencil associated with this interface is

S(F)={F' € F} | F' € Fr, UFnp,}.

For matching simplicial meshes, the set S(F') generally contains 5 interfaces for d = 2 and 7
interfaces for d = 3.

HDG methods for elliptic problems have been analyzed by Cockburn, Dong, and Guzméan [B0]
and Cockburn, Guzmén, and Wang [32] where error estimates in various norms are derived for
various choices of the penalty parameter 7. In particular, L?-norm error estimates of order A**1
can be derived both for the potential and the diffusive flux for smooth solutions and polynomial
order k > 0. Moreover, for k > 1, a postprocessed potential converging at order h*+2? can be
derived, similarly to classical mixed finite element methods.

5 Incompressible flows

The equations governing fluid motion are the Navier—Stokes equations, which express the fun-
damental laws of mass and momentum conservation. In their general form, these equations were
first derived by Navier (1827) and Poisson (1831), while a more specific derivation was found
by Saint-Venant (1843) and Stokes (1845) based on the assumption that the stresses are linear
functions of the strain rates (or deformation velocities), that is, for Newtonian fluids. In this
chapter, we are concerned with the special case of incompressible (that is, constant density)
Newtonian flows, thereby leading to the so-called Incompressible Navier—Stokes (INS) equa-
tions. In these equations, the dependent variables are the velocity and the pressure. The mass
conservation equation enforces zero divergence on the velocity field (because of incompressibil-
ity), while the momentum conservation equation expresses the balance between diffusion (due
to viscosity), nonlinear convection, pressure gradient, and external forcings.

The main difficulties in the discretization of the steady INS equations are (i) the zero-
divergence constraint on the velocity and (ii) the contribution of the nonlinear convection term
to the kinetic energy balance. The first issue is addressed in §6Jlin the simpler context of the
steady Stokes equations. In §8.2 we turn to the steady INS equations. The central issue is now
the discretization of the nonlinear convection term. An important ingredient is to mimic the
fact that, at the continuous level, this term does not contribute to the kinetic energy balance.

5.1 Steady Stokes flows

In this section, we consider the steady Stokes equations. These equations describe incompress-
ible viscous flows under the assumption that the fluid motion is sufficiently slow so that diffusion
dominates over convection in the transport of momentum.

5.1.1 The continuous setting

Let Q C R?, d > 2, be a polyhedron. The steady Stokes equations can be expressed in the form

—Au+Vp=f inQ, (100a)
Vau=0 inQ, (100b)

u=0 on 99, (100c¢)

(D)o = 0. (100d)

where u : Q — R? with Cartesian components (u;)1<i<4 is the velocity field, p : @ — R the pres-
sure, and f : Q — R? with Cartesian components (f;)1<i<q the forcing term. Equation ([al)

37



expresses the conservation of momentum. Equation ([00D) expresses the conservation of mass,
thereby enforcing the divergence-free constraint on the velocity. Equation (I00d) enforces a
homogeneous Dirichlet boundary condition on the velocity; other boundary conditions can be
considered, as discussed, e.g., by Ern and Guermond [#9, p. 179]. Finally, condition ([[00d),
where (-)q denotes the mean value over Q, is added to avoid leaving the pressure undetermined
up to an additive constant.

Remark 5.1 (Stress and strain tensors, viscosity). A more general form of the momentum
conservation equation ([00a) takes the form

—Vo+Vp=f in €,

where o : Q@ — R%9 is the stress tensor. In Newtonian flows, stresses are proportional to strain
rates. More specifically, introducing for a given velocity field u the (linearized) strain tensor
£:Q — R such that e = $(Vu + Vu'), there holds

o = 2ve,
where v > 0 is the (kinematic) viscosity. Taking the viscosity constant for simplicity, we obtain
—vV-(Vu+ Vu') + Vp=f, (101)

and up to rescaling of the pressure and the source term, we can assume that v = 1. Then,
observing that V-(Vu) = Au and V-(Vu)! = V(V-u) = 0 because of incompressibility, we
recover (I00a). Considering the form () of the momentum conservation equation is appro-
priate when dealing with other boundary conditions than ([[0d), e.g., when weakly enforcing
the Navier slip boundary condition (o-n+ Au)-t = 0 where t is a tangent vector to the boundary
0 and A > 0 a given parameter.

We assume that the forcing term f is in [L?(Q2)]¢. Owing to ([IIId), the natural space for the
velocity is [H} (2)]¢, while owing to ([0d), the natural space for the pressure is L3(Q) C L(Q)
where

L§(Q) = {q € L*(Q) | {g)a = 0} .

We set
U = [H}(Q)], P:=L3(Q), X:=UxP. (102)

The spaces U, P, and X are Hilbert spaces when equipped with the inner products inducing
the norms

d /2
vl = ||U||[H1(Q)]d = (Z ||'Ui||.%{1(ﬂ)> )

=1

1/2
lalle = llall2), (0, @)llx = (lollF + llallB) "

We define, for all u,v € U and for all ¢ € P, the bilinear forms

d
a(u,v) ::/Vu:Vv: Z / Oju; Ojv; = (Vu, V) [12(qyjd.d, (103a)
Q G2/
b@ﬂ%=—/qvv=—Wmﬂ». (103b)
Q

The weak formulation of problem () reads: Find (u,p) € X such that

a(u,v) +b(v,p) = / fv YveU, (104a)
Q
—b(u,q) =0 Vq € P, (104b)
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or, equivalently,
Find (u,p) € X s.t. ¢((u,p), (v,q)) = [ f-v for all (v,q) € X,
Q

with
c((u,p), (Uv q)) = a(U‘J U) + b(’l),p) - b(“’v Q)-

While the bilinear form ¢ is clearly not coercive on X, we observe that the bilinear form a
is coercive on U. Indeed, applying the continuous Poincaré inequality (B0) to each velocity
component, we infer that there exists ag > 0, only depending on 2, such that

VoeU,  a(v,v)=|Vollfzqes = aallv]?- (105)
This yields a so-called partial coercivity for the bilinear form c¢ in the form
V(v,g) € X, c(v,q9),(v,9) = alv,v) > agllv]F. (106)

Remark 5.2 (Saddle-point problem). A problem of the form ([04)) is said to have a saddle-point
structure since (u,p) € X solves ([[4) if and only if (u,p) is a saddle-point of the Lagrangian
L : X — R such that, for all (v,q) € X,

£(v,0) = 5a(v,0) + blo, ).

In this context, the pressure plays the role of the Lagrange multiplier associated with the
incompressibility constraint.

We introduce the divergence operator B € L(U, P) such that
B:Usv+—— Bv:=-VweP (107)

(The fact that Bv has zero mean is a consequence of the divergence theorem since fQ Bv =
— Jo Vv =— [,o(vn) =0.) The operator B is readily linked to the bilinear form b since there
holds

(Bv,q)p = b(v,q) Y(v,q) € X.

The well-posedness of the Stokes problem () hinges on the surjectivity of the operator B or,
equivalently, on an inf-sup condition on the bilinear form b (se, e.g., Girault and Raviart [55,

§2.2]).

Theorem 5.3 (Surjectivity of divergence operator, inf-sup condition on b). Let Q € RY, d > 1,
be a connected domain. Then, the operator B is surjective. FEquivalently, there exists a real
number Bqo > 0, only depending on Q, such that, for all g € P, there is v, € U satisfying

q=—Bvg=Vw, and  Ballvgllu < llglp. (108)

Moreover, property (IR is equivalent to the following inf-sup condition on the bilinear form b:

b(w,
Vae P, falldlp< swp 229
wen {0y wllv

(109)

For all ¢ € P, a field vy € U satisfying [[0Y) s called a velocity lifting of q.
Theorem 5.4 (Well-posedness). Problem ([[04) is well-posed.
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5.1.2 Equal-order discontinuous velocities and pressures

In this section, we consider one possible dG discretization of the steady Stokes equations based
on equal-order discontinuous velocities and pressures. Other approaches are discussed in §6T3
DG methods based on equal-order discontinuous velocities and pressures have been introduced
by Cockburn, Kanschat, Schétzau, and Schwab [38] for the Stokes equations and extended to
the Oseen equations in [34] and to the INS equations in [37].

Let 75, be a mesh of Q belonging to an admissible mesh sequence with mesh regularity
parameters denoted by p. Recalling the broken polynomial space [P’;(’Z}L) defined by @) with
polynomial degree k > 1, we define the discrete spaces

Uy = [PX(T3)]%, Py =Pl o(Th), X, := Uy, x P, (110)

where [PZ,O(,Z;L) denotes the subspace of P%(7;,) spanned by functions having zero mean-value
over ). The discrete solution is sought in the space X,.

To discretize the diffusion term, we use, for each velocity component, the SIP bilinear form
(cf. §EA). We define on Uy x Uy, the bilinear form

d
an(vn, wp) ==Y anP(Vni, wh i), (111)
i=1

where (vp,i)1<i<a and (wp,;)1<i<a denote the Cartesian components of v, and wy,, respectively,

and where azip is defined by ([@E8). It is natural to equip the discrete velocity space Uy with the

II-llsip-norm defined by (1) for each Cartesian component, so that we set

d /2 .

/2
Ionlh = (Dnvh,in@p) = (IVonlmqpa +10nl3) (112)
=1

with the |-|;-seminorm acting now on vector-valued arguments as

1/2
lonly = <Z hF1||[[vhﬂ||[2L2(F)]d> :

FeFy

We assume that the penalty parameter 7 is such that n > 7 so that
Vo, € Uy an(on, on) 2 aflonler, (113)

where o = C}; as defined in Lemma ET0
To discretize the pressure-velocity coupling, we need a discrete counterpart of the bilinear
form b defined on U x P by [I03). We define on Uj, x P}, the discrete bilinear form

noos) == [ aViv+ 3 [ [mdurdad, (114)

FeFy

where the broken divergence operator Vj,- acts elementwise, like the broken gradient operator
V1, defined by ([Z3). We observe that elementwise integration by parts yields

bh(Uh=Qh)=/th-Vth— > /F{{Uh}}'nF[[Qh]L (115)

FeF}

Similarly to the operator B at the continuous level, we introduce the discrete operator By, :
Uy, — P, such that, for all (vp, qn) € Xy,

(Bhvh,qn)p = bn(vn, qn).
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It turns out that, contrary to the exact operator B, the discrete operator By, is not surjective.
As a result, the L2-norm of a function in P}, cannot be controlled uniquely in terms of by,. To
recover control, it is necessary to add the following pressure seminorm defined on H'(7p,):

1/3
lalp = | >_ hrllallizsgm
FeF}

Lemma 5.5 (Stability for by,). There exists 8 > 0, independent of h, such that

by (wn, qn
Vai, € Py, Bllgnllp < sup ( )

i T lanlp: (116)
wneU\ {0} [whllver r

Remark 5.6 (Ladyzhenskaya—Babugka-Brezzi (LBB) condition). In the setting of conforming
mixed finite element approximations, the stability of the discrete bilinear form coupling velocity
and pressure takes the form of an inf-sup condition without stabilization term, the so-called
Ladyzhenskaya—Babuska—Brezzi (LBB) condition (see Babuska [5] and Brezzi [I7]). Condition
([I8) can be viewed as an extended LBB condition owing to the additional presence of the
pressure seminorm on the right-hand side.

We consider the following discretization of problem [[04): Find (un,pp) € X, such that
an(un,vn) +bn(vnpn) = [ foon Vo € Un, (117a)
Q

—bn(un, qn) + sn(pr,qn) =0 Yan € P, (117b)

where the discrete bilinear form ay, is defined by ([[I), the discrete bilinear form b, by (14
(or, equivalently, by (1)), and where

sn(qn,mn) =Y hF/F[[qh]][[rhﬂ. (118)

FeF}

The stabilization bilinear form sj is meant to control pressure jumps across interfaces, thereby
allowing to control the L?-norm of the discrete pressure by virtue of Lemma E3 The following
formulation, equivalent to (Id), is obtained by summing equations ([(IZa)) and ({[IZH): Find
(up,pr) € Xp, such that

cn((un, pn)s (Vn, qn)) = /Qf'vh for all (vn,qn) € X, (119)

where
cn((uns pr)s (Vn, qn)) = an(un, vn) + bn(vn, pr) — bu(un, qn) + sn(ph, qn)- (120)
Owing to ([I3)), we infer partial coercivity for ¢, in the form

Y(vn, qn) € X, ch((vh, qn), (Vn, an)) = an(vn, vn) + sn(qn, qn)
> allonlle + lanl3- (121)

To prove discrete well-posedness, we establish first the discrete inf-sup stability of the bilinear
form ¢, when the discrete space X}, is equipped with the norm

1/2
Ivn, an)listo = (lonller + llanlp + lanlz) ™ (122)

Lemma 5.7 (Discrete inf-sup stability). Assume that the penalty parameter n in the SIP method
is such that ) > 1 with n defined in LemmaBETIQ. Then, there is v > 0, independent of h, such
that, for all (vn,qn) € Xy,

[ (ns g)lsto < sup cn((vn, qn), (Wh, 1))
(wn,rn) EXR\{0} (wn, 74) sto

As a consequence of Lemma ZTH, the discrete problem ([I4) or, equivalently, [[T9) is well-
posed.

(123)
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Convergence to smooth solutions To analyze the convergence of the solution of the dis-
crete Stokes problem ([I7) or, equivalently, (IT) in the case of smooth exact solutions. We
proceed in the spirit of Theorem and derive an error estimate in the ||-||sto-norm. Some
additional regularity of the exact solution (u,p) € X is needed to assert consistency by plugging
the pair (u, p) into the discrete bilinear form ¢j,. Concerning the velocity, we hinge for simplicity
on Assumption for all the velocity components. Concerning the pressure, we need traces
on all interfaces and that the resulting jumps vanish; again for simplicity, this requirement is
matched by assuming H!(Q)-regularity for the pressure.

Assumption 5.8 (Regularity of the exact solution and space X.). We assume that the ezact
solution (u,p) is in X, := U, x P, where
U, :=UnN[H*(N)]4, P, := PN HYQ).
In the spirit of $Z3, we set
Uip, i = U + Uy, P.p = P, + P, Xop = Xu + X,

We extend the discrete bilinear form ay, defined by ([[T) to Uy X Up, and the || ||vei-norm to
Usp. The discrete bilinear form by, can be extended to [H'(7)]? x H'(7},). Finally, we extend
the discrete bilinear form c¢;, defined by (IZ0) to X, x X, and we extend the ||||sto-norm defined

by (IIZZ) to X*h.

Lemma 5.9 (Jumps of Vu and p across interfaces). Assume (u,p) € X.. Then,
[Vulnp=0 and [p]=0 VF € F}. (124)
Lemma 5.10 (Consistency). Assume that (u,p) € X.. Then,

en(( ), (vn 1)) = /Q Fon Yo an) € X

Owing to Theorem and recalling that discrete inf-sup stability holds true using the
Il lsto-norm, it remains to investigate the boundedness of the discrete bilinear form ¢;,. To this
purpose, we define on X, the norm

I, Do = 1w D20 + D brl|Volrnr e + Y brllallizon:
TeT, TeT),

There exists Chpna, independent of h, such that, for all (v,q) € X, and all (wp, ) € Xp,

Ch((vv Q)a (wh; Th)) S Obndm(va Q)|||sco,*||| (wh; Th)msto-

Theorem 5.11 (||-||sto-norm error estimate and convergence rate). Let (u,p) € X, denote the
unique solution of problem [IO4). Let (up,pp) € Xy solve (IA) with ¢, defined by (20). Then,
there is C, independent of h, such that

I(w = un,p = pn)llsto <Cinf [[(u—vn,p = qn)llsto,- (125)
(vh,qn)€Xn

Moreover, if (u,p) € [H*1(Q)]4 x H*(Q),
Il(w = un, p = pr)llsto < Cuph®,

with Cyp = C (|[ullir1 e + 1Pl ax @)

Remark 5.12 (Regularity assumption on the pressure). The regularity assumption p € H*(Q) is
just what is needed to achieve the overall convergence rate in the ||-[|s;o-norm of order h*. Since
polynomials of degree < k are used for the pressure, the contribution of the pressure terms to
the error upper bound would be of order h**1 if p € H¥T1(Q). In this case, the overall error
would be dominated by the velocity error which is still of order h*.

Remark 5.13 (L?-norm error estimate on the velocity). An optimal L?-error estimate on the
velocity can be obtained using a duality argument in the same spirit as in L2 for the Poisson

problem. To apply the Aubin—Nitsche argument [4], we need additional regularity for the
solution of the Stokes problem (see Cattabriga [26] and Amrouche and Girault [IJ).
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Numerical fluxes We consider test functions having support localized to a single mesh
element. We define the numerical fluxes

grad L {{ph}}nF if I'e -7:}27 12
= 6
or (pn) {phn if e .7:,3, (126)
: {{uh} nF—l—hF[[phﬂ ifFE]'-;L,
&% (un, pn) = { . (127)
0 if I e .7:,?,

and observe that qb?ad (pr) is vector-valued whereas qS‘#V(uh,ph) is scalar-valued. Moreover,
referring to £33 and, in particular, to [B8) for the numerical fluxes associated with the SIP
method, we consider here the vector-valued numerical fluxes

F(un) = —{Vhun}nr + hi[[uh]]- (128)
F

Let T € 75, and let ¢ € [P%(T)]? with Cartesian components (&;)1<i<q. Using vy, = Exr as a
test function in the discrete momentum conservation equation ([[IZa) (where xr denotes the
characteristic function of T'), we obtain

/TiGZ(uh,i).vgi—/phvng 3 6TF/ A () + 8y, /f& (120)

FeFr

where [ € {k —1,k}, Gﬁl is the discrete gradient operator, and e7,r = nr-ng.

Similarly, let ¢ € PX(T). Using g5, = (x7 — ({x7)0 as a test function in the discrete mass
conservation equation ([[IZD) and using the expression ([[IH) of the discrete bilinear form by,
we obtain

/uh v+ S eTF/ G5 (un, pn)C = 0. (130)

FeFr
Equations (TZ9) and (I30) express the local conservation properties satisfied by the dG approx-
imation. We observe that, in the numerical fluxes ¢§fad (pn) and QS‘}}V(uh,ph), the centered part

results from the discrete bilinear form by, while the presence of the pressure jump in the flux
Y (up, pr) stems from stabilizing the pressure jumps across interfaces.

Convergence to minimal regularity solutions In this section, we study the convergence
of the sequence
(ur; pre) = ((un,pn))nen,

where, for all h € H, (uy, pp) solves the discrete problem (1), to the unique solution (u,p) of
the steady Stokes problem (4] using mimimal regularity on (u,p), that is to say, (u,p) € X.
This result is an important building block in the convergence study of the dG discretization
of the INS equations undertaken in §623 For conciseness of notation, subsequences are not
renumbered in what follows.

To analyze the convergence of the diffusion term, we formulate the discrete bilinear form ay,
using discrete gradients, namely, for all vy, wy, € Uy,

d
ah(vh,wh) = /QZ Gﬁl(vh,i)Gﬁl(wh,i) + §h(vh,wh), (131)

with [ € {k —1,k} and

o) = 3 7 [ b - [ ZRl (IoniD)- R (Fwn1).

FeFp

The expression (31 is equivalent to ([T on Uy, x Up.
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For any integer [ > 0, we define the discrete divergence operator D!, : [H'(7)]? — L?(Q)
such that, for all v € [H'(7},)]? with Cartesian components (v;)1<i<d,

d

Dj,(v) =Y G (vi)ei,

=1

where e; denotes the ith vector of the Cartesian basis of R?. Then, using the expression (14
for by, we observe that, for all (vy,qp) € Xy,

b (o an) = — / 4D (n). (132)

We can also introduce a new discrete gradient operator G} : H'(7) — L*(f2) such that, for all
q € H'(Th),

Gh(q) == Vag— > rh(lal)- (133)

FeF}

The only difference with respect to the discrete gradient operator G% defined by [&2) is that
boundary faces are not included in the summation on the right-hand side of [I33)). A motivation
for this modification is that there holds

V(vnsan) € Xn, / onGEan) = — / anDf (),
Q Q

so that an alternative expression for b, on Xy, is

br(vn, qn) = / on-Grs (an)-
Q

Theorem 5.14 (Convergence to minimal regularity solutions). Let k > 1. Let (us,py) be
the sequence of approzimate solutions generated by solving the discrete problems (IIY) on the
admissible mesh sequence Tpy. Then, as h — 0,

Up —u in [L*(Q)],
Viun — Vu in [L?(Q)]%4,
[un,ilg — 0 foralli € {1,...,d},
Ph— D in L*(Q),
[pnlp — 0,

where (u,p) € X denotes the unique solution to (I04).

5.1.3 Formulations without pressure stabilization

Fully discontinuous formulations, such as the one presented in §6. 1.2, are appealing in problems
where corner singularities are present (e.g., the well-known lid-driven cavity problem), since,
in this context, discontinuous pressures are generally less prone to spurious oscillations. Using
equal-order velocity and pressure spaces, however, requires penalizing pressure jumps across
interfaces to achieve discrete stability. Such a term introduces a tighter coupling between the
discrete momentum and mass conservation equations, since the pressure is also explicitly present
in the mass conservation equation. In practice, this can be a drawback when using classical
solution methods (such as the Uzawa method) for saddle-point problems in the steady case or
projection methods in the unsteady case.

It turns out that the pressure penalty term can be omitted in various cases which, how-
ever, do not accommodate the same level of mesh generality as in §6 .2 On matching affine
quadrilateral or hexahedral meshes, formulations without pressure stabilization have been an-
alyzed by Toselli [R1] for different couples of polynomial degrees for velocity and pressure.
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On matching simplicial meshes with polynomials for the pressure one degree less than for the
velocity, inf-sup stability has been proven by Hansbo and Larson [B8] in the incompressible
limit of two-dimensional linear elasticity and by Girault, Riviére, and Wheeler [56] for the two-
and three-dimensional Stokes equations in the context of domain decomposition methods (with
polynomial degree for the velocity between 1 and 3). Still on matching simplicial meshes for
d € {2,3}, a fully parameter-free dG approximation using piecewise affine discrete velocities
supplemented by element bubble functions coupled with continuous piecewise affine and/or
piecewise constant discrete pressures has been analyzed by Burman and Stamm [23].

A means to achieve discrete inf-sup stability on matching simplicial meshes is to consider a
discontinuous approximation of the velocity together with a continuous approximation of the
pressure. This approach constitutes the basis for the projection method derived by Botti and
Di Pietro [I3] for the unsteady INS equations.

5.2 Steady Navier—Stokes flows

In this section, we consider steady Navier—Stokes flows. The main difference with respect
to §6.11 is the inclusion of a nonlinear term modeling the convective transport of momentum.
The discretization with dG methods of this nonlinear term is the main focus of this section. We
also account for the viscosity v in the momentum conservation equation. For steady Navier—
Stokes flows, the viscosity v is important since it quantifies the relative importance of convective
and diffusive momentum transport.

5.2.1 The continuous setting

Let Q C RY, d € {2,3,4}, be a polyhedron, let f € [L?(Q2)]¢ be the forcing term, and let v > 0
be the viscosity. The discussion of this section is confined to space dimensions up to 4 since
the nonlinear term requires embeddings of functional spaces valid for d < 4. The steady INS
problem reads

—vAu+ (u-V)u+Vp=f inQ, (134a)
Vau=0 1inQ, (134b)

u=0 ondQ, (134c)

(p)a = 0. (134d)

Remark 5.15 (Conservative formulation). Since (u-V)u = V-(u®u) because V-u = 0, the mo-
mentum conservation equation (34a)) can be rewritten in the conservative form

—vAu+ V-(u®u) + Vp = f.

In contrast, equation ([[34al) is said to be in nonconservative form.
The weak formulation of system ([[34)) reads: Find (u,p) € X such that

c((u,p), (v,q)) + t(u,u,v) = /Qf-v for all (v,q) € X, (135)

where X = U x P is defined by [[I2), the bilinear form ¢ € £(X x X, R) now accounts for the
viscosity and is given by

c((u,p), (U7 Q)) = Va(”? U) + b(’l),p) - b(“’v q)u

with a and b still defined by ([[03), and the trilinear form ¢ € L(U x U x U, R) is such that

d
t(w,u,v) = /Q(w-Vu)~v = /Q Z w; (05u;)v;. (136)

ij=1
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The trilinear form is indeed bounded on U x U x U: There is 7q, only depending on (2, such
that, for all w,u,v € U,
t(w, u,v) < Tollwlvllulv]lv]o. (137)

A further important property of the trilinear form ¢ defined by ([I36) is skew-symmetry with
respect to the last two arguments whenever the first argument is divergence-free and has zero
normal component on the boundary. For simplicity, we consider that the three arguments of
the trilinear form are in U.

Lemma 5.16 (Skew-symmetry of trilinear form). For all w € U, there holds
1
Yv e U, t(w,v,v) = ~3 / (V-w)v]?. (138)
Q

Moreover, if w e V:={veU|V-wv=0},
Yv e U, t(w,v,v) = 0. (139)

A crucial consequence of Lemma T8 is that, using (v, q¢) = (u,p) as a test function in (I3H)
and since u is divergence-free, we obtain, up to the viscosity scaling, the same energy balance
as for steady Stokes flows, namely

VIVulfrs e :/Qf'u-

In other words, convection does not influence energy balance.

Theorem 5.17 (Existence and uniqueness). There exists at least one (u,p) € X solving (33).
Moreover, under the smallness condition on the data

ol fllor < (vag)?, (140)
the solution is unique.

Remark 5.18 (Interpretation of condition [[40)). At fixed viscosity v, condition ([Z0) means
that the forcing term f must be small enough. Alternatively, at fixed f, condition ([40) means
that the viscosity v must be large enough (so that sufficiently energy is dissipated by the flow).

5.2.2 The discrete setting

In this section, we derive a dG discretization of the INS equations ([I3H). For the Stokes part
(resulting from the bilinear form c), we follow the approach of §6.T.2A and consider equal-order
discontinuous velocities and pressures. Alternative dG methods to approximate the INS equa-
tions have been explored by Karakashian and Jureidini [62], Girault, Riviére, and Wheeler [56],
and Cockburn, Kanschat, and Schétzau |35, 86l B7].

Let 73, denote an admissible mesh sequence and let & > 1 be an integer. We consider the

discrete spaces (cf. (1))
Up = [PE(TL))Y,  Pui=Pho(Tn),  Xn:=U,x P

The material in this section is restricted to d < 3.

When working with dG approximations, the convective velocity is generally not divergence-
free (but only weakly divergence-free), so that the important property ([[39) is generally not
satisfied. Following Temam [78, [79], a possible way to circumvent this difficulty is to modify
the trilinear form ¢ and to consider instead, for all w,u,v € U,

t'(w,u,v) = t(w,u,v) + % / (V-w)u-v
Q

:/Q(w-w)-w %/(V-w)u-v. (141)

Q
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The following result is then a straightforward consequence of [I38): For all w € U, there holds
Vv e U, t'(w,v,v) = 0. (142)

Moreover, (u,p) € X solves ([3H) if and only if (u,p) € X is such that

c((u,p), (v,q)) + t'(u,u,v) = /Qf-v for all (v,q) € X.

We start with Temam’s modification of the trilinear form ¢. Specifically, we consider broken
differential operators in the trilinear form ¢’ defined by (&) and set, for all wp,up, vy € Uy,

tELO) (wp, up,vp) = /

1
(wh~thh)~vh + 5/(Vh~wh)uh~vh.
Q

Q

Our first goal is to derive a discrete counterpart of ([42). For all wy,, v, € Uy, integrating by
parts elementwise and proceeding as usual, we obtain

tgo)(wh,vh,vh):% Z /F[[whﬂnp{{vh.vh}—F Z /F{{wh}np[[vh]].{{vh}}.
FEF, FeF;

Since the right-hand side of the above equation is nonzero, we modify t;lo) as

th(wh, un, vp) !:/

Q

(wp-Vyup)-vp — Z /F{{wh}'nF[[uh]]'{{vh}}

FeF}

+%/Q(Vh-wh)(uh-vh)—% Z /F[[whﬂ.nF{{uh.vh}}_ (143)

FeFy

This choice, which incorporates Temam’s modification at the discrete level, possesses the fol-
lowing important property which is the discrete counterpart of Lemma B.T6

Lemma 5.19 (Skew-symmetry of discrete trilinear form). For all wy, € Uy, there holds
Yo € Uy, th(wh,vh, vh) =0. (144)

We now address the boundedness of the discrete trilinear form ¢, on Uy, x Uy, x Uj. Recall
that the discrete velocity space Uy, is equipped with the ||-||vei-norm defined by [[IZ). Then,
there is 7, independent of h, such that, for all wy,, up, vy, € Uy, there holds

tn(wn; un, vn) < Tlwnflvallunllverllonllver

Let ap and by be the discrete bilinear forms considered for the linear Stokes equations,
cf. () for ap and [IA) or, equivalently, [[I3) for b;,. Let ¢; be the discrete trilinear form
defined by ([[3)). The discrete INS problem reads: Find (up, pn) € X such that

vap(un, vr) + th(un, un, vr) + br(vn, pr) = / fon Yoy, € Uy, (145a)
Q
—bn(un, qn) + v sn(ph, qn) =0 Van € P, (145b)
or, equivalently, such that
cn((un, pn)s (Vhs n)) + th(un, un, vp) = / fon  V(vn,qn) € Xp, (146)
Q
with

cn((wn,pn); (Vs qn)) = van(un, vn) + by (vns pr) — br(un, qn) + v~ sk (P an)-
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We observe that both the diffusion and pressure stabilization terms differ from the case of the
linear Stokes equations, cf. (2O, since the former is scaled by the viscosity and the latter by
the reciprocal of the viscosity.
Recalling [[I3), let o > 0 denote the coercivity parameter of the discrete bilinear form ay
such that
Vo, € U, an(vn,vn) > allon iy

This leads to partial coercivity for the discrete bilinear form ¢ in the form

V(vn,qn) € X, cn((Vnsan), (s qn)) > vallon |2 + v~ Hanl- (147)

Moreover, we redefine the ||-||sto-norm as

_ 1/2
Iwn, a)llsto = (Vllvallie + lanlld + v~ lanl})

It is straightforward to verify, as in the proof of Lemma B, the following discrete inf-sup
condition: There is v > 0, independent of h and of the viscosity v, such that, for all (vs,qp) €
Xh7

cn((vn, an), (wa,rn))
Mwns gn)llsto < sup
(wh,’l‘h)EXh\{O} |||(wh5 Th)mStO
We observe that the fact that ~ is independent of v results from the scaling used in the pressure
stabilization.

(148)

Theorem 5.20 (Existence and uniqueness). There ezists at least one (up,pn) € Xp solv-
ing ([4). Moreover, under the smallness condition

TN fll 2y < (ver)?, (149)

the solution is unique.

5.2.3 Convergence analysis

In this section, we address the convergence of the sequence (uz,pp) of solutions to the dis-
crete problem ([ZH) on the admissible mesh sequence 77 to a solution (u,p) of the INS equa-

tions (3H).
Theorem 5.21 (Convergence). Let (uy, pr) be a sequence of approzimate solutions generated

by solving the discrete problems ([[ZQ) on the admissible mesh sequence Ty. Then, as h — 0,
up to a subsequence,

up — u in [L?(Q)]¢,
Viup — Vu in [L2(Q)]44,
|unls — 0,
ph— P in L?(Q),
[prlp — 0,

where (u,p) € X is a solution of (3H). Moreover, under the smallness condition [3), the
whole sequence converges to the unique solution of (I33)).

Remark 5.22 (Reformulation of discrete trilinear form). In the convergence analysis, the fol-
lowing equivalent expression of ¢, in terms of discrete gradients and discrete divergence is
important: For all wp,un, vy, € Up,

th(wh,uh,vh / E whgh U}”U}” /D wh Up - Vh

T Z / [wn]-nelun]-[on]- (150)

FEF}

We observe that the polynomial degree used for the discrete gradients and divergence is 2k
owing to the nonlinearities.
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