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1 Introdu
tionDis
ontinuous Galerkin (dG) methods 
an be viewed as �nite element methods allowing fordis
ontinuities in the dis
rete trial and test spa
es. Lo
alizing test fun
tions to single mesh el-ements and introdu
ing numeri
al �uxes at interfa
es, they 
an also be viewed as �nite volumemethods in whi
h the approximate solution is represented on ea
h mesh element by a polyno-mial fun
tion and not only by a 
onstant fun
tion. From a pra
ti
al viewpoint, working withdis
ontinuous dis
rete spa
es leads to 
ompa
t dis
retization sten
ils and, at the same time,o�ers a substantial amount of �exibility, making the approa
h appealing for multi-domain andmulti-physi
s simulations. Moreover, basi
 
onservation prin
iples 
an be in
orporated into themethod. Appli
ations of dG methods 
over a vast realm in engineering s
ien
es. Examples 
anbe found, e.g., in the 
onferen
e pro
eedings edited by Co
kburn, Karniadakis, and Shu [39℄.There is also an in
reasing number of open sour
e libraries implementing dG methods. A nonexhaustive list in
ludes deal.II [9℄, Dune [12℄, FEniCS [71℄, freeFEM [45℄, libmesh [63℄, andLife [74℄.A brief histori
al perspe
tiveAlthough dG methods have existed in various forms for more than thirty years, they haveexperien
ed a vigorous development only over the last de
ade, as illustrated in Figure 1.The �rst dG method to approximate �rst-order PDEs has been introdu
ed by Reed andHill in 1973 [75℄ in the 
ontext of steady neutron transport, while the �rst analysis for steady�rst-order PDEs was performed by Lesaint and Raviart in 1974 [65, 66, 67℄. The error estimatewas improved by Johnson and Pitkäranta in 1986 [61℄ who established an order of 
onvergen
ein the L2-norm of (k + 1

2 ) if polynomials of degree k are used and the exa
t solution is smoothenough. A few years later, dG methods were extended to time-dependent hyperboli
 PDEsby Chavent and Co
kburn [28℄ using the forward Euler s
heme for time dis
retization togetherwith limiters. The order of a

ura
y was improved by Co
kburn and Shu [41, 42℄ using expli
itRunge�Kutta s
hemes for time dis
retization, while a 
onvergen
e proof to the entropy solutionwas obtained by Ja�ré, Johnson, and Szepessy [60℄. Extensions are dis
ussed in a series of papersby Co
kburn, Shu, and 
oworkers; see, e.g., [33, 40, 44℄.For PDEs with di�usion, dG methods originated from the work of Nits
he on boundary-penalty methods in the early seventies [69, 70℄ and the use of Interior Penalty (IP) te
hniques toweakly enfor
e 
ontinuity 
onditions imposed on the solution or its derivatives a
ross interfa
es,1Le
ture Notes for the Spring S
hool on Numeri
al Fluid Me
hani
s, Ros
o� June 2011. A more elaborateand thorough presentation of the material 
an be found in the book Mathemati
al Aspe
ts of Dis
ontinuousGalerkin Methods by D. Di Pietro and A. Ern, volume 69 of SMAI Mathématiques & Appli
ations, Springer,2012. 1
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Figure 1: Yearly number of entries with the keyword `dis
ontinuous Galerkin' in the MathS
iNetdatabaseas in the work of Babu²ka [6℄, Babu²ka and Zlámal [7℄, Douglas and Dupont [47℄, Baker [8℄,Wheeler [82℄, and Arnold [2℄. In the late nineties, following an approa
h more 
losely relatedto hyperboli
 problems, dG methods were formulated using numeri
al �uxes by 
onsidering themixed formulation of the di�usion term. Examples in
lude the work of Bassi and Rebay [10℄on the 
ompressible Navier�Stokes equations and that of Co
kburn and Shu [43℄ on 
onve
tion-di�usion systems, leading to a new thrust in the development of dG methods. A uni�ed analysisof dG methods for the Poisson problem 
an be found in the work of Arnold, Brezzi, Co
kburn,and Marini [3℄, while a uni�ed analysis en
ompassing both ellipti
 and hyperboli
 PDEs in theframework of Friedri
hs' systems has been derived by Ern and Guermond [50, 51, 52℄.OverviewSe
tion 2 introdu
es the basi
 
on
epts to formulate and analyze dG methods, namely (i) thebasi
 ingredients related to meshes and polynomials to build dis
rete fun
tional spa
es and, inparti
ular, broken polynomial spa
es, (ii) the three key properties for the 
onvergen
e analy-sis of dG methods in the 
ontext of non
onforming �nite elements, namely dis
rete stability,
onsisten
y, and boundedness, (iii) the basi
 analysis tools, in parti
ular inverse and tra
e in-equalities needed to assert dis
rete stability and boundedness, together with optimal polynomialapproximation results, thereby leading to the 
on
ept of admissible mesh sequen
es. We fo
uson mesh re�nement as the main parameter to a
hieve 
onvergen
e. Convergen
e analysis using,e.g., high-degree polynomials is possible; important tools in this dire
tion 
an be found, in the
ontext of dG methods, in the re
ent textbook of Hesthaven and Warburton [59℄.Se
tion 3 fo
uses on the steady adve
tion-rea
tion equation as a simple �rst-order modelproblem. Therein, we indetify some key ideas to design dG methods. Two methods are analyzed,whi
h 
orrespond in the �nite volume terminology to the use of 
entered and upwind �uxes.Se
tion 4 is 
on
erned with the Poisson problem as the basi
 model problem with di�usion.We �rst present a heuristi
 derivation and a 
onvergen
e analysis to smooth solutions using theSymmetri
 Interior Penalty (SIP) dG method of Arnold [2℄. Then, we introdu
e the 
on
ept ofdis
rete gradients and present some important appli
ations, in
luding the link with the mixeddG approa
h and the lo
al formulation of the dis
rete problem using numeri
al �uxes.Se
tion 5 is devoted to in
ompressible �ows. Fo
using �rst on the steady Stokes equations,we examine how the divergen
e-free 
onstraint on the velo
ity �eld 
an be ta
kled using dGmethods. We detail the analysis of equal-order approximations using both dis
ontinuous ve-lo
ities and pressures, whereby pressure jumps need to be penalized, and then brie�y dis
ussalternative formulations avoiding the need for pressure jump penalty. The next step is thedis
retization of the nonlinear 
onve
tion term in the momentum equation. To this purpose,we derive a dis
rete trilinear form that leads to the 
orre
t kineti
 energy balan
e, using the2



so-
alled Temam's devi
e to handle the fa
t that dis
rete velo
ities are only weakly divergen
e-free.2 Basi
 
on
eptsThis se
tion introdu
es the basi
 
on
epts to build dis
ontinuous Galerkin (dG) methods.2.1 The domain ΩTo simplify the presentation, we fo
us, throughout this le
tures notes, on polyhedra.De�nition 2.1 (Polyhedron in Rd). We say that the set P is a polyhedron in Rd if P is anopen, 
onne
ted, bounded subset of Rd su
h that its boundary ∂P is a �nite union of parts ofhyperplanes, say {Hi}1≤i≤nΩ
. Moreover, for all 1 ≤ i ≤ nΩ, at ea
h point in the interior of

∂P ∩Hi, the set P is assumed to lie on only one side of its boundary.Assumption 2.2 (Domain Ω). The domain Ω is a polyhedron in Rd. The boundary of Ω isdenoted by ∂Ω and its (unit) outward normal, whi
h is de�ned a.e. on ∂Ω, by n.The advantage of Assumption 2.2 is that polyhedra 
an be exa
tly 
overed by a mesh
onsisting of polyhedral elements. PDEs posed over domains with 
urved boundary 
an also beapproximated by dG methods using, e.g., isoparametri
 �nite elements to build the mesh near
urved boundaries as des
ribed, e.g., by Ciarlet [29, p. 224℄ and Brenner and S
ott [15, p. 117℄.2.2 MeshesThe �rst step is to dis
retize the domain Ω using a mesh. Various types of meshes 
an be
onsidered. We examine �rst the most familiar 
ase, that of simpli
ial meshes. Su
h meshesshould be familiar to the reader sin
e they are one of the key ingredients to build 
ontinuous�nite element spa
es.De�nition 2.3 (Simplex). Given a family {a0, . . . , ad} of (d+1) points in Rd su
h that the ve
-tors {a1−a0, . . . , ad−a0} are linearly independent, the interior of the 
onvex hull of {a0, . . . , ad}is 
alled a non-degenerate simplex of Rd, and the points {a0, . . . , ad} are 
alled its verti
es.By its de�nition, a non-degenerate simplex is an open subset of Rd. In dimension 1, a non-degenerate simplex is an interval, in dimension 2 a triangle, and in dimension 3 a tetrahedron.The unit simplex of Rd is the set
Sd :=

{
(x1, . . . , xd) ∈ Rd; ∀i ∈ {1, . . . , d}, xi > 0; x1 + . . .+ xd < 1

}
.Any non-degenerate simplex of Rd is the image of the unit simplex by a bije
tive a�ne trans-formation of Rd.De�nition 2.4 (Simplex fa
es). Let S be a non-degenerate simplex with verti
es {a0, . . . , ad}.For ea
h i ∈ {0, . . . , d}, the 
onvex hull of {a0, . . . , ad} \ {ai} is 
alled a fa
e of the simplex S.Thus, a non-degenerate simplex has (d + 1) fa
es, and, by 
onstru
tion, a simplex fa
e isa 
losed subset of Rd. A simplex fa
e has zero d-dimensional Hausdor� measure, but positive

(d − 1)-dimensional Hausdor� measure. In dimension 2, a simplex fa
e is also 
alled an edge,while in dimension 1, a simplex fa
e is a point and its 0-dimensional Hausdor� measure is
onventionally set to 1.De�nition 2.5 (Simpli
ial mesh). A simpli
ial mesh T of the domain Ω is a �nite 
olle
tionof disjoint non-degenerate simpli
es T = {T } forming a partition of Ω,
Ω =

⋃

T∈T

T . (1)Ea
h T ∈ T is 
alled a mesh element. 3



While simpli
ial meshes are quite 
onvenient in the 
ontext of 
ontinuous �nite elements,dG methods more easily a

ommodate general meshes.De�nition 2.6 (General mesh). A general mesh T of the domain Ω is a �nite 
olle
tion ofdisjoint polyhedra T = {T } forming a partition of Ω as in (1). Ea
h T ∈ T is 
alled a meshelement.Obviously, a simpli
ial mesh is just a parti
ular 
ase of a general mesh.De�nition 2.7 (Element diameter, meshsize). Let T be a (general) mesh of the domain Ω.For all T ∈ T , hT denotes the diameter of T , and the meshsize is de�ned as the real number
h := max

T∈T
hT .We use the notation Th for a mesh T with meshsize h.De�nition 2.8 (Element outward normal). Let Th be a mesh of the domain Ω and let T ∈ Th.We de�ne nT a.e. on ∂T as the (unit) outward normal to T .Fa
es of a single polyhedral mesh element 
an be de�ned. Su
h fa
es are not needed in whatfollows, and we prefer to leave them unde�ned to avoid 
onfusion with the important 
on
eptof mesh fa
es introdu
ed in �2.3. (Mesh fa
es depend on the way neighboring mesh elements
ome into 
onta
t.)2.3 Mesh fa
es, averages, and jumpsThe 
on
epts of mesh fa
es, averages, and jumps play a 
entral role in the design and analysisof dG methods.De�nition 2.9 (Mesh fa
es). Let Th be a mesh of the domain Ω. We say that a (
losed) subset

F of Ω is a mesh fa
e if F has positive (d−1)-dimensional Hausdor� measure (in dimension 1,this means that F is nonempty) and if either one of the two following 
onditions is satis�ed:(i) There are distin
t mesh elements T1 and T2 su
h that F = ∂T1 ∩ ∂T2; in su
h a 
ase, Fis 
alled an interfa
e.(ii) There is T ∈ Th su
h that F = ∂T ∩ ∂Ω; in su
h a 
ase, F is 
alled a boundary fa
e.Interfa
es are 
olle
ted in the set F i
h, and boundary fa
es are 
olle
ted in the set Fb

h. Hen
eforth,we set
Fh := F i

h ∪ Fb
h.Moreover, for any mesh element T ∈ Th, the set

FT := {F ∈ Fh | F ⊂ ∂T }
olle
ts the mesh fa
es 
omposing the boundary of T . The maximum number of mesh fa
es
omposing the boundary of mesh elements is denoted by
N∂ := max

T∈Th

card(FT ). (2)Finally, for any mesh fa
e F ∈ Fh, we de�ne the set
TF := {T ∈ Th | F ⊂ ∂T } , (3)and observe that TF 
onsists of two mesh elements if F ∈ F i

h and of one mesh element if
F ∈ Fb

h. 4



Figure 2: Examples of interfa
e for a simpli
ial mesh (left) and a general mesh (right)
PSfrag repla
ements

v|T1

v|T2

JvK{{v}}

F

T1 T2Figure 3: One-dimensional example of average and jump operators; the fa
e redu
es to a pointseparating two adja
ent intervalsFigure 2 depi
ts an interfa
e between two mesh elements belonging to a simpli
ial mesh (left)or to a general mesh (right). We observe that in the 
ase of simpli
ial meshes, interfa
es arealways parts of hyperplanes, but this is not ne
essarily the 
ase for general meshes 
ontainingnon
onvex polyhedra. We now de�ne averages and jumps a
ross interfa
es of pie
ewise smoothfun
tions; 
f. Figure 3 for a one-dimensional illustration.De�nition 2.10 (Interfa
e averages and jumps). Let v be a s
alar-valued fun
tion de�ned on
Ω and assume that v is smooth enough to admit on all F ∈ F i

h a possibly two-valued tra
e. Thismeans that, for all T ∈ Th, the restri
tion v|T of v to the open set T 
an be de�ned up to theboundary ∂T . Then, for all F ∈ F i
h and a.e. x ∈ F , the average of v is de�ned as

{{v}}F (x) :=
1

2

(
v|T1

(x) + v|T2
(x)
)
,and the jump of v as

JvKF (x) := v|T1
(x) − v|T2

(x).When v is ve
tor-valued, the above average and jump operators a
t 
omponentwise on the fun
-tion v. Whenever no 
onfusion 
an arise, the subs
ript F and the variable x are omitted, andwe simply write {{v}} and JvK.De�nition 2.11 (Fa
e normals). For all F ∈ Fh and a.e. x ∈ F , we de�ne the (unit) normal
nF to F at x as(i) nT1

, the unit normal to F at x pointing from T1 to T2 if F ∈ F i
h with F = ∂T1 ∩ ∂T2; theorientation of nF is arbitrary depending on the 
hoi
e of T1 and T2, but kept �xed in whatfollows.(ii) n, the unit outward normal to Ω at x if F ∈ Fb

h.5



k d = 1 d = 2 d = 30 1 1 11 2 3 42 3 6 103 4 10 20Table 1: Dimension of the polynomial spa
e Pk
d for d ∈ {1, 2, 3} and k ∈ {0, 1, 2, 3}2.4 Broken polynomial spa
esAfter having built a mesh of the domain Ω, the se
ond step in the 
onstru
tion of dis
retefun
tion spa
es 
onsists in 
hoosing a 
ertain fun
tional behavior within ea
h mesh element.For the sake of simpli
ity, we restri
t ourselves to polynomial fun
tions; more general 
ases
an also be a

ommodated (see, e.g., Yuan and Shu [83℄). The resulting spa
es, 
onsisting ofpie
ewise polynomial fun
tions, are termed broken polynomial spa
es.Let k ≥ 0 be an integer. We fo
us for simpli
ity on the simplest polynomial spa
e 
onsistingof polynomials of d variables of total degree at most k. Letting

Am
d :=

{
α ∈ Nd | |α|ℓ1 ≤ m

}
, |α|ℓ1 :=

d∑

i=1

αi, (4)this polynomial spa
e is de�ned asPk
d :=




p : Rd ∋ x 7→ p(x) ∈ R | ∃{γα}α∈Ak
d
∈ Rcard(Ak

d) s.t. p(x) =
∑

α∈Ak
d

γαx
α




 ,with the 
onvention that, for x = (x1, . . . , xd) ∈ Rd, xα :=
∏d

i=1 x
αi

i . The dimension of theve
tor spa
e Pk
d is

dim(Pk
d) = card(Ak

d) =

(
k + d
k

)
=

(k + d)!

k!d!
. (5)The �rst few values of dim(Pk

d) are listed in Table 1.We 
onsider the broken polynomial spa
ePk
d(Th) :=

{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Pk

d(T )
}
, (6)where Pk

d(T ) is spanned by the restri
tion to T of polynomials in Pk
d. It is 
lear that

dim(Pk
d(Th)) = card(Th) × dim(Pk

d),sin
e the restri
tion of a fun
tion v ∈ Pk
d(Th) to ea
h mesh element 
an be 
hosen independentlyof its restri
tion to other elements.2.5 Abstra
t non
onforming error analysisThe goal of this se
tion is to present the key ingredients for the error analysis when approxi-mating linear model problems by dG methods. The error analysis presented in this se
tion isderived in the spirit of Strang's Se
ond Lemma [77℄ (see also Ern and Guermond [49, �2.3℄).The three ingredients are (i) dis
rete stability, (ii) (strong) 
onsisten
y, and (iii) boundedness.2.5.1 Well-posedness for linear model problemsLet X and Y be two Bana
h spa
es equipped with their respe
tive norms ‖·‖X and ‖·‖Y andassume that Y is re�exive. In many appli
ations, X and Y are a
tually Hilbert spa
es. We6



re
all that L(X,Y ) is the ve
tor spa
e spanned by bounded linear operators from X to Y , andthat this spa
e is equipped with the usual norm
‖A‖L(X,Y ) := sup

v∈X\{0}

‖Av‖Y

‖v‖X
∀A ∈ L(X,Y ).We are interested in the abstra
t linear model problemFind u ∈ X s.t. a(u,w) = 〈f, w〉Y ′,Y for all w ∈ Y , (7)where a ∈ L(X × Y,R) is a bounded bilinear form, f ∈ Y ′ := L(Y,R) is a bounded linear form,and 〈·, ·〉Y ′,Y denotes the duality pairing between Y ′ and Y .Problem (7) is said to be well-posed if it admits one and only one solution u ∈ X . The keyresult for asserting well-posedness is the so-
alled Bana
h�Ne£as�Babu²ka (BNB) Theorem. Westress that this result provides ne
essary and su�
ient 
onditions for well-posedness.Theorem 2.12 (Bana
h�Ne£as�Babu²ka (BNB)). Let X be a Bana
h spa
e and let Y be are�exive Bana
h spa
e. Let a ∈ L(X × Y,R) and let f ∈ Y ′. Then, problem (7) is well-posed ifand only if:(i) there is Csta > 0 su
h that

∀v ∈ X, Csta‖v‖X ≤ sup
w∈Y \{0}

a(v, w)

‖w‖Y
, (8)(ii) For all w ∈ Y ,

(∀v ∈ X, a(v, w) = 0) =⇒ (w = 0). (9)Moreover, the following a priori estimate holds true:
‖u‖X ≤

1

Csta
‖f‖Y ′ .Remark 2.13 (Inf-sup 
ondition). Condition (8) is often 
alled an inf-sup 
ondition sin
e it isequivalent to

Csta ≤ inf
v∈X\{0}

sup
w∈Y \{0}

a(v, w)

‖v‖X‖w‖Y
.A simpler, yet less general, 
ondition to assert the well-posedness of (7) is provided by theLax�Milgram Lemma [64℄. In this setting, X is a Hilbert spa
e, Y = X , and a 
oer
ivityproperty is invoked.Lemma 2.14 (Lax�Milgram). Let X be a Hilbert spa
e, let a ∈ L(X ×X,R), and let f ∈ X ′.Then, problem (7) is well-posed if the bilinear form a is 
oer
ive on X, that is, if there is

Csta > 0 su
h that
∀v ∈ X, Csta‖v‖

2
X ≤ a(v, v).Moreover, the following a priori estimate holds true:

‖u‖X ≤
1

Csta
‖f‖X′.2.5.2 The dis
rete problemLet Vh ⊂ L2(Ω) denote a �nite-dimensional fun
tion spa
e; typi
ally, Vh is a broken polynomialspa
e. We are interested in the dis
rete problemFind uh ∈ Vh s.t. ah(uh, wh) = lh(wh) for all wh ∈ Vh, (10)7



with dis
rete bilinear form ah de�ned (so far) only on Vh×Vh and dis
rete linear form lh de�nedon Vh. We observe that we 
onsider the so-
alled standard Galerkin approximation where thedis
rete trial and test spa
es 
oin
ide. Moreover, sin
e fun
tions in Vh 
an be dis
ontinuousa
ross mesh elements, Vh 6⊂ X and Vh 6⊂ Y in general; 
f., e.g., Lemma 2.34. In the terminologyof �nite elements, we say that the approximation is non
onforming.We are 
on
erned with model problems where Y →֒ L2(Ω) with dense and 
ontinuousinje
tion. Identifying L2(Ω) with its topologi
al dual spa
e L2(Ω)′ by means of the Riesz�Fré
het representation theorem, we are thus in the situation where
Y →֒ L2(Ω) ≡ L2(Ω)′ →֒ Y ′,with dense and 
ontinuous inje
tions. For simpli
ity, we assume that the datum f is in L2(Ω),so that the right-hand side of the model problem (7) be
omes (f, w)L2(Ω), while the right-handside of the dis
rete problem (10) be
omes

lh(wh) = (f, wh)L2(Ω).2.5.3 Dis
rete stabilityTo formulate dis
rete stability, we introdu
e a norm, say |||·|||, de�ned (at least) on Vh.De�nition 2.15 (Dis
rete stability). We say that the dis
rete bilinear form ah enjoys dis
retestability on Vh if there is Csta > 0, independent of h, su
h that
∀vh ∈ Vh, Csta|||vh||| ≤ sup

wh∈Vh\{0}

ah(vh, wh)

|||wh|||
. (11)Property (11) is referred to as a dis
rete inf-sup 
ondition sin
e it is equivalent to

Csta ≤ inf
vh∈Vh\{0}

sup
wh∈Vh\{0}

ah(vh, wh)

|||vh||| |||wh|||
.An important fa
t is that (11) is a ne
essary and su�
ient 
ondition for dis
rete well-posedness.Lemma 2.16 (Dis
rete well-posedness). The dis
rete problem (10) is well-posed if and only ifthe dis
rete inf-sup 
ondition (11) holds true.We observe that dis
rete well-posedness is equivalent to only one 
ondition, namely (11),while two 
onditions appear in the 
ontinuous 
ase. This is be
ause, in �nite dimension, inje
-tivity is equivalent to bije
tivity.A su�
ient, and often easily veri�ed, 
ondition for dis
rete stability is 
oer
ivity. Thisproperty 
an be stated as follows: There is Csta > 0 su
h that

∀vh ∈ Vh, Csta|||vh|||
2 ≤ ah(vh, vh). (12)Dis
rete 
oer
ivity implies the dis
rete inf-sup 
ondition (11) sin
e, for all vh ∈ Vh \ {0},

Csta|||vh||| ≤
ah(vh, vh)

|||vh|||
≤ sup

wh∈Vh\{0}

ah(vh, wh)

|||wh|||
.Property (12) is the dis
rete 
ounterpart of that invoked in the Lax�Milgram Lemma.2.5.4 Consisten
yFor the time being, we 
onsider a rather strong form of 
onsisten
y, namely that the exa
tsolution u satis�es the dis
rete equations in (10). To formulate 
onsisten
y, it is thus ne
essaryto plug the exa
t solution into the �rst argument of the dis
rete bilinear form ah, and this maynot be possible in general sin
e the dis
rete bilinear form ah is so far de�ned on Vh × Vh only.Therefore, we assume that there is a subspa
e X∗ ⊂ X su
h that the exa
t solution u belongsto X∗ and su
h that the dis
rete bilinear form ah 
an be extended to X∗×Vh (it is not possiblein general to extend ah to X × Vh). Consisten
y 
an now be formulated as follows.8



De�nition 2.17 (Consisten
y). We say that the dis
rete problem (10) is 
onsistent if for theexa
t solution u ∈ X∗,
ah(u,wh) = lh(wh) ∀wh ∈ Vh. (13)Remark 2.18 (Galerkin orthogonality). Consisten
y is equivalent to the usual Galerkin orthog-onality property often 
onsidered in the 
ontext of �nite element methods. Indeed, (13) holdstrue if and only if
ah(u − uh, wh) = 0 ∀wh ∈ Vh.2.5.5 BoundednessThe last ingredient in the error analysis is boundedness. We introdu
e the ve
tor spa
e

X∗h := X∗ + Vh,and observe that the approximation error (u− uh) belongs to this spa
e. We aim at measuringthe approximation error using the dis
rete stability norm |||·|||. Therefore, we assume in whatfollows that this norm 
an be extended to the spa
e X∗h. In the present setting, we want toassert boundedness in the produ
t spa
e X∗h×Vh, and not just in Vh ×Vh. It turns out that inmost situations, it is not possible to assert boundedness using only the dis
rete stability norm
|||·|||. This is the reason why we introdu
e a se
ond norm, say |||·|||∗.De�nition 2.19 (Boundedness). We say that the dis
rete bilinear form ah is bounded in
X∗h × Vh if there is Cbnd, independent of h, su
h that

∀(v, wh) ∈ X∗h × Vh, |ah(v, wh)| ≤ Cbnd|||v|||∗|||wh|||,for a norm |||·|||∗ de�ned on X∗h and su
h that, for all v ∈ X∗h, |||v||| ≤ |||v|||∗.2.5.6 Error estimateWe 
an now state the main result of this se
tion.Theorem 2.20 (Abstra
t error estimate). Let u solve (7) with f ∈ L2(Ω). Let uh solve (10).Let X∗ ⊂ X and assume that u ∈ X∗. Set X∗h = X∗ +Vh and assume that the dis
rete bilinearform ah 
an be extended to X∗h × Vh. Let |||·||| and |||·|||∗ be two norms de�ned on X∗h and su
hthat, for all v ∈ X∗h, |||v||| ≤ |||v|||∗. Assume that dis
rete stability, 
onsisten
y, and boundednesshold true. Then, the following error estimate holds true:
|||u − uh||| ≤ C inf

yh∈Vh

|||u− yh|||∗, (14)with C = 1 + C−1
staCbnd.Proof. Let yh ∈ Vh. Owing to dis
rete stability and 
onsisten
y,

|||uh − yh||| ≤ C−1
sta sup

wh∈Vh\{0}

ah(uh − yh, wh)

|||wh|||
= C−1

sta sup
wh∈Vh\{0}

ah(u− yh, wh)

|||wh|||
.Hen
e, owing to boundedness,

|||uh − yh||| ≤ C−1
staCbnd|||u − yh|||∗.Estimate (14) then results from the triangle inequality, the fa
t that |||u− yh||| ≤ |||u− yh|||∗, andthat yh is arbitrary in Vh.
9



2.6 Admissible mesh sequen
esThe goal of this se
tion is to derive some te
hni
al, yet important, tools to analyze the 
on-vergen
e of dG methods as the meshsize goes to zero. We are thus led to 
onsider a meshsequen
e
TH := (Th)h∈H,where H denotes a 
ountable subset of R>0 := {x ∈ R | x > 0} having 0 as only a

umu-lation point. The analysis tools are, on the one hand, inverse and tra
e inequalities that areinstrumental to assert dis
rete stability and boundedness uniformly in h and, on the other hand,optimal polynomial approximation properties so as to infer from error estimates of the form (14)

h-
onvergen
e rates for the approximation error whenever the exa
t solution is smooth enough.2.6.1 Shape and 
onta
t regularityA useful 
on
ept en
ountered in the 
ontext of 
onforming �nite element methods is that ofmat
hing simpli
ial meshes.De�nition 2.21 (Mat
hing simpli
ial mesh). We say that Th is a mat
hing simpli
ial mesh ifit is a simpli
ial mesh and if for any T ∈ Th with verti
es {a0, . . . , ad}, the set ∂T ∩ ∂T ′ forany T ′ ∈ Th, T ′ 6= T , is the 
onvex hull of a (possibly empty) subset of {a0, . . . , ad}.For instan
e, in dimension 2, the set ∂T ∩ ∂T ′ for two distin
t elements of a mat
hingsimpli
ial mesh is either empty, or a 
ommon vertex, or a 
ommon edge of the two elements.We now turn to the mat
hing simpli
ial submesh of a general mesh.De�nition 2.22 (Mat
hing simpli
ial submesh). Let Th be a general mesh. We say that Sh isa mat
hing simpli
ial submesh of Th if(i) Sh is a mat
hing simpli
ial mesh,(ii) for all T ′ ∈ Sh, there is only one T ∈ Th su
h that T ′ ⊂ T ,(iii) for all F ′ ∈ Fh, the set 
olle
ting the mesh fa
es of Sh, there is at most one F ∈ Fh su
hthat F ′ ⊂ F .The simpli
es in Sh are 
alled subelements, and the mesh fa
es in Fh are 
alled subfa
es. Weset, for all T ∈ Th,
ST := {T ′ ∈ Sh | T ′ ⊂ T },

FT := {F ′ ∈ Fh | F ′ ⊂ ∂T }.We also set, for all F ∈ Fh,
FF := {F ′ ∈ Fh | F ′ ⊂ F}.Figure 4 illustrates the mat
hing simpli
ial submesh for two polygonal mesh elements, say

T1 and T2, that 
ome into 
onta
t. The triangular subelements 
omposing the sets ST1
and

ST2
are indi
ated by dashed lines. We observe that the mesh fa
e F = ∂T1 ∩ ∂T2 (highlightedin bold) is not a part of a hyperplane and that the set FF 
ontains two subfa
es.De�nition 2.23 (Shape and 
onta
t regularity). We say that the mesh sequen
e TH is shape-and 
onta
t-regular if for all h ∈ H, Th admits a mat
hing simpli
ial submesh Sh su
h that(i) the mesh sequen
e SH is shape-regular in the usual sense of Ciarlet [29℄, meaning thatthere is a parameter ̺1 > 0, independent of h, su
h that, for all T ′ ∈ Sh,

̺1hT ′ ≤ h♭
T ′ ,where hT ′ is the diameter of T ′ and h♭

T ′ the diameter of the largest ball ins
ribed in T ′,10



PSfrag repla
ementsT1

T2

FFigure 4: Two polygonal mesh elements that 
ome into 
onta
t with 
orresponding subelementsindi
ated by dashed lines and interfa
e indi
ated in bold(ii) there is a parameter ̺2 > 0, independent of h, su
h that, for all T ∈ Th and for all
T ′ ∈ ST ,

̺2hT ≤ hT ′ .Hen
eforth, the parameters ̺1 and ̺2 are 
alled the mesh regularity parameters and are 
olle
-tively denoted by the symbol ̺. Finally, if Th is itself mat
hing and simpli
ial, then Sh = Thand the only requirment is shape-regularity with parameter ̺1 > 0 independent of h.The two 
onditions in De�nition 2.23 allow one to 
ontrol the shape of the elements in Thand the way these elements 
ome into 
onta
t. Indeed, let TH be a shape- and 
onta
t-regularmesh sequen
e. Then, for all h ∈ H and all T ∈ Th,1. card(ST ) is bounded uniformly in h;2. card(FT ), card(FT ), and N∂ are bounded uniformly in h;3. all F ∈ FT , δF ≥ ̺1̺2hT , where δF denotes the diameter of F , and this implies that thediamters of neighboring mesh elements are uniformly 
omparable.2.6.2 Inverse and tra
e inequalitiesLemma 2.24 (Inverse inequality). Let TH be a shape- and 
onta
t-regular mesh sequen
e withregularity parameters ̺. Then, for all h ∈ H, all vh ∈ Pk
d(Th), and all T ∈ Th,

‖∇vh‖[L2(T )]d ≤ Cinvh
−1
T ‖vh‖L2(T ), (15)where Cinv only depends on ̺, d, and k.Lemma 2.25 (Dis
rete tra
e inequality). Let TH be a shape- and 
onta
t-regular mesh sequen
ewith regularity parameters ̺. Then, for all h ∈ H, all vh ∈ Pk

d(Th), all T ∈ Th, and all F ∈ FT ,
h

1/2

T ‖vh‖L2(F ) ≤ Ctr‖vh‖L2(T ), (16)where Ctr only depends on ̺, d, and k.2.6.3 Polynomial approximationTo infer from estimate (14) a 
onvergen
e rate in h for the approximation error (u−uh) measuredin the |||·|||-norm when the exa
t solution u is smooth enough, we need to estimate the right-handside given by
inf

yh∈Vh

|||u− yh|||∗,when Vh is typi
ally the broken polynomial spa
e Pk
d(Th) de�ned by (6); other broken polynomialspa
es 
an be 
onsidered. Sin
e uh ∈ Vh, we infer from (14) that

inf
yh∈Vh

|||u− yh||| ≤ |||u − uh||| ≤ C inf
yh∈Vh

|||u − yh|||∗. (17)11



De�nition 2.26 (Optimality, quasi-optimality, and suboptimality of the error estimate). Wesay that the error estimate (17) is(i) optimal if |||·||| = |||·|||∗,(ii) quasi-optimal if the two norms are di�erent, but the lower and upper bounds in (17)
onverge, for smooth enough u, at the same 
onvergen
e rate as h→ 0,(iii) suboptimal if the upper bound 
onverges at a slower rate 'than the lower bound.The analysis of the upper bound infyh∈Vh
|||u− yh|||∗ depends on the polynomial approxima-tion properties that 
an be a
hieved in the broken polynomial spa
e Vh. The approximationerror is measured using Sobolev norms that are de�ned in �2.7. In what follows, πh denotesthe L2(Ω)-orthogonal proje
tion onto Vh, that is, πh : L2(Ω) → Vh is de�ned so that, for all

v ∈ L2(Ω), πhv ∈ Vh with
(πhv, yh)L2(Ω) = (v, yh)L2(Ω) ∀yh ∈ Vh. (18)We observe that the restri
tion of πhv to a given mesh element T ∈ Th 
an be 
omputedindependently from other mesh elements. For instan
e, if Vh = Pk

d(Th), we obtain that, for all
T ∈ Th, πhv|T ∈ Pk

d(T ) is su
h that
(πhv|T , ξ)L2(T ) = (v, ξ)L2(T ) ∀ξ ∈ Pk

d(T ).De�nition 2.27 (Optimal polynomial approximation). We say that the mesh sequen
e TH hasoptimal polynomial approximation properties if, for all h ∈ H, all T ∈ Th, all polynomial degree
k, all s ∈ {0, . . . , k + 1}, and all v ∈ Hs(T ), there holds

|v − πhv|Hm(T ) ≤ C′
apph

s−m
T |v|Hs(T ) ∀m ∈ {0, . . . , s}, (19)where Capp is independent of both T and h. Moreover, for all F ∈ FT , there holds

‖v − πhv‖L2(F ) ≤ C′
apph

s−1/2

T |v|Hs(T ),and if s ≥ 2,
‖∇(v − πhv)|T ·nT ‖L2(F ) ≤ C′′

apph
s−3/2

T |v|Hs(T ),where C′
app and C′′

app are independent of both T and h.De�nition 2.28 (Admissible mesh sequen
es). We say that the mesh sequen
e TH is admissibleif it is shape- and 
onta
t-regular and if it has optimal polynomial approximation properties.On general meshes, asserting optimal polynomial approximation is a deli
ate question sin
ethis property depends on the shape of mesh elements. In pra
ti
e, meshes are generated bysu

essive re�nements of an initial mesh, and the shape of mesh elements depends on there�nement pro
edure. It is 
onvenient to identify su�
ient 
onditions on the mesh sequen
e
TH to assert optimal polynomial approximation in broken polynomial spa
es. One approa
his based on the star-shaped property with respe
t to a ball (see, e.g., Brenner and S
ott [15,Chapter 4℄).De�nition 2.29 (Star-shaped property with respe
t to a ball). We say that a polyhedron P isstar-shaped with respe
t to a ball if there is a ball BP ⊂ P su
h that, for all x ∈ P , the 
onvexhull of {x} ∪ BP is in
luded in P .Figure 5 displays two polyhedra. The one on the left is star-shaped with respe
t to the ballindi
ated in bla
k. Instead, the one on the right is not star-shaped with respe
t to any ball.Lemma 2.30 (Mesh sequen
es with star-shaped property). Let TH be a shape- and 
onta
t-regular mesh sequen
e. Assume that, for all h ∈ H and all T ∈ Th, the mesh element Tis star-shaped with respe
t to a ball with uniformly 
omparable diameter with respe
t to hT .Then, the mesh sequen
e TH is admissible. 12



Figure 5: Example (left) and 
ounter-example (right) of a polyhedron whi
h is star-shaped withrespe
t to a ballAnother su�
ient 
ondition ensuring optimal polynomial approximation, but somewhat lessgeneral than the star-shaped property, is that of �nitely shaped mesh sequen
es. A simple ex-ample is that of shape- and 
onta
t-regular mesh sequen
es whose elements are either simpli
esor parallelotopes in Rd.Lemma 2.31 (Finitely shaped mesh sequen
es). Let TH be a shape- and 
onta
t-regular meshsequen
e. Assume that TH is �nitely shaped in the sense that there is a �nite set R̂ = {T̂}whose elements are referen
e polyhedra in Rd and su
h that, for all h ∈ H, ea
h T ∈ Th is theimage of a referen
e polyhedron in R̂ by an a�ne bije
tive map FT . Then, the mesh sequen
e
TH is admissible.2.7 Some ba
kground on fun
tional analysisIn this se
tion, we brie�y present two important 
lasses of fun
tion spa
es, namely Lebesgueand Sobolev spa
es. We only state the basi
 properties of su
h spa
es, and we refer the readerto Evans [53, Chapter 5℄ or Brézis [16, Chapters 8 and 9℄ for further ba
kground. We alsointrodu
e broken Sobolev spa
es.2.7.1 Lebesgue spa
esWe 
onsider fun
tions v : Ω → R that are Lebesgue measurable and we denote by ∫Ω v the(Lebesgue) integral of v over Ω. Let 1 ≤ p ≤ ∞ be a real number. We set

‖v‖Lp(Ω) :=

(∫

Ω

|v|p
)1/p

1 ≤ p <∞,and
‖v‖L∞(Ω) := sup ess{|v(x)| a.e. x ∈ Ω}

= inf{M > 0 | |v(x)| ≤M a.e. x ∈ Ω}.In either 
ase, we de�ne the Lebesgue spa
e
Lp(Ω) := {v Lebesgue measurable | ‖v‖Lp(Ω) <∞}.Equipped with the norm ‖·‖Lp(Ω), Lp(Ω) is a Bana
h spa
e for all 1 ≤ p ≤ ∞ (see Evans [53,p. 249℄ or Brézis [16, p. 150℄). In the parti
ular 
ase p = 2, L2(Ω) is a (real) Hilbert spa
e whenequipped with the s
alar produ
t

(v, w)L2(Ω) :=

∫

Ω

vw.The Cau
hy�S
hwarz inequality states that, for all v, w ∈ L2(Ω),
(v, w)L2(Ω) ≤ ‖v‖L2(Ω)‖w‖L2(Ω).13



2.7.2 Sobolev spa
esOn the Cartesian basis of Rd with 
oordinates (x1, . . . , xd), the symbol ∂i with i ∈ {1, . . . , d}denotes the distributional partial derivative with respe
t to xi. For a d-uple α ∈ Nd, ∂αvdenotes the distributional derivative ∂α1

1 . . . ∂αd

d v of v, with the 
onvention that ∂(0,...,0)v = v.Let m ≥ 0 be an integer. We de�ne the Sobolev spa
e
Hm(Ω) =

{
v ∈ L2(Ω) | ∀α ∈ Am

d , ∂
αv ∈ L2(Ω)

}
,with Am

d de�ned by (4). Hm(Ω) is a Hilbert spa
e when equipped with the s
alar produ
t
(v, w)Hm(Ω) :=

∑

α∈Am
d

(∂αv, ∂αw)L2(Ω),leading to the norm and seminorm
‖v‖Hm(Ω) :=




∑

α∈Am
d

‖∂αv‖2
L2(Ω)





1/2

, |v|Hm(Ω) :=




∑

α∈A
m

d

‖∂αv‖2
L2(Ω)





1/2

.The seminorm is obtained by restri
ting the summation to the set Am

d :=
{
α ∈ Nd | |α|ℓ1 = m

},that is, by keeping only the derivatives of global orderm. To allow for a more 
ompa
t notationin the 
ase m = 1, we 
onsider the gradient ∇v = (∂1v, . . . , ∂dv)
t with values in Rd, yielding

(v, w)H1(Ω) = (v, w)L2(Ω) + (∇v,∇w)[L2(Ω)]d .Boundary values of fun
tions in the Sobolev spa
e H1(Ω) 
an be given a meaning (at least) in
L2(∂Ω). More pre
isely (see, e.g., Brenner and S
ott [15, Chap. 1℄), there is C su
h that

‖v‖L2(∂Ω) ≤ C‖v‖
1/2

L2(Ω)‖v‖
1/2

H1(Ω) ∀v ∈ H1(Ω). (20)2.7.3 Broken Sobolev spa
es and broken gradientLet Th be a mesh of the domain Ω. For any mesh element T ∈ Th, the Sobolev spa
es Hm(T )
an be de�ned as above by repla
ing Ω by T . We then de�ne the broken Sobolev spa
es
Hm(Th) :=

{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Hm(T )

}
, (21)(22)where m ≥ 0 is an integer. It is natural to de�ne a broken gradient operator a
ting on thebroken Sobolev spa
e H1(Th). In parti
ular, this operator also a
ts on broken polynomialspa
es.De�nition 2.32 (Broken gradient). The broken gradient ∇h : H1(Th) → [L2(Ω)]d is de�nedsu
h that, for all v ∈ H1(Th),

∀T ∈ Th, (∇hv)|T := ∇(v|T ). (23)In what follows, we drop the index h in the broken gradient when this operator appears insidean integral over a �xed mesh element T ∈ Th.It is important to observe that the usual Sobolev spa
es are subspa
es of the broken Sobolevspa
es, and that on the usual Sobolev spa
es, the broken gradient 
oin
ides with the distribu-tional gradient.Lemma 2.33 (Broken gradient on usual Sobolev spa
es). Let m ≥ 0. There holds Hm(Ω) ⊂
Hm(Th). Moreover, for all v ∈ H1(Ω), ∇hv = ∇v in [L2(Ω)]d.14



The reverse in
lusion of Lemma 2.33 does not hold true in general (ex
ept obviously for
m = 0). The reason is that fun
tions in the broken Sobolev spa
e H1(Th) 
an have nonzerojumps a
ross interfa
es, while fun
tions in the usual Sobolev spa
e H1(Ω) have zero jumpsa
ross interfa
es. We now give a pre
ise statement of this important result.Lemma 2.34 (Chara
terization of H1(Ω)). A fun
tion v ∈ H1(Th) belongs to H1(Ω) if andonly if

JvK = 0 ∀F ∈ F i
h. (24)3 Adve
tion-rea
tionThe steady adve
tion-rea
tion equation with homogeneous in�ow boundary 
ondition

β·∇u+ µu = f in Ω, (25a)
u = 0 on ∂Ω−, (25b)is one of the simplest model problems based on a linear, s
alar, steady �rst-order PDE. Here,the unknown fun
tion u is s
alar-valued and represents, e.g., a solute 
on
entration; β is theRd-valued adve
tive velo
ity, µ the rea
tion 
oe�
ient, f the sour
e term, and ∂Ω− denotes thein�ow part of the boundary of Ω, namely

∂Ω− := {x ∈ ∂Ω | β(x)·n(x) < 0} . (26)The goal of this se
tion is to design and analyze dG methods to approximate the modelproblem (25). Sin
e dG methods are essentially tailored to approximate PDEs in an L2-settingwhere dis
rete stability is enhan
ed by suitable least-squares penalties, the most natural weakformulation at the 
ontinuous level is that based on the 
on
ept of graph spa
e. Moreover, weformulate the boundary 
ondition (25b) weakly in the 
ontinuous problem sin
e this is the wayboundary 
onditions are enfor
ed in dG methods. Then, we present a step-by-step derivationof suitable dG bilinear forms that mat
h the dis
rete stability, 
onsisten
y, and boundednessproperties outlined in �2.5 for non
onforming �nite element error analysis. We also dis
ussan alternative viewpoint using lo
al (elementwise) problems and numeri
al �uxes. Two dGmethods are analyzed, resulting from the use of so-
alled 
entered or upwind �uxes.3.1 Assumptions on the dataWe assume that
µ ∈ L∞(Ω), β ∈ [Lip(Ω)]d, (27)where Lip(Ω) denotes the spa
e spanned by Lips
hitz 
ontinuous fun
tions, that is, v ∈ Lip(Ω)means that there is Lv su
h that, for all x, y ∈ Ω, |v(x)−v(y)| ≤ Lv|x−y| where |x−y| denotesthe Eu
lidean norm of (x − y) in Rd. The quantity Lv is 
alled the Lips
hitz module of v. Inwhat follows, we set Lβ := max1≤i≤d Lβi

. In addition to (27), we assume that there is a realnumber µ0 > 0 su
h that
Λ := µ−

1

2
∇·β ≥ µ0 a.e. in Ω. (28)Con
erning the sour
e term f , we assume that
f ∈ L2(Ω).Finally, we re
all that Ω is a polyhedron in Rd (
f. De�nition 2.1). This assumption is solelymade to fa
ilitate the meshing of Ω.We 
onsider a referen
e time τc and a referen
e velo
ity βc de�ned as

τc := {max(‖µ‖L∞(Ω), Lβ)}−1, βc := ‖β‖[L∞(Ω)]d . (29)15



Sin
e µ and Lβ s
ale as the re
ipro
al of a time, τc 
an be interpreted as the (fastest) times
ale in the problem. Moreover, βc represents the maximum velo
ity. We observe that τc is�nite sin
e ‖µ‖L∞(Ω) = Lβ = 0 implies Λ = 0 whi
h 
ontradi
ts (28). We keep tra
k of theparameters τc and βc in the 
onvergen
e analysis of dG approximations. This allows us to workwith norms 
onsisting of terms having the same physi
al dimension. Keeping tra
k of theseparameters is also useful when dealing with singularly perturbed regimes. For simpli
ity, thereader 
an assume that both parameters are of order unity and dis
ard them in what follows.3.2 The 
ontinuous settingOur �rst goal is to spe
ify the fun
tional spa
e in whi
h the solution to the model problem (25) issought. Let C∞
0 (Ω) denote the spa
e of in�nitely di�erentiable fun
tions with 
ompa
t supportin Ω and re
all that this spa
e is dense in L2(Ω). For a fun
tion v ∈ L2(Ω), the statement

β·∇v ∈ L2(Ω) means that the linear form
C∞

0 (Ω) ∋ ϕ 7−→ −

∫

Ω

v∇·(βϕ) ∈ Ris bounded in L2(Ω), that is, there is Cv su
h that
∀ϕ ∈ C∞

0 (Ω),

∫

Ω

v∇·(βϕ) ≤ Cv‖ϕ‖L2(Ω).The fun
tion β·∇v is then de�ned as the fun
tion representing this linear form in L2(Ω) bymeans of the Riesz�Fré
het theorem.De�nition 3.1 (Graph spa
e). The graph spa
e is de�ned as
V :=

{
v ∈ L2(Ω) | β·∇v ∈ L2(Ω)

}
, (30)and is equipped with the natural s
alar produ
t: For all v, w ∈ V ,

(v, w)V := (v, w)L2(Ω) + (β·∇v, β·∇w)L2(Ω), (31)and the asso
iated graph norm ‖v‖V = (v, v)
1/2

V .Proposition 3.2 (Hilbertian stru
ture of graph spa
e). The graph spa
e V de�ned by (30) andequipped with the s
alar produ
t (31) is a Hilbert spa
e.The next step is to spe
ify mathemati
ally the meaning of the boundary 
ondition (25b).To this purpose, we need to investigate the tra
e on ∂Ω of fun
tions in the graph spa
e V . Ouraim is to give a meaning to su
h tra
es in the spa
e
L2(|β·n|; ∂Ω) :=

{
v is measurable on ∂Ω |

∫

∂Ω

|β·n|v2 <∞

}
. (32)Re
alling de�nition (26) of the in�ow boundary, we also de�ne the out�ow boundary as

∂Ω+ := {x ∈ ∂Ω | β(x)·n(x) > 0} ,and following [50℄, we assume that the in�ow and out�ow boundaries are well-separated, namely
dist(∂Ω−, ∂Ω+) := min

(x,y)∈∂Ω−×∂Ω+
|x− y| > 0.The following result is very important sin
e it allows us to de�ne tra
es of fun
tions belongingto the graph spa
e and to use an integration by parts formula.16



Lemma 3.3 (Tra
es and integration by parts). In the above framework, the tra
e operator
γ : C0(Ω) ∋ v 7−→ γ(v) := v|∂Ω ∈ L2(|β·n|; ∂Ω)extends 
ontinuously to V , meaning that there is Cγ su
h that, for all v ∈ V ,

‖γ(v)‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V .Moreover, the following integration by parts formula holds true: For all v, w ∈ V ,
∫

Ω

[(β·∇v)w + (β·∇w)v + (∇·β)vw] =

∫

∂Ω

(β·n)vw. (33)For a real number x, we de�ne its positive and negative parts respe
tively as
x⊕ :=

1

2
(|x| + x), x⊖ :=

1

2
(|x| − x). (34)We observe that both quantities are, by de�nition, nonnegative. We introdu
e the followingbilinear form: For all v, w ∈ V ,

a(v, w) :=

∫

Ω

µvw +

∫

Ω

(β·∇v)w +

∫

∂Ω

(β·n)⊖vw. (35)This bilinear form is bounded in V × V owing to Lemma 3.3. Pre
isely, for all v, w ∈ V , theCau
hy�S
hwarz inequality yields
|a(v, w)| ≤ (1 + ‖µ‖2

L∞(Ω))
1/2‖v‖V ‖w‖L2(Ω) + Cγ‖v‖V ‖w‖V .Using the graph spa
e V and the bilinear form a, the model problem (25) 
an be 
ast intothe weak form Find u ∈ V s.t. a(u,w) =

∫

Ω

fw for all w ∈ V . (36)This problem turns out to be well-posed (
f. Theorem 3.6). Before addressing this, we examinein whi
h sense does a solution to (36) solve the original problem (25). In parti
ular, we observethat the boundary 
ondition is weakly enfor
ed in (36).Proposition 3.4 (Chara
terization of the solution to (36)). Assume that u ∈ V solves (36).Then,
β·∇u+ µu = f a.e. in Ω, (37)

u = 0 a.e. in ∂Ω−. (38)An important (yet, not su�
ient) ingredient for the well-posedness of the weak problem (36)is the L2-
oer
ivity of a in the graph spa
e V .Lemma 3.5 (L2-
oer
ivity of a). The bilinear form a de�ned by (35) is L2-
oer
ive on V ,namely,
∀v ∈ V, a(v, v) ≥ µ0‖v‖

2
L2(Ω) +

∫

∂Ω

1

2
|β·n|v2. (39)Proof. This is a straightforward 
onsequen
e of assumption (28) and of the integration by partsformula (33) sin
e, for all v ∈ V ,

a(v, v) =

∫

Ω

(
µ−

1

2
∇·β

)
v2 +

∫

∂Ω

1

2
(β·n)v2 +

∫

∂Ω

(β·n)⊖v2

=

∫

Ω

Λv2 +

∫

∂Ω

1

2
|β·n|v2 ≥ µ0‖v‖

2
L2(Ω) +

∫

∂Ω

1

2
|β·n|v2,
ompleting the proof.A 
onsequen
e of Lemma 3.5 is that the weak problem (36) admits at most one solution.We are now in a position to state the main result of this theoreti
al se
tion.Theorem 3.6 (Well-posedness). Problem (36) is well-posed.17



PSfrag repla
ements β

Figure 6: Fitted (left) and un�tted (right) simpli
ial mesh; the partition PΩ 
onsists of twopolygons, and the exa
t solution 
an jump a
ross the thi
k line3.3 Centered �uxesThe goal of this se
tion is to design and analyze the simplest dG method to approximatethe model problem (36). Referring the reader to �2.5, the method is designed so as to be
onsistent, and a minimal dis
rete stability is ensured by L2-
oer
ivity. Using the terminologyof De�nition 2.26, the resulting error estimate turns out to be suboptimal. Alternatively, themethod 
an be viewed as based on the use of 
entered �uxes.We seek an approximate solution in the broken polynomial spa
e Pk
d(Th) de�ned by (6). Weassume k ≥ 1 and that Th belongs to an admissible mesh sequen
e. We set

Vh := Pk
d(Th)and 
onsider the dis
rete problem:Find uh ∈ Vh s.t. ah(uh, vh) =

∫

Ω

fvh for all vh ∈ Vh,for a dis
rete bilinear form ah yet to be designed.To analyze the method, we make a slightly more stringent regularity assumption on theexa
t solution u rather than just belonging to the graph spa
e V . This assumption is neededto formulate the 
onsisten
y of the method by dire
tly plugging in the exa
t solution into thedis
rete bilinear form ah. In parti
ular, we need to 
onsider the tra
e of the exa
t solution onea
h mesh fa
e.Assumption 3.7 (Regularity of exa
t solution and spa
e V∗). We assume that there is apartition PΩ = {Ωi}1≤i≤NΩ
of Ω into disjoint polyhedra su
h that, for the exa
t solution u,

u ∈ V∗ := V ∩H1(PΩ).In the spirit of �2.5, we set V∗h := V∗ + Vh.Assumption 3.7 implies that, for all T ∈ Th, the restri
tion u|T has tra
es a.e. on ea
h fa
e
F ∈ FT , and these tra
es belong to L2(F ).Lemma 3.8 (Jumps of u a
ross interfa
es). The exa
t solution u ∈ V∗ is su
h that, for all
F ∈ F i

h,
(β·nF )JuK(x) = 0 for a.e. x ∈ F . (40)Remark 3.9 (Singularities of exa
t solution). Condition (40) does not say anything on the jumpsof the exa
t solution a
ross interfa
es to whi
h the adve
tive velo
ity β is tangential. We alsoobserve that Assumption 3.7 does not require the mesh to be �tted to solution singularities,that is, both situations depi
ted in Figure 6 are admissible.18



3.3.1 Heuristi
 derivationThe main idea in the design of the dis
rete bilinear form ah is to mimi
 at the dis
rete levelthe L2-
oer
ivity that holds at the 
ontinuous level (
f. (39)), while, at the same time, ensuring
onsisten
y. Our starting point is a dis
rete bilinear form a
(0)
h simply derived from the exa
tbilinear form a by repla
ing the exa
t gradient by the broken gradient (
f. (23) for its de�nition),namely, we de�ne on V∗h × Vh,

a
(0)
h (v, wh) :=

∫

Ω

{
µvwh + (β·∇hv)wh

}
+

∫

∂Ω

(β·n)⊖vwh.That a(0)
h yields 
onsisten
y is 
lear sin
e the exa
t solution satis�es (37) and (38).Let us now fo
us on dis
rete 
oer
ivity. An important observation is that this property isnot transferred from a to a(0)

h . Indeed, integration by parts on ea
h mesh element yields, for all
vh ∈ Vh,

a
(0)
h (vh, vh) =

∫

Ω

{
µv2

h + (β·∇hvh)vh

}
+

∫

∂Ω

(β·n)⊖v2
h

=

∫

Ω

µv2
h +

∑

T∈Th

∫

T

(β·∇vh)vh +

∫

∂Ω

(β·n)⊖v2
h

=

∫

Ω

Λv2
h +

∑

T∈Th

∫

∂T

1

2
(β·nT )v2

h +

∫

∂Ω

(β·n)⊖v2
h,where we re
all that Λ = µ− 1

2∇·β and that nT denotes the outward normal to T on ∂T . These
ond term on the right-hand side 
an be reformulated as a sum over mesh fa
es. Indeed,exploiting the 
ontinuity of (the normal 
omponent of) β a
ross interfa
es leads to
∑

T∈Th

∫

∂T

1

2
(β·nT )v2

h =
∑

F∈Fi
h

∫

F

1

2
(β·nF )Jv2

hK +
∑

F∈Fb
h

∫

F

1

2
(β·n)v2

h.For all F ∈ F i
h with F = ∂T1 ∩ ∂T2, vi = vh|Ti

, i ∈ {1, 2}, there holds
1

2
Jv2

hK =
1

2
(v2

1 − v2
2) =

1

2
(v1 − v2)(v1 + v2) = JvhK{{vh}}.As a result,

a
(0)
h (vh, vh) =

∫

Ω

Λv2
h +

∑

F∈Fi
h

∫

F

(β·nF )JvhK{{vh}}

+
∑

F∈Fb
h

∫

F

1

2
(β·n)v2

h +

∫

∂Ω

(β·n)⊖v2
h,and 
ombining the two rightmost terms, we arrive at

a
(0)
h (vh, vh) =

∫

Ω

Λv2
h +

∑

F∈Fi
h

∫

F

(β·nF )JvhK{{vh}} +

∫

∂Ω

1

2
|β·n|v2

h.The se
ond term on the right-hand side, involving interfa
es, has no sign a priori. Therefore,it must be removed, and this 
an be a
hieved while maintaining 
onsisten
y if we set, for all
(v, wh) ∈ V∗h × Vh,

acf
h (v, wh) :=

∫

Ω

{
µvwh + (β·∇hv)wh

}
+

∫

∂Ω

(β·n)⊖vwh

−
∑

F∈Fi
h

∫

F

(β·nF )JvK{{wh}}, (41)19



sin
e (β·nF )JuK = 0 for all F ∈ F i
h owing to (40). The supers
ript indi
ates the use of 
entered�uxes, as detailed in �3.3.3.We 
an now summarize the properties of the dis
rete bilinear form acf

h established so far.The 
oer
ivity of acf
h is expressed using the following norm de�ned on V∗h:

|||v|||2cf := τ−1
c ‖v‖2

L2(Ω) +

∫

∂Ω

1

2
|β·n|v2, (42)with the time s
ale τc de�ned by (29). We observe that |||·|||cf is indeed a norm sin
e it 
ontrolsthe L2-norm.Lemma 3.10 (Consisten
y and dis
rete 
oer
ivity). The dis
rete bilinear form acf

h de�nedby (41)(i) is 
onsistent, namely for the exa
t solution u ∈ V∗,
acf

h (u, vh) =

∫

Ω

fvh ∀vh ∈ Vh,(ii) is 
oer
ive on Vh with respe
t to the |||·|||cf -norm, namely
∀vh ∈ Vh, acf

h (vh, vh) ≥ Csta|||vh|||
2
cf ,with Csta := min(1, τcµ0).Before pro
eeding further, we re
ord an equivalent expression of the dis
rete bilinear form

acf
h obtained after integrating by parts the adve
tive derivative in ea
h mesh element. Thisexpression is useful when introdu
ing the notion of �uxes in �3.3.3 and when analyzing the dGmethod based on upwinding in �3.4. For all (v, wh) ∈ V∗h × Vh, there holds

acf
h (v, wh) =

∫

Ω

{
(µ−∇·β)vwh − v(β·∇hwh)

}
+

∫

∂Ω

(β·n)⊕vwh

+
∑

F∈Fi
h

∫

F

(β·nF ){{v}}JwhK. (43)3.3.2 Error estimatesWe 
onsider the dis
rete problem:Find uh ∈ Vh s.t. acf
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (44)This problem is well-posed owing to the dis
rete 
oer
ivity of acf
h on Vh. Our goal is to estimatethe approximation error (u − uh) in the |||·|||cf -norm. The 
onvergen
e analysis is performed inthe spirit of Theorem 2.20. Owing to Lemma 3.10, it only remains to address the boundednessof the dis
rete bilinear form acf

h . To this purpose, we de�ne on V∗h the norm
|||v|||2cf,∗ = |||v|||2cf +

∑

T∈Th

τc‖β·∇v‖
2
L2(T ) +

∑

T∈Th

τcβ
2
ch

−1
T ‖v‖2

L2(∂T ),with time s
ale τc and referen
e velo
ity βc de�ned by (29). There holds
∀(v, wh) ∈ V∗h × Vh, acf

h (v, wh) ≤ Cbnd|||v|||cf,∗|||wh|||cf ,with Cbnd independent of h and of the data µ and β.20



Theorem 3.11 (Error estimate and 
onvergen
e rate). Let u solve (36) and let uh solve (44)where acf
h is de�ned by (41) and Vh = Pk

d(Th) with k ≥ 1 and Th belongs to an admissible meshsequen
e. Then, there holds
|||u − uh|||cf ≤ C inf

yh∈Vh

|||u − yh|||cf,∗, (45)with C independent of h and depending on the data only through the fa
tor {min(1, τcµ0)}
−1.Moreover, if u ∈ Hk+1(Ω),

|||u− uh|||cf ≤ Cuh
k, (46)with Cu = C‖u‖Hk+1(Ω).Estimate (46) yields the 
onvergen
e of the dG approximation for k ≥ 1. The result is notquasi-optimal, but suboptimal sin
e the L2-norm of the error should 
onverge with order (k+1)and the boundary 
ontribution with order (k + 1/2) if the exa
t solution is smooth enough. Asharper estimate is obtained in �3.4 using upwinding.3.3.3 Numeri
al �uxesIt is instru
tive to 
onsider an alternative viewpoint based on numeri
al �uxes. Be
ause we areworking with broken polynomial spa
es, the dis
rete problem (44) admits a lo
al formulationobtained by 
onsidering an arbitrary mesh element T ∈ Th and an arbitrary polynomial ξ ∈Pk

d(T ). For a set S ⊂ Ω, we denote by χS its 
hara
teristi
 fun
tion, namely
χS(x) =

{
1 if x ∈ S,

0 otherwise.Then, using the test fun
tion vh = ξχT in the dis
rete problem (44), observing that
JξχT K = ǫT,F ξ with ǫT,F := nT ·nF ,and owing to the expression (43) for the dis
rete bilinear form acf

h , we infer∫

T

{
(µ−∇·β)uhξ − uh(β·∇ξ)

}
+
∑

F∈FT

ǫT,F

∫

F

φF (uh)ξ =

∫

T

fξ, (47)where the numeri
al �uxes φF (uh) are given by
φF (uh) :=

{
(β·nF ){{uh}} if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h.The numeri
al �uxes φF (uh) are 
alled 
entered �uxes be
ause the average value of uh is used onea
h F ∈ F i

h. Sin
e these �uxes are single-valued and sin
e for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

ǫT1,F + ǫT2,F = 0, the lo
al formulation (47) is 
onservative in the sense that whatever ��ows�out of a mesh element through one of its fa
es ��ows� into the neighboring element throughthat fa
e. Finally, taking ξ ≡ 1 in (47) leads to the usual balan
e formulation en
ountered in�nite volume methods, namely
∫

T

(µ−∇·β)uh +
∑

F∈FT

ǫT,F

∫

F

φF (uh) =

∫

T

f.A useful 
on
ept in pra
ti
al implementations is that of sten
il.De�nition 3.12 (Sten
il). For a given element T ∈ Th, we de�ne the elementary sten
il
S(acf

h ;T ) asso
iated with the bilinear form acf
h as

S(acf
h ;T ) :=

{
T ′ ∈ Th | ∃q ∈ Pk

d(T ), ∃r ∈ Pk
d(T ′), acf

h (qχT , rχT ′ ) 6= 0
}
,where χT and χT ′ denote 
hara
teristi
 fun
tions.Owing to the lo
al formulation (47), the sten
il of a given element T ∈ Th 
onsists of Titself and its neighbors in the sense of fa
es. For instan
e, on a mat
hing simpli
ial mesh, thesten
il 
ontains (d+ 2) mesh elements; 
f. Figure 7 for a two-dimensional illustration.21



Figure 7: Example of sten
il of an element T ∈ Th when Th is a mat
hing triangular mesh; themesh element is highlighted in dark, and its three neighbors, whi
h all belong to the sten
il,are highlighted in light; the other triangles do not belong to the sten
il3.4 UpwindingThe goal of this se
tion is to strengthen the stability of the dG bilinear form so as to arrive atquasi-optimal error estimates in the sense of De�nition 2.26. This goal is a
hieved by penalizingin a least-squares sense the interfa
e jumps of the dis
rete solution. In terms of �uxes, thisapproa
h 
an be interpreted as upwinding. We keep assumptions (27) and (28) on the data µand β as well as Assumption 3.7 on the regularity of the exa
t solution u, but the polynomialdegree k is here su
h that k ≥ 0. For k = 0, the dG method 
onsidered in this se
tion 
oin
ideswith a �nite volume approximation with upwinding.The idea of presenting dG methods with upwinding through a suitable penalty of interfa
ejumps has been highlighted re
ently by Brezzi, Marini, and Süli [20℄. Therein, a quasi-optimalerror estimate on the L2-error and the jumps is derived, hinging on dis
rete 
oer
ivity toestablish stability. To tighten the error estimate further by in
luding an optimal bound on theadve
tive derivative of the error, a dis
rete inf-sup 
ondition is needed; this 
ondition, statedin �3.4.2, has been derived by Johnson and Pitkäranta [61℄.3.4.1 Tightened stability using penaltiesWe 
onsider the new bilinear form
aupw

h (vh, wh) := acf
h (vh, wh) + sh(vh, wh), (48)with the stabilization bilinear form

sh(vh, wh) =
∑

F∈Fi
h

∫

F

η

2
|β·nF |JvhKJwhK, (49)where η > 0 is a user-dependent parameter. Spe
i�
ally, using (41),

aupw
h (vh, wh) :=

∫

Ω

{
µvhwh + (β·∇hvh)wh

}
+

∫

∂Ω

(β·n)⊖vhwh (50)
−
∑

F∈Fi
h

∫

F

(β·nF )JvhK{{wh}} +
∑

F∈Fi
h

∫

F

η

2
|β·nF |JvhKJwhK,or, equivalently, using (43),

aupw
h (vh, wh) =

∫

Ω

{
(µ−∇·β)vhwh − vh(β·∇hwh)

}
+

∫

∂Ω

(β·n)⊕vhwh (51)
+
∑

F∈Fi
h

∫

F

(β·nF ){{vh}}JwhK +
∑

F∈Fi
h

∫

F

η

2
|β·nF |JvhKJwhK.22



We observe that the dis
rete bilinear forms acf
h and aupw

h lead to the same sten
il. The nu-meri
al �ux asso
iated with the dis
rete bilinear form aupw
h depends on the penalty parameter

η. Choosing η = 1 is parti
ularly interesting sin
e it leads to the usual upwind �uxes in the
ontext of �nite volume s
hemes. More generally, the dis
rete bilinear form aupw
h is hen
eforthreferred to as the upwind dG bilinear form.We 
onsider the dis
rete problem:Find uh ∈ Vh s.t. aupw

h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (52)We �rst examine the 
onsisten
y and dis
rete 
oer
ivity of the upwind dG bilinear form. Re-
alling de�nition (42) of the dis
rete 
oer
ivity norm |||·|||cf 
onsidered for 
entered �uxes, wenow assert 
oer
ivity with respe
t to the following stronger norm, also de�ned on V∗h:
|||v|||2uw♭ := |||v|||2cf +

∑

F∈Fi
h

∫

F

η

2
|β·nF |JvK

2. (53)Lemma 3.13 (Consisten
y and dis
rete 
oer
ivity). The upwind dG bilinear form aupw
h de�nedby (48)�(49)(i) is 
onsistent, namely for the exa
t solution u ∈ V∗,

aupw
h (u, vh) =

∫

Ω

fvh ∀vh ∈ Vh,(ii) is 
oer
ive on Vh with respe
t to the |||·|||uw♭-norm, namely
∀vh ∈ Vh, aupw

h (vh, vh) ≥ Csta|||vh|||
2
uw♭,with Csta = min(1, τcµ0) as in Lemma 3.10.The dis
rete 
oer
ivity of aupw

h on Vh implies the well-posedness of the dis
rete problem (52).3.4.2 Error estimates based on inf-sup stabilityRe
alling the de�nition (53) of the |||·|||uw♭-norm, we introdu
e the stronger norm
|||v|||2uw♯ := |||v|||2uw♭ +

∑

T∈Th

β−1
c hT ‖β·∇v‖

2
L2(T ).Lemma 3.14 (Dis
rete inf-sup 
ondition). Assume h ≤ βcτc. There is C′

sta > 0, independentof h, µ, and β, su
h that
∀vh ∈ Vh, C′

staCsta|||vh|||uw♯ ≤ sup
wh∈Vh\{0}

aupw
h (vh, wh)

|||wh|||uw♯
,with Csta = min(1, τcµ0) as in Lemma 3.13.To formulate a boundedness result, we de�ne the following norm:

|||v|||2uw♯,∗ := |||v|||2uw♯ +
∑

T∈Th

βc

(
h−1

T ‖v‖2
L2(T ) + ‖v‖2

L2(∂T )

)
.There holds

∀(v, wh) ∈ V∗h × Vh, |aupw
h (v, wh)| ≤ Cbnd|||v|||uw♯,∗|||wh|||uw♯,with C independent of h, µ, and β. 23



Theorem 3.15 (Error estimate and 
onvergen
e rate). Let u solve (36) and let uh solve (52)where aupw
h is de�ned by (50) and Vh = Pk

d(Th) with k ≥ 1 and Th belongs to an admissiblemesh sequen
e. Then, there holds
|||u − uh|||uw♯ ≤ C inf

yh∈Vh

|||u − yh|||uw♯,∗, (54)with C independent of h and depending on the data only through the fa
tor {min(1, τcµ0)}
−1.Moreover, if u ∈ Hk+1(Ω),

|||u− uh|||uw♯ ≤ Cuh
k+1/2, (55)with Cu = C‖u‖Hk+1(Ω).Estimate (55) improves estimate (46) by a fa
tor h1/2 for the L2-norm and sin
e it providesa quasi-optimal 
onvergen
e estimate for the adve
tive derivative.3.4.3 Numeri
al �uxesTo 
on
lude this se
tion, we examine how the additional penalty term on the interfa
e jumpsmodi�es the numeri
al �uxes. Pro
eeding as in �3.3.3, we obtain the following lo
al formulation:For all T ∈ Th and all ξ ∈ Pk

d(T ),
∫

T

{
(µ−∇·β)uhξ − uh(β·∇ξ)

}
+
∑

F∈FT

ǫT,F

∫

F

φF (uh)ξ =

∫

T

fξ, (56)where the numeri
al �uxes now take the form
φF (uh) =

{
β·nF {{uh}} + 1

2η|β·nF |JuhK if F ∈ F i
h,

(β·n)⊕uh if F ∈ Fb
h.The 
hoi
e η = 1 leads to the so-
alled upwind �uxes

φF (uh) =

{
β·nFu

↑
h if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h,where u↑h = uh|T1

if β·nF > 0 and u↑h = uh|T2
otherwise (re
all that F = ∂T1 ∩ ∂T2 and that

nF points from T1 toward T2). The upwind �uxes 
an also be written as
φF (uh) =

{
(β·nF )⊕uh|T1

− (β·nF )⊖uh|T2
if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h.4 Di�usionWe 
onsider the Poisson problem with homogeneous Diri
hlet boundary 
ondition

−△u = f in Ω, (57a)
u = 0 on ∂Ω, (57b)and sour
e term f ∈ L2(Ω).4.1 The 
ontinuous settingThe weak formulation of (57) is 
lassi
al:Find u ∈ V s.t. a(u, v) =

∫

Ω

fv for all v ∈ V , (58)24



with energy spa
e V = H1
0 (Ω) :=

{
v ∈ H1(Ω) | v|∂Ω = 0

} and bilinear form
a(u, v) :=

∫

Ω

∇u·∇v. (59)Re
alling the Poin
aré inequality (see, e.g., Evans [53, p. 265℄ or Brézis [16, p. 174℄) statingthat there is CΩ su
h that, for all v ∈ H1
0 (Ω),

‖v‖L2(Ω) ≤ CΩ‖∇v‖[L2(Ω)]d , (60)we infer that the bilinear form a is 
oer
ive on V . Therefore, owing to the Lax�Milgram Lemma,the weak problem (58) is well-posed.The PDE (57a) 
an be rewritten in mixed form as a system of �rst-order PDEs:
σ + ∇u = 0 in Ω, (61a)

∇·σ = f in Ω. (61b)De�nition 4.1 (Potential and di�usive �ux). In the 
ontext of the mixed formulation (61),the s
alar-valued fun
tion u is termed the potential and the ve
tor-valued fun
tion σ := −∇uis termed the di�usive �ux.The derivation of dG methods to approximate the model problems (57) on a given mesh Thhinges on the fa
t that the jumps of the potential and of the normal 
omponent of the di�usive�ux vanish a
ross interfa
es. To allow for a more 
ompa
t notation, we de�ne boundary averagesand jumps.De�nition 4.2 (Boundary averages and jumps). For a smooth enough fun
tion v, for all
F ∈ Fb

h, and for a.e. x ∈ F , we de�ne the average and jump of v as
{{v}}F (x) = JvKF (x) := v(x).The subs
ript as well as the dependen
e on x are omitted unless ne
essary.For simpli
ity, we enfor
e a somewhat strong regularity assumption on the exa
t solution.Assumption 4.3 (Regularity of exa
t solution and spa
e V∗). We assume that the exa
t solu-tion u is su
h that

u ∈ V∗ := V ∩H2(Ω).In the spirit of �2.5, we set V∗h := V∗ + Vh.Lemma 4.4 (Jumps of potential and di�usive �ux). Assume u ∈ V∗. Then, there holds
JuK = 0 ∀F ∈ Fh, (62a)

JσK·nF = 0 ∀F ∈ F i
h. (62b)4.2 Symmetri
 Interior PenaltyOur goal is to approximate the solution of the model problem (58) using dG methods in thebroken polynomial spa
e Pk

d(Th) de�ned by (6). We set
Vh := Pk

d(Th),with polynomial degree k ≥ 1 and where Th belongs to an admissible mesh sequen
e. Thefo
us of this se
tion is on a spe
i�
 dG method, the Symmetri
 Interior Penalty (SIP) methodintrodu
ed by Arnold [2℄. 25



4.2.1 Heuristi
 derivationTo derive a suitable dis
rete bilinear form, we loosely follow the same path of ideas as inSe
tion 3 aiming at a dis
rete bilinear form that satis�es the 
onsisten
y requirement (13) andenjoys dis
rete 
oer
ivity. Moreover, we add a (
onsistent) term to re
over, at the dis
rete level,the symmetry of the 
ontinuous problem.We begin lo
alizing gradients to mesh elements in the exa
t bilinear form a, that is, we set,for all vh, wh ∈ Vh,
a
(0)
h (vh, wh) :=

∫

Ω

∇hvh·∇hwh =
∑

T∈Th

∫

T

∇vh·∇wh.To examine the 
onsisten
y requirement (13), we integrate by parts on ea
h mesh element. Thisleads to
a
(0)
h (vh, wh) = −

∑

T∈Th

∫

T

(△vh)wh +
∑

T∈Th

∫

∂T

(∇vh·nT )wh.The se
ond term on the right-hand side 
an be reformulated as a sum over mesh fa
es in theform ∑

T∈Th

∫

∂T

(∇vh·nT )wh =
∑

F∈Fi
h

∫

F

J(∇hvh)whK·nF +
∑

F∈Fb
h

∫

F

(∇vh·nF )wh,sin
e for all F ∈ F i
h with F = ∂T1 ∩ ∂T2, nF = nT1

= −nT2
. Moreover,

J(∇hvh)whK = {{∇hvh}}JwhK + J∇hvhK{{wh}},sin
e letting ai = (∇vh)|Ti
, bi = wh|Ti

, i ∈ {1, 2}, yields
J(∇hvh)whK = a1b1 − a2b2

= 1
2 (a1 + a2)(b1 − b2) + (a1 − a2)

1
2 (b1 + b2)

= {{∇hvh}}JwhK + J∇hvhK{{wh}}.As a result, and a

ounting for boundary fa
es using De�nition 4.2, yields
∑

T∈Th

∫

∂T

(∇vh·nT )wh =
∑

F∈Fh

∫

F

{{∇hvh}}·nF JwhK +
∑

F∈Fi
h

∫

F

J∇hvhK·nF {{wh}}.Hen
e,
a
(0)
h (vh, wh) = −

∑

T∈Th

∫

T

(△vh)wh +
∑

F∈Fh

∫

F

{{∇hvh}}·nF JwhK

+
∑

F∈Fi
h

∫

F

J∇hvhK·nF {{wh}}. (63)To plug the exa
t solution u into the above expression, we extend the bilinear form a
(0)
h to

V∗h × Vh and set vh = u in (63). A 
onsequen
e of (62b) is that, for all wh ∈ Vh,
a
(0)
h (u,wh) =

∫

Ω

fwh +
∑

F∈Fh

∫

F

(∇u·nF )JwhK.In order to mat
h the 
onsisten
y requirement (13), we are prompted to modify a(0)
h as follows:For all (v, wh) ∈ V∗h × Vh,

a
(1)
h (v, wh) :=

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

{{∇hv}}·nF JwhK.26



It is 
lear that a(1)
h is 
onsistent in the sense of (13), i.e., for all wh ∈ Vh,

a
(1)
h (u,wh) =

∫

Ω

fwh.A desirable property of the dis
rete bilinear form is to preserve the original symmetry ofthe exa
t bilinear form. Indeed, symmetry 
an simplify the solution of the resulting linearsystem and furthermore, it is a natural ingredient to derive optimal L2-norm error estimates(
f. �4.2.4). In view of this remark, we set, for all (v, wh) ∈ V∗h × Vh,
acs

h (v, wh) :=

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

({{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF ) , (64)so that acs
h is symmetri
 on Vh × Vh The bilinear form acs

h remains 
onsistent owing to (62a).The supers
ript in acs
h indi
ates the 
onsisten
y and symmetry a
hieved so far. For future use,we re
ord the following equivalent expression of acs

h resulting from (63),
acs

h (v, wh) = −
∑

T∈Th

∫

T

(△v)wh +
∑

F∈Fi
h

∫

F

J∇hvK·nF {{wh}}

−
∑

F∈Fh

∫

F

JvK{{∇hwh}}·nF . (65)The last requirement to mat
h is dis
rete 
oer
ivity on the broken polynomial spa
e Vh withrespe
t to a suitable norm. The di�
ulty with the dis
rete bilinear form acs
h de�ned by (64) isthat, for all vh ∈ Vh,

acs
h (vh, vh) = ‖∇hvh‖

2
[L2(Ω)]d − 2

∑

F∈Fh

∫

F

{{∇hvh}}·nF JvhK,and the se
ond term on the right-hand side has no a priori sign. To a
hieve dis
rete 
oer
ivity,we add to acs
h a term penalizing interfa
e and boundary jumps, namely we set, for all (v, wh) ∈

V∗h × Vh,
asip

h (v, wh) := acs
h (v, wh) + sh(v, wh), (66)with the stabilization bilinear form

sh(v, wh) :=
∑

F∈Fh

η

hF

∫

F

JvKJwhK, (67)where η > 0 is a user-dependent parameter and hF a lo
al length s
ale asso
iated with themesh fa
e F ∈ Fh. We observe that, owing to (62a), adding the bilinear form sh to acs
h doesnot alter the 
onsisten
y and symmetry a
hieved so far. Moreover, Lemma 4.10 below showsthat, provided the penalty parameter η is large enough, the dis
rete bilinear form asip

h enjoysdis
rete 
oer
ivity on Vh.We now present a simple 
hoi
e for the lo
al length s
ale hF . Other 
hoi
es are possible;
f. Remark 4.6.De�nition 4.5 (Lo
al length s
ale hF ). For all F ∈ Fh, in dimension d ≥ 2, we set hF tobe equal to the diameter of the fa
e F , while, in dimension 1, we set hF := min(hT1
, hT2

) if
F ∈ F i

h with F = ∂T1 ∩ ∂T2 and hF := hT if F ∈ Fb
h with F = ∂T ∩ ∂Ω. In all 
ases, for amesh element T ∈ Th, hT denotes its diameter (
f. De�nition 2.7).Remark 4.6 (Lo
al length s
ale hF ). Other 
hoi
es are possible for the lo
al length s
ale hFweighting the fa
e penalties in the stabilization bilinear form sh, e.g., the 
hoi
e hF = {{h}} :=

1
2 (hT1

+ hT2
) for all F ∈ F i

h, or the 
hoi
e hF = {{|T |d}}
|F |d−1

(that is, the mean value of the d-dimensional Hausdor� measures of the neighboring elements divided by the (d−1)-dimensionalHausdor� measure of the fa
e, re
alling that for d = 1, |F |0 = 1). In
identally, we observe thatmodifying the 
hoi
e for the lo
al length s
ale impa
ts the value of the minimal threshold onthe penalty parameter η for whi
h dis
rete 
oer
ivity is a
hieved.27



Combining (66) with (67) yields, for all (v, wh) ∈ V∗h × Vh,
asip

h (v, wh) =

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

({{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF )

+
∑

F∈Fh

η

hF

∫

F

JvKJwhK, (68)or, equivalently using (65),
asip

h (v, wh) = −
∑

T∈Th

∫

T

(△v)wh +
∑

F∈Fi
h

∫

F

J∇hvK·nF {{wh}}

−
∑

F∈Fh

∫

F

JvK{{∇hwh}}·nF +
∑

F∈Fh

η

hF

∫

F

JvKJwhK. (69)Hen
eforth, asip
h is 
alled the SIP bilinear form. In the present 
ontext, interior penalty meansinterior as well as boundary penalties.De�nition 4.7 (Consisten
y, symmetry, and penalty terms). The se
ond, third, and fourthterms on the right-hand side of (68) are respe
tively 
alled 
onsisten
y, symmetry, and penaltyterms.4.2.2 The dis
rete problemThe dis
rete problem isFind uh ∈ Vh s.t. asip

h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (70)Lemma 4.10 below states that provided the penalty parameter η is large enough, the SIP bilinearform is 
oer
ive on Vh. Thus, owing to the Lax�Milgram Lemma, the dis
rete problem (70) iswell-posed. Moreover, a straightforward 
onsequen
e of the above derivation is 
onsisten
y.Lemma 4.8 (Consisten
y). Assume u ∈ V∗. Then, for all vh ∈ Vh,
asip

h (u, vh) =

∫

Ω

fvh.Remark 4.9 (Sten
il). With an eye toward implementation, we identify the elementary sten
il(
f. De�nition 3.12) asso
iated with the SIP bilinear form. For all T ∈ Th, the sten
il of thevolume 
ontribution is just the element T , while the sten
il asso
iated with the 
onsisten
y,symmetry, and penalty terms 
onsists of T and its neighbors in the sense of fa
es. Thus, theelementary sten
il is that depi
ted in Figure 7.4.2.3 Basi
 energy-error estimateLet u solve the weak problem (58) and let uh solve the dis
rete problem (70). The aim of thisse
tion is to estimate the approximation error (u− uh). The 
onvergen
e analysis is performedin the spirit of Theorem 2.20. We re
all that the spa
e V∗ is spe
i�ed in Assumption 4.3 andthat V∗h = V∗ + Vh.We aim at asserting dis
rete 
oer
ivity using the following norm: For all v ∈ V∗h,
|||v|||sip :=

(
‖∇hv‖

2
[L2(Ω)]d + |v|2J

)1/2

, (71)with the jump seminorm
|v|J := (η−1sh(v, v))

1/2 =

(
∑

F∈Fh

1

hF
‖JvK‖2

L2(F )

)1/2

. (72)28



We observe that |||·|||sip is indeed a norm on V∗h, and even on the broken Sobolev spa
e H1(Th).The only nontrivial property to 
he
k is whether, for all v ∈ H1(Th), |||v|||sip = 0 implies v = 0.Clearly, |||v|||sip = 0 implies ‖∇hv‖[L2(Ω)]d = 0 and |v|J = 0. The �rst property yields ∇hv = 0so that v is pie
ewise 
onstant. The se
ond property implies that the interfa
e and boundaryjumps of v vanish. Hen
e, v = 0.We 
an now turn to the dis
rete 
oer
ivity of the SIP bilinear form. We re
all that N∂,de�ned by (2), denotes the maximum number of mesh fa
es 
omposing the boundary of ageneri
 mesh element and that this quantity is bounded uniformly in h.Lemma 4.10 (Dis
rete 
oer
ivity). For all η > η := C2
trN∂ where Ctr results from the dis
retetra
e inequality (16) and the parameter N∂ is de�ned by (2), the SIP bilinear form de�nedby (68) is 
oer
ive on Vh with respe
t to the |||·|||sip-norm, i.e.,

∀vh ∈ Vh, asip
h (vh, vh) ≥ Cη|||vh|||

2
sip,with Cη := (η − C2

trN∂)(1 + η)−1.We de�ne on V∗h the norm
|||v|||sip,∗ :=

(
|||v|||2sip +

∑

T∈Th

hT ‖∇v|T ·nT ‖
2
L2(∂T )

)1/2

. (73)There is Cbnd, independent of h, su
h that
∀(v, wh) ∈ V∗h × Vh, asip

h (v, wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip. (74)Theorem 4.11 (|||·|||sip-norm error estimate and 
onvergen
e rate). Let u ∈ V∗ solve (58). Let
uh solve (70) with asip

h de�ned by (68) and penalty parameter as in Lemma 4.10. Then, thereis C, independent of h, su
h that
|||u− uh|||sip ≤ C inf

vh∈Vh

|||u − vh|||sip,∗. (75)Moreover, if u ∈ Hk+1(Ω),
|||u − uh|||sip ≤ Cuh

k, (76)with Cu = C‖u‖Hk+1(Ω).4.2.4 L2-norm error estimateTo derive an optimal L2-norm error estimate, it is possible to resort to a duality argument (theso-
alled Aubin�Nits
he argument [4℄) under the following assumption.De�nition 4.12 (Ellipti
 regularity). We say that ellipti
 regularity holds true for the modelproblem (58) if there is Cell, only depending on Ω, su
h that, for all ψ ∈ L2(Ω), the solution tothe problem: Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫

Ω

ψv for all v ∈ H1
0 (Ω),is in V∗ and satis�es

‖ζ‖H2(Ω) ≤ Cell‖ψ‖L2(Ω).Ellipti
 regularity 
an be asserted if, for instan
e, the polygonal domain Ω is 
onvex; seeGrisvard [57℄.Theorem 4.13 (L2-norm error estimate). Let u ∈ V∗ solve (58). Let uh solve (70) with asip
hde�ned by (68). Assume ellipti
 regularity. Then, there is C, independent of h, su
h that

‖u− uh‖L2(Ω) ≤ Ch|||u − uh|||sip,∗. (77)Therefore, under the hypotheses of Theorem 4.11 and if u ∈ Hk+1(Ω),
‖u− uh‖L2(Ω) ≤ Cuh

k+1, (78)with Cu = C‖u‖Hk+1(Ω). 29



Estimate (78) is optimal. We emphasize that the symmetry of asip
h is used in the proof ofTheorem 4.13.4.3 Liftings and dis
rete gradientsLiftings are operators that map s
alar-valued fun
tions de�ned on mesh fa
es to ve
tor-valuedfun
tions de�ned on mesh elements. In the 
ontext of dG methods, liftings a
t on interfa
e andboundary jumps. They were introdu
ed by Bassi, Rebay, Mariotti, Pedinotti, and Savini [10, 11℄in the 
ontext of 
ompressible �ows and analyzed by Brezzi, Manzini, Marini, Pietra, andRusso [18, 19℄ in the 
ontext of the Poisson problem (see also Perugia and S
hötzau [73℄ for the

hp-analysis). Liftings have many useful appli
ations. They 
an be 
ombined with the brokengradient to de�ne dis
rete gradients. Dis
rete gradients play an important role in the design andanalysis of dG methods. Indeed, they 
an be used to formulate the dis
rete problem lo
ally onea
h mesh element using numeri
al �uxes. Moreover, they are instrumental in the derivation ofdis
rete fun
tional analysis results, that, in turn, play a 
entral role in the 
onvergen
e analysisto minimal regularity solutions (see Di Pietro and Ern [46℄). Liftings 
an also be employedto de�ne the stabilization bilinear form [11℄, yielding a more 
onvenient lower bound for thepenalty parameter η.4.3.1 Main de�nitionsAs before, we assume that the mesh Th belongs to an admissible mesh sequen
e. For any meshfa
e F ∈ Fh and for any integer l ≥ 0, we de�ne the (lo
al) lifting operator
rl
F : L2(F ) −→ [Pl

d(Th)]das follows: For all ϕ ∈ L2(F ),
∫

Ω

rl
F (ϕ)·τh =

∫

F

{{τh}}·nFϕ ∀τh ∈ [Pl
d(Th)]d. (79)We observe that the support of rl

F (φ) 
onsists of the one or two mesh elements of whi
h F ispart of the boundary; using the set TF de�ned by (3) yields
supp(rl

F ) =
⋃

T∈TF

T . (80)Moreover, whenever the mesh fa
e F is a portion of a hyperplane (this happens, for instan
e,when working with simpli
ial meshes or with general meshes 
onsisting of 
onvex elements),
rl
F (ϕ) is 
olinear to the normal ve
tor nF .For any integer l ≥ 0 and for any fun
tion v ∈ H1(Th), we de�ne the (global) lifting of itsinterfa
e and boundary jumps as

Rl
h(JvK) :=

∑

F∈Fh

rl
F (JvK) ∈ [Pl

d(Th)]d, (81)being impli
itly understood that rl
F a
ts on the fun
tion JvKF (whi
h is in L2(F ) sin
e v ∈

H1(Th)).For any integer l ≥ 0, we de�ne the dis
rete gradient operator
Gl

h : H1(Th) −→ [L2(Ω)]d,as follows: For all v ∈ H1(Th),
Gl

h(v) := ∇hv − Rl
h(JvK). (82)30



4.3.2 Reformulation of the SIP bilinear formLet l ∈ {k− 1, k} and set, as in �4.2, Vh = Pk
d(Th) where k ≥ 1 and Th belongs to an admissiblemesh sequen
e. The bilinear form acs

h 
an be equivalently written as follows: For all vh, wh ∈ Vh,
acs

h (vh, wh) =

∫

Ω

∇hvh·∇hwh −

∫

Ω

∇hvh·R
l
h(JwhK) −

∫

Ω

∇hwh·R
l
h(JvhK). (83)This results from de�nitions (79) and (81) and the fa
t that ∇hvh and ∇hwh are in [Pl

d(Th)]dsin
e l ≥ k − 1, so that, for all F ∈ Fh,
∫

F

{{∇hvh}}·nF JwhK =

∫

Ω

∇hvh· r
l
F (JwhK).Starting from (83) and using the de�nition (82) of the dis
rete gradient, we infer, for all vh, wh ∈

Vh,
acs

h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) −

∫

Ω

Rl
h(JvhK)·Rl

h(JwhK).As a result, re
alling that the SIP bilinear form 
onsidered in �4.2 is su
h that asip
h = acs

h + shwith sh de�ned by (67), we obtain, for all vh, wh ∈ Vh,
asip

h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) + ŝsiph (vh, wh), (84)with
ŝsiph (vh, wh) :=

∑

F∈Fh

η

hF

∫

F

JvhKJwhK −

∫

Ω

Rl
h(JvhK)·Rl

h(JwhK). (85)The most natural 
hoi
e for l appears to be l = k−1 sin
e the broken gradient is in [Pk−1
d (Th)]d.The 
hoi
e l = k 
an fa
ilitate the implementation of the method in that it allows one to usethe same polynomial basis for 
omputing the liftings and assembling the matrix.The interest in using dis
rete gradients to formulate dG methods has been re
ognized re-
ently in various 
ontexts, e.g., by Lew, Ne�, Sulsky, and Ortiz [68℄ and Ten Ey
k and Lew [80℄for linear and nonlinear elasti
ity, Bu�a and Ortner [21℄ and Burman and Ern [22℄ for nonlinearvariational problems, and the authors [46℄ for the Navier�Stokes equations.It is interesting to noti
e that, for all vh ∈ Vh,

asip
h (vh, vh) ≥ ‖Gl

h(vh)‖2
[L2(Ω)]d + (η − C2

trN∂)|vh|
2
J.In view of this result, the expression (84) for asip

h 
onsists of two terms, both yielding a nonneg-ative 
ontribution whenever wh = vh and, as in Lemma 4.10, η > C2
trN∂ . The �rst term 
an beseen as the dis
rete 
ounterpart of the exa
t bilinear form a (su
h that a(v, w) =

∫
Ω
∇v·∇w)and provides a 
ontrol on the dis
rete gradient in [L2(Ω)]d. The role of the se
ond term is tostrengthen the dis
rete stability of the method.Remark 4.14 (Extension to broken Sobolev spa
es). We emphasize that the de�nition (84)of asip

h is equivalent to (68) only at the dis
rete level. Di�eren
es o

ur when extending thede�nitions (68) and (84) to larger spa
es, e.g., broken Sobolev spa
es. The SIP bilinear formde�ned by (68) 
annot be extended to the minimum regularity spa
e H1(Ω) be
ause tra
es ofgradients on mesh fa
es are used. Instead, the bilinear form de�ned by (84) 
an be extendedto the broken Sobolev spa
e H1(Th). We denote this extension by ãsip
h . In
identally, ãsip

h is nolonger 
onsistent. For 
onvergen
e analysis to smooth solutions, Strang's First Lemma (see [77℄or, e.g., Braess [14, p. 106℄) dedi
ated to non
onsistent �nite element methods 
an be used,whereby the 
onsisten
y error is estimated for u ∈ Hk+1(Ω) as follows: For all vh ∈ Vh,
ãsip

h (u− uh, vh) =
∑

F∈Fh

∫

F

{{∇u− πh(∇u)}}·nF JvhK ≤ Cuh
k|vh|J,where πh denotes the L2-orthogonal proje
tion onto Vh. As a result, the 
onsisten
y error tendsoptimally to zero as the meshsize goes to zero.31



4.3.3 Numeri
al �uxesDis
ontinuous Galerkin methods 
an be viewed as high-order �nite volume methods. The aimof this se
tion is to identify the lo
al 
onservation properties asso
iated with dG methods.Su
h properties are important when the di�usive �ux is to be used as an adve
tive velo
ityin a transport problem, e.g., in the 
ontext of 
oupled porous media �ow and 
ontaminanttransport.Let T ∈ Th and let ξ ∈ Pk
d(T ). Integration by parts shows that, for the exa
t solution u,

∫

T

fξ = −

∫

T

(△u)ξ =

∫

T

∇u·∇ξ −

∫

∂T

(∇u·nT )ξ.Therefore, de�ning on ea
h mesh fa
e F ∈ Fh the exa
t �ux as
ΦF (u) := −∇u·nF , (86)and re
alling the notation ǫT,F = nT ·nF introdu
ed in �3.3.3, we infer

∫

T

∇u·∇ξ +
∑

F∈FT

ǫT,F

∫

F

ΦF (u)ξ =

∫

T

fξ.This is a lo
al 
onservation property satis�ed by the exa
t solution. Our goal is to identify asimilar relation satis�ed by the dis
rete solution uh solving (70). Using vh = ξχT as test fun
tionin (70) (where χT denotes the 
hara
teristi
 fun
tion of T ), observing that ∇h(ξχT ) = (∇ξ)χT ,and re
alling the de�nition (68) of asip
h , we obtain

∫

T

fξ = asip
h (uh, ξχT ) =

∫

T

∇uh·∇ξ −
∑

F∈FT

∫

F

{{∇huh}}·nF JξχT K

−
∑

F∈FT

∫

F

{{(∇ξ)χT }}·nF JuhK +
∑

F∈FT

η

hF

∫

F

JuhKJξχT K.Let l ∈ {k− 1, k}. The �rst and third terms on the right-hand side sum up to ∫
T
Gk−1

h (uh)·∇ξsin
e ∇ξ ∈ [Pk−1
d (T )]d and l ≥ k − 1, while in the se
ond and fourth terms, we observe that

JξχT K = ǫT,F ξ. As a result, for all T ∈ Th and all ξ ∈ Pk
d(T ),

∫

T

Gl
h(uh)·∇ξ +

∑

F∈FT

ǫT,F

∫

F

φF (uh)ξ =

∫

T

fξ, (87)with the numeri
al �ux φF (uh) de�ned as
φF (uh) := −{{∇huh}}·nF +

η

hF
JuhK. (88)We noti
e that the two 
ontributions to φF (uh) in (88) respe
tively stem from the 
onsisten
yterm and the penalty term (
f. De�nition 4.7). Equation (87) is the lo
al 
onservation propertysatis�ed by the dG approximation. Interestingly, the expression (88) is 
onsistent with (86)sin
e, for the exa
t solution u, φF (u) = ΦF (u). We also observe that the lo
al 
onservationproperty (87) is ri
her than that en
ountered in �nite volume methods, whi
h 
an be re
overedby just taking ξ ≡ 1, i.e.,

∑

F∈FT

ǫT,F

∫

F

φF (uh) =

∫

T

f. (89)4.4 Mixed dG methodsIn this se
tion, we dis
uss mixed dG methods, that is, dG approximations to the mixed formu-lation (61) with the homogeneous Diri
hlet boundary 
ondition (57b). Su
h methods produ
ean approximation uh for the potential u and an approximation σh for the di�usive �ux σ.32



De�nition 4.15 (Dis
rete potential and dis
rete di�usive �ux). The s
alar-valued fun
tion uhis termed the dis
rete potential and the ve
tor-valued fun
tion σh the dis
rete di�usive �ux.First, we reformulate the SIP method of �4.2 as a mixed dG method and show how thedis
rete di�usive �ux 
an be eliminated lo
ally. Then, we formulate more general mixed dGmethods in terms of lo
al problems using numeri
al �uxes for the dis
rete potential and thedi�usive �ux following Bassi, Rebay and 
oworkers [11, 10℄. This leads, in parti
ular, to theLDG methods introdu
ed by Co
kburn and Shu [43℄. In these methods, the dis
rete di�usive�ux 
an also be eliminated lo
ally. Finally, we dis
uss hybrid mixed dG methods methods whereadditional degrees of freedom are introdu
ed at interfa
es, thereby allowing one to eliminatelo
ally both the dis
rete potential and the dis
rete di�usive �ux.4.4.1 The SIP method as a mixed dG methodOne possible weak formulation of the mixed formulation (61) with the homogeneous Diri
hletboundary 
ondition (57b) 
onsists in �nding (σ, u) ∈ X := [L2(Ω)]d ×H1
0 (Ω) su
h that






m(σ, τ) + b(τ, u) = 0 ∀τ ∈ [L2(Ω)]d,

−b(σ, v) =

∫

Ω

fv ∀v ∈ H1
0 (Ω),

(90)where, for all σ, τ ∈ [L2(Ω)]d and for all v ∈ H1
0 (Ω), we have de�ned the bilinear forms

m(σ, τ) :=

∫

Ω

σ·τ, b(τ, v) :=

∫

Ω

τ ·∇v.It is easily seen that (σ, u) ∈ X solves (90) if and only if σ = −∇u and u solves the weakproblem (58).At the dis
rete level, a mixed dG approximation 
an be designed as follows. We 
onsidera polynomial degree k ≥ 1 for the approximation of the potential and 
hoose the polynomialdegree for the approximation of the di�usive �ux, say l, su
h that l ∈ {k − 1, k}. The relevantdis
rete spa
es are
Σh := [Pl

d(Th)]d, Uh := Pk
d(Th), Xh := Σh × Uh.The dis
rete problem 
onsists in �nding (σh, uh) ∈ Xh su
h that






m(σh, τh) + bh(τh, uh) = 0 ∀τh ∈ Σh,

−bh(σh, vh) + ŝsiph (uh, vh) =

∫

Ω

fvh ∀vh ∈ Uh,
(91)with dis
rete bilinear form

bh(τh, vh) :=

∫

Ω

τh·G
l
h(vh),where the dis
rete gradient operator Gl

h is de�ned by (82) and the stabilization bilinear form
ŝsiph by (85).Proposition 4.16 (Elimination of dis
rete di�usive �ux). The pair (σh, uh) ∈ Xh solves (91)if and only if

σh = −Gl
h(uh), (92)and uh ∈ Uh is su
h that

∫

Ω

Gl
h(uh)·Gl

h(vh) + ŝsiph (uh, vh) =

∫

Ω

fvh ∀vh ∈ Uh. (93)Proposition 4.16 shows that the mixed dG method (91) is in fa
t equivalent to a problemin the sole unknown uh. In parti
ular, the above 
hoi
e for bh and ŝsiph yields the SIP methodof �4.2. 33



4.4.2 Numeri
al �uxesWe fo
us for simpli
ity on equal-order approximations for the potential and the di�usive �ux,that is, we set l = k so that Σh := [Pk
d(Th)]d, while, as before, Uh := Pk

d(Th). Similarly to �4.3.3,we 
an derive a lo
al formulation by lo
alizing test fun
tions to a single mesh element. Let
T ∈ Th, let ζ ∈ [Pk

d(T )]d, and let ξ ∈ Pk
d(T ). Integrating by parts in T , splitting the boundaryintegral on ∂T as a sum over the mesh fa
es F ∈ FT , and setting ǫT,F = nT ·nF , we infer forthe exa
t solution that

∫

T

σ·ζ −

∫

T

u∇·ζ +
∑

F∈FT

ǫT,F

∫

F

uF (ζ·nF ) = 0,

−

∫

T

σ·∇ξ +
∑

F∈FT

ǫT,F

∫

F

(σF ·nF )ξ =

∫

T

fξ,sin
e σ = −∇u and ∇·σ = f . The tra
es uF and σF ·nF are single-valued on ea
h interfa
e;
f. Lemma 4.4. At the dis
rete level, the general form of the mixed dG approximation isderived by introdu
ing numeri
al �uxes for the dis
rete potential and for the dis
rete di�usive�ux. These two numeri
al �uxes, whi
h are denoted by ûF and σ̂F for all F ∈ Fh, are single-valued on ea
h F ∈ Fh. The numeri
al �ux ûF is s
alar-valued and the numeri
al �ux σ̂F isve
tor-valued. We obtain, for all T ∈ Th, all ζ ∈ [Pk
d(T )]d, and all ξ ∈ Pk

d(T ),
∫

T

σh·ζ −

∫

T

uh∇·ζ +
∑

F∈FT

ǫT,F

∫

F

ûF (ζ·nF ) = 0, (94a)
−

∫

T

σh·∇ξ +
∑

F∈FT

ǫT,F

∫

F

(σ̂F ·nF )ξ =

∫

T

fξ. (94b)For the SIP method, the numeri
al �uxes are given by
ûF =

{
{{uh}} ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(95a)
σ̂F = −{{∇huh}} + ηh−1

F JuhKnF ∀F ∈ Fh. (95b)A �rst possible variant of the SIP method 
onsists in keeping the de�nition (95a) for thenumeri
al �ux ûF and de�ning the numeri
al �ux σ̂F as
σ̂F = {{σh}} + ηh−1

F JuhKnF .The resulting dG method belongs to the 
lass of LDG methods. The dis
rete di�usive �ux
σh 
an still be eliminated lo
ally (sin
e the numeri
al �ux ûF only depends on uh), and thedis
rete potential uh ∈ Uh is su
h that

aldg
h (uh, vh) =

∫

Ω

fvh ∀vh ∈ Uh,with the dis
rete bilinear form
aldg

h (uh, vh) =

∫

Ω

∇huh·∇hvh −
∑

F∈Fh

∫

F

({{∇huh}}·nF JvhK + {{∇hvh}}·nF JuhK)

+

∫

Ω

Rk
h(JuhK)·Rk

h(JvhK) +
∑

F∈Fh

η

hF

∫

F

JuhKJvhK

=

∫

Ω

Gk
h(uh)·Gk

h(vh) +
∑

F∈Fh

η

hF

∫

F

JuhKJvhK.A ni
e feature of the dis
rete bilinear form aldg
h is that dis
rete 
oer
ivity holds on Uh withrespe
t to the |||·|||sip-norm for any η > 0 (a simple 
hoi
e is η = 1). The drawba
k is that34



the elementary sten
il asso
iated with the term ∫
Ω

Rk
h(JuhK)·Rk

h(JvhK) 
onsists of a given meshelement, its neighbors, and the neighbors of its neighbors in the sense of fa
es; 
f. Figure 8.Su
h a sten
il is 
onsiderably larger than that asso
iated with the SIP method (
ompare withFigure 7).

Figure 8: Example of LDG sten
il of an element T ∈ Th when Th is a mat
hing triangular mesh;the mesh element is highlighted in dark, and all the nine other elements, highlighted in light,also belong to the sten
ilMore general forms of the LDG method 
an be designed with the numeri
al �uxes
ûF =

{
{{uh}} + Υ·nF JuhK ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F =

{
{{σh}} − ΥJσhK·nF + ηh−1

F JuhKnF ∀F ∈ F i
h,

σh + ηh−1
F uhn ∀F ∈ Fb

h,where Υ is ve
tor-valued and η > 0 is s
alar-valued (in LDG methods, ηh−1
F is often denoted by

C11 and Υ by C12). Sin
e the numeri
al �ux ûF only depends on uh, the dis
rete di�usive �ux σh
an be eliminated lo
ally. The above form of the di�usive �uxes ensures symmetry and dis
retestability for the resulting dG method. A simple 
hoi
e for the penalty parameter is again η = 1,while the auxiliary ve
tor-parameter Υ 
an be freely 
hosen. LDG methods for the Poissonproblem have been extensively analyzed by Castillo, Co
kburn, Perugia, and S
hötzau [24℄.Variants of the LDG method aiming at redu
ing the sten
il have been dis
ussed by Sherwin,Kirby, Peiró, Taylor, and Zienkiewi
z [76℄, Peraire and Persson [72℄, and Castillo [25℄.A further variant of the SIP and LDG methods 
onsists in 
onsidering the numeri
al �uxes
ûF =

{
{{uh}} + ησJσhK·nF ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F = {{σh}} + ηuJuhKnF ∀F ∈ Fh.Here, the penalty parameters ηu and ησ are positive user-dependent real numbers, and a simple
hoi
e is to set ηu = ησ = 1. This method 
an be analyzed in the more general 
ontext ofFriedri
hs' systems (see Ern and Guermond [50℄). Be
ause the numeri
al �ux ûF depends on
σh, (94a) 
an no longer be used to express lo
ally the dis
rete di�usive �ux σh in terms ofthe dis
rete potential uh. This pre
ludes the lo
al elimination of σh and, therefore, enhan
esthe 
omputational 
ost of the approximation method. The approa
h presents, however, someadvantages sin
e it 
an be used with polynomial degree k = 0 and there is no minimal thresholdon the penalty parameters (apart from being positive). Moreover, the approximation on thedi�usive �ux is more a

urate yielding 
onvergen
e rates in the L2-norm of order hk+1/2 forsmooth solutions, as opposed to the 
onvergen
e rates of order hk delivered by the SIP method.Finally, we mention that an even more general presentation 
an allow for two-valued nu-meri
al �uxes at interfa
es; see Arnold, Brezzi, Co
kburn, and Marini [3℄ for a uni�ed analysisof dG methods. 35



4.4.3 Hybrid mixed dG methodsThe key idea in hybrid mixed dG methods is to introdu
e additional degrees of freedom atinterfa
es, thereby allowing one to eliminate lo
ally both the dis
rete potential and the dis
retedi�usive �ux. Herein, we fo
us on the HDG methods introdu
ed by Co
kburn, Gopalakrishnan,and Lazarov [31℄; see also Causin and Sa

o [27℄ for a di�erent approa
h based on a dis
ontinuousPetrov�Galerkin formulation, Droniou and Eymard [48℄ for similar ideas in the 
ontext of hybridmixed �nite volume s
hemes, and Ewing, Wang, and Yang for hybrid primal dG methods [54℄.In the HDG method, the additional degrees of freedom are used to enfor
e the 
ontinuityof the normal 
omponent of the dis
rete di�usive �ux. These additional degrees of freedom a
tas Lagrange multipliers in the dis
rete problem and 
an be interpreted as single-valued tra
esof the dis
rete potential on interfa
es. We introdu
e the dis
rete spa
e
Λh :=

⊕

F∈Fi
h

Pk
d−1(F ).A fun
tion µh ∈ Λh is su
h that, for all F ∈ F i

h, µh|F ∈ Pk
d−1(F ). The dis
rete unknowns

(σh, uh, λh) ∈ Σh×Uh×Λh satisfy the following lo
al problems: For all T ∈ Th, all ζ ∈ [Pk
d(T )]d,and all ξ ∈ Pk

d(T ),
∫

T

σh·ζ −

∫

T

uh∇·ζ +
∑

F∈FT

ǫT,F

∫

F

ûF (ζ·nF ) = 0, (96a)
−

∫

T

σh·∇ξ +
∑

F∈FT

ǫT,F

∫

F

(σ̂T,F ·nF )ξ =

∫

T

fξ, (96b)while normal di�usive �ux 
ontinuity is enfor
ed by setting, for all F ∈ FT ∩ F i
h and all

µ ∈ Pk
d−1(F ), ∫

F

Jσ̂T,F K·nFµ = 0. (97)Here, the numeri
al �uxes are su
h that
ûF =

{
λh ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(98a)
σ̂T,F = σh|T + τT (uh|T − ûF )nT ∀F ∈ Fh, (98b)with penalty parameter τT de�ned elementwise. We observe that (97) indeed enfor
es Jσ̂T,F K·nF =

0 for all F ∈ F i
h sin
e Jσ̂T,F K·nF ∈ Pk

d−1(F ). As a result, the quantity (σ̂T,F ·nF ) in (96b) isindeed single-valued.Lemma 4.17 (HDG as mixed dG method). Let (σh, uh, λh) ∈ Σh × Uh × Λh solve (96)�(97).Then, the pair (σh, uh) ∈ Σh × Uh solves the lo
al problems of the mixed dG formulation (94)with numeri
al �uxes su
h that, for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

ûF = {{uh}} + C12·JuhKnF + C22JσhK·nF , (99a)
σ̂F = {{σh}} + C11JuhKnF − C12JσhK·nF , (99b)with the parameters

C11 =
τ1τ2
τ1 + τ2

, C12 =
τ1 − τ2

2(τ1 + τ2)
nF , C22 =

1

τ1 + τ2
,where τi := τTi

, i ∈ {1, 2}. Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω, ûF = 0 and

σ̂F = σh + τTuh. 36



We observe that the numeri
al �ux ûF in (99a) depends on σh sin
e C22 6= 0. As a result,the dis
rete di�usive �ux 
annot be eliminated lo
ally to derive a dis
rete problem for thesole dis
rete potential. Instead, a 
omputationally e�
ient implementation of HDG methods
onsists in using (96) to eliminate lo
ally both the dis
rete potential and the dis
rete di�usive�ux, so as to obtain, using (97), a dis
rete problem where the sole unknown is λh ∈ Λh. For agiven interfa
e F ∈ F i
h with F = ∂T1 ∩ ∂T2, the sten
il asso
iated with this interfa
e is

S(F ) = {F ′ ∈ F i
h | F ′ ∈ FT1

∪ FT2
}.For mat
hing simpli
ial meshes, the set S(F ) generally 
ontains 5 interfa
es for d = 2 and 7interfa
es for d = 3.HDGmethods for ellipti
 problems have been analyzed by Co
kburn, Dong, and Guzmán [30℄and Co
kburn, Guzmán, and Wang [32℄ where error estimates in various norms are derived forvarious 
hoi
es of the penalty parameter τ . In parti
ular, L2-norm error estimates of order hk+1
an be derived both for the potential and the di�usive �ux for smooth solutions and polynomialorder k ≥ 0. Moreover, for k ≥ 1, a postpro
essed potential 
onverging at order hk+2 
an bederived, similarly to 
lassi
al mixed �nite element methods.5 In
ompressible �owsThe equations governing �uid motion are the Navier�Stokes equations, whi
h express the fun-damental laws of mass and momentum 
onservation. In their general form, these equations were�rst derived by Navier (1827) and Poisson (1831), while a more spe
i�
 derivation was foundby Saint-Venant (1843) and Stokes (1845) based on the assumption that the stresses are linearfun
tions of the strain rates (or deformation velo
ities), that is, for Newtonian �uids. In this
hapter, we are 
on
erned with the spe
ial 
ase of in
ompressible (that is, 
onstant density)Newtonian �ows, thereby leading to the so-
alled In
ompressible Navier�Stokes (INS) equa-tions. In these equations, the dependent variables are the velo
ity and the pressure. The mass
onservation equation enfor
es zero divergen
e on the velo
ity �eld (be
ause of in
ompressibil-ity), while the momentum 
onservation equation expresses the balan
e between di�usion (dueto vis
osity), nonlinear 
onve
tion, pressure gradient, and external for
ings.The main di�
ulties in the dis
retization of the steady INS equations are (i) the zero-divergen
e 
onstraint on the velo
ity and (ii) the 
ontribution of the nonlinear 
onve
tion termto the kineti
 energy balan
e. The �rst issue is addressed in �5.1 in the simpler 
ontext of thesteady Stokes equations. In �5.2, we turn to the steady INS equations. The 
entral issue is nowthe dis
retization of the nonlinear 
onve
tion term. An important ingredient is to mimi
 thefa
t that, at the 
ontinuous level, this term does not 
ontribute to the kineti
 energy balan
e.5.1 Steady Stokes �owsIn this se
tion, we 
onsider the steady Stokes equations. These equations des
ribe in
ompress-ible vis
ous �ows under the assumption that the �uid motion is su�
iently slow so that di�usiondominates over 
onve
tion in the transport of momentum.5.1.1 The 
ontinuous settingLet Ω ⊂ Rd, d ≥ 2, be a polyhedron. The steady Stokes equations 
an be expressed in the form

−△u+ ∇p = f in Ω, (100a)
∇·u = 0 in Ω, (100b)
u = 0 on ∂Ω, (100
)

〈p〉Ω = 0, (100d)where u : Ω → Rd with Cartesian 
omponents (ui)1≤i≤d is the velo
ity �eld, p : Ω → R the pres-sure, and f : Ω → Rd with Cartesian 
omponents (fi)1≤i≤d the for
ing term. Equation (100a)37



expresses the 
onservation of momentum. Equation (100b) expresses the 
onservation of mass,thereby enfor
ing the divergen
e-free 
onstraint on the velo
ity. Equation (100
) enfor
es ahomogeneous Diri
hlet boundary 
ondition on the velo
ity; other boundary 
onditions 
an be
onsidered, as dis
ussed, e.g., by Ern and Guermond [49, p. 179℄. Finally, 
ondition (100d),where 〈·〉Ω denotes the mean value over Ω, is added to avoid leaving the pressure undeterminedup to an additive 
onstant.Remark 5.1 (Stress and strain tensors, vis
osity). A more general form of the momentum
onservation equation (100a) takes the form
−∇·σ + ∇p = f in Ω,where σ : Ω → Rd,d is the stress tensor. In Newtonian �ows, stresses are proportional to strainrates. More spe
i�
ally, introdu
ing for a given velo
ity �eld u the (linearized) strain tensor

ε : Ω → Rd,d su
h that ε = 1
2 (∇u+ ∇ut), there holds

σ = 2νε,where ν > 0 is the (kinemati
) vis
osity. Taking the vis
osity 
onstant for simpli
ity, we obtain
− ν∇·(∇u+ ∇ut) + ∇p = f, (101)and up to res
aling of the pressure and the sour
e term, we 
an assume that ν = 1. Then,observing that ∇·(∇u) = △u and ∇·(∇u)t = ∇(∇·u) = 0 be
ause of in
ompressibility, were
over (100a). Considering the form (101) of the momentum 
onservation equation is appro-priate when dealing with other boundary 
onditions than (100
), e.g., when weakly enfor
ingthe Navier slip boundary 
ondition (σ·n+λu)·t = 0 where t is a tangent ve
tor to the boundary

∂Ω and λ ≥ 0 a given parameter.We assume that the for
ing term f is in [L2(Ω)]d. Owing to (100
), the natural spa
e for thevelo
ity is [H1
0 (Ω)]d, while owing to (100d), the natural spa
e for the pressure is L2

0(Ω) ⊂ L2(Ω)where
L2

0(Ω) :=
{
q ∈ L2(Ω) | 〈q〉Ω = 0

}
.We set

U := [H1
0 (Ω)]d, P := L2

0(Ω), X := U × P. (102)The spa
es U , P , and X are Hilbert spa
es when equipped with the inner produ
ts indu
ingthe norms
‖v‖U := ‖v‖[H1(Ω)]d =

(
d∑

i=1

‖vi‖
2
H1(Ω)

)1/2

,

‖q‖P := ‖q‖L2(Ω), ‖(v, q)‖X :=
(
‖v‖2

U + ‖q‖2
P

)1/2

.We de�ne, for all u, v ∈ U and for all q ∈ P , the bilinear forms
a(u, v) :=

∫

Ω

∇u:∇v =

d∑

i,j=1

∫

Ω

∂jui ∂jvi = (∇u,∇v)[L2(Ω)]d,d , (103a)
b(v, q) := −

∫

Ω

q∇·v = −(∇·v, q)P . (103b)The weak formulation of problem (100) reads: Find (u, p) ∈ X su
h that
a(u, v) + b(v, p) =

∫

Ω

f ·v ∀v ∈ U, (104a)
−b(u, q) = 0 ∀q ∈ P , (104b)38



or, equivalently, Find (u, p) ∈ X s.t. c((u, p), (v, q)) =

∫

Ω

f ·v for all (v, q) ∈ X ,with
c((u, p), (v, q)) := a(u, v) + b(v, p) − b(u, q).While the bilinear form c is 
learly not 
oer
ive on X , we observe that the bilinear form ais 
oer
ive on U . Indeed, applying the 
ontinuous Poin
aré inequality (60) to ea
h velo
ity
omponent, we infer that there exists αΩ > 0, only depending on Ω, su
h that

∀v ∈ U, a(v, v) = ‖∇v‖2
[L2(Ω)]d,d ≥ αΩ‖v‖

2
U . (105)This yields a so-
alled partial 
oer
ivity for the bilinear form c in the form

∀(v, q) ∈ X, c((v, q), (v, q)) = a(v, v) ≥ αΩ‖v‖
2
U . (106)Remark 5.2 (Saddle-point problem). A problem of the form (104) is said to have a saddle-pointstru
ture sin
e (u, p) ∈ X solves (104) if and only if (u, p) is a saddle-point of the Lagrangian

L : X → R su
h that, for all (v, q) ∈ X ,
L(v, q) =

1

2
a(v, v) + b(v, q).In this 
ontext, the pressure plays the role of the Lagrange multiplier asso
iated with thein
ompressibility 
onstraint.We introdu
e the divergen
e operator B ∈ L(U,P ) su
h that

B : U ∋ v 7−→ Bv := −∇·v ∈ P. (107)(The fa
t that Bv has zero mean is a 
onsequen
e of the divergen
e theorem sin
e ∫
Ω
Bv =

−
∫
Ω ∇·v = −

∫
∂Ω(v·n) = 0.) The operator B is readily linked to the bilinear form b sin
e thereholds

(Bv, q)P = b(v, q) ∀(v, q) ∈ X.The well-posedness of the Stokes problem (104) hinges on the surje
tivity of the operator B or,equivalently, on an inf-sup 
ondition on the bilinear form b (se, e.g., Girault and Raviart [55,�2.2℄).Theorem 5.3 (Surje
tivity of divergen
e operator, inf-sup 
ondition on b). Let Ω ∈ Rd, d ≥ 1,be a 
onne
ted domain. Then, the operator B is surje
tive. Equivalently, there exists a realnumber βΩ > 0, only depending on Ω, su
h that, for all q ∈ P , there is vq ∈ U satisfying
q = −Bvq = ∇·vq and βΩ‖vq‖U ≤ ‖q‖P . (108)Moreover, property (108) is equivalent to the following inf-sup 
ondition on the bilinear form b:

∀q ∈ P, βΩ‖q‖P ≤ sup
w∈U\{0}

b(w, q)

‖w‖U
. (109)For all q ∈ P , a �eld vq ∈ U satisfying (108) is 
alled a velo
ity lifting of q.Theorem 5.4 (Well-posedness). Problem (104) is well-posed.
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5.1.2 Equal-order dis
ontinuous velo
ities and pressuresIn this se
tion, we 
onsider one possible dG dis
retization of the steady Stokes equations basedon equal-order dis
ontinuous velo
ities and pressures. Other approa
hes are dis
ussed in �5.1.3.DG methods based on equal-order dis
ontinuous velo
ities and pressures have been introdu
edby Co
kburn, Kans
hat, S
hötzau, and S
hwab [38℄ for the Stokes equations and extended tothe Oseen equations in [34℄ and to the INS equations in [37℄.Let Th be a mesh of Ω belonging to an admissible mesh sequen
e with mesh regularityparameters denoted by ̺. Re
alling the broken polynomial spa
e Pk
d(Th) de�ned by (6) withpolynomial degree k ≥ 1, we de�ne the dis
rete spa
es

Uh := [Pk
d(Th)]d, Ph := Pk

d,0(Th), Xh := Uh × Ph, (110)where Pk
d,0(Th) denotes the subspa
e of Pk

d(Th) spanned by fun
tions having zero mean-valueover Ω. The dis
rete solution is sought in the spa
e Xh.To dis
retize the di�usion term, we use, for ea
h velo
ity 
omponent, the SIP bilinear form(
f. �4.2). We de�ne on Uh × Uh the bilinear form
ah(vh, wh) :=

d∑

i=1

asip
h (vh,i, wh,i), (111)where (vh,i)1≤i≤d and (wh,i)1≤i≤d denote the Cartesian 
omponents of vh and wh, respe
tively,and where asip

h is de�ned by (68). It is natural to equip the dis
rete velo
ity spa
e Uh with the
|||·|||sip-norm de�ned by (71) for ea
h Cartesian 
omponent, so that we set

|||vh|||vel :=

(
d∑

i=1

|||vh,i|||
2
sip

)1/2

=
(
‖∇hvh‖

2
[L2(Ω)]d,d + |vh|

2
J

)1/2

, (112)with the |·|J-seminorm a
ting now on ve
tor-valued arguments as
|vh|J =

(
∑

F∈Fh

h−1
F ‖JvhK‖2

[L2(F )]d

)1/2

.We assume that the penalty parameter η is su
h that η > η so that
∀vh ∈ Uh, ah(vh, vh) ≥ α|||vh|||

2
vel, (113)where α = Cη as de�ned in Lemma 4.10.To dis
retize the pressure-velo
ity 
oupling, we need a dis
rete 
ounterpart of the bilinearform b de�ned on U × P by (103). We de�ne on Uh × Ph the dis
rete bilinear form

bh(vh, qh) = −

∫

Ω

qh∇h·vh +
∑

F∈Fh

∫

F

JvhK·nF {{qh}}, (114)where the broken divergen
e operator ∇h· a
ts elementwise, like the broken gradient operator
∇h de�ned by (23). We observe that elementwise integration by parts yields

bh(vh, qh) =

∫

Ω

vh·∇hqh −
∑

F∈Fi
h

∫

F

{{vh}}·nF JqhK. (115)Similarly to the operator B at the 
ontinuous level, we introdu
e the dis
rete operator Bh :
Uh → Ph su
h that, for all (vh, qh) ∈ Xh,

(Bhvh, qh)P = bh(vh, qh).40



It turns out that, 
ontrary to the exa
t operator B, the dis
rete operator Bh is not surje
tive.As a result, the L2-norm of a fun
tion in Ph 
annot be 
ontrolled uniquely in terms of bh. Tore
over 
ontrol, it is ne
essary to add the following pressure seminorm de�ned on H1(Th):
|q|p :=




∑

F∈Fi
h

hF ‖JqK‖
2
L2(F )





1/2

.Lemma 5.5 (Stability for bh). There exists β > 0, independent of h, su
h that
∀qh ∈ Ph, β‖qh‖P ≤ sup

wh∈Uh\{0}

bh(wh, qh)

|||wh|||vel
+ |qh|p. (116)Remark 5.6 (Ladyzhenskaya�Babu²ka�Brezzi (LBB) 
ondition). In the setting of 
onformingmixed �nite element approximations, the stability of the dis
rete bilinear form 
oupling velo
ityand pressure takes the form of an inf-sup 
ondition without stabilization term, the so-
alledLadyzhenskaya�Babu²ka�Brezzi (LBB) 
ondition (see Babu²ka [5℄ and Brezzi [17℄). Condition(116) 
an be viewed as an extended LBB 
ondition owing to the additional presen
e of thepressure seminorm on the right-hand side.We 
onsider the following dis
retization of problem (104): Find (uh, ph) ∈ Xh su
h that

ah(uh, vh) + bh(vh, ph) =

∫

Ω

f ·vh ∀vh ∈ Uh, (117a)
−bh(uh, qh) + sh(ph, qh) = 0 ∀qh ∈ Ph, (117b)where the dis
rete bilinear form ah is de�ned by (111), the dis
rete bilinear form bh by (114)(or, equivalently, by (115)), and where

sh(qh, rh) :=
∑

F∈Fi
h

hF

∫

F

JqhKJrhK. (118)The stabilization bilinear form sh is meant to 
ontrol pressure jumps a
ross interfa
es, therebyallowing to 
ontrol the L2-norm of the dis
rete pressure by virtue of Lemma 5.5. The followingformulation, equivalent to (117), is obtained by summing equations (117a) and (117b): Find
(uh, ph) ∈ Xh su
h that

ch((uh, ph), (vh, qh)) =

∫

Ω

f ·vh for all (vh, qh) ∈ Xh, (119)where
ch((uh, ph), (vh, qh)) := ah(uh, vh) + bh(vh, ph) − bh(uh, qh) + sh(ph, qh). (120)Owing to (113), we infer partial 
oer
ivity for ch in the form

∀(vh, qh) ∈ Xh, ch((vh, qh), (vh, qh)) = ah(vh, vh) + sh(qh, qh)

≥ α|||vh|||
2
vel + |qh|

2
p. (121)To prove dis
rete well-posedness, we establish �rst the dis
rete inf-sup stability of the bilinearform ch when the dis
rete spa
e Xh is equipped with the norm

|||(vh, qh)|||sto :=
(
|||vh|||

2
vel + ‖qh‖

2
P + |qh|

2
p

)1/2

. (122)Lemma 5.7 (Dis
rete inf-sup stability). Assume that the penalty parameter η in the SIP methodis su
h that η > η with η de�ned in Lemma 4.10. Then, there is γ > 0, independent of h, su
hthat, for all (vh, qh) ∈ Xh,
γ|||(vh, qh)|||sto ≤ sup

(wh,rh)∈Xh\{0}

ch((vh, qh), (wh, rh))

|||(wh, rh)|||sto
. (123)As a 
onsequen
e of Lemma 2.16, the dis
rete problem (117) or, equivalently, (119) is well-posed. 41



Convergen
e to smooth solutions To analyze the 
onvergen
e of the solution of the dis-
rete Stokes problem (117) or, equivalently, (119) in the 
ase of smooth exa
t solutions. Wepro
eed in the spirit of Theorem 2.20 and derive an error estimate in the |||·|||sto-norm. Someadditional regularity of the exa
t solution (u, p) ∈ X is needed to assert 
onsisten
y by pluggingthe pair (u, p) into the dis
rete bilinear form ch. Con
erning the velo
ity, we hinge for simpli
ityon Assumption 4.3 for all the velo
ity 
omponents. Con
erning the pressure, we need tra
eson all interfa
es and that the resulting jumps vanish; again for simpli
ity, this requirement ismat
hed by assuming H1(Ω)-regularity for the pressure.Assumption 5.8 (Regularity of the exa
t solution and spa
e X∗). We assume that the exa
tsolution (u, p) is in X∗ := U∗ × P∗ where
U∗ := U ∩ [H2(Ω)]d, P∗ := P ∩H1(Ω).In the spirit of �2.5, we set

U∗h := U∗ + Uh, P∗h := P∗ + Ph, X∗h := X∗ +Xh.We extend the dis
rete bilinear form ah de�ned by (111) to U∗h×Uh and the |||·|||vel-norm to
U∗h. The dis
rete bilinear form bh 
an be extended to [H1(Th)]d ×H1(Th). Finally, we extendthe dis
rete bilinear form ch de�ned by (120) to X∗h×Xh and we extend the |||·|||sto-norm de�nedby (122) to X∗h.Lemma 5.9 (Jumps of ∇u and p a
ross interfa
es). Assume (u, p) ∈ X∗. Then,

J∇uK·nF = 0 and JpK = 0 ∀F ∈ F i
h. (124)Lemma 5.10 (Consisten
y). Assume that (u, p) ∈ X∗. Then,

ch((u, p), (vh, qh)) =

∫

Ω

f ·vh ∀(vh, qh) ∈ Xh.Owing to Theorem 2.20 and re
alling that dis
rete inf-sup stability holds true using the
|||·|||sto-norm, it remains to investigate the boundedness of the dis
rete bilinear form ch. To thispurpose, we de�ne on X∗h the norm

|||(v, q)|||2sto,∗ := |||(v, q)|||2sto +
∑

T∈Th

hT ‖∇v|T ·nT ‖
2
L2(∂T ) +

∑

T∈Th

hT ‖q‖
2
L2(∂T ).There exists Cbnd, independent of h, su
h that, for all (v, q) ∈ X∗h and all (wh, rh) ∈ Xh,

ch((v, q), (wh, rh)) ≤ Cbnd|||(v, q)|||sto,∗|||(wh, rh)|||sto.Theorem 5.11 (|||·|||sto-norm error estimate and 
onvergen
e rate). Let (u, p) ∈ X∗ denote theunique solution of problem (104). Let (uh, ph) ∈ Xh solve (119) with ch de�ned by (120). Then,there is C, independent of h, su
h that
|||(u − uh, p− ph)|||sto ≤ C inf

(vh,qh)∈Xh

|||(u − vh, p− qh)|||sto,∗. (125)Moreover, if (u, p) ∈ [Hk+1(Ω)]d ×Hk(Ω),
|||(u− uh, p− ph)|||sto ≤ Cu,ph

k,with Cu,p = C
(
‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)

).Remark 5.12 (Regularity assumption on the pressure). The regularity assumption p ∈ Hk(Ω) isjust what is needed to a
hieve the overall 
onvergen
e rate in the |||·|||sto-norm of order hk. Sin
epolynomials of degree ≤ k are used for the pressure, the 
ontribution of the pressure terms tothe error upper bound would be of order hk+1 if p ∈ Hk+1(Ω). In this 
ase, the overall errorwould be dominated by the velo
ity error whi
h is still of order hk.Remark 5.13 (L2-norm error estimate on the velo
ity). An optimal L2-error estimate on thevelo
ity 
an be obtained using a duality argument in the same spirit as in �4.2.4 for the Poissonproblem. To apply the Aubin�Nits
he argument [4℄, we need additional regularity for thesolution of the Stokes problem (see Cattabriga [26℄ and Amrou
he and Girault [1℄).42



Numeri
al �uxes We 
onsider test fun
tions having support lo
alized to a single meshelement. We de�ne the numeri
al �uxes
φgrad

F (ph) :=

{
{{ph}}nF if F ∈ F i

h,

phn if F ∈ Fb
h,

(126)
φdiv

F (uh, ph) :=

{
{{uh}}·nF + hF JphK if F ∈ F i

h,

0 if F ∈ Fb
h,

(127)and observe that φgrad
F (ph) is ve
tor-valued whereas φdiv

F (uh, ph) is s
alar-valued. Moreover,referring to �4.3.3 and, in parti
ular, to (88) for the numeri
al �uxes asso
iated with the SIPmethod, we 
onsider here the ve
tor-valued numeri
al �uxes
φdiff

F (uh) = −{{∇huh}}·nF +
η

hF
JuhK. (128)Let T ∈ Th and let ξ ∈ [Pk

d(T )]d with Cartesian 
omponents (ξi)1≤i≤d. Using vh = ξχT as atest fun
tion in the dis
rete momentum 
onservation equation (117a) (where χT denotes the
hara
teristi
 fun
tion of T ), we obtain
∫

T

d∑

i=1

Gl
h(uh,i)·∇ξi −

∫

T

ph∇·ξ +
∑

F∈FT

ǫT,F

∫

F

[
φdiff

F (uh) + φgrad
F (ph)

]
·ξ =

∫

T

f ·ξ, (129)where l ∈ {k − 1, k}, Gl
h is the dis
rete gradient operator, and ǫT,F = nT ·nF .Similarly, let ζ ∈ Pk
d(T ). Using qh = ζχT − 〈ζχT 〉Ω as a test fun
tion in the dis
rete mass
onservation equation (117b) and using the expression (115) of the dis
rete bilinear form bh,we obtain
−

∫

T

uh·∇ζ +
∑

F∈FT

ǫT,F

∫

F

φdiv
F (uh, ph)ζ = 0. (130)Equations (129) and (130) express the lo
al 
onservation properties satis�ed by the dG approx-imation. We observe that, in the numeri
al �uxes φgrad

F (ph) and φdiv
F (uh, ph), the 
entered partresults from the dis
rete bilinear form bh, while the presen
e of the pressure jump in the �ux

φdiv
F (uh, ph) stems from stabilizing the pressure jumps a
ross interfa
es.Convergen
e to minimal regularity solutions In this se
tion, we study the 
onvergen
eof the sequen
e

(uH, pH) := ((uh, ph))h∈H,where, for all h ∈ H, (uh, ph) solves the dis
rete problem (119), to the unique solution (u, p) ofthe steady Stokes problem (104) using mimimal regularity on (u, p), that is to say, (u, p) ∈ X .This result is an important building blo
k in the 
onvergen
e study of the dG dis
retizationof the INS equations undertaken in �5.2.3. For 
on
iseness of notation, subsequen
es are notrenumbered in what follows.To analyze the 
onvergen
e of the di�usion term, we formulate the dis
rete bilinear form ahusing dis
rete gradients, namely, for all vh, wh ∈ Uh,
ah(vh, wh) =

∫

Ω

d∑

i=1

Gl
h(vh,i)·G

l
h(wh,i) + ŝh(vh, wh), (131)with l ∈ {k − 1, k} and

ŝh(vh, wh) :=
∑

F∈Fh

η

hF

∫

F

JvhK·JwhK −

∫

Ω

d∑

i=1

Rl
h(Jvh,iK)·R

l
h(Jwh,iK).The expression (131) is equivalent to (111) on Uh × Uh.43



For any integer l ≥ 0, we de�ne the dis
rete divergen
e operator Dl
h : [H1(Th)]d → L2(Ω)su
h that, for all v ∈ [H1(Th)]d with Cartesian 
omponents (vi)1≤i≤d,

Dl
h(v) :=

d∑

i=1

Gl
h(vi)·ei,where ei denotes the ith ve
tor of the Cartesian basis of Rd. Then, using the expression (114)for bh, we observe that, for all (vh, qh) ∈ Xh,

bh(vh, qh) = −

∫

Ω

qhD
k
h(vh). (132)We 
an also introdu
e a new dis
rete gradient operator Gl

h : H1(Th) → L2(Ω) su
h that, for all
q ∈ H1(Th),

Gl
h(q) := ∇hq −

∑

F∈Fi
h

rl
F (JqK). (133)The only di�eren
e with respe
t to the dis
rete gradient operator Gl

h de�ned by (82) is thatboundary fa
es are not in
luded in the summation on the right-hand side of (133). A motivationfor this modi�
ation is that there holds
∀(vh, qh) ∈ Xh,

∫

Ω

vh·G
k
h(qh) = −

∫

Ω

qhD
k
h(vh),so that an alternative expression for bh on Xh is

bh(vh, qh) =

∫

Ω

vh·G
k
h(qh).Theorem 5.14 (Convergen
e to minimal regularity solutions). Let k ≥ 1. Let (uH, pH) bethe sequen
e of approximate solutions generated by solving the dis
rete problems (119) on theadmissible mesh sequen
e TH. Then, as h→ 0,

uh → u in [L2(Ω)]d,

∇huh → ∇u in [L2(Ω)]d,d,

|uh,i|J → 0 for all i ∈ {1, . . . , d},

ph → p in L2(Ω),

|ph|p → 0,where (u, p) ∈ X denotes the unique solution to (104).5.1.3 Formulations without pressure stabilizationFully dis
ontinuous formulations, su
h as the one presented in �5.1.2, are appealing in problemswhere 
orner singularities are present (e.g., the well-known lid-driven 
avity problem), sin
e,in this 
ontext, dis
ontinuous pressures are generally less prone to spurious os
illations. Usingequal-order velo
ity and pressure spa
es, however, requires penalizing pressure jumps a
rossinterfa
es to a
hieve dis
rete stability. Su
h a term introdu
es a tighter 
oupling between thedis
rete momentum and mass 
onservation equations, sin
e the pressure is also expli
itly presentin the mass 
onservation equation. In pra
ti
e, this 
an be a drawba
k when using 
lassi
alsolution methods (su
h as the Uzawa method) for saddle-point problems in the steady 
ase orproje
tion methods in the unsteady 
ase.It turns out that the pressure penalty term 
an be omitted in various 
ases whi
h, how-ever, do not a

ommodate the same level of mesh generality as in �5.1.2. On mat
hing a�nequadrilateral or hexahedral meshes, formulations without pressure stabilization have been an-alyzed by Toselli [81℄ for di�erent 
ouples of polynomial degrees for velo
ity and pressure.44



On mat
hing simpli
ial meshes with polynomials for the pressure one degree less than for thevelo
ity, inf-sup stability has been proven by Hansbo and Larson [58℄ in the in
ompressiblelimit of two-dimensional linear elasti
ity and by Girault, Rivière, and Wheeler [56℄ for the two-and three-dimensional Stokes equations in the 
ontext of domain de
omposition methods (withpolynomial degree for the velo
ity between 1 and 3). Still on mat
hing simpli
ial meshes for
d ∈ {2, 3}, a fully parameter-free dG approximation using pie
ewise a�ne dis
rete velo
itiessupplemented by element bubble fun
tions 
oupled with 
ontinuous pie
ewise a�ne and/orpie
ewise 
onstant dis
rete pressures has been analyzed by Burman and Stamm [23℄.A means to a
hieve dis
rete inf-sup stability on mat
hing simpli
ial meshes is to 
onsider adis
ontinuous approximation of the velo
ity together with a 
ontinuous approximation of thepressure. This approa
h 
onstitutes the basis for the proje
tion method derived by Botti andDi Pietro [13℄ for the unsteady INS equations.5.2 Steady Navier�Stokes �owsIn this se
tion, we 
onsider steady Navier�Stokes �ows. The main di�eren
e with respe
tto �5.1 is the in
lusion of a nonlinear term modeling the 
onve
tive transport of momentum.The dis
retization with dG methods of this nonlinear term is the main fo
us of this se
tion. Wealso a

ount for the vis
osity ν in the momentum 
onservation equation. For steady Navier�Stokes �ows, the vis
osity ν is important sin
e it quanti�es the relative importan
e of 
onve
tiveand di�usive momentum transport.5.2.1 The 
ontinuous settingLet Ω ⊂ Rd, d ∈ {2, 3, 4}, be a polyhedron, let f ∈ [L2(Ω)]d be the for
ing term, and let ν > 0be the vis
osity. The dis
ussion of this se
tion is 
on�ned to spa
e dimensions up to 4 sin
ethe nonlinear term requires embeddings of fun
tional spa
es valid for d ≤ 4. The steady INSproblem reads

−ν△u+ (u·∇)u+ ∇p = f in Ω, (134a)
∇·u = 0 in Ω, (134b)
u = 0 on ∂Ω, (134
)

〈p〉Ω = 0. (134d)Remark 5.15 (Conservative formulation). Sin
e (u·∇)u = ∇·(u⊗u) be
ause ∇·u = 0, the mo-mentum 
onservation equation (134a) 
an be rewritten in the 
onservative form
−ν△u+ ∇·(u⊗u) + ∇p = f.In 
ontrast, equation (134a) is said to be in non
onservative form.The weak formulation of system (134) reads: Find (u, p) ∈ X su
h that

c((u, p), (v, q)) + t(u, u, v) =

∫

Ω

f ·v for all (v, q) ∈ X , (135)where X = U × P is de�ned by (102), the bilinear form c ∈ L(X ×X,R) now a

ounts for thevis
osity and is given by
c((u, p), (v, q)) = νa(u, v) + b(v, p) − b(u, q),with a and b still de�ned by (103), and the trilinear form t ∈ L(U × U × U,R) is su
h that
t(w, u, v) :=

∫

Ω

(w·∇u)·v =

∫

Ω

d∑

i,j=1

wj(∂jui)vi. (136)45



The trilinear form is indeed bounded on U × U × U : There is τΩ, only depending on Ω, su
hthat, for all w, u, v ∈ U ,
t(w, u, v) ≤ τΩ‖w‖U‖u‖U‖v‖U . (137)A further important property of the trilinear form t de�ned by (136) is skew-symmetry withrespe
t to the last two arguments whenever the �rst argument is divergen
e-free and has zeronormal 
omponent on the boundary. For simpli
ity, we 
onsider that the three arguments ofthe trilinear form are in U .Lemma 5.16 (Skew-symmetry of trilinear form). For all w ∈ U , there holds

∀v ∈ U, t(w, v, v) = −
1

2

∫

Ω

(∇·w)|v|2. (138)Moreover, if w ∈ V := {v ∈ U | ∇·v = 0},
∀v ∈ U, t(w, v, v) = 0. (139)A 
ru
ial 
onsequen
e of Lemma 5.16 is that, using (v, q) = (u, p) as a test fun
tion in (135)and sin
e u is divergen
e-free, we obtain, up to the vis
osity s
aling, the same energy balan
eas for steady Stokes �ows, namely
ν‖∇u‖2

[L2(Ω)]d,d =

∫

Ω

f ·u.In other words, 
onve
tion does not in�uen
e energy balan
e.Theorem 5.17 (Existen
e and uniqueness). There exists at least one (u, p) ∈ X solving (135).Moreover, under the smallness 
ondition on the data
τΩ‖f‖U ′ < (ναΩ)2, (140)the solution is unique.Remark 5.18 (Interpretation of 
ondition (140)). At �xed vis
osity ν, 
ondition (140) meansthat the for
ing term f must be small enough. Alternatively, at �xed f , 
ondition (140) meansthat the vis
osity ν must be large enough (so that su�
iently energy is dissipated by the �ow).5.2.2 The dis
rete settingIn this se
tion, we derive a dG dis
retization of the INS equations (135). For the Stokes part(resulting from the bilinear form c), we follow the approa
h of �5.1.2 and 
onsider equal-orderdis
ontinuous velo
ities and pressures. Alternative dG methods to approximate the INS equa-tions have been explored by Karakashian and Jureidini [62℄, Girault, Rivière, and Wheeler [56℄,and Co
kburn, Kans
hat, and S
hötzau [35, 36, 37℄.Let TH denote an admissible mesh sequen
e and let k ≥ 1 be an integer. We 
onsider thedis
rete spa
es (
f. (110))

Uh := [Pk
d(Th)]d, Ph := Pk

d,0(Th), Xh := Uh × Ph.The material in this se
tion is restri
ted to d ≤ 3.When working with dG approximations, the 
onve
tive velo
ity is generally not divergen
e-free (but only weakly divergen
e-free), so that the important property (139) is generally notsatis�ed. Following Temam [78, 79℄, a possible way to 
ir
umvent this di�
ulty is to modifythe trilinear form t and to 
onsider instead, for all w, u, v ∈ U ,
t′(w, u, v) = t(w, u, v) +

1

2

∫

Ω

(∇·w)u·v

=

∫

Ω

(w·∇u)·v +
1

2

∫

Ω

(∇·w)u·v. (141)46



The following result is then a straightforward 
onsequen
e of (138): For all w ∈ U , there holds
∀v ∈ U, t′(w, v, v) = 0. (142)Moreover, (u, p) ∈ X solves (135) if and only if (u, p) ∈ X is su
h that

c((u, p), (v, q)) + t′(u, u, v) =

∫

Ω

f ·v for all (v, q) ∈ X.We start with Temam's modi�
ation of the trilinear form t. Spe
i�
ally, we 
onsider brokendi�erential operators in the trilinear form t′ de�ned by (141) and set, for all wh, uh, vh ∈ Uh,
t
(0)
h (wh, uh, vh) :=

∫

Ω

(wh·∇huh)·vh +
1

2

∫

Ω

(∇h·wh)uh·vh.Our �rst goal is to derive a dis
rete 
ounterpart of (142). For all wh, vh ∈ Uh, integrating byparts elementwise and pro
eeding as usual, we obtain
t
(0)
h (wh, vh, vh) =

1

2

∑

F∈Fh

∫

F

JwhK·nF {{vh·vh}} +
∑

F∈Fi
h

∫

F

{{wh}}·nF JvhK·{{vh}}.Sin
e the right-hand side of the above equation is nonzero, we modify t(0)h as
th(wh, uh, vh) :=

∫

Ω

(wh·∇huh)·vh −
∑

F∈Fi
h

∫

F

{{wh}}·nF JuhK·{{vh}}

+
1

2

∫

Ω

(∇h·wh)(uh·vh) −
1

2

∑

F∈Fh

∫

F

JwhK·nF {{uh·vh}}. (143)This 
hoi
e, whi
h in
orporates Temam's modi�
ation at the dis
rete level, possesses the fol-lowing important property whi
h is the dis
rete 
ounterpart of Lemma 5.16.Lemma 5.19 (Skew-symmetry of dis
rete trilinear form). For all wh ∈ Uh, there holds
∀vh ∈ Uh, th(wh, vh, vh) = 0. (144)We now address the boundedness of the dis
rete trilinear form th on Uh × Uh × Uh. Re
allthat the dis
rete velo
ity spa
e Uh is equipped with the |||·|||vel-norm de�ned by (112). Then,there is τ , independent of h, su
h that, for all wh, uh, vh ∈ Uh, there holds

th(wh, uh, vh) ≤ τ |||wh|||vel|||uh|||vel|||vh|||vel.Let ah and bh be the dis
rete bilinear forms 
onsidered for the linear Stokes equations,
f. (111) for ah and (114) or, equivalently, (115) for bh. Let th be the dis
rete trilinear formde�ned by (143). The dis
rete INS problem reads: Find (uh, ph) ∈ Xh su
h that
νah(uh, vh) + th(uh, uh, vh) + bh(vh, ph) =

∫

Ω

f ·vh ∀vh ∈ Uh, (145a)
−bh(uh, qh) + ν−1sh(ph, qh) = 0 ∀qh ∈ Ph, (145b)or, equivalently, su
h that

ch((uh, ph), (vh, qh)) + th(uh, uh, vh) =

∫

Ω

f ·vh ∀(vh, qh) ∈ Xh, (146)with
ch((uh, ph), (vh, qh)) := νah(uh, vh) + bh(vh, ph) − bh(uh, qh) + ν−1sh(ph, qh).47



We observe that both the di�usion and pressure stabilization terms di�er from the 
ase of thelinear Stokes equations, 
f. (120), sin
e the former is s
aled by the vis
osity and the latter bythe re
ipro
al of the vis
osity.Re
alling (113), let α > 0 denote the 
oer
ivity parameter of the dis
rete bilinear form ahsu
h that
∀vh ∈ Uh, ah(vh, vh) ≥ α|||vh|||

2
vel.This leads to partial 
oer
ivity for the dis
rete bilinear form ch in the form

∀(vh, qh) ∈ Xh, ch((vh, qh), (vh, qh)) ≥ να|||vh|||
2
vel + ν−1|qh|

2
p. (147)Moreover, we rede�ne the |||·|||sto-norm as

|||(vh, qh)|||sto :=
(
ν|||vh|||

2
vel + ‖qh‖

2
P + ν−1|qh|

2
p

)1/2

.It is straightforward to verify, as in the proof of Lemma 5.7, the following dis
rete inf-sup
ondition: There is γ > 0, independent of h and of the vis
osity ν, su
h that, for all (vh, qh) ∈
Xh,

γ|||(vh, qh)|||sto ≤ sup
(wh,rh)∈Xh\{0}

ch((vh, qh), (wh, rh))

|||(wh, rh)|||sto
. (148)We observe that the fa
t that γ is independent of ν results from the s
aling used in the pressurestabilization.Theorem 5.20 (Existen
e and uniqueness). There exists at least one (uh, ph) ∈ Xh solv-ing (146). Moreover, under the smallness 
ondition

τ‖f‖[L2(Ω)]d < (να)2, (149)the solution is unique.5.2.3 Convergen
e analysisIn this se
tion, we address the 
onvergen
e of the sequen
e (uH, pH) of solutions to the dis-
rete problem (146) on the admissible mesh sequen
e TH to a solution (u, p) of the INS equa-tions (135).Theorem 5.21 (Convergen
e). Let (uH, pH) be a sequen
e of approximate solutions generatedby solving the dis
rete problems (146) on the admissible mesh sequen
e TH. Then, as h → 0,up to a subsequen
e,
uh → u in [L2(Ω)]d,

∇huh → ∇u in [L2(Ω)]d,d,

|uh|J → 0,

ph → p in L2(Ω),

|ph|p → 0,where (u, p) ∈ X is a solution of (135). Moreover, under the smallness 
ondition (149), thewhole sequen
e 
onverges to the unique solution of (135).Remark 5.22 (Reformulation of dis
rete trilinear form). In the 
onvergen
e analysis, the fol-lowing equivalent expression of th in terms of dis
rete gradients and dis
rete divergen
e isimportant: For all wh, uh, vh ∈ Uh,
th(wh, uh, vh) =

∫

Ω

d∑

i=1

wh·G
2k
h (uh,i)vh,i +

1

2

∫

Ω

D2k
h (wh)uh·vh

+
1

4

∑

F∈Fi
h

∫

F

JwhK·nF JuhK·JvhK. (150)We observe that the polynomial degree used for the dis
rete gradients and divergen
e is 2kowing to the nonlinearities. 48
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