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1 IntrodutionDisontinuous Galerkin (dG) methods an be viewed as �nite element methods allowing fordisontinuities in the disrete trial and test spaes. Loalizing test funtions to single mesh el-ements and introduing numerial �uxes at interfaes, they an also be viewed as �nite volumemethods in whih the approximate solution is represented on eah mesh element by a polyno-mial funtion and not only by a onstant funtion. From a pratial viewpoint, working withdisontinuous disrete spaes leads to ompat disretization stenils and, at the same time,o�ers a substantial amount of �exibility, making the approah appealing for multi-domain andmulti-physis simulations. Moreover, basi onservation priniples an be inorporated into themethod. Appliations of dG methods over a vast realm in engineering sienes. Examples anbe found, e.g., in the onferene proeedings edited by Cokburn, Karniadakis, and Shu [39℄.There is also an inreasing number of open soure libraries implementing dG methods. A nonexhaustive list inludes deal.II [9℄, Dune [12℄, FEniCS [71℄, freeFEM [45℄, libmesh [63℄, andLife [74℄.A brief historial perspetiveAlthough dG methods have existed in various forms for more than thirty years, they haveexperiened a vigorous development only over the last deade, as illustrated in Figure 1.The �rst dG method to approximate �rst-order PDEs has been introdued by Reed andHill in 1973 [75℄ in the ontext of steady neutron transport, while the �rst analysis for steady�rst-order PDEs was performed by Lesaint and Raviart in 1974 [65, 66, 67℄. The error estimatewas improved by Johnson and Pitkäranta in 1986 [61℄ who established an order of onvergenein the L2-norm of (k + 1

2 ) if polynomials of degree k are used and the exat solution is smoothenough. A few years later, dG methods were extended to time-dependent hyperboli PDEsby Chavent and Cokburn [28℄ using the forward Euler sheme for time disretization togetherwith limiters. The order of auray was improved by Cokburn and Shu [41, 42℄ using expliitRunge�Kutta shemes for time disretization, while a onvergene proof to the entropy solutionwas obtained by Ja�ré, Johnson, and Szepessy [60℄. Extensions are disussed in a series of papersby Cokburn, Shu, and oworkers; see, e.g., [33, 40, 44℄.For PDEs with di�usion, dG methods originated from the work of Nitshe on boundary-penalty methods in the early seventies [69, 70℄ and the use of Interior Penalty (IP) tehniques toweakly enfore ontinuity onditions imposed on the solution or its derivatives aross interfaes,1Leture Notes for the Spring Shool on Numerial Fluid Mehanis, Roso� June 2011. A more elaborateand thorough presentation of the material an be found in the book Mathematial Aspets of DisontinuousGalerkin Methods by D. Di Pietro and A. Ern, volume 69 of SMAI Mathématiques & Appliations, Springer,2012. 1



1970 1980 1990 2000 2010

0

30

60

90

120

150

180

210

Figure 1: Yearly number of entries with the keyword `disontinuous Galerkin' in the MathSiNetdatabaseas in the work of Babu²ka [6℄, Babu²ka and Zlámal [7℄, Douglas and Dupont [47℄, Baker [8℄,Wheeler [82℄, and Arnold [2℄. In the late nineties, following an approah more losely relatedto hyperboli problems, dG methods were formulated using numerial �uxes by onsidering themixed formulation of the di�usion term. Examples inlude the work of Bassi and Rebay [10℄on the ompressible Navier�Stokes equations and that of Cokburn and Shu [43℄ on onvetion-di�usion systems, leading to a new thrust in the development of dG methods. A uni�ed analysisof dG methods for the Poisson problem an be found in the work of Arnold, Brezzi, Cokburn,and Marini [3℄, while a uni�ed analysis enompassing both ellipti and hyperboli PDEs in theframework of Friedrihs' systems has been derived by Ern and Guermond [50, 51, 52℄.OverviewSetion 2 introdues the basi onepts to formulate and analyze dG methods, namely (i) thebasi ingredients related to meshes and polynomials to build disrete funtional spaes and, inpartiular, broken polynomial spaes, (ii) the three key properties for the onvergene analy-sis of dG methods in the ontext of nononforming �nite elements, namely disrete stability,onsisteny, and boundedness, (iii) the basi analysis tools, in partiular inverse and trae in-equalities needed to assert disrete stability and boundedness, together with optimal polynomialapproximation results, thereby leading to the onept of admissible mesh sequenes. We fouson mesh re�nement as the main parameter to ahieve onvergene. Convergene analysis using,e.g., high-degree polynomials is possible; important tools in this diretion an be found, in theontext of dG methods, in the reent textbook of Hesthaven and Warburton [59℄.Setion 3 fouses on the steady advetion-reation equation as a simple �rst-order modelproblem. Therein, we indetify some key ideas to design dG methods. Two methods are analyzed,whih orrespond in the �nite volume terminology to the use of entered and upwind �uxes.Setion 4 is onerned with the Poisson problem as the basi model problem with di�usion.We �rst present a heuristi derivation and a onvergene analysis to smooth solutions using theSymmetri Interior Penalty (SIP) dG method of Arnold [2℄. Then, we introdue the onept ofdisrete gradients and present some important appliations, inluding the link with the mixeddG approah and the loal formulation of the disrete problem using numerial �uxes.Setion 5 is devoted to inompressible �ows. Fousing �rst on the steady Stokes equations,we examine how the divergene-free onstraint on the veloity �eld an be takled using dGmethods. We detail the analysis of equal-order approximations using both disontinuous ve-loities and pressures, whereby pressure jumps need to be penalized, and then brie�y disussalternative formulations avoiding the need for pressure jump penalty. The next step is thedisretization of the nonlinear onvetion term in the momentum equation. To this purpose,we derive a disrete trilinear form that leads to the orret kineti energy balane, using the2



so-alled Temam's devie to handle the fat that disrete veloities are only weakly divergene-free.2 Basi oneptsThis setion introdues the basi onepts to build disontinuous Galerkin (dG) methods.2.1 The domain ΩTo simplify the presentation, we fous, throughout this letures notes, on polyhedra.De�nition 2.1 (Polyhedron in Rd). We say that the set P is a polyhedron in Rd if P is anopen, onneted, bounded subset of Rd suh that its boundary ∂P is a �nite union of parts ofhyperplanes, say {Hi}1≤i≤nΩ
. Moreover, for all 1 ≤ i ≤ nΩ, at eah point in the interior of

∂P ∩Hi, the set P is assumed to lie on only one side of its boundary.Assumption 2.2 (Domain Ω). The domain Ω is a polyhedron in Rd. The boundary of Ω isdenoted by ∂Ω and its (unit) outward normal, whih is de�ned a.e. on ∂Ω, by n.The advantage of Assumption 2.2 is that polyhedra an be exatly overed by a meshonsisting of polyhedral elements. PDEs posed over domains with urved boundary an also beapproximated by dG methods using, e.g., isoparametri �nite elements to build the mesh nearurved boundaries as desribed, e.g., by Ciarlet [29, p. 224℄ and Brenner and Sott [15, p. 117℄.2.2 MeshesThe �rst step is to disretize the domain Ω using a mesh. Various types of meshes an beonsidered. We examine �rst the most familiar ase, that of simpliial meshes. Suh meshesshould be familiar to the reader sine they are one of the key ingredients to build ontinuous�nite element spaes.De�nition 2.3 (Simplex). Given a family {a0, . . . , ad} of (d+1) points in Rd suh that the ve-tors {a1−a0, . . . , ad−a0} are linearly independent, the interior of the onvex hull of {a0, . . . , ad}is alled a non-degenerate simplex of Rd, and the points {a0, . . . , ad} are alled its verties.By its de�nition, a non-degenerate simplex is an open subset of Rd. In dimension 1, a non-degenerate simplex is an interval, in dimension 2 a triangle, and in dimension 3 a tetrahedron.The unit simplex of Rd is the set
Sd :=

{
(x1, . . . , xd) ∈ Rd; ∀i ∈ {1, . . . , d}, xi > 0; x1 + . . .+ xd < 1

}
.Any non-degenerate simplex of Rd is the image of the unit simplex by a bijetive a�ne trans-formation of Rd.De�nition 2.4 (Simplex faes). Let S be a non-degenerate simplex with verties {a0, . . . , ad}.For eah i ∈ {0, . . . , d}, the onvex hull of {a0, . . . , ad} \ {ai} is alled a fae of the simplex S.Thus, a non-degenerate simplex has (d + 1) faes, and, by onstrution, a simplex fae isa losed subset of Rd. A simplex fae has zero d-dimensional Hausdor� measure, but positive

(d − 1)-dimensional Hausdor� measure. In dimension 2, a simplex fae is also alled an edge,while in dimension 1, a simplex fae is a point and its 0-dimensional Hausdor� measure isonventionally set to 1.De�nition 2.5 (Simpliial mesh). A simpliial mesh T of the domain Ω is a �nite olletionof disjoint non-degenerate simplies T = {T } forming a partition of Ω,
Ω =

⋃

T∈T

T . (1)Eah T ∈ T is alled a mesh element. 3



While simpliial meshes are quite onvenient in the ontext of ontinuous �nite elements,dG methods more easily aommodate general meshes.De�nition 2.6 (General mesh). A general mesh T of the domain Ω is a �nite olletion ofdisjoint polyhedra T = {T } forming a partition of Ω as in (1). Eah T ∈ T is alled a meshelement.Obviously, a simpliial mesh is just a partiular ase of a general mesh.De�nition 2.7 (Element diameter, meshsize). Let T be a (general) mesh of the domain Ω.For all T ∈ T , hT denotes the diameter of T , and the meshsize is de�ned as the real number
h := max

T∈T
hT .We use the notation Th for a mesh T with meshsize h.De�nition 2.8 (Element outward normal). Let Th be a mesh of the domain Ω and let T ∈ Th.We de�ne nT a.e. on ∂T as the (unit) outward normal to T .Faes of a single polyhedral mesh element an be de�ned. Suh faes are not needed in whatfollows, and we prefer to leave them unde�ned to avoid onfusion with the important oneptof mesh faes introdued in �2.3. (Mesh faes depend on the way neighboring mesh elementsome into ontat.)2.3 Mesh faes, averages, and jumpsThe onepts of mesh faes, averages, and jumps play a entral role in the design and analysisof dG methods.De�nition 2.9 (Mesh faes). Let Th be a mesh of the domain Ω. We say that a (losed) subset

F of Ω is a mesh fae if F has positive (d−1)-dimensional Hausdor� measure (in dimension 1,this means that F is nonempty) and if either one of the two following onditions is satis�ed:(i) There are distint mesh elements T1 and T2 suh that F = ∂T1 ∩ ∂T2; in suh a ase, Fis alled an interfae.(ii) There is T ∈ Th suh that F = ∂T ∩ ∂Ω; in suh a ase, F is alled a boundary fae.Interfaes are olleted in the set F i
h, and boundary faes are olleted in the set Fb

h. Heneforth,we set
Fh := F i

h ∪ Fb
h.Moreover, for any mesh element T ∈ Th, the set

FT := {F ∈ Fh | F ⊂ ∂T }ollets the mesh faes omposing the boundary of T . The maximum number of mesh faesomposing the boundary of mesh elements is denoted by
N∂ := max

T∈Th

card(FT ). (2)Finally, for any mesh fae F ∈ Fh, we de�ne the set
TF := {T ∈ Th | F ⊂ ∂T } , (3)and observe that TF onsists of two mesh elements if F ∈ F i

h and of one mesh element if
F ∈ Fb

h. 4



Figure 2: Examples of interfae for a simpliial mesh (left) and a general mesh (right)
PSfrag replaements

v|T1

v|T2

JvK{{v}}

F

T1 T2Figure 3: One-dimensional example of average and jump operators; the fae redues to a pointseparating two adjaent intervalsFigure 2 depits an interfae between two mesh elements belonging to a simpliial mesh (left)or to a general mesh (right). We observe that in the ase of simpliial meshes, interfaes arealways parts of hyperplanes, but this is not neessarily the ase for general meshes ontainingnononvex polyhedra. We now de�ne averages and jumps aross interfaes of pieewise smoothfuntions; f. Figure 3 for a one-dimensional illustration.De�nition 2.10 (Interfae averages and jumps). Let v be a salar-valued funtion de�ned on
Ω and assume that v is smooth enough to admit on all F ∈ F i

h a possibly two-valued trae. Thismeans that, for all T ∈ Th, the restrition v|T of v to the open set T an be de�ned up to theboundary ∂T . Then, for all F ∈ F i
h and a.e. x ∈ F , the average of v is de�ned as

{{v}}F (x) :=
1

2

(
v|T1

(x) + v|T2
(x)
)
,and the jump of v as

JvKF (x) := v|T1
(x) − v|T2

(x).When v is vetor-valued, the above average and jump operators at omponentwise on the fun-tion v. Whenever no onfusion an arise, the subsript F and the variable x are omitted, andwe simply write {{v}} and JvK.De�nition 2.11 (Fae normals). For all F ∈ Fh and a.e. x ∈ F , we de�ne the (unit) normal
nF to F at x as(i) nT1

, the unit normal to F at x pointing from T1 to T2 if F ∈ F i
h with F = ∂T1 ∩ ∂T2; theorientation of nF is arbitrary depending on the hoie of T1 and T2, but kept �xed in whatfollows.(ii) n, the unit outward normal to Ω at x if F ∈ Fb

h.5



k d = 1 d = 2 d = 30 1 1 11 2 3 42 3 6 103 4 10 20Table 1: Dimension of the polynomial spae Pk
d for d ∈ {1, 2, 3} and k ∈ {0, 1, 2, 3}2.4 Broken polynomial spaesAfter having built a mesh of the domain Ω, the seond step in the onstrution of disretefuntion spaes onsists in hoosing a ertain funtional behavior within eah mesh element.For the sake of simpliity, we restrit ourselves to polynomial funtions; more general asesan also be aommodated (see, e.g., Yuan and Shu [83℄). The resulting spaes, onsisting ofpieewise polynomial funtions, are termed broken polynomial spaes.Let k ≥ 0 be an integer. We fous for simpliity on the simplest polynomial spae onsistingof polynomials of d variables of total degree at most k. Letting

Am
d :=

{
α ∈ Nd | |α|ℓ1 ≤ m

}
, |α|ℓ1 :=

d∑

i=1

αi, (4)this polynomial spae is de�ned asPk
d :=




p : Rd ∋ x 7→ p(x) ∈ R | ∃{γα}α∈Ak
d
∈ Rcard(Ak

d) s.t. p(x) =
∑

α∈Ak
d

γαx
α




 ,with the onvention that, for x = (x1, . . . , xd) ∈ Rd, xα :=
∏d

i=1 x
αi

i . The dimension of thevetor spae Pk
d is

dim(Pk
d) = card(Ak

d) =

(
k + d
k

)
=

(k + d)!

k!d!
. (5)The �rst few values of dim(Pk

d) are listed in Table 1.We onsider the broken polynomial spaePk
d(Th) :=

{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Pk

d(T )
}
, (6)where Pk

d(T ) is spanned by the restrition to T of polynomials in Pk
d. It is lear that

dim(Pk
d(Th)) = card(Th) × dim(Pk

d),sine the restrition of a funtion v ∈ Pk
d(Th) to eah mesh element an be hosen independentlyof its restrition to other elements.2.5 Abstrat nononforming error analysisThe goal of this setion is to present the key ingredients for the error analysis when approxi-mating linear model problems by dG methods. The error analysis presented in this setion isderived in the spirit of Strang's Seond Lemma [77℄ (see also Ern and Guermond [49, �2.3℄).The three ingredients are (i) disrete stability, (ii) (strong) onsisteny, and (iii) boundedness.2.5.1 Well-posedness for linear model problemsLet X and Y be two Banah spaes equipped with their respetive norms ‖·‖X and ‖·‖Y andassume that Y is re�exive. In many appliations, X and Y are atually Hilbert spaes. We6



reall that L(X,Y ) is the vetor spae spanned by bounded linear operators from X to Y , andthat this spae is equipped with the usual norm
‖A‖L(X,Y ) := sup

v∈X\{0}

‖Av‖Y

‖v‖X
∀A ∈ L(X,Y ).We are interested in the abstrat linear model problemFind u ∈ X s.t. a(u,w) = 〈f, w〉Y ′,Y for all w ∈ Y , (7)where a ∈ L(X × Y,R) is a bounded bilinear form, f ∈ Y ′ := L(Y,R) is a bounded linear form,and 〈·, ·〉Y ′,Y denotes the duality pairing between Y ′ and Y .Problem (7) is said to be well-posed if it admits one and only one solution u ∈ X . The keyresult for asserting well-posedness is the so-alled Banah�Ne£as�Babu²ka (BNB) Theorem. Westress that this result provides neessary and su�ient onditions for well-posedness.Theorem 2.12 (Banah�Ne£as�Babu²ka (BNB)). Let X be a Banah spae and let Y be are�exive Banah spae. Let a ∈ L(X × Y,R) and let f ∈ Y ′. Then, problem (7) is well-posed ifand only if:(i) there is Csta > 0 suh that

∀v ∈ X, Csta‖v‖X ≤ sup
w∈Y \{0}

a(v, w)

‖w‖Y
, (8)(ii) For all w ∈ Y ,

(∀v ∈ X, a(v, w) = 0) =⇒ (w = 0). (9)Moreover, the following a priori estimate holds true:
‖u‖X ≤

1

Csta
‖f‖Y ′ .Remark 2.13 (Inf-sup ondition). Condition (8) is often alled an inf-sup ondition sine it isequivalent to

Csta ≤ inf
v∈X\{0}

sup
w∈Y \{0}

a(v, w)

‖v‖X‖w‖Y
.A simpler, yet less general, ondition to assert the well-posedness of (7) is provided by theLax�Milgram Lemma [64℄. In this setting, X is a Hilbert spae, Y = X , and a oerivityproperty is invoked.Lemma 2.14 (Lax�Milgram). Let X be a Hilbert spae, let a ∈ L(X ×X,R), and let f ∈ X ′.Then, problem (7) is well-posed if the bilinear form a is oerive on X, that is, if there is

Csta > 0 suh that
∀v ∈ X, Csta‖v‖

2
X ≤ a(v, v).Moreover, the following a priori estimate holds true:

‖u‖X ≤
1

Csta
‖f‖X′.2.5.2 The disrete problemLet Vh ⊂ L2(Ω) denote a �nite-dimensional funtion spae; typially, Vh is a broken polynomialspae. We are interested in the disrete problemFind uh ∈ Vh s.t. ah(uh, wh) = lh(wh) for all wh ∈ Vh, (10)7



with disrete bilinear form ah de�ned (so far) only on Vh×Vh and disrete linear form lh de�nedon Vh. We observe that we onsider the so-alled standard Galerkin approximation where thedisrete trial and test spaes oinide. Moreover, sine funtions in Vh an be disontinuousaross mesh elements, Vh 6⊂ X and Vh 6⊂ Y in general; f., e.g., Lemma 2.34. In the terminologyof �nite elements, we say that the approximation is nononforming.We are onerned with model problems where Y →֒ L2(Ω) with dense and ontinuousinjetion. Identifying L2(Ω) with its topologial dual spae L2(Ω)′ by means of the Riesz�Fréhet representation theorem, we are thus in the situation where
Y →֒ L2(Ω) ≡ L2(Ω)′ →֒ Y ′,with dense and ontinuous injetions. For simpliity, we assume that the datum f is in L2(Ω),so that the right-hand side of the model problem (7) beomes (f, w)L2(Ω), while the right-handside of the disrete problem (10) beomes

lh(wh) = (f, wh)L2(Ω).2.5.3 Disrete stabilityTo formulate disrete stability, we introdue a norm, say |||·|||, de�ned (at least) on Vh.De�nition 2.15 (Disrete stability). We say that the disrete bilinear form ah enjoys disretestability on Vh if there is Csta > 0, independent of h, suh that
∀vh ∈ Vh, Csta|||vh||| ≤ sup

wh∈Vh\{0}

ah(vh, wh)

|||wh|||
. (11)Property (11) is referred to as a disrete inf-sup ondition sine it is equivalent to

Csta ≤ inf
vh∈Vh\{0}

sup
wh∈Vh\{0}

ah(vh, wh)

|||vh||| |||wh|||
.An important fat is that (11) is a neessary and su�ient ondition for disrete well-posedness.Lemma 2.16 (Disrete well-posedness). The disrete problem (10) is well-posed if and only ifthe disrete inf-sup ondition (11) holds true.We observe that disrete well-posedness is equivalent to only one ondition, namely (11),while two onditions appear in the ontinuous ase. This is beause, in �nite dimension, inje-tivity is equivalent to bijetivity.A su�ient, and often easily veri�ed, ondition for disrete stability is oerivity. Thisproperty an be stated as follows: There is Csta > 0 suh that

∀vh ∈ Vh, Csta|||vh|||
2 ≤ ah(vh, vh). (12)Disrete oerivity implies the disrete inf-sup ondition (11) sine, for all vh ∈ Vh \ {0},

Csta|||vh||| ≤
ah(vh, vh)

|||vh|||
≤ sup

wh∈Vh\{0}

ah(vh, wh)

|||wh|||
.Property (12) is the disrete ounterpart of that invoked in the Lax�Milgram Lemma.2.5.4 ConsistenyFor the time being, we onsider a rather strong form of onsisteny, namely that the exatsolution u satis�es the disrete equations in (10). To formulate onsisteny, it is thus neessaryto plug the exat solution into the �rst argument of the disrete bilinear form ah, and this maynot be possible in general sine the disrete bilinear form ah is so far de�ned on Vh × Vh only.Therefore, we assume that there is a subspae X∗ ⊂ X suh that the exat solution u belongsto X∗ and suh that the disrete bilinear form ah an be extended to X∗×Vh (it is not possiblein general to extend ah to X × Vh). Consisteny an now be formulated as follows.8



De�nition 2.17 (Consisteny). We say that the disrete problem (10) is onsistent if for theexat solution u ∈ X∗,
ah(u,wh) = lh(wh) ∀wh ∈ Vh. (13)Remark 2.18 (Galerkin orthogonality). Consisteny is equivalent to the usual Galerkin orthog-onality property often onsidered in the ontext of �nite element methods. Indeed, (13) holdstrue if and only if
ah(u − uh, wh) = 0 ∀wh ∈ Vh.2.5.5 BoundednessThe last ingredient in the error analysis is boundedness. We introdue the vetor spae

X∗h := X∗ + Vh,and observe that the approximation error (u− uh) belongs to this spae. We aim at measuringthe approximation error using the disrete stability norm |||·|||. Therefore, we assume in whatfollows that this norm an be extended to the spae X∗h. In the present setting, we want toassert boundedness in the produt spae X∗h×Vh, and not just in Vh ×Vh. It turns out that inmost situations, it is not possible to assert boundedness using only the disrete stability norm
|||·|||. This is the reason why we introdue a seond norm, say |||·|||∗.De�nition 2.19 (Boundedness). We say that the disrete bilinear form ah is bounded in
X∗h × Vh if there is Cbnd, independent of h, suh that

∀(v, wh) ∈ X∗h × Vh, |ah(v, wh)| ≤ Cbnd|||v|||∗|||wh|||,for a norm |||·|||∗ de�ned on X∗h and suh that, for all v ∈ X∗h, |||v||| ≤ |||v|||∗.2.5.6 Error estimateWe an now state the main result of this setion.Theorem 2.20 (Abstrat error estimate). Let u solve (7) with f ∈ L2(Ω). Let uh solve (10).Let X∗ ⊂ X and assume that u ∈ X∗. Set X∗h = X∗ +Vh and assume that the disrete bilinearform ah an be extended to X∗h × Vh. Let |||·||| and |||·|||∗ be two norms de�ned on X∗h and suhthat, for all v ∈ X∗h, |||v||| ≤ |||v|||∗. Assume that disrete stability, onsisteny, and boundednesshold true. Then, the following error estimate holds true:
|||u − uh||| ≤ C inf

yh∈Vh

|||u− yh|||∗, (14)with C = 1 + C−1
staCbnd.Proof. Let yh ∈ Vh. Owing to disrete stability and onsisteny,

|||uh − yh||| ≤ C−1
sta sup

wh∈Vh\{0}

ah(uh − yh, wh)

|||wh|||
= C−1

sta sup
wh∈Vh\{0}

ah(u− yh, wh)

|||wh|||
.Hene, owing to boundedness,

|||uh − yh||| ≤ C−1
staCbnd|||u − yh|||∗.Estimate (14) then results from the triangle inequality, the fat that |||u− yh||| ≤ |||u− yh|||∗, andthat yh is arbitrary in Vh.
9



2.6 Admissible mesh sequenesThe goal of this setion is to derive some tehnial, yet important, tools to analyze the on-vergene of dG methods as the meshsize goes to zero. We are thus led to onsider a meshsequene
TH := (Th)h∈H,where H denotes a ountable subset of R>0 := {x ∈ R | x > 0} having 0 as only aumu-lation point. The analysis tools are, on the one hand, inverse and trae inequalities that areinstrumental to assert disrete stability and boundedness uniformly in h and, on the other hand,optimal polynomial approximation properties so as to infer from error estimates of the form (14)

h-onvergene rates for the approximation error whenever the exat solution is smooth enough.2.6.1 Shape and ontat regularityA useful onept enountered in the ontext of onforming �nite element methods is that ofmathing simpliial meshes.De�nition 2.21 (Mathing simpliial mesh). We say that Th is a mathing simpliial mesh ifit is a simpliial mesh and if for any T ∈ Th with verties {a0, . . . , ad}, the set ∂T ∩ ∂T ′ forany T ′ ∈ Th, T ′ 6= T , is the onvex hull of a (possibly empty) subset of {a0, . . . , ad}.For instane, in dimension 2, the set ∂T ∩ ∂T ′ for two distint elements of a mathingsimpliial mesh is either empty, or a ommon vertex, or a ommon edge of the two elements.We now turn to the mathing simpliial submesh of a general mesh.De�nition 2.22 (Mathing simpliial submesh). Let Th be a general mesh. We say that Sh isa mathing simpliial submesh of Th if(i) Sh is a mathing simpliial mesh,(ii) for all T ′ ∈ Sh, there is only one T ∈ Th suh that T ′ ⊂ T ,(iii) for all F ′ ∈ Fh, the set olleting the mesh faes of Sh, there is at most one F ∈ Fh suhthat F ′ ⊂ F .The simplies in Sh are alled subelements, and the mesh faes in Fh are alled subfaes. Weset, for all T ∈ Th,
ST := {T ′ ∈ Sh | T ′ ⊂ T },

FT := {F ′ ∈ Fh | F ′ ⊂ ∂T }.We also set, for all F ∈ Fh,
FF := {F ′ ∈ Fh | F ′ ⊂ F}.Figure 4 illustrates the mathing simpliial submesh for two polygonal mesh elements, say

T1 and T2, that ome into ontat. The triangular subelements omposing the sets ST1
and

ST2
are indiated by dashed lines. We observe that the mesh fae F = ∂T1 ∩ ∂T2 (highlightedin bold) is not a part of a hyperplane and that the set FF ontains two subfaes.De�nition 2.23 (Shape and ontat regularity). We say that the mesh sequene TH is shape-and ontat-regular if for all h ∈ H, Th admits a mathing simpliial submesh Sh suh that(i) the mesh sequene SH is shape-regular in the usual sense of Ciarlet [29℄, meaning thatthere is a parameter ̺1 > 0, independent of h, suh that, for all T ′ ∈ Sh,

̺1hT ′ ≤ h♭
T ′ ,where hT ′ is the diameter of T ′ and h♭

T ′ the diameter of the largest ball insribed in T ′,10
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T ′ ∈ ST ,

̺2hT ≤ hT ′ .Heneforth, the parameters ̺1 and ̺2 are alled the mesh regularity parameters and are olle-tively denoted by the symbol ̺. Finally, if Th is itself mathing and simpliial, then Sh = Thand the only requirment is shape-regularity with parameter ̺1 > 0 independent of h.The two onditions in De�nition 2.23 allow one to ontrol the shape of the elements in Thand the way these elements ome into ontat. Indeed, let TH be a shape- and ontat-regularmesh sequene. Then, for all h ∈ H and all T ∈ Th,1. card(ST ) is bounded uniformly in h;2. card(FT ), card(FT ), and N∂ are bounded uniformly in h;3. all F ∈ FT , δF ≥ ̺1̺2hT , where δF denotes the diameter of F , and this implies that thediamters of neighboring mesh elements are uniformly omparable.2.6.2 Inverse and trae inequalitiesLemma 2.24 (Inverse inequality). Let TH be a shape- and ontat-regular mesh sequene withregularity parameters ̺. Then, for all h ∈ H, all vh ∈ Pk
d(Th), and all T ∈ Th,

‖∇vh‖[L2(T )]d ≤ Cinvh
−1
T ‖vh‖L2(T ), (15)where Cinv only depends on ̺, d, and k.Lemma 2.25 (Disrete trae inequality). Let TH be a shape- and ontat-regular mesh sequenewith regularity parameters ̺. Then, for all h ∈ H, all vh ∈ Pk

d(Th), all T ∈ Th, and all F ∈ FT ,
h

1/2

T ‖vh‖L2(F ) ≤ Ctr‖vh‖L2(T ), (16)where Ctr only depends on ̺, d, and k.2.6.3 Polynomial approximationTo infer from estimate (14) a onvergene rate in h for the approximation error (u−uh) measuredin the |||·|||-norm when the exat solution u is smooth enough, we need to estimate the right-handside given by
inf

yh∈Vh

|||u− yh|||∗,when Vh is typially the broken polynomial spae Pk
d(Th) de�ned by (6); other broken polynomialspaes an be onsidered. Sine uh ∈ Vh, we infer from (14) that

inf
yh∈Vh

|||u− yh||| ≤ |||u − uh||| ≤ C inf
yh∈Vh

|||u − yh|||∗. (17)11



De�nition 2.26 (Optimality, quasi-optimality, and suboptimality of the error estimate). Wesay that the error estimate (17) is(i) optimal if |||·||| = |||·|||∗,(ii) quasi-optimal if the two norms are di�erent, but the lower and upper bounds in (17)onverge, for smooth enough u, at the same onvergene rate as h→ 0,(iii) suboptimal if the upper bound onverges at a slower rate 'than the lower bound.The analysis of the upper bound infyh∈Vh
|||u− yh|||∗ depends on the polynomial approxima-tion properties that an be ahieved in the broken polynomial spae Vh. The approximationerror is measured using Sobolev norms that are de�ned in �2.7. In what follows, πh denotesthe L2(Ω)-orthogonal projetion onto Vh, that is, πh : L2(Ω) → Vh is de�ned so that, for all

v ∈ L2(Ω), πhv ∈ Vh with
(πhv, yh)L2(Ω) = (v, yh)L2(Ω) ∀yh ∈ Vh. (18)We observe that the restrition of πhv to a given mesh element T ∈ Th an be omputedindependently from other mesh elements. For instane, if Vh = Pk

d(Th), we obtain that, for all
T ∈ Th, πhv|T ∈ Pk

d(T ) is suh that
(πhv|T , ξ)L2(T ) = (v, ξ)L2(T ) ∀ξ ∈ Pk

d(T ).De�nition 2.27 (Optimal polynomial approximation). We say that the mesh sequene TH hasoptimal polynomial approximation properties if, for all h ∈ H, all T ∈ Th, all polynomial degree
k, all s ∈ {0, . . . , k + 1}, and all v ∈ Hs(T ), there holds

|v − πhv|Hm(T ) ≤ C′
apph

s−m
T |v|Hs(T ) ∀m ∈ {0, . . . , s}, (19)where Capp is independent of both T and h. Moreover, for all F ∈ FT , there holds

‖v − πhv‖L2(F ) ≤ C′
apph

s−1/2

T |v|Hs(T ),and if s ≥ 2,
‖∇(v − πhv)|T ·nT ‖L2(F ) ≤ C′′

apph
s−3/2

T |v|Hs(T ),where C′
app and C′′

app are independent of both T and h.De�nition 2.28 (Admissible mesh sequenes). We say that the mesh sequene TH is admissibleif it is shape- and ontat-regular and if it has optimal polynomial approximation properties.On general meshes, asserting optimal polynomial approximation is a deliate question sinethis property depends on the shape of mesh elements. In pratie, meshes are generated bysuessive re�nements of an initial mesh, and the shape of mesh elements depends on there�nement proedure. It is onvenient to identify su�ient onditions on the mesh sequene
TH to assert optimal polynomial approximation in broken polynomial spaes. One approahis based on the star-shaped property with respet to a ball (see, e.g., Brenner and Sott [15,Chapter 4℄).De�nition 2.29 (Star-shaped property with respet to a ball). We say that a polyhedron P isstar-shaped with respet to a ball if there is a ball BP ⊂ P suh that, for all x ∈ P , the onvexhull of {x} ∪ BP is inluded in P .Figure 5 displays two polyhedra. The one on the left is star-shaped with respet to the ballindiated in blak. Instead, the one on the right is not star-shaped with respet to any ball.Lemma 2.30 (Mesh sequenes with star-shaped property). Let TH be a shape- and ontat-regular mesh sequene. Assume that, for all h ∈ H and all T ∈ Th, the mesh element Tis star-shaped with respet to a ball with uniformly omparable diameter with respet to hT .Then, the mesh sequene TH is admissible. 12



Figure 5: Example (left) and ounter-example (right) of a polyhedron whih is star-shaped withrespet to a ballAnother su�ient ondition ensuring optimal polynomial approximation, but somewhat lessgeneral than the star-shaped property, is that of �nitely shaped mesh sequenes. A simple ex-ample is that of shape- and ontat-regular mesh sequenes whose elements are either simpliesor parallelotopes in Rd.Lemma 2.31 (Finitely shaped mesh sequenes). Let TH be a shape- and ontat-regular meshsequene. Assume that TH is �nitely shaped in the sense that there is a �nite set R̂ = {T̂}whose elements are referene polyhedra in Rd and suh that, for all h ∈ H, eah T ∈ Th is theimage of a referene polyhedron in R̂ by an a�ne bijetive map FT . Then, the mesh sequene
TH is admissible.2.7 Some bakground on funtional analysisIn this setion, we brie�y present two important lasses of funtion spaes, namely Lebesgueand Sobolev spaes. We only state the basi properties of suh spaes, and we refer the readerto Evans [53, Chapter 5℄ or Brézis [16, Chapters 8 and 9℄ for further bakground. We alsointrodue broken Sobolev spaes.2.7.1 Lebesgue spaesWe onsider funtions v : Ω → R that are Lebesgue measurable and we denote by ∫Ω v the(Lebesgue) integral of v over Ω. Let 1 ≤ p ≤ ∞ be a real number. We set

‖v‖Lp(Ω) :=

(∫

Ω

|v|p
)1/p

1 ≤ p <∞,and
‖v‖L∞(Ω) := sup ess{|v(x)| a.e. x ∈ Ω}

= inf{M > 0 | |v(x)| ≤M a.e. x ∈ Ω}.In either ase, we de�ne the Lebesgue spae
Lp(Ω) := {v Lebesgue measurable | ‖v‖Lp(Ω) <∞}.Equipped with the norm ‖·‖Lp(Ω), Lp(Ω) is a Banah spae for all 1 ≤ p ≤ ∞ (see Evans [53,p. 249℄ or Brézis [16, p. 150℄). In the partiular ase p = 2, L2(Ω) is a (real) Hilbert spae whenequipped with the salar produt

(v, w)L2(Ω) :=

∫

Ω

vw.The Cauhy�Shwarz inequality states that, for all v, w ∈ L2(Ω),
(v, w)L2(Ω) ≤ ‖v‖L2(Ω)‖w‖L2(Ω).13



2.7.2 Sobolev spaesOn the Cartesian basis of Rd with oordinates (x1, . . . , xd), the symbol ∂i with i ∈ {1, . . . , d}denotes the distributional partial derivative with respet to xi. For a d-uple α ∈ Nd, ∂αvdenotes the distributional derivative ∂α1

1 . . . ∂αd

d v of v, with the onvention that ∂(0,...,0)v = v.Let m ≥ 0 be an integer. We de�ne the Sobolev spae
Hm(Ω) =

{
v ∈ L2(Ω) | ∀α ∈ Am

d , ∂
αv ∈ L2(Ω)

}
,with Am

d de�ned by (4). Hm(Ω) is a Hilbert spae when equipped with the salar produt
(v, w)Hm(Ω) :=

∑

α∈Am
d

(∂αv, ∂αw)L2(Ω),leading to the norm and seminorm
‖v‖Hm(Ω) :=




∑

α∈Am
d

‖∂αv‖2
L2(Ω)





1/2

, |v|Hm(Ω) :=




∑

α∈A
m

d

‖∂αv‖2
L2(Ω)





1/2

.The seminorm is obtained by restriting the summation to the set Am

d :=
{
α ∈ Nd | |α|ℓ1 = m

},that is, by keeping only the derivatives of global orderm. To allow for a more ompat notationin the ase m = 1, we onsider the gradient ∇v = (∂1v, . . . , ∂dv)
t with values in Rd, yielding

(v, w)H1(Ω) = (v, w)L2(Ω) + (∇v,∇w)[L2(Ω)]d .Boundary values of funtions in the Sobolev spae H1(Ω) an be given a meaning (at least) in
L2(∂Ω). More preisely (see, e.g., Brenner and Sott [15, Chap. 1℄), there is C suh that

‖v‖L2(∂Ω) ≤ C‖v‖
1/2

L2(Ω)‖v‖
1/2

H1(Ω) ∀v ∈ H1(Ω). (20)2.7.3 Broken Sobolev spaes and broken gradientLet Th be a mesh of the domain Ω. For any mesh element T ∈ Th, the Sobolev spaes Hm(T )an be de�ned as above by replaing Ω by T . We then de�ne the broken Sobolev spaes
Hm(Th) :=

{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Hm(T )

}
, (21)(22)where m ≥ 0 is an integer. It is natural to de�ne a broken gradient operator ating on thebroken Sobolev spae H1(Th). In partiular, this operator also ats on broken polynomialspaes.De�nition 2.32 (Broken gradient). The broken gradient ∇h : H1(Th) → [L2(Ω)]d is de�nedsuh that, for all v ∈ H1(Th),

∀T ∈ Th, (∇hv)|T := ∇(v|T ). (23)In what follows, we drop the index h in the broken gradient when this operator appears insidean integral over a �xed mesh element T ∈ Th.It is important to observe that the usual Sobolev spaes are subspaes of the broken Sobolevspaes, and that on the usual Sobolev spaes, the broken gradient oinides with the distribu-tional gradient.Lemma 2.33 (Broken gradient on usual Sobolev spaes). Let m ≥ 0. There holds Hm(Ω) ⊂
Hm(Th). Moreover, for all v ∈ H1(Ω), ∇hv = ∇v in [L2(Ω)]d.14



The reverse inlusion of Lemma 2.33 does not hold true in general (exept obviously for
m = 0). The reason is that funtions in the broken Sobolev spae H1(Th) an have nonzerojumps aross interfaes, while funtions in the usual Sobolev spae H1(Ω) have zero jumpsaross interfaes. We now give a preise statement of this important result.Lemma 2.34 (Charaterization of H1(Ω)). A funtion v ∈ H1(Th) belongs to H1(Ω) if andonly if

JvK = 0 ∀F ∈ F i
h. (24)3 Advetion-reationThe steady advetion-reation equation with homogeneous in�ow boundary ondition

β·∇u+ µu = f in Ω, (25a)
u = 0 on ∂Ω−, (25b)is one of the simplest model problems based on a linear, salar, steady �rst-order PDE. Here,the unknown funtion u is salar-valued and represents, e.g., a solute onentration; β is theRd-valued advetive veloity, µ the reation oe�ient, f the soure term, and ∂Ω− denotes thein�ow part of the boundary of Ω, namely

∂Ω− := {x ∈ ∂Ω | β(x)·n(x) < 0} . (26)The goal of this setion is to design and analyze dG methods to approximate the modelproblem (25). Sine dG methods are essentially tailored to approximate PDEs in an L2-settingwhere disrete stability is enhaned by suitable least-squares penalties, the most natural weakformulation at the ontinuous level is that based on the onept of graph spae. Moreover, weformulate the boundary ondition (25b) weakly in the ontinuous problem sine this is the wayboundary onditions are enfored in dG methods. Then, we present a step-by-step derivationof suitable dG bilinear forms that math the disrete stability, onsisteny, and boundednessproperties outlined in �2.5 for nononforming �nite element error analysis. We also disussan alternative viewpoint using loal (elementwise) problems and numerial �uxes. Two dGmethods are analyzed, resulting from the use of so-alled entered or upwind �uxes.3.1 Assumptions on the dataWe assume that
µ ∈ L∞(Ω), β ∈ [Lip(Ω)]d, (27)where Lip(Ω) denotes the spae spanned by Lipshitz ontinuous funtions, that is, v ∈ Lip(Ω)means that there is Lv suh that, for all x, y ∈ Ω, |v(x)−v(y)| ≤ Lv|x−y| where |x−y| denotesthe Eulidean norm of (x − y) in Rd. The quantity Lv is alled the Lipshitz module of v. Inwhat follows, we set Lβ := max1≤i≤d Lβi

. In addition to (27), we assume that there is a realnumber µ0 > 0 suh that
Λ := µ−

1

2
∇·β ≥ µ0 a.e. in Ω. (28)Conerning the soure term f , we assume that
f ∈ L2(Ω).Finally, we reall that Ω is a polyhedron in Rd (f. De�nition 2.1). This assumption is solelymade to failitate the meshing of Ω.We onsider a referene time τc and a referene veloity βc de�ned as

τc := {max(‖µ‖L∞(Ω), Lβ)}−1, βc := ‖β‖[L∞(Ω)]d . (29)15



Sine µ and Lβ sale as the reiproal of a time, τc an be interpreted as the (fastest) timesale in the problem. Moreover, βc represents the maximum veloity. We observe that τc is�nite sine ‖µ‖L∞(Ω) = Lβ = 0 implies Λ = 0 whih ontradits (28). We keep trak of theparameters τc and βc in the onvergene analysis of dG approximations. This allows us to workwith norms onsisting of terms having the same physial dimension. Keeping trak of theseparameters is also useful when dealing with singularly perturbed regimes. For simpliity, thereader an assume that both parameters are of order unity and disard them in what follows.3.2 The ontinuous settingOur �rst goal is to speify the funtional spae in whih the solution to the model problem (25) issought. Let C∞
0 (Ω) denote the spae of in�nitely di�erentiable funtions with ompat supportin Ω and reall that this spae is dense in L2(Ω). For a funtion v ∈ L2(Ω), the statement

β·∇v ∈ L2(Ω) means that the linear form
C∞

0 (Ω) ∋ ϕ 7−→ −

∫

Ω

v∇·(βϕ) ∈ Ris bounded in L2(Ω), that is, there is Cv suh that
∀ϕ ∈ C∞

0 (Ω),

∫

Ω

v∇·(βϕ) ≤ Cv‖ϕ‖L2(Ω).The funtion β·∇v is then de�ned as the funtion representing this linear form in L2(Ω) bymeans of the Riesz�Fréhet theorem.De�nition 3.1 (Graph spae). The graph spae is de�ned as
V :=

{
v ∈ L2(Ω) | β·∇v ∈ L2(Ω)

}
, (30)and is equipped with the natural salar produt: For all v, w ∈ V ,

(v, w)V := (v, w)L2(Ω) + (β·∇v, β·∇w)L2(Ω), (31)and the assoiated graph norm ‖v‖V = (v, v)
1/2

V .Proposition 3.2 (Hilbertian struture of graph spae). The graph spae V de�ned by (30) andequipped with the salar produt (31) is a Hilbert spae.The next step is to speify mathematially the meaning of the boundary ondition (25b).To this purpose, we need to investigate the trae on ∂Ω of funtions in the graph spae V . Ouraim is to give a meaning to suh traes in the spae
L2(|β·n|; ∂Ω) :=

{
v is measurable on ∂Ω |

∫

∂Ω

|β·n|v2 <∞

}
. (32)Realling de�nition (26) of the in�ow boundary, we also de�ne the out�ow boundary as

∂Ω+ := {x ∈ ∂Ω | β(x)·n(x) > 0} ,and following [50℄, we assume that the in�ow and out�ow boundaries are well-separated, namely
dist(∂Ω−, ∂Ω+) := min

(x,y)∈∂Ω−×∂Ω+
|x− y| > 0.The following result is very important sine it allows us to de�ne traes of funtions belongingto the graph spae and to use an integration by parts formula.16



Lemma 3.3 (Traes and integration by parts). In the above framework, the trae operator
γ : C0(Ω) ∋ v 7−→ γ(v) := v|∂Ω ∈ L2(|β·n|; ∂Ω)extends ontinuously to V , meaning that there is Cγ suh that, for all v ∈ V ,

‖γ(v)‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V .Moreover, the following integration by parts formula holds true: For all v, w ∈ V ,
∫

Ω

[(β·∇v)w + (β·∇w)v + (∇·β)vw] =

∫

∂Ω

(β·n)vw. (33)For a real number x, we de�ne its positive and negative parts respetively as
x⊕ :=

1

2
(|x| + x), x⊖ :=

1

2
(|x| − x). (34)We observe that both quantities are, by de�nition, nonnegative. We introdue the followingbilinear form: For all v, w ∈ V ,

a(v, w) :=

∫

Ω

µvw +

∫

Ω

(β·∇v)w +

∫

∂Ω

(β·n)⊖vw. (35)This bilinear form is bounded in V × V owing to Lemma 3.3. Preisely, for all v, w ∈ V , theCauhy�Shwarz inequality yields
|a(v, w)| ≤ (1 + ‖µ‖2

L∞(Ω))
1/2‖v‖V ‖w‖L2(Ω) + Cγ‖v‖V ‖w‖V .Using the graph spae V and the bilinear form a, the model problem (25) an be ast intothe weak form Find u ∈ V s.t. a(u,w) =

∫

Ω

fw for all w ∈ V . (36)This problem turns out to be well-posed (f. Theorem 3.6). Before addressing this, we examinein whih sense does a solution to (36) solve the original problem (25). In partiular, we observethat the boundary ondition is weakly enfored in (36).Proposition 3.4 (Charaterization of the solution to (36)). Assume that u ∈ V solves (36).Then,
β·∇u+ µu = f a.e. in Ω, (37)

u = 0 a.e. in ∂Ω−. (38)An important (yet, not su�ient) ingredient for the well-posedness of the weak problem (36)is the L2-oerivity of a in the graph spae V .Lemma 3.5 (L2-oerivity of a). The bilinear form a de�ned by (35) is L2-oerive on V ,namely,
∀v ∈ V, a(v, v) ≥ µ0‖v‖

2
L2(Ω) +

∫

∂Ω

1

2
|β·n|v2. (39)Proof. This is a straightforward onsequene of assumption (28) and of the integration by partsformula (33) sine, for all v ∈ V ,

a(v, v) =

∫

Ω

(
µ−

1

2
∇·β

)
v2 +

∫

∂Ω

1

2
(β·n)v2 +

∫

∂Ω

(β·n)⊖v2

=

∫

Ω

Λv2 +

∫

∂Ω

1

2
|β·n|v2 ≥ µ0‖v‖

2
L2(Ω) +

∫

∂Ω

1

2
|β·n|v2,ompleting the proof.A onsequene of Lemma 3.5 is that the weak problem (36) admits at most one solution.We are now in a position to state the main result of this theoretial setion.Theorem 3.6 (Well-posedness). Problem (36) is well-posed.17
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Figure 6: Fitted (left) and un�tted (right) simpliial mesh; the partition PΩ onsists of twopolygons, and the exat solution an jump aross the thik line3.3 Centered �uxesThe goal of this setion is to design and analyze the simplest dG method to approximatethe model problem (36). Referring the reader to �2.5, the method is designed so as to beonsistent, and a minimal disrete stability is ensured by L2-oerivity. Using the terminologyof De�nition 2.26, the resulting error estimate turns out to be suboptimal. Alternatively, themethod an be viewed as based on the use of entered �uxes.We seek an approximate solution in the broken polynomial spae Pk
d(Th) de�ned by (6). Weassume k ≥ 1 and that Th belongs to an admissible mesh sequene. We set

Vh := Pk
d(Th)and onsider the disrete problem:Find uh ∈ Vh s.t. ah(uh, vh) =

∫

Ω

fvh for all vh ∈ Vh,for a disrete bilinear form ah yet to be designed.To analyze the method, we make a slightly more stringent regularity assumption on theexat solution u rather than just belonging to the graph spae V . This assumption is neededto formulate the onsisteny of the method by diretly plugging in the exat solution into thedisrete bilinear form ah. In partiular, we need to onsider the trae of the exat solution oneah mesh fae.Assumption 3.7 (Regularity of exat solution and spae V∗). We assume that there is apartition PΩ = {Ωi}1≤i≤NΩ
of Ω into disjoint polyhedra suh that, for the exat solution u,

u ∈ V∗ := V ∩H1(PΩ).In the spirit of �2.5, we set V∗h := V∗ + Vh.Assumption 3.7 implies that, for all T ∈ Th, the restrition u|T has traes a.e. on eah fae
F ∈ FT , and these traes belong to L2(F ).Lemma 3.8 (Jumps of u aross interfaes). The exat solution u ∈ V∗ is suh that, for all
F ∈ F i

h,
(β·nF )JuK(x) = 0 for a.e. x ∈ F . (40)Remark 3.9 (Singularities of exat solution). Condition (40) does not say anything on the jumpsof the exat solution aross interfaes to whih the advetive veloity β is tangential. We alsoobserve that Assumption 3.7 does not require the mesh to be �tted to solution singularities,that is, both situations depited in Figure 6 are admissible.18



3.3.1 Heuristi derivationThe main idea in the design of the disrete bilinear form ah is to mimi at the disrete levelthe L2-oerivity that holds at the ontinuous level (f. (39)), while, at the same time, ensuringonsisteny. Our starting point is a disrete bilinear form a
(0)
h simply derived from the exatbilinear form a by replaing the exat gradient by the broken gradient (f. (23) for its de�nition),namely, we de�ne on V∗h × Vh,

a
(0)
h (v, wh) :=

∫

Ω

{
µvwh + (β·∇hv)wh

}
+

∫

∂Ω

(β·n)⊖vwh.That a(0)
h yields onsisteny is lear sine the exat solution satis�es (37) and (38).Let us now fous on disrete oerivity. An important observation is that this property isnot transferred from a to a(0)

h . Indeed, integration by parts on eah mesh element yields, for all
vh ∈ Vh,

a
(0)
h (vh, vh) =

∫

Ω

{
µv2

h + (β·∇hvh)vh

}
+

∫

∂Ω

(β·n)⊖v2
h

=

∫

Ω

µv2
h +

∑

T∈Th

∫

T

(β·∇vh)vh +

∫

∂Ω

(β·n)⊖v2
h

=

∫

Ω

Λv2
h +

∑

T∈Th

∫

∂T

1

2
(β·nT )v2

h +

∫

∂Ω

(β·n)⊖v2
h,where we reall that Λ = µ− 1

2∇·β and that nT denotes the outward normal to T on ∂T . Theseond term on the right-hand side an be reformulated as a sum over mesh faes. Indeed,exploiting the ontinuity of (the normal omponent of) β aross interfaes leads to
∑

T∈Th

∫

∂T

1

2
(β·nT )v2

h =
∑

F∈Fi
h

∫

F

1

2
(β·nF )Jv2

hK +
∑

F∈Fb
h

∫

F

1

2
(β·n)v2

h.For all F ∈ F i
h with F = ∂T1 ∩ ∂T2, vi = vh|Ti

, i ∈ {1, 2}, there holds
1

2
Jv2

hK =
1

2
(v2

1 − v2
2) =

1

2
(v1 − v2)(v1 + v2) = JvhK{{vh}}.As a result,

a
(0)
h (vh, vh) =

∫

Ω

Λv2
h +

∑

F∈Fi
h

∫

F

(β·nF )JvhK{{vh}}

+
∑

F∈Fb
h

∫

F

1

2
(β·n)v2

h +

∫

∂Ω

(β·n)⊖v2
h,and ombining the two rightmost terms, we arrive at

a
(0)
h (vh, vh) =

∫

Ω

Λv2
h +

∑

F∈Fi
h

∫

F

(β·nF )JvhK{{vh}} +

∫

∂Ω

1

2
|β·n|v2

h.The seond term on the right-hand side, involving interfaes, has no sign a priori. Therefore,it must be removed, and this an be ahieved while maintaining onsisteny if we set, for all
(v, wh) ∈ V∗h × Vh,

acf
h (v, wh) :=

∫

Ω

{
µvwh + (β·∇hv)wh

}
+

∫

∂Ω

(β·n)⊖vwh

−
∑

F∈Fi
h

∫

F

(β·nF )JvK{{wh}}, (41)19



sine (β·nF )JuK = 0 for all F ∈ F i
h owing to (40). The supersript indiates the use of entered�uxes, as detailed in �3.3.3.We an now summarize the properties of the disrete bilinear form acf

h established so far.The oerivity of acf
h is expressed using the following norm de�ned on V∗h:

|||v|||2cf := τ−1
c ‖v‖2

L2(Ω) +

∫

∂Ω

1

2
|β·n|v2, (42)with the time sale τc de�ned by (29). We observe that |||·|||cf is indeed a norm sine it ontrolsthe L2-norm.Lemma 3.10 (Consisteny and disrete oerivity). The disrete bilinear form acf

h de�nedby (41)(i) is onsistent, namely for the exat solution u ∈ V∗,
acf

h (u, vh) =

∫

Ω

fvh ∀vh ∈ Vh,(ii) is oerive on Vh with respet to the |||·|||cf -norm, namely
∀vh ∈ Vh, acf

h (vh, vh) ≥ Csta|||vh|||
2
cf ,with Csta := min(1, τcµ0).Before proeeding further, we reord an equivalent expression of the disrete bilinear form

acf
h obtained after integrating by parts the advetive derivative in eah mesh element. Thisexpression is useful when introduing the notion of �uxes in �3.3.3 and when analyzing the dGmethod based on upwinding in �3.4. For all (v, wh) ∈ V∗h × Vh, there holds

acf
h (v, wh) =

∫

Ω

{
(µ−∇·β)vwh − v(β·∇hwh)

}
+

∫

∂Ω

(β·n)⊕vwh

+
∑

F∈Fi
h

∫

F

(β·nF ){{v}}JwhK. (43)3.3.2 Error estimatesWe onsider the disrete problem:Find uh ∈ Vh s.t. acf
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (44)This problem is well-posed owing to the disrete oerivity of acf
h on Vh. Our goal is to estimatethe approximation error (u − uh) in the |||·|||cf -norm. The onvergene analysis is performed inthe spirit of Theorem 2.20. Owing to Lemma 3.10, it only remains to address the boundednessof the disrete bilinear form acf

h . To this purpose, we de�ne on V∗h the norm
|||v|||2cf,∗ = |||v|||2cf +

∑

T∈Th

τc‖β·∇v‖
2
L2(T ) +

∑

T∈Th

τcβ
2
ch

−1
T ‖v‖2

L2(∂T ),with time sale τc and referene veloity βc de�ned by (29). There holds
∀(v, wh) ∈ V∗h × Vh, acf

h (v, wh) ≤ Cbnd|||v|||cf,∗|||wh|||cf ,with Cbnd independent of h and of the data µ and β.20



Theorem 3.11 (Error estimate and onvergene rate). Let u solve (36) and let uh solve (44)where acf
h is de�ned by (41) and Vh = Pk

d(Th) with k ≥ 1 and Th belongs to an admissible meshsequene. Then, there holds
|||u − uh|||cf ≤ C inf

yh∈Vh

|||u − yh|||cf,∗, (45)with C independent of h and depending on the data only through the fator {min(1, τcµ0)}
−1.Moreover, if u ∈ Hk+1(Ω),

|||u− uh|||cf ≤ Cuh
k, (46)with Cu = C‖u‖Hk+1(Ω).Estimate (46) yields the onvergene of the dG approximation for k ≥ 1. The result is notquasi-optimal, but suboptimal sine the L2-norm of the error should onverge with order (k+1)and the boundary ontribution with order (k + 1/2) if the exat solution is smooth enough. Asharper estimate is obtained in �3.4 using upwinding.3.3.3 Numerial �uxesIt is instrutive to onsider an alternative viewpoint based on numerial �uxes. Beause we areworking with broken polynomial spaes, the disrete problem (44) admits a loal formulationobtained by onsidering an arbitrary mesh element T ∈ Th and an arbitrary polynomial ξ ∈Pk

d(T ). For a set S ⊂ Ω, we denote by χS its harateristi funtion, namely
χS(x) =

{
1 if x ∈ S,

0 otherwise.Then, using the test funtion vh = ξχT in the disrete problem (44), observing that
JξχT K = ǫT,F ξ with ǫT,F := nT ·nF ,and owing to the expression (43) for the disrete bilinear form acf

h , we infer∫

T

{
(µ−∇·β)uhξ − uh(β·∇ξ)

}
+
∑

F∈FT

ǫT,F

∫

F

φF (uh)ξ =

∫

T

fξ, (47)where the numerial �uxes φF (uh) are given by
φF (uh) :=

{
(β·nF ){{uh}} if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h.The numerial �uxes φF (uh) are alled entered �uxes beause the average value of uh is used oneah F ∈ F i

h. Sine these �uxes are single-valued and sine for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

ǫT1,F + ǫT2,F = 0, the loal formulation (47) is onservative in the sense that whatever ��ows�out of a mesh element through one of its faes ��ows� into the neighboring element throughthat fae. Finally, taking ξ ≡ 1 in (47) leads to the usual balane formulation enountered in�nite volume methods, namely
∫

T

(µ−∇·β)uh +
∑

F∈FT

ǫT,F

∫

F

φF (uh) =

∫

T

f.A useful onept in pratial implementations is that of stenil.De�nition 3.12 (Stenil). For a given element T ∈ Th, we de�ne the elementary stenil
S(acf

h ;T ) assoiated with the bilinear form acf
h as

S(acf
h ;T ) :=

{
T ′ ∈ Th | ∃q ∈ Pk

d(T ), ∃r ∈ Pk
d(T ′), acf

h (qχT , rχT ′ ) 6= 0
}
,where χT and χT ′ denote harateristi funtions.Owing to the loal formulation (47), the stenil of a given element T ∈ Th onsists of Titself and its neighbors in the sense of faes. For instane, on a mathing simpliial mesh, thestenil ontains (d+ 2) mesh elements; f. Figure 7 for a two-dimensional illustration.21



Figure 7: Example of stenil of an element T ∈ Th when Th is a mathing triangular mesh; themesh element is highlighted in dark, and its three neighbors, whih all belong to the stenil,are highlighted in light; the other triangles do not belong to the stenil3.4 UpwindingThe goal of this setion is to strengthen the stability of the dG bilinear form so as to arrive atquasi-optimal error estimates in the sense of De�nition 2.26. This goal is ahieved by penalizingin a least-squares sense the interfae jumps of the disrete solution. In terms of �uxes, thisapproah an be interpreted as upwinding. We keep assumptions (27) and (28) on the data µand β as well as Assumption 3.7 on the regularity of the exat solution u, but the polynomialdegree k is here suh that k ≥ 0. For k = 0, the dG method onsidered in this setion oinideswith a �nite volume approximation with upwinding.The idea of presenting dG methods with upwinding through a suitable penalty of interfaejumps has been highlighted reently by Brezzi, Marini, and Süli [20℄. Therein, a quasi-optimalerror estimate on the L2-error and the jumps is derived, hinging on disrete oerivity toestablish stability. To tighten the error estimate further by inluding an optimal bound on theadvetive derivative of the error, a disrete inf-sup ondition is needed; this ondition, statedin �3.4.2, has been derived by Johnson and Pitkäranta [61℄.3.4.1 Tightened stability using penaltiesWe onsider the new bilinear form
aupw

h (vh, wh) := acf
h (vh, wh) + sh(vh, wh), (48)with the stabilization bilinear form

sh(vh, wh) =
∑

F∈Fi
h

∫

F

η

2
|β·nF |JvhKJwhK, (49)where η > 0 is a user-dependent parameter. Spei�ally, using (41),

aupw
h (vh, wh) :=

∫

Ω

{
µvhwh + (β·∇hvh)wh

}
+

∫

∂Ω

(β·n)⊖vhwh (50)
−
∑

F∈Fi
h

∫

F

(β·nF )JvhK{{wh}} +
∑

F∈Fi
h

∫

F

η

2
|β·nF |JvhKJwhK,or, equivalently, using (43),

aupw
h (vh, wh) =

∫

Ω

{
(µ−∇·β)vhwh − vh(β·∇hwh)

}
+

∫

∂Ω

(β·n)⊕vhwh (51)
+
∑

F∈Fi
h

∫

F

(β·nF ){{vh}}JwhK +
∑

F∈Fi
h

∫

F

η

2
|β·nF |JvhKJwhK.22



We observe that the disrete bilinear forms acf
h and aupw

h lead to the same stenil. The nu-merial �ux assoiated with the disrete bilinear form aupw
h depends on the penalty parameter

η. Choosing η = 1 is partiularly interesting sine it leads to the usual upwind �uxes in theontext of �nite volume shemes. More generally, the disrete bilinear form aupw
h is heneforthreferred to as the upwind dG bilinear form.We onsider the disrete problem:Find uh ∈ Vh s.t. aupw

h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (52)We �rst examine the onsisteny and disrete oerivity of the upwind dG bilinear form. Re-alling de�nition (42) of the disrete oerivity norm |||·|||cf onsidered for entered �uxes, wenow assert oerivity with respet to the following stronger norm, also de�ned on V∗h:
|||v|||2uw♭ := |||v|||2cf +

∑

F∈Fi
h

∫

F

η

2
|β·nF |JvK

2. (53)Lemma 3.13 (Consisteny and disrete oerivity). The upwind dG bilinear form aupw
h de�nedby (48)�(49)(i) is onsistent, namely for the exat solution u ∈ V∗,

aupw
h (u, vh) =

∫

Ω

fvh ∀vh ∈ Vh,(ii) is oerive on Vh with respet to the |||·|||uw♭-norm, namely
∀vh ∈ Vh, aupw

h (vh, vh) ≥ Csta|||vh|||
2
uw♭,with Csta = min(1, τcµ0) as in Lemma 3.10.The disrete oerivity of aupw

h on Vh implies the well-posedness of the disrete problem (52).3.4.2 Error estimates based on inf-sup stabilityRealling the de�nition (53) of the |||·|||uw♭-norm, we introdue the stronger norm
|||v|||2uw♯ := |||v|||2uw♭ +

∑

T∈Th

β−1
c hT ‖β·∇v‖

2
L2(T ).Lemma 3.14 (Disrete inf-sup ondition). Assume h ≤ βcτc. There is C′

sta > 0, independentof h, µ, and β, suh that
∀vh ∈ Vh, C′

staCsta|||vh|||uw♯ ≤ sup
wh∈Vh\{0}

aupw
h (vh, wh)

|||wh|||uw♯
,with Csta = min(1, τcµ0) as in Lemma 3.13.To formulate a boundedness result, we de�ne the following norm:

|||v|||2uw♯,∗ := |||v|||2uw♯ +
∑

T∈Th

βc

(
h−1

T ‖v‖2
L2(T ) + ‖v‖2

L2(∂T )

)
.There holds

∀(v, wh) ∈ V∗h × Vh, |aupw
h (v, wh)| ≤ Cbnd|||v|||uw♯,∗|||wh|||uw♯,with C independent of h, µ, and β. 23



Theorem 3.15 (Error estimate and onvergene rate). Let u solve (36) and let uh solve (52)where aupw
h is de�ned by (50) and Vh = Pk

d(Th) with k ≥ 1 and Th belongs to an admissiblemesh sequene. Then, there holds
|||u − uh|||uw♯ ≤ C inf

yh∈Vh

|||u − yh|||uw♯,∗, (54)with C independent of h and depending on the data only through the fator {min(1, τcµ0)}
−1.Moreover, if u ∈ Hk+1(Ω),

|||u− uh|||uw♯ ≤ Cuh
k+1/2, (55)with Cu = C‖u‖Hk+1(Ω).Estimate (55) improves estimate (46) by a fator h1/2 for the L2-norm and sine it providesa quasi-optimal onvergene estimate for the advetive derivative.3.4.3 Numerial �uxesTo onlude this setion, we examine how the additional penalty term on the interfae jumpsmodi�es the numerial �uxes. Proeeding as in �3.3.3, we obtain the following loal formulation:For all T ∈ Th and all ξ ∈ Pk

d(T ),
∫

T

{
(µ−∇·β)uhξ − uh(β·∇ξ)

}
+
∑

F∈FT

ǫT,F

∫

F

φF (uh)ξ =

∫

T

fξ, (56)where the numerial �uxes now take the form
φF (uh) =

{
β·nF {{uh}} + 1

2η|β·nF |JuhK if F ∈ F i
h,

(β·n)⊕uh if F ∈ Fb
h.The hoie η = 1 leads to the so-alled upwind �uxes

φF (uh) =

{
β·nFu

↑
h if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h,where u↑h = uh|T1

if β·nF > 0 and u↑h = uh|T2
otherwise (reall that F = ∂T1 ∩ ∂T2 and that

nF points from T1 toward T2). The upwind �uxes an also be written as
φF (uh) =

{
(β·nF )⊕uh|T1

− (β·nF )⊖uh|T2
if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h.4 Di�usionWe onsider the Poisson problem with homogeneous Dirihlet boundary ondition

−△u = f in Ω, (57a)
u = 0 on ∂Ω, (57b)and soure term f ∈ L2(Ω).4.1 The ontinuous settingThe weak formulation of (57) is lassial:Find u ∈ V s.t. a(u, v) =

∫

Ω

fv for all v ∈ V , (58)24



with energy spae V = H1
0 (Ω) :=

{
v ∈ H1(Ω) | v|∂Ω = 0

} and bilinear form
a(u, v) :=

∫

Ω

∇u·∇v. (59)Realling the Poinaré inequality (see, e.g., Evans [53, p. 265℄ or Brézis [16, p. 174℄) statingthat there is CΩ suh that, for all v ∈ H1
0 (Ω),

‖v‖L2(Ω) ≤ CΩ‖∇v‖[L2(Ω)]d , (60)we infer that the bilinear form a is oerive on V . Therefore, owing to the Lax�Milgram Lemma,the weak problem (58) is well-posed.The PDE (57a) an be rewritten in mixed form as a system of �rst-order PDEs:
σ + ∇u = 0 in Ω, (61a)

∇·σ = f in Ω. (61b)De�nition 4.1 (Potential and di�usive �ux). In the ontext of the mixed formulation (61),the salar-valued funtion u is termed the potential and the vetor-valued funtion σ := −∇uis termed the di�usive �ux.The derivation of dG methods to approximate the model problems (57) on a given mesh Thhinges on the fat that the jumps of the potential and of the normal omponent of the di�usive�ux vanish aross interfaes. To allow for a more ompat notation, we de�ne boundary averagesand jumps.De�nition 4.2 (Boundary averages and jumps). For a smooth enough funtion v, for all
F ∈ Fb

h, and for a.e. x ∈ F , we de�ne the average and jump of v as
{{v}}F (x) = JvKF (x) := v(x).The subsript as well as the dependene on x are omitted unless neessary.For simpliity, we enfore a somewhat strong regularity assumption on the exat solution.Assumption 4.3 (Regularity of exat solution and spae V∗). We assume that the exat solu-tion u is suh that

u ∈ V∗ := V ∩H2(Ω).In the spirit of �2.5, we set V∗h := V∗ + Vh.Lemma 4.4 (Jumps of potential and di�usive �ux). Assume u ∈ V∗. Then, there holds
JuK = 0 ∀F ∈ Fh, (62a)

JσK·nF = 0 ∀F ∈ F i
h. (62b)4.2 Symmetri Interior PenaltyOur goal is to approximate the solution of the model problem (58) using dG methods in thebroken polynomial spae Pk

d(Th) de�ned by (6). We set
Vh := Pk

d(Th),with polynomial degree k ≥ 1 and where Th belongs to an admissible mesh sequene. Thefous of this setion is on a spei� dG method, the Symmetri Interior Penalty (SIP) methodintrodued by Arnold [2℄. 25



4.2.1 Heuristi derivationTo derive a suitable disrete bilinear form, we loosely follow the same path of ideas as inSetion 3 aiming at a disrete bilinear form that satis�es the onsisteny requirement (13) andenjoys disrete oerivity. Moreover, we add a (onsistent) term to reover, at the disrete level,the symmetry of the ontinuous problem.We begin loalizing gradients to mesh elements in the exat bilinear form a, that is, we set,for all vh, wh ∈ Vh,
a
(0)
h (vh, wh) :=

∫

Ω

∇hvh·∇hwh =
∑

T∈Th

∫

T

∇vh·∇wh.To examine the onsisteny requirement (13), we integrate by parts on eah mesh element. Thisleads to
a
(0)
h (vh, wh) = −

∑

T∈Th

∫

T

(△vh)wh +
∑

T∈Th

∫

∂T

(∇vh·nT )wh.The seond term on the right-hand side an be reformulated as a sum over mesh faes in theform ∑

T∈Th

∫

∂T

(∇vh·nT )wh =
∑

F∈Fi
h

∫

F

J(∇hvh)whK·nF +
∑

F∈Fb
h

∫

F

(∇vh·nF )wh,sine for all F ∈ F i
h with F = ∂T1 ∩ ∂T2, nF = nT1

= −nT2
. Moreover,

J(∇hvh)whK = {{∇hvh}}JwhK + J∇hvhK{{wh}},sine letting ai = (∇vh)|Ti
, bi = wh|Ti

, i ∈ {1, 2}, yields
J(∇hvh)whK = a1b1 − a2b2

= 1
2 (a1 + a2)(b1 − b2) + (a1 − a2)

1
2 (b1 + b2)

= {{∇hvh}}JwhK + J∇hvhK{{wh}}.As a result, and aounting for boundary faes using De�nition 4.2, yields
∑

T∈Th

∫

∂T

(∇vh·nT )wh =
∑

F∈Fh

∫

F

{{∇hvh}}·nF JwhK +
∑

F∈Fi
h

∫

F

J∇hvhK·nF {{wh}}.Hene,
a
(0)
h (vh, wh) = −

∑

T∈Th

∫

T

(△vh)wh +
∑

F∈Fh

∫

F

{{∇hvh}}·nF JwhK

+
∑

F∈Fi
h

∫

F

J∇hvhK·nF {{wh}}. (63)To plug the exat solution u into the above expression, we extend the bilinear form a
(0)
h to

V∗h × Vh and set vh = u in (63). A onsequene of (62b) is that, for all wh ∈ Vh,
a
(0)
h (u,wh) =

∫

Ω

fwh +
∑

F∈Fh

∫

F

(∇u·nF )JwhK.In order to math the onsisteny requirement (13), we are prompted to modify a(0)
h as follows:For all (v, wh) ∈ V∗h × Vh,

a
(1)
h (v, wh) :=

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

{{∇hv}}·nF JwhK.26



It is lear that a(1)
h is onsistent in the sense of (13), i.e., for all wh ∈ Vh,

a
(1)
h (u,wh) =

∫

Ω

fwh.A desirable property of the disrete bilinear form is to preserve the original symmetry ofthe exat bilinear form. Indeed, symmetry an simplify the solution of the resulting linearsystem and furthermore, it is a natural ingredient to derive optimal L2-norm error estimates(f. �4.2.4). In view of this remark, we set, for all (v, wh) ∈ V∗h × Vh,
acs

h (v, wh) :=

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

({{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF ) , (64)so that acs
h is symmetri on Vh × Vh The bilinear form acs

h remains onsistent owing to (62a).The supersript in acs
h indiates the onsisteny and symmetry ahieved so far. For future use,we reord the following equivalent expression of acs

h resulting from (63),
acs

h (v, wh) = −
∑

T∈Th

∫

T

(△v)wh +
∑

F∈Fi
h

∫

F

J∇hvK·nF {{wh}}

−
∑

F∈Fh

∫

F

JvK{{∇hwh}}·nF . (65)The last requirement to math is disrete oerivity on the broken polynomial spae Vh withrespet to a suitable norm. The di�ulty with the disrete bilinear form acs
h de�ned by (64) isthat, for all vh ∈ Vh,

acs
h (vh, vh) = ‖∇hvh‖

2
[L2(Ω)]d − 2

∑

F∈Fh

∫

F

{{∇hvh}}·nF JvhK,and the seond term on the right-hand side has no a priori sign. To ahieve disrete oerivity,we add to acs
h a term penalizing interfae and boundary jumps, namely we set, for all (v, wh) ∈

V∗h × Vh,
asip

h (v, wh) := acs
h (v, wh) + sh(v, wh), (66)with the stabilization bilinear form

sh(v, wh) :=
∑

F∈Fh

η

hF

∫

F

JvKJwhK, (67)where η > 0 is a user-dependent parameter and hF a loal length sale assoiated with themesh fae F ∈ Fh. We observe that, owing to (62a), adding the bilinear form sh to acs
h doesnot alter the onsisteny and symmetry ahieved so far. Moreover, Lemma 4.10 below showsthat, provided the penalty parameter η is large enough, the disrete bilinear form asip

h enjoysdisrete oerivity on Vh.We now present a simple hoie for the loal length sale hF . Other hoies are possible;f. Remark 4.6.De�nition 4.5 (Loal length sale hF ). For all F ∈ Fh, in dimension d ≥ 2, we set hF tobe equal to the diameter of the fae F , while, in dimension 1, we set hF := min(hT1
, hT2

) if
F ∈ F i

h with F = ∂T1 ∩ ∂T2 and hF := hT if F ∈ Fb
h with F = ∂T ∩ ∂Ω. In all ases, for amesh element T ∈ Th, hT denotes its diameter (f. De�nition 2.7).Remark 4.6 (Loal length sale hF ). Other hoies are possible for the loal length sale hFweighting the fae penalties in the stabilization bilinear form sh, e.g., the hoie hF = {{h}} :=

1
2 (hT1

+ hT2
) for all F ∈ F i

h, or the hoie hF = {{|T |d}}
|F |d−1

(that is, the mean value of the d-dimensional Hausdor� measures of the neighboring elements divided by the (d−1)-dimensionalHausdor� measure of the fae, realling that for d = 1, |F |0 = 1). Inidentally, we observe thatmodifying the hoie for the loal length sale impats the value of the minimal threshold onthe penalty parameter η for whih disrete oerivity is ahieved.27



Combining (66) with (67) yields, for all (v, wh) ∈ V∗h × Vh,
asip

h (v, wh) =

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

({{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF )

+
∑

F∈Fh

η

hF

∫

F

JvKJwhK, (68)or, equivalently using (65),
asip

h (v, wh) = −
∑

T∈Th

∫

T

(△v)wh +
∑

F∈Fi
h

∫

F

J∇hvK·nF {{wh}}

−
∑

F∈Fh

∫

F

JvK{{∇hwh}}·nF +
∑

F∈Fh

η

hF

∫

F

JvKJwhK. (69)Heneforth, asip
h is alled the SIP bilinear form. In the present ontext, interior penalty meansinterior as well as boundary penalties.De�nition 4.7 (Consisteny, symmetry, and penalty terms). The seond, third, and fourthterms on the right-hand side of (68) are respetively alled onsisteny, symmetry, and penaltyterms.4.2.2 The disrete problemThe disrete problem isFind uh ∈ Vh s.t. asip

h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (70)Lemma 4.10 below states that provided the penalty parameter η is large enough, the SIP bilinearform is oerive on Vh. Thus, owing to the Lax�Milgram Lemma, the disrete problem (70) iswell-posed. Moreover, a straightforward onsequene of the above derivation is onsisteny.Lemma 4.8 (Consisteny). Assume u ∈ V∗. Then, for all vh ∈ Vh,
asip

h (u, vh) =

∫

Ω

fvh.Remark 4.9 (Stenil). With an eye toward implementation, we identify the elementary stenil(f. De�nition 3.12) assoiated with the SIP bilinear form. For all T ∈ Th, the stenil of thevolume ontribution is just the element T , while the stenil assoiated with the onsisteny,symmetry, and penalty terms onsists of T and its neighbors in the sense of faes. Thus, theelementary stenil is that depited in Figure 7.4.2.3 Basi energy-error estimateLet u solve the weak problem (58) and let uh solve the disrete problem (70). The aim of thissetion is to estimate the approximation error (u− uh). The onvergene analysis is performedin the spirit of Theorem 2.20. We reall that the spae V∗ is spei�ed in Assumption 4.3 andthat V∗h = V∗ + Vh.We aim at asserting disrete oerivity using the following norm: For all v ∈ V∗h,
|||v|||sip :=

(
‖∇hv‖

2
[L2(Ω)]d + |v|2J

)1/2

, (71)with the jump seminorm
|v|J := (η−1sh(v, v))

1/2 =

(
∑

F∈Fh

1

hF
‖JvK‖2

L2(F )

)1/2

. (72)28



We observe that |||·|||sip is indeed a norm on V∗h, and even on the broken Sobolev spae H1(Th).The only nontrivial property to hek is whether, for all v ∈ H1(Th), |||v|||sip = 0 implies v = 0.Clearly, |||v|||sip = 0 implies ‖∇hv‖[L2(Ω)]d = 0 and |v|J = 0. The �rst property yields ∇hv = 0so that v is pieewise onstant. The seond property implies that the interfae and boundaryjumps of v vanish. Hene, v = 0.We an now turn to the disrete oerivity of the SIP bilinear form. We reall that N∂,de�ned by (2), denotes the maximum number of mesh faes omposing the boundary of ageneri mesh element and that this quantity is bounded uniformly in h.Lemma 4.10 (Disrete oerivity). For all η > η := C2
trN∂ where Ctr results from the disretetrae inequality (16) and the parameter N∂ is de�ned by (2), the SIP bilinear form de�nedby (68) is oerive on Vh with respet to the |||·|||sip-norm, i.e.,

∀vh ∈ Vh, asip
h (vh, vh) ≥ Cη|||vh|||

2
sip,with Cη := (η − C2

trN∂)(1 + η)−1.We de�ne on V∗h the norm
|||v|||sip,∗ :=

(
|||v|||2sip +

∑

T∈Th

hT ‖∇v|T ·nT ‖
2
L2(∂T )

)1/2

. (73)There is Cbnd, independent of h, suh that
∀(v, wh) ∈ V∗h × Vh, asip

h (v, wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip. (74)Theorem 4.11 (|||·|||sip-norm error estimate and onvergene rate). Let u ∈ V∗ solve (58). Let
uh solve (70) with asip

h de�ned by (68) and penalty parameter as in Lemma 4.10. Then, thereis C, independent of h, suh that
|||u− uh|||sip ≤ C inf

vh∈Vh

|||u − vh|||sip,∗. (75)Moreover, if u ∈ Hk+1(Ω),
|||u − uh|||sip ≤ Cuh

k, (76)with Cu = C‖u‖Hk+1(Ω).4.2.4 L2-norm error estimateTo derive an optimal L2-norm error estimate, it is possible to resort to a duality argument (theso-alled Aubin�Nitshe argument [4℄) under the following assumption.De�nition 4.12 (Ellipti regularity). We say that ellipti regularity holds true for the modelproblem (58) if there is Cell, only depending on Ω, suh that, for all ψ ∈ L2(Ω), the solution tothe problem: Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫

Ω

ψv for all v ∈ H1
0 (Ω),is in V∗ and satis�es

‖ζ‖H2(Ω) ≤ Cell‖ψ‖L2(Ω).Ellipti regularity an be asserted if, for instane, the polygonal domain Ω is onvex; seeGrisvard [57℄.Theorem 4.13 (L2-norm error estimate). Let u ∈ V∗ solve (58). Let uh solve (70) with asip
hde�ned by (68). Assume ellipti regularity. Then, there is C, independent of h, suh that

‖u− uh‖L2(Ω) ≤ Ch|||u − uh|||sip,∗. (77)Therefore, under the hypotheses of Theorem 4.11 and if u ∈ Hk+1(Ω),
‖u− uh‖L2(Ω) ≤ Cuh

k+1, (78)with Cu = C‖u‖Hk+1(Ω). 29



Estimate (78) is optimal. We emphasize that the symmetry of asip
h is used in the proof ofTheorem 4.13.4.3 Liftings and disrete gradientsLiftings are operators that map salar-valued funtions de�ned on mesh faes to vetor-valuedfuntions de�ned on mesh elements. In the ontext of dG methods, liftings at on interfae andboundary jumps. They were introdued by Bassi, Rebay, Mariotti, Pedinotti, and Savini [10, 11℄in the ontext of ompressible �ows and analyzed by Brezzi, Manzini, Marini, Pietra, andRusso [18, 19℄ in the ontext of the Poisson problem (see also Perugia and Shötzau [73℄ for the

hp-analysis). Liftings have many useful appliations. They an be ombined with the brokengradient to de�ne disrete gradients. Disrete gradients play an important role in the design andanalysis of dG methods. Indeed, they an be used to formulate the disrete problem loally oneah mesh element using numerial �uxes. Moreover, they are instrumental in the derivation ofdisrete funtional analysis results, that, in turn, play a entral role in the onvergene analysisto minimal regularity solutions (see Di Pietro and Ern [46℄). Liftings an also be employedto de�ne the stabilization bilinear form [11℄, yielding a more onvenient lower bound for thepenalty parameter η.4.3.1 Main de�nitionsAs before, we assume that the mesh Th belongs to an admissible mesh sequene. For any meshfae F ∈ Fh and for any integer l ≥ 0, we de�ne the (loal) lifting operator
rl
F : L2(F ) −→ [Pl

d(Th)]das follows: For all ϕ ∈ L2(F ),
∫

Ω

rl
F (ϕ)·τh =

∫

F

{{τh}}·nFϕ ∀τh ∈ [Pl
d(Th)]d. (79)We observe that the support of rl

F (φ) onsists of the one or two mesh elements of whih F ispart of the boundary; using the set TF de�ned by (3) yields
supp(rl

F ) =
⋃

T∈TF

T . (80)Moreover, whenever the mesh fae F is a portion of a hyperplane (this happens, for instane,when working with simpliial meshes or with general meshes onsisting of onvex elements),
rl
F (ϕ) is olinear to the normal vetor nF .For any integer l ≥ 0 and for any funtion v ∈ H1(Th), we de�ne the (global) lifting of itsinterfae and boundary jumps as

Rl
h(JvK) :=

∑

F∈Fh

rl
F (JvK) ∈ [Pl

d(Th)]d, (81)being impliitly understood that rl
F ats on the funtion JvKF (whih is in L2(F ) sine v ∈

H1(Th)).For any integer l ≥ 0, we de�ne the disrete gradient operator
Gl

h : H1(Th) −→ [L2(Ω)]d,as follows: For all v ∈ H1(Th),
Gl

h(v) := ∇hv − Rl
h(JvK). (82)30



4.3.2 Reformulation of the SIP bilinear formLet l ∈ {k− 1, k} and set, as in �4.2, Vh = Pk
d(Th) where k ≥ 1 and Th belongs to an admissiblemesh sequene. The bilinear form acs

h an be equivalently written as follows: For all vh, wh ∈ Vh,
acs

h (vh, wh) =

∫

Ω

∇hvh·∇hwh −

∫

Ω

∇hvh·R
l
h(JwhK) −

∫

Ω

∇hwh·R
l
h(JvhK). (83)This results from de�nitions (79) and (81) and the fat that ∇hvh and ∇hwh are in [Pl

d(Th)]dsine l ≥ k − 1, so that, for all F ∈ Fh,
∫

F

{{∇hvh}}·nF JwhK =

∫

Ω

∇hvh· r
l
F (JwhK).Starting from (83) and using the de�nition (82) of the disrete gradient, we infer, for all vh, wh ∈

Vh,
acs

h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) −

∫

Ω

Rl
h(JvhK)·Rl

h(JwhK).As a result, realling that the SIP bilinear form onsidered in �4.2 is suh that asip
h = acs

h + shwith sh de�ned by (67), we obtain, for all vh, wh ∈ Vh,
asip

h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) + ŝsiph (vh, wh), (84)with
ŝsiph (vh, wh) :=

∑

F∈Fh

η

hF

∫

F

JvhKJwhK −

∫

Ω

Rl
h(JvhK)·Rl

h(JwhK). (85)The most natural hoie for l appears to be l = k−1 sine the broken gradient is in [Pk−1
d (Th)]d.The hoie l = k an failitate the implementation of the method in that it allows one to usethe same polynomial basis for omputing the liftings and assembling the matrix.The interest in using disrete gradients to formulate dG methods has been reognized re-ently in various ontexts, e.g., by Lew, Ne�, Sulsky, and Ortiz [68℄ and Ten Eyk and Lew [80℄for linear and nonlinear elastiity, Bu�a and Ortner [21℄ and Burman and Ern [22℄ for nonlinearvariational problems, and the authors [46℄ for the Navier�Stokes equations.It is interesting to notie that, for all vh ∈ Vh,

asip
h (vh, vh) ≥ ‖Gl

h(vh)‖2
[L2(Ω)]d + (η − C2

trN∂)|vh|
2
J.In view of this result, the expression (84) for asip

h onsists of two terms, both yielding a nonneg-ative ontribution whenever wh = vh and, as in Lemma 4.10, η > C2
trN∂ . The �rst term an beseen as the disrete ounterpart of the exat bilinear form a (suh that a(v, w) =

∫
Ω
∇v·∇w)and provides a ontrol on the disrete gradient in [L2(Ω)]d. The role of the seond term is tostrengthen the disrete stability of the method.Remark 4.14 (Extension to broken Sobolev spaes). We emphasize that the de�nition (84)of asip

h is equivalent to (68) only at the disrete level. Di�erenes our when extending thede�nitions (68) and (84) to larger spaes, e.g., broken Sobolev spaes. The SIP bilinear formde�ned by (68) annot be extended to the minimum regularity spae H1(Ω) beause traes ofgradients on mesh faes are used. Instead, the bilinear form de�ned by (84) an be extendedto the broken Sobolev spae H1(Th). We denote this extension by ãsip
h . Inidentally, ãsip

h is nolonger onsistent. For onvergene analysis to smooth solutions, Strang's First Lemma (see [77℄or, e.g., Braess [14, p. 106℄) dediated to nononsistent �nite element methods an be used,whereby the onsisteny error is estimated for u ∈ Hk+1(Ω) as follows: For all vh ∈ Vh,
ãsip

h (u− uh, vh) =
∑

F∈Fh

∫

F

{{∇u− πh(∇u)}}·nF JvhK ≤ Cuh
k|vh|J,where πh denotes the L2-orthogonal projetion onto Vh. As a result, the onsisteny error tendsoptimally to zero as the meshsize goes to zero.31



4.3.3 Numerial �uxesDisontinuous Galerkin methods an be viewed as high-order �nite volume methods. The aimof this setion is to identify the loal onservation properties assoiated with dG methods.Suh properties are important when the di�usive �ux is to be used as an advetive veloityin a transport problem, e.g., in the ontext of oupled porous media �ow and ontaminanttransport.Let T ∈ Th and let ξ ∈ Pk
d(T ). Integration by parts shows that, for the exat solution u,

∫

T

fξ = −

∫

T

(△u)ξ =

∫

T

∇u·∇ξ −

∫

∂T

(∇u·nT )ξ.Therefore, de�ning on eah mesh fae F ∈ Fh the exat �ux as
ΦF (u) := −∇u·nF , (86)and realling the notation ǫT,F = nT ·nF introdued in �3.3.3, we infer

∫

T

∇u·∇ξ +
∑

F∈FT

ǫT,F

∫

F

ΦF (u)ξ =

∫

T

fξ.This is a loal onservation property satis�ed by the exat solution. Our goal is to identify asimilar relation satis�ed by the disrete solution uh solving (70). Using vh = ξχT as test funtionin (70) (where χT denotes the harateristi funtion of T ), observing that ∇h(ξχT ) = (∇ξ)χT ,and realling the de�nition (68) of asip
h , we obtain

∫

T

fξ = asip
h (uh, ξχT ) =

∫

T

∇uh·∇ξ −
∑

F∈FT

∫

F

{{∇huh}}·nF JξχT K

−
∑

F∈FT

∫

F

{{(∇ξ)χT }}·nF JuhK +
∑

F∈FT

η

hF

∫

F

JuhKJξχT K.Let l ∈ {k− 1, k}. The �rst and third terms on the right-hand side sum up to ∫
T
Gk−1

h (uh)·∇ξsine ∇ξ ∈ [Pk−1
d (T )]d and l ≥ k − 1, while in the seond and fourth terms, we observe that

JξχT K = ǫT,F ξ. As a result, for all T ∈ Th and all ξ ∈ Pk
d(T ),

∫

T

Gl
h(uh)·∇ξ +

∑

F∈FT

ǫT,F

∫

F

φF (uh)ξ =

∫

T

fξ, (87)with the numerial �ux φF (uh) de�ned as
φF (uh) := −{{∇huh}}·nF +

η

hF
JuhK. (88)We notie that the two ontributions to φF (uh) in (88) respetively stem from the onsistenyterm and the penalty term (f. De�nition 4.7). Equation (87) is the loal onservation propertysatis�ed by the dG approximation. Interestingly, the expression (88) is onsistent with (86)sine, for the exat solution u, φF (u) = ΦF (u). We also observe that the loal onservationproperty (87) is riher than that enountered in �nite volume methods, whih an be reoveredby just taking ξ ≡ 1, i.e.,

∑

F∈FT

ǫT,F

∫

F

φF (uh) =

∫

T

f. (89)4.4 Mixed dG methodsIn this setion, we disuss mixed dG methods, that is, dG approximations to the mixed formu-lation (61) with the homogeneous Dirihlet boundary ondition (57b). Suh methods produean approximation uh for the potential u and an approximation σh for the di�usive �ux σ.32



De�nition 4.15 (Disrete potential and disrete di�usive �ux). The salar-valued funtion uhis termed the disrete potential and the vetor-valued funtion σh the disrete di�usive �ux.First, we reformulate the SIP method of �4.2 as a mixed dG method and show how thedisrete di�usive �ux an be eliminated loally. Then, we formulate more general mixed dGmethods in terms of loal problems using numerial �uxes for the disrete potential and thedi�usive �ux following Bassi, Rebay and oworkers [11, 10℄. This leads, in partiular, to theLDG methods introdued by Cokburn and Shu [43℄. In these methods, the disrete di�usive�ux an also be eliminated loally. Finally, we disuss hybrid mixed dG methods methods whereadditional degrees of freedom are introdued at interfaes, thereby allowing one to eliminateloally both the disrete potential and the disrete di�usive �ux.4.4.1 The SIP method as a mixed dG methodOne possible weak formulation of the mixed formulation (61) with the homogeneous Dirihletboundary ondition (57b) onsists in �nding (σ, u) ∈ X := [L2(Ω)]d ×H1
0 (Ω) suh that






m(σ, τ) + b(τ, u) = 0 ∀τ ∈ [L2(Ω)]d,

−b(σ, v) =

∫

Ω

fv ∀v ∈ H1
0 (Ω),

(90)where, for all σ, τ ∈ [L2(Ω)]d and for all v ∈ H1
0 (Ω), we have de�ned the bilinear forms

m(σ, τ) :=

∫

Ω

σ·τ, b(τ, v) :=

∫

Ω

τ ·∇v.It is easily seen that (σ, u) ∈ X solves (90) if and only if σ = −∇u and u solves the weakproblem (58).At the disrete level, a mixed dG approximation an be designed as follows. We onsidera polynomial degree k ≥ 1 for the approximation of the potential and hoose the polynomialdegree for the approximation of the di�usive �ux, say l, suh that l ∈ {k − 1, k}. The relevantdisrete spaes are
Σh := [Pl

d(Th)]d, Uh := Pk
d(Th), Xh := Σh × Uh.The disrete problem onsists in �nding (σh, uh) ∈ Xh suh that






m(σh, τh) + bh(τh, uh) = 0 ∀τh ∈ Σh,

−bh(σh, vh) + ŝsiph (uh, vh) =

∫

Ω

fvh ∀vh ∈ Uh,
(91)with disrete bilinear form

bh(τh, vh) :=

∫

Ω

τh·G
l
h(vh),where the disrete gradient operator Gl

h is de�ned by (82) and the stabilization bilinear form
ŝsiph by (85).Proposition 4.16 (Elimination of disrete di�usive �ux). The pair (σh, uh) ∈ Xh solves (91)if and only if

σh = −Gl
h(uh), (92)and uh ∈ Uh is suh that

∫

Ω

Gl
h(uh)·Gl

h(vh) + ŝsiph (uh, vh) =

∫

Ω

fvh ∀vh ∈ Uh. (93)Proposition 4.16 shows that the mixed dG method (91) is in fat equivalent to a problemin the sole unknown uh. In partiular, the above hoie for bh and ŝsiph yields the SIP methodof �4.2. 33



4.4.2 Numerial �uxesWe fous for simpliity on equal-order approximations for the potential and the di�usive �ux,that is, we set l = k so that Σh := [Pk
d(Th)]d, while, as before, Uh := Pk

d(Th). Similarly to �4.3.3,we an derive a loal formulation by loalizing test funtions to a single mesh element. Let
T ∈ Th, let ζ ∈ [Pk

d(T )]d, and let ξ ∈ Pk
d(T ). Integrating by parts in T , splitting the boundaryintegral on ∂T as a sum over the mesh faes F ∈ FT , and setting ǫT,F = nT ·nF , we infer forthe exat solution that

∫

T

σ·ζ −

∫

T

u∇·ζ +
∑

F∈FT

ǫT,F

∫

F

uF (ζ·nF ) = 0,

−

∫

T

σ·∇ξ +
∑

F∈FT

ǫT,F

∫

F

(σF ·nF )ξ =

∫

T

fξ,sine σ = −∇u and ∇·σ = f . The traes uF and σF ·nF are single-valued on eah interfae;f. Lemma 4.4. At the disrete level, the general form of the mixed dG approximation isderived by introduing numerial �uxes for the disrete potential and for the disrete di�usive�ux. These two numerial �uxes, whih are denoted by ûF and σ̂F for all F ∈ Fh, are single-valued on eah F ∈ Fh. The numerial �ux ûF is salar-valued and the numerial �ux σ̂F isvetor-valued. We obtain, for all T ∈ Th, all ζ ∈ [Pk
d(T )]d, and all ξ ∈ Pk

d(T ),
∫

T

σh·ζ −

∫

T

uh∇·ζ +
∑

F∈FT

ǫT,F

∫

F

ûF (ζ·nF ) = 0, (94a)
−

∫

T

σh·∇ξ +
∑

F∈FT

ǫT,F

∫

F

(σ̂F ·nF )ξ =

∫

T

fξ. (94b)For the SIP method, the numerial �uxes are given by
ûF =

{
{{uh}} ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(95a)
σ̂F = −{{∇huh}} + ηh−1

F JuhKnF ∀F ∈ Fh. (95b)A �rst possible variant of the SIP method onsists in keeping the de�nition (95a) for thenumerial �ux ûF and de�ning the numerial �ux σ̂F as
σ̂F = {{σh}} + ηh−1

F JuhKnF .The resulting dG method belongs to the lass of LDG methods. The disrete di�usive �ux
σh an still be eliminated loally (sine the numerial �ux ûF only depends on uh), and thedisrete potential uh ∈ Uh is suh that

aldg
h (uh, vh) =

∫

Ω

fvh ∀vh ∈ Uh,with the disrete bilinear form
aldg

h (uh, vh) =

∫

Ω

∇huh·∇hvh −
∑

F∈Fh

∫

F

({{∇huh}}·nF JvhK + {{∇hvh}}·nF JuhK)

+

∫

Ω

Rk
h(JuhK)·Rk

h(JvhK) +
∑

F∈Fh

η

hF

∫

F

JuhKJvhK

=

∫

Ω

Gk
h(uh)·Gk

h(vh) +
∑

F∈Fh

η

hF

∫

F

JuhKJvhK.A nie feature of the disrete bilinear form aldg
h is that disrete oerivity holds on Uh withrespet to the |||·|||sip-norm for any η > 0 (a simple hoie is η = 1). The drawbak is that34



the elementary stenil assoiated with the term ∫
Ω

Rk
h(JuhK)·Rk

h(JvhK) onsists of a given meshelement, its neighbors, and the neighbors of its neighbors in the sense of faes; f. Figure 8.Suh a stenil is onsiderably larger than that assoiated with the SIP method (ompare withFigure 7).

Figure 8: Example of LDG stenil of an element T ∈ Th when Th is a mathing triangular mesh;the mesh element is highlighted in dark, and all the nine other elements, highlighted in light,also belong to the stenilMore general forms of the LDG method an be designed with the numerial �uxes
ûF =

{
{{uh}} + Υ·nF JuhK ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F =

{
{{σh}} − ΥJσhK·nF + ηh−1

F JuhKnF ∀F ∈ F i
h,

σh + ηh−1
F uhn ∀F ∈ Fb

h,where Υ is vetor-valued and η > 0 is salar-valued (in LDG methods, ηh−1
F is often denoted by

C11 and Υ by C12). Sine the numerial �ux ûF only depends on uh, the disrete di�usive �ux σhan be eliminated loally. The above form of the di�usive �uxes ensures symmetry and disretestability for the resulting dG method. A simple hoie for the penalty parameter is again η = 1,while the auxiliary vetor-parameter Υ an be freely hosen. LDG methods for the Poissonproblem have been extensively analyzed by Castillo, Cokburn, Perugia, and Shötzau [24℄.Variants of the LDG method aiming at reduing the stenil have been disussed by Sherwin,Kirby, Peiró, Taylor, and Zienkiewiz [76℄, Peraire and Persson [72℄, and Castillo [25℄.A further variant of the SIP and LDG methods onsists in onsidering the numerial �uxes
ûF =

{
{{uh}} + ησJσhK·nF ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F = {{σh}} + ηuJuhKnF ∀F ∈ Fh.Here, the penalty parameters ηu and ησ are positive user-dependent real numbers, and a simplehoie is to set ηu = ησ = 1. This method an be analyzed in the more general ontext ofFriedrihs' systems (see Ern and Guermond [50℄). Beause the numerial �ux ûF depends on
σh, (94a) an no longer be used to express loally the disrete di�usive �ux σh in terms ofthe disrete potential uh. This preludes the loal elimination of σh and, therefore, enhanesthe omputational ost of the approximation method. The approah presents, however, someadvantages sine it an be used with polynomial degree k = 0 and there is no minimal thresholdon the penalty parameters (apart from being positive). Moreover, the approximation on thedi�usive �ux is more aurate yielding onvergene rates in the L2-norm of order hk+1/2 forsmooth solutions, as opposed to the onvergene rates of order hk delivered by the SIP method.Finally, we mention that an even more general presentation an allow for two-valued nu-merial �uxes at interfaes; see Arnold, Brezzi, Cokburn, and Marini [3℄ for a uni�ed analysisof dG methods. 35



4.4.3 Hybrid mixed dG methodsThe key idea in hybrid mixed dG methods is to introdue additional degrees of freedom atinterfaes, thereby allowing one to eliminate loally both the disrete potential and the disretedi�usive �ux. Herein, we fous on the HDG methods introdued by Cokburn, Gopalakrishnan,and Lazarov [31℄; see also Causin and Sao [27℄ for a di�erent approah based on a disontinuousPetrov�Galerkin formulation, Droniou and Eymard [48℄ for similar ideas in the ontext of hybridmixed �nite volume shemes, and Ewing, Wang, and Yang for hybrid primal dG methods [54℄.In the HDG method, the additional degrees of freedom are used to enfore the ontinuityof the normal omponent of the disrete di�usive �ux. These additional degrees of freedom atas Lagrange multipliers in the disrete problem and an be interpreted as single-valued traesof the disrete potential on interfaes. We introdue the disrete spae
Λh :=

⊕

F∈Fi
h

Pk
d−1(F ).A funtion µh ∈ Λh is suh that, for all F ∈ F i

h, µh|F ∈ Pk
d−1(F ). The disrete unknowns

(σh, uh, λh) ∈ Σh×Uh×Λh satisfy the following loal problems: For all T ∈ Th, all ζ ∈ [Pk
d(T )]d,and all ξ ∈ Pk

d(T ),
∫

T

σh·ζ −

∫

T

uh∇·ζ +
∑

F∈FT

ǫT,F

∫

F

ûF (ζ·nF ) = 0, (96a)
−

∫

T

σh·∇ξ +
∑

F∈FT

ǫT,F

∫

F

(σ̂T,F ·nF )ξ =

∫

T

fξ, (96b)while normal di�usive �ux ontinuity is enfored by setting, for all F ∈ FT ∩ F i
h and all

µ ∈ Pk
d−1(F ), ∫

F

Jσ̂T,F K·nFµ = 0. (97)Here, the numerial �uxes are suh that
ûF =

{
λh ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(98a)
σ̂T,F = σh|T + τT (uh|T − ûF )nT ∀F ∈ Fh, (98b)with penalty parameter τT de�ned elementwise. We observe that (97) indeed enfores Jσ̂T,F K·nF =

0 for all F ∈ F i
h sine Jσ̂T,F K·nF ∈ Pk

d−1(F ). As a result, the quantity (σ̂T,F ·nF ) in (96b) isindeed single-valued.Lemma 4.17 (HDG as mixed dG method). Let (σh, uh, λh) ∈ Σh × Uh × Λh solve (96)�(97).Then, the pair (σh, uh) ∈ Σh × Uh solves the loal problems of the mixed dG formulation (94)with numerial �uxes suh that, for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

ûF = {{uh}} + C12·JuhKnF + C22JσhK·nF , (99a)
σ̂F = {{σh}} + C11JuhKnF − C12JσhK·nF , (99b)with the parameters

C11 =
τ1τ2
τ1 + τ2

, C12 =
τ1 − τ2

2(τ1 + τ2)
nF , C22 =

1

τ1 + τ2
,where τi := τTi

, i ∈ {1, 2}. Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω, ûF = 0 and

σ̂F = σh + τTuh. 36



We observe that the numerial �ux ûF in (99a) depends on σh sine C22 6= 0. As a result,the disrete di�usive �ux annot be eliminated loally to derive a disrete problem for thesole disrete potential. Instead, a omputationally e�ient implementation of HDG methodsonsists in using (96) to eliminate loally both the disrete potential and the disrete di�usive�ux, so as to obtain, using (97), a disrete problem where the sole unknown is λh ∈ Λh. For agiven interfae F ∈ F i
h with F = ∂T1 ∩ ∂T2, the stenil assoiated with this interfae is

S(F ) = {F ′ ∈ F i
h | F ′ ∈ FT1

∪ FT2
}.For mathing simpliial meshes, the set S(F ) generally ontains 5 interfaes for d = 2 and 7interfaes for d = 3.HDGmethods for ellipti problems have been analyzed by Cokburn, Dong, and Guzmán [30℄and Cokburn, Guzmán, and Wang [32℄ where error estimates in various norms are derived forvarious hoies of the penalty parameter τ . In partiular, L2-norm error estimates of order hk+1an be derived both for the potential and the di�usive �ux for smooth solutions and polynomialorder k ≥ 0. Moreover, for k ≥ 1, a postproessed potential onverging at order hk+2 an bederived, similarly to lassial mixed �nite element methods.5 Inompressible �owsThe equations governing �uid motion are the Navier�Stokes equations, whih express the fun-damental laws of mass and momentum onservation. In their general form, these equations were�rst derived by Navier (1827) and Poisson (1831), while a more spei� derivation was foundby Saint-Venant (1843) and Stokes (1845) based on the assumption that the stresses are linearfuntions of the strain rates (or deformation veloities), that is, for Newtonian �uids. In thishapter, we are onerned with the speial ase of inompressible (that is, onstant density)Newtonian �ows, thereby leading to the so-alled Inompressible Navier�Stokes (INS) equa-tions. In these equations, the dependent variables are the veloity and the pressure. The massonservation equation enfores zero divergene on the veloity �eld (beause of inompressibil-ity), while the momentum onservation equation expresses the balane between di�usion (dueto visosity), nonlinear onvetion, pressure gradient, and external forings.The main di�ulties in the disretization of the steady INS equations are (i) the zero-divergene onstraint on the veloity and (ii) the ontribution of the nonlinear onvetion termto the kineti energy balane. The �rst issue is addressed in �5.1 in the simpler ontext of thesteady Stokes equations. In �5.2, we turn to the steady INS equations. The entral issue is nowthe disretization of the nonlinear onvetion term. An important ingredient is to mimi thefat that, at the ontinuous level, this term does not ontribute to the kineti energy balane.5.1 Steady Stokes �owsIn this setion, we onsider the steady Stokes equations. These equations desribe inompress-ible visous �ows under the assumption that the �uid motion is su�iently slow so that di�usiondominates over onvetion in the transport of momentum.5.1.1 The ontinuous settingLet Ω ⊂ Rd, d ≥ 2, be a polyhedron. The steady Stokes equations an be expressed in the form

−△u+ ∇p = f in Ω, (100a)
∇·u = 0 in Ω, (100b)
u = 0 on ∂Ω, (100)

〈p〉Ω = 0, (100d)where u : Ω → Rd with Cartesian omponents (ui)1≤i≤d is the veloity �eld, p : Ω → R the pres-sure, and f : Ω → Rd with Cartesian omponents (fi)1≤i≤d the foring term. Equation (100a)37



expresses the onservation of momentum. Equation (100b) expresses the onservation of mass,thereby enforing the divergene-free onstraint on the veloity. Equation (100) enfores ahomogeneous Dirihlet boundary ondition on the veloity; other boundary onditions an beonsidered, as disussed, e.g., by Ern and Guermond [49, p. 179℄. Finally, ondition (100d),where 〈·〉Ω denotes the mean value over Ω, is added to avoid leaving the pressure undeterminedup to an additive onstant.Remark 5.1 (Stress and strain tensors, visosity). A more general form of the momentumonservation equation (100a) takes the form
−∇·σ + ∇p = f in Ω,where σ : Ω → Rd,d is the stress tensor. In Newtonian �ows, stresses are proportional to strainrates. More spei�ally, introduing for a given veloity �eld u the (linearized) strain tensor

ε : Ω → Rd,d suh that ε = 1
2 (∇u+ ∇ut), there holds

σ = 2νε,where ν > 0 is the (kinemati) visosity. Taking the visosity onstant for simpliity, we obtain
− ν∇·(∇u+ ∇ut) + ∇p = f, (101)and up to resaling of the pressure and the soure term, we an assume that ν = 1. Then,observing that ∇·(∇u) = △u and ∇·(∇u)t = ∇(∇·u) = 0 beause of inompressibility, wereover (100a). Considering the form (101) of the momentum onservation equation is appro-priate when dealing with other boundary onditions than (100), e.g., when weakly enforingthe Navier slip boundary ondition (σ·n+λu)·t = 0 where t is a tangent vetor to the boundary

∂Ω and λ ≥ 0 a given parameter.We assume that the foring term f is in [L2(Ω)]d. Owing to (100), the natural spae for theveloity is [H1
0 (Ω)]d, while owing to (100d), the natural spae for the pressure is L2

0(Ω) ⊂ L2(Ω)where
L2

0(Ω) :=
{
q ∈ L2(Ω) | 〈q〉Ω = 0

}
.We set

U := [H1
0 (Ω)]d, P := L2

0(Ω), X := U × P. (102)The spaes U , P , and X are Hilbert spaes when equipped with the inner produts induingthe norms
‖v‖U := ‖v‖[H1(Ω)]d =

(
d∑

i=1

‖vi‖
2
H1(Ω)

)1/2

,

‖q‖P := ‖q‖L2(Ω), ‖(v, q)‖X :=
(
‖v‖2

U + ‖q‖2
P

)1/2

.We de�ne, for all u, v ∈ U and for all q ∈ P , the bilinear forms
a(u, v) :=

∫

Ω

∇u:∇v =

d∑

i,j=1

∫

Ω

∂jui ∂jvi = (∇u,∇v)[L2(Ω)]d,d , (103a)
b(v, q) := −

∫

Ω

q∇·v = −(∇·v, q)P . (103b)The weak formulation of problem (100) reads: Find (u, p) ∈ X suh that
a(u, v) + b(v, p) =

∫

Ω

f ·v ∀v ∈ U, (104a)
−b(u, q) = 0 ∀q ∈ P , (104b)38



or, equivalently, Find (u, p) ∈ X s.t. c((u, p), (v, q)) =

∫

Ω

f ·v for all (v, q) ∈ X ,with
c((u, p), (v, q)) := a(u, v) + b(v, p) − b(u, q).While the bilinear form c is learly not oerive on X , we observe that the bilinear form ais oerive on U . Indeed, applying the ontinuous Poinaré inequality (60) to eah veloityomponent, we infer that there exists αΩ > 0, only depending on Ω, suh that

∀v ∈ U, a(v, v) = ‖∇v‖2
[L2(Ω)]d,d ≥ αΩ‖v‖

2
U . (105)This yields a so-alled partial oerivity for the bilinear form c in the form

∀(v, q) ∈ X, c((v, q), (v, q)) = a(v, v) ≥ αΩ‖v‖
2
U . (106)Remark 5.2 (Saddle-point problem). A problem of the form (104) is said to have a saddle-pointstruture sine (u, p) ∈ X solves (104) if and only if (u, p) is a saddle-point of the Lagrangian

L : X → R suh that, for all (v, q) ∈ X ,
L(v, q) =

1

2
a(v, v) + b(v, q).In this ontext, the pressure plays the role of the Lagrange multiplier assoiated with theinompressibility onstraint.We introdue the divergene operator B ∈ L(U,P ) suh that

B : U ∋ v 7−→ Bv := −∇·v ∈ P. (107)(The fat that Bv has zero mean is a onsequene of the divergene theorem sine ∫
Ω
Bv =

−
∫
Ω ∇·v = −

∫
∂Ω(v·n) = 0.) The operator B is readily linked to the bilinear form b sine thereholds

(Bv, q)P = b(v, q) ∀(v, q) ∈ X.The well-posedness of the Stokes problem (104) hinges on the surjetivity of the operator B or,equivalently, on an inf-sup ondition on the bilinear form b (se, e.g., Girault and Raviart [55,�2.2℄).Theorem 5.3 (Surjetivity of divergene operator, inf-sup ondition on b). Let Ω ∈ Rd, d ≥ 1,be a onneted domain. Then, the operator B is surjetive. Equivalently, there exists a realnumber βΩ > 0, only depending on Ω, suh that, for all q ∈ P , there is vq ∈ U satisfying
q = −Bvq = ∇·vq and βΩ‖vq‖U ≤ ‖q‖P . (108)Moreover, property (108) is equivalent to the following inf-sup ondition on the bilinear form b:

∀q ∈ P, βΩ‖q‖P ≤ sup
w∈U\{0}

b(w, q)

‖w‖U
. (109)For all q ∈ P , a �eld vq ∈ U satisfying (108) is alled a veloity lifting of q.Theorem 5.4 (Well-posedness). Problem (104) is well-posed.
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5.1.2 Equal-order disontinuous veloities and pressuresIn this setion, we onsider one possible dG disretization of the steady Stokes equations basedon equal-order disontinuous veloities and pressures. Other approahes are disussed in �5.1.3.DG methods based on equal-order disontinuous veloities and pressures have been introduedby Cokburn, Kanshat, Shötzau, and Shwab [38℄ for the Stokes equations and extended tothe Oseen equations in [34℄ and to the INS equations in [37℄.Let Th be a mesh of Ω belonging to an admissible mesh sequene with mesh regularityparameters denoted by ̺. Realling the broken polynomial spae Pk
d(Th) de�ned by (6) withpolynomial degree k ≥ 1, we de�ne the disrete spaes

Uh := [Pk
d(Th)]d, Ph := Pk

d,0(Th), Xh := Uh × Ph, (110)where Pk
d,0(Th) denotes the subspae of Pk

d(Th) spanned by funtions having zero mean-valueover Ω. The disrete solution is sought in the spae Xh.To disretize the di�usion term, we use, for eah veloity omponent, the SIP bilinear form(f. �4.2). We de�ne on Uh × Uh the bilinear form
ah(vh, wh) :=

d∑

i=1

asip
h (vh,i, wh,i), (111)where (vh,i)1≤i≤d and (wh,i)1≤i≤d denote the Cartesian omponents of vh and wh, respetively,and where asip

h is de�ned by (68). It is natural to equip the disrete veloity spae Uh with the
|||·|||sip-norm de�ned by (71) for eah Cartesian omponent, so that we set

|||vh|||vel :=

(
d∑

i=1

|||vh,i|||
2
sip

)1/2

=
(
‖∇hvh‖

2
[L2(Ω)]d,d + |vh|

2
J

)1/2

, (112)with the |·|J-seminorm ating now on vetor-valued arguments as
|vh|J =

(
∑

F∈Fh

h−1
F ‖JvhK‖2

[L2(F )]d

)1/2

.We assume that the penalty parameter η is suh that η > η so that
∀vh ∈ Uh, ah(vh, vh) ≥ α|||vh|||

2
vel, (113)where α = Cη as de�ned in Lemma 4.10.To disretize the pressure-veloity oupling, we need a disrete ounterpart of the bilinearform b de�ned on U × P by (103). We de�ne on Uh × Ph the disrete bilinear form

bh(vh, qh) = −

∫

Ω

qh∇h·vh +
∑

F∈Fh

∫

F

JvhK·nF {{qh}}, (114)where the broken divergene operator ∇h· ats elementwise, like the broken gradient operator
∇h de�ned by (23). We observe that elementwise integration by parts yields

bh(vh, qh) =

∫

Ω

vh·∇hqh −
∑

F∈Fi
h

∫

F

{{vh}}·nF JqhK. (115)Similarly to the operator B at the ontinuous level, we introdue the disrete operator Bh :
Uh → Ph suh that, for all (vh, qh) ∈ Xh,

(Bhvh, qh)P = bh(vh, qh).40



It turns out that, ontrary to the exat operator B, the disrete operator Bh is not surjetive.As a result, the L2-norm of a funtion in Ph annot be ontrolled uniquely in terms of bh. Toreover ontrol, it is neessary to add the following pressure seminorm de�ned on H1(Th):
|q|p :=




∑

F∈Fi
h

hF ‖JqK‖
2
L2(F )





1/2

.Lemma 5.5 (Stability for bh). There exists β > 0, independent of h, suh that
∀qh ∈ Ph, β‖qh‖P ≤ sup

wh∈Uh\{0}

bh(wh, qh)

|||wh|||vel
+ |qh|p. (116)Remark 5.6 (Ladyzhenskaya�Babu²ka�Brezzi (LBB) ondition). In the setting of onformingmixed �nite element approximations, the stability of the disrete bilinear form oupling veloityand pressure takes the form of an inf-sup ondition without stabilization term, the so-alledLadyzhenskaya�Babu²ka�Brezzi (LBB) ondition (see Babu²ka [5℄ and Brezzi [17℄). Condition(116) an be viewed as an extended LBB ondition owing to the additional presene of thepressure seminorm on the right-hand side.We onsider the following disretization of problem (104): Find (uh, ph) ∈ Xh suh that

ah(uh, vh) + bh(vh, ph) =

∫

Ω

f ·vh ∀vh ∈ Uh, (117a)
−bh(uh, qh) + sh(ph, qh) = 0 ∀qh ∈ Ph, (117b)where the disrete bilinear form ah is de�ned by (111), the disrete bilinear form bh by (114)(or, equivalently, by (115)), and where

sh(qh, rh) :=
∑

F∈Fi
h

hF

∫

F

JqhKJrhK. (118)The stabilization bilinear form sh is meant to ontrol pressure jumps aross interfaes, therebyallowing to ontrol the L2-norm of the disrete pressure by virtue of Lemma 5.5. The followingformulation, equivalent to (117), is obtained by summing equations (117a) and (117b): Find
(uh, ph) ∈ Xh suh that

ch((uh, ph), (vh, qh)) =

∫

Ω

f ·vh for all (vh, qh) ∈ Xh, (119)where
ch((uh, ph), (vh, qh)) := ah(uh, vh) + bh(vh, ph) − bh(uh, qh) + sh(ph, qh). (120)Owing to (113), we infer partial oerivity for ch in the form

∀(vh, qh) ∈ Xh, ch((vh, qh), (vh, qh)) = ah(vh, vh) + sh(qh, qh)

≥ α|||vh|||
2
vel + |qh|

2
p. (121)To prove disrete well-posedness, we establish �rst the disrete inf-sup stability of the bilinearform ch when the disrete spae Xh is equipped with the norm

|||(vh, qh)|||sto :=
(
|||vh|||

2
vel + ‖qh‖

2
P + |qh|

2
p

)1/2

. (122)Lemma 5.7 (Disrete inf-sup stability). Assume that the penalty parameter η in the SIP methodis suh that η > η with η de�ned in Lemma 4.10. Then, there is γ > 0, independent of h, suhthat, for all (vh, qh) ∈ Xh,
γ|||(vh, qh)|||sto ≤ sup

(wh,rh)∈Xh\{0}

ch((vh, qh), (wh, rh))

|||(wh, rh)|||sto
. (123)As a onsequene of Lemma 2.16, the disrete problem (117) or, equivalently, (119) is well-posed. 41



Convergene to smooth solutions To analyze the onvergene of the solution of the dis-rete Stokes problem (117) or, equivalently, (119) in the ase of smooth exat solutions. Weproeed in the spirit of Theorem 2.20 and derive an error estimate in the |||·|||sto-norm. Someadditional regularity of the exat solution (u, p) ∈ X is needed to assert onsisteny by pluggingthe pair (u, p) into the disrete bilinear form ch. Conerning the veloity, we hinge for simpliityon Assumption 4.3 for all the veloity omponents. Conerning the pressure, we need traeson all interfaes and that the resulting jumps vanish; again for simpliity, this requirement ismathed by assuming H1(Ω)-regularity for the pressure.Assumption 5.8 (Regularity of the exat solution and spae X∗). We assume that the exatsolution (u, p) is in X∗ := U∗ × P∗ where
U∗ := U ∩ [H2(Ω)]d, P∗ := P ∩H1(Ω).In the spirit of �2.5, we set

U∗h := U∗ + Uh, P∗h := P∗ + Ph, X∗h := X∗ +Xh.We extend the disrete bilinear form ah de�ned by (111) to U∗h×Uh and the |||·|||vel-norm to
U∗h. The disrete bilinear form bh an be extended to [H1(Th)]d ×H1(Th). Finally, we extendthe disrete bilinear form ch de�ned by (120) to X∗h×Xh and we extend the |||·|||sto-norm de�nedby (122) to X∗h.Lemma 5.9 (Jumps of ∇u and p aross interfaes). Assume (u, p) ∈ X∗. Then,

J∇uK·nF = 0 and JpK = 0 ∀F ∈ F i
h. (124)Lemma 5.10 (Consisteny). Assume that (u, p) ∈ X∗. Then,

ch((u, p), (vh, qh)) =

∫

Ω

f ·vh ∀(vh, qh) ∈ Xh.Owing to Theorem 2.20 and realling that disrete inf-sup stability holds true using the
|||·|||sto-norm, it remains to investigate the boundedness of the disrete bilinear form ch. To thispurpose, we de�ne on X∗h the norm

|||(v, q)|||2sto,∗ := |||(v, q)|||2sto +
∑

T∈Th

hT ‖∇v|T ·nT ‖
2
L2(∂T ) +

∑

T∈Th

hT ‖q‖
2
L2(∂T ).There exists Cbnd, independent of h, suh that, for all (v, q) ∈ X∗h and all (wh, rh) ∈ Xh,

ch((v, q), (wh, rh)) ≤ Cbnd|||(v, q)|||sto,∗|||(wh, rh)|||sto.Theorem 5.11 (|||·|||sto-norm error estimate and onvergene rate). Let (u, p) ∈ X∗ denote theunique solution of problem (104). Let (uh, ph) ∈ Xh solve (119) with ch de�ned by (120). Then,there is C, independent of h, suh that
|||(u − uh, p− ph)|||sto ≤ C inf

(vh,qh)∈Xh

|||(u − vh, p− qh)|||sto,∗. (125)Moreover, if (u, p) ∈ [Hk+1(Ω)]d ×Hk(Ω),
|||(u− uh, p− ph)|||sto ≤ Cu,ph

k,with Cu,p = C
(
‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)

).Remark 5.12 (Regularity assumption on the pressure). The regularity assumption p ∈ Hk(Ω) isjust what is needed to ahieve the overall onvergene rate in the |||·|||sto-norm of order hk. Sinepolynomials of degree ≤ k are used for the pressure, the ontribution of the pressure terms tothe error upper bound would be of order hk+1 if p ∈ Hk+1(Ω). In this ase, the overall errorwould be dominated by the veloity error whih is still of order hk.Remark 5.13 (L2-norm error estimate on the veloity). An optimal L2-error estimate on theveloity an be obtained using a duality argument in the same spirit as in �4.2.4 for the Poissonproblem. To apply the Aubin�Nitshe argument [4℄, we need additional regularity for thesolution of the Stokes problem (see Cattabriga [26℄ and Amrouhe and Girault [1℄).42



Numerial �uxes We onsider test funtions having support loalized to a single meshelement. We de�ne the numerial �uxes
φgrad

F (ph) :=

{
{{ph}}nF if F ∈ F i

h,

phn if F ∈ Fb
h,

(126)
φdiv

F (uh, ph) :=

{
{{uh}}·nF + hF JphK if F ∈ F i

h,

0 if F ∈ Fb
h,

(127)and observe that φgrad
F (ph) is vetor-valued whereas φdiv

F (uh, ph) is salar-valued. Moreover,referring to �4.3.3 and, in partiular, to (88) for the numerial �uxes assoiated with the SIPmethod, we onsider here the vetor-valued numerial �uxes
φdiff

F (uh) = −{{∇huh}}·nF +
η

hF
JuhK. (128)Let T ∈ Th and let ξ ∈ [Pk

d(T )]d with Cartesian omponents (ξi)1≤i≤d. Using vh = ξχT as atest funtion in the disrete momentum onservation equation (117a) (where χT denotes theharateristi funtion of T ), we obtain
∫

T

d∑

i=1

Gl
h(uh,i)·∇ξi −

∫

T

ph∇·ξ +
∑

F∈FT

ǫT,F

∫

F

[
φdiff

F (uh) + φgrad
F (ph)

]
·ξ =

∫

T

f ·ξ, (129)where l ∈ {k − 1, k}, Gl
h is the disrete gradient operator, and ǫT,F = nT ·nF .Similarly, let ζ ∈ Pk
d(T ). Using qh = ζχT − 〈ζχT 〉Ω as a test funtion in the disrete massonservation equation (117b) and using the expression (115) of the disrete bilinear form bh,we obtain
−

∫

T

uh·∇ζ +
∑

F∈FT

ǫT,F

∫

F

φdiv
F (uh, ph)ζ = 0. (130)Equations (129) and (130) express the loal onservation properties satis�ed by the dG approx-imation. We observe that, in the numerial �uxes φgrad

F (ph) and φdiv
F (uh, ph), the entered partresults from the disrete bilinear form bh, while the presene of the pressure jump in the �ux

φdiv
F (uh, ph) stems from stabilizing the pressure jumps aross interfaes.Convergene to minimal regularity solutions In this setion, we study the onvergeneof the sequene

(uH, pH) := ((uh, ph))h∈H,where, for all h ∈ H, (uh, ph) solves the disrete problem (119), to the unique solution (u, p) ofthe steady Stokes problem (104) using mimimal regularity on (u, p), that is to say, (u, p) ∈ X .This result is an important building blok in the onvergene study of the dG disretizationof the INS equations undertaken in �5.2.3. For oniseness of notation, subsequenes are notrenumbered in what follows.To analyze the onvergene of the di�usion term, we formulate the disrete bilinear form ahusing disrete gradients, namely, for all vh, wh ∈ Uh,
ah(vh, wh) =

∫

Ω

d∑

i=1

Gl
h(vh,i)·G

l
h(wh,i) + ŝh(vh, wh), (131)with l ∈ {k − 1, k} and

ŝh(vh, wh) :=
∑

F∈Fh

η

hF

∫

F

JvhK·JwhK −

∫

Ω

d∑

i=1

Rl
h(Jvh,iK)·R

l
h(Jwh,iK).The expression (131) is equivalent to (111) on Uh × Uh.43



For any integer l ≥ 0, we de�ne the disrete divergene operator Dl
h : [H1(Th)]d → L2(Ω)suh that, for all v ∈ [H1(Th)]d with Cartesian omponents (vi)1≤i≤d,

Dl
h(v) :=

d∑

i=1

Gl
h(vi)·ei,where ei denotes the ith vetor of the Cartesian basis of Rd. Then, using the expression (114)for bh, we observe that, for all (vh, qh) ∈ Xh,

bh(vh, qh) = −

∫

Ω

qhD
k
h(vh). (132)We an also introdue a new disrete gradient operator Gl

h : H1(Th) → L2(Ω) suh that, for all
q ∈ H1(Th),

Gl
h(q) := ∇hq −

∑

F∈Fi
h

rl
F (JqK). (133)The only di�erene with respet to the disrete gradient operator Gl

h de�ned by (82) is thatboundary faes are not inluded in the summation on the right-hand side of (133). A motivationfor this modi�ation is that there holds
∀(vh, qh) ∈ Xh,

∫

Ω

vh·G
k
h(qh) = −

∫

Ω

qhD
k
h(vh),so that an alternative expression for bh on Xh is

bh(vh, qh) =

∫

Ω

vh·G
k
h(qh).Theorem 5.14 (Convergene to minimal regularity solutions). Let k ≥ 1. Let (uH, pH) bethe sequene of approximate solutions generated by solving the disrete problems (119) on theadmissible mesh sequene TH. Then, as h→ 0,

uh → u in [L2(Ω)]d,

∇huh → ∇u in [L2(Ω)]d,d,

|uh,i|J → 0 for all i ∈ {1, . . . , d},

ph → p in L2(Ω),

|ph|p → 0,where (u, p) ∈ X denotes the unique solution to (104).5.1.3 Formulations without pressure stabilizationFully disontinuous formulations, suh as the one presented in �5.1.2, are appealing in problemswhere orner singularities are present (e.g., the well-known lid-driven avity problem), sine,in this ontext, disontinuous pressures are generally less prone to spurious osillations. Usingequal-order veloity and pressure spaes, however, requires penalizing pressure jumps arossinterfaes to ahieve disrete stability. Suh a term introdues a tighter oupling between thedisrete momentum and mass onservation equations, sine the pressure is also expliitly presentin the mass onservation equation. In pratie, this an be a drawbak when using lassialsolution methods (suh as the Uzawa method) for saddle-point problems in the steady ase orprojetion methods in the unsteady ase.It turns out that the pressure penalty term an be omitted in various ases whih, how-ever, do not aommodate the same level of mesh generality as in �5.1.2. On mathing a�nequadrilateral or hexahedral meshes, formulations without pressure stabilization have been an-alyzed by Toselli [81℄ for di�erent ouples of polynomial degrees for veloity and pressure.44



On mathing simpliial meshes with polynomials for the pressure one degree less than for theveloity, inf-sup stability has been proven by Hansbo and Larson [58℄ in the inompressiblelimit of two-dimensional linear elastiity and by Girault, Rivière, and Wheeler [56℄ for the two-and three-dimensional Stokes equations in the ontext of domain deomposition methods (withpolynomial degree for the veloity between 1 and 3). Still on mathing simpliial meshes for
d ∈ {2, 3}, a fully parameter-free dG approximation using pieewise a�ne disrete veloitiessupplemented by element bubble funtions oupled with ontinuous pieewise a�ne and/orpieewise onstant disrete pressures has been analyzed by Burman and Stamm [23℄.A means to ahieve disrete inf-sup stability on mathing simpliial meshes is to onsider adisontinuous approximation of the veloity together with a ontinuous approximation of thepressure. This approah onstitutes the basis for the projetion method derived by Botti andDi Pietro [13℄ for the unsteady INS equations.5.2 Steady Navier�Stokes �owsIn this setion, we onsider steady Navier�Stokes �ows. The main di�erene with respetto �5.1 is the inlusion of a nonlinear term modeling the onvetive transport of momentum.The disretization with dG methods of this nonlinear term is the main fous of this setion. Wealso aount for the visosity ν in the momentum onservation equation. For steady Navier�Stokes �ows, the visosity ν is important sine it quanti�es the relative importane of onvetiveand di�usive momentum transport.5.2.1 The ontinuous settingLet Ω ⊂ Rd, d ∈ {2, 3, 4}, be a polyhedron, let f ∈ [L2(Ω)]d be the foring term, and let ν > 0be the visosity. The disussion of this setion is on�ned to spae dimensions up to 4 sinethe nonlinear term requires embeddings of funtional spaes valid for d ≤ 4. The steady INSproblem reads

−ν△u+ (u·∇)u+ ∇p = f in Ω, (134a)
∇·u = 0 in Ω, (134b)
u = 0 on ∂Ω, (134)

〈p〉Ω = 0. (134d)Remark 5.15 (Conservative formulation). Sine (u·∇)u = ∇·(u⊗u) beause ∇·u = 0, the mo-mentum onservation equation (134a) an be rewritten in the onservative form
−ν△u+ ∇·(u⊗u) + ∇p = f.In ontrast, equation (134a) is said to be in nononservative form.The weak formulation of system (134) reads: Find (u, p) ∈ X suh that

c((u, p), (v, q)) + t(u, u, v) =

∫

Ω

f ·v for all (v, q) ∈ X , (135)where X = U × P is de�ned by (102), the bilinear form c ∈ L(X ×X,R) now aounts for thevisosity and is given by
c((u, p), (v, q)) = νa(u, v) + b(v, p) − b(u, q),with a and b still de�ned by (103), and the trilinear form t ∈ L(U × U × U,R) is suh that
t(w, u, v) :=

∫

Ω

(w·∇u)·v =

∫

Ω

d∑

i,j=1

wj(∂jui)vi. (136)45



The trilinear form is indeed bounded on U × U × U : There is τΩ, only depending on Ω, suhthat, for all w, u, v ∈ U ,
t(w, u, v) ≤ τΩ‖w‖U‖u‖U‖v‖U . (137)A further important property of the trilinear form t de�ned by (136) is skew-symmetry withrespet to the last two arguments whenever the �rst argument is divergene-free and has zeronormal omponent on the boundary. For simpliity, we onsider that the three arguments ofthe trilinear form are in U .Lemma 5.16 (Skew-symmetry of trilinear form). For all w ∈ U , there holds

∀v ∈ U, t(w, v, v) = −
1

2

∫

Ω

(∇·w)|v|2. (138)Moreover, if w ∈ V := {v ∈ U | ∇·v = 0},
∀v ∈ U, t(w, v, v) = 0. (139)A ruial onsequene of Lemma 5.16 is that, using (v, q) = (u, p) as a test funtion in (135)and sine u is divergene-free, we obtain, up to the visosity saling, the same energy balaneas for steady Stokes �ows, namely
ν‖∇u‖2

[L2(Ω)]d,d =

∫

Ω

f ·u.In other words, onvetion does not in�uene energy balane.Theorem 5.17 (Existene and uniqueness). There exists at least one (u, p) ∈ X solving (135).Moreover, under the smallness ondition on the data
τΩ‖f‖U ′ < (ναΩ)2, (140)the solution is unique.Remark 5.18 (Interpretation of ondition (140)). At �xed visosity ν, ondition (140) meansthat the foring term f must be small enough. Alternatively, at �xed f , ondition (140) meansthat the visosity ν must be large enough (so that su�iently energy is dissipated by the �ow).5.2.2 The disrete settingIn this setion, we derive a dG disretization of the INS equations (135). For the Stokes part(resulting from the bilinear form c), we follow the approah of �5.1.2 and onsider equal-orderdisontinuous veloities and pressures. Alternative dG methods to approximate the INS equa-tions have been explored by Karakashian and Jureidini [62℄, Girault, Rivière, and Wheeler [56℄,and Cokburn, Kanshat, and Shötzau [35, 36, 37℄.Let TH denote an admissible mesh sequene and let k ≥ 1 be an integer. We onsider thedisrete spaes (f. (110))

Uh := [Pk
d(Th)]d, Ph := Pk

d,0(Th), Xh := Uh × Ph.The material in this setion is restrited to d ≤ 3.When working with dG approximations, the onvetive veloity is generally not divergene-free (but only weakly divergene-free), so that the important property (139) is generally notsatis�ed. Following Temam [78, 79℄, a possible way to irumvent this di�ulty is to modifythe trilinear form t and to onsider instead, for all w, u, v ∈ U ,
t′(w, u, v) = t(w, u, v) +

1

2

∫

Ω

(∇·w)u·v

=

∫

Ω

(w·∇u)·v +
1

2

∫

Ω

(∇·w)u·v. (141)46



The following result is then a straightforward onsequene of (138): For all w ∈ U , there holds
∀v ∈ U, t′(w, v, v) = 0. (142)Moreover, (u, p) ∈ X solves (135) if and only if (u, p) ∈ X is suh that

c((u, p), (v, q)) + t′(u, u, v) =

∫

Ω

f ·v for all (v, q) ∈ X.We start with Temam's modi�ation of the trilinear form t. Spei�ally, we onsider brokendi�erential operators in the trilinear form t′ de�ned by (141) and set, for all wh, uh, vh ∈ Uh,
t
(0)
h (wh, uh, vh) :=

∫

Ω

(wh·∇huh)·vh +
1

2

∫

Ω

(∇h·wh)uh·vh.Our �rst goal is to derive a disrete ounterpart of (142). For all wh, vh ∈ Uh, integrating byparts elementwise and proeeding as usual, we obtain
t
(0)
h (wh, vh, vh) =

1

2

∑

F∈Fh

∫

F

JwhK·nF {{vh·vh}} +
∑

F∈Fi
h

∫

F

{{wh}}·nF JvhK·{{vh}}.Sine the right-hand side of the above equation is nonzero, we modify t(0)h as
th(wh, uh, vh) :=

∫

Ω

(wh·∇huh)·vh −
∑

F∈Fi
h

∫

F

{{wh}}·nF JuhK·{{vh}}

+
1

2

∫

Ω

(∇h·wh)(uh·vh) −
1

2

∑

F∈Fh

∫

F

JwhK·nF {{uh·vh}}. (143)This hoie, whih inorporates Temam's modi�ation at the disrete level, possesses the fol-lowing important property whih is the disrete ounterpart of Lemma 5.16.Lemma 5.19 (Skew-symmetry of disrete trilinear form). For all wh ∈ Uh, there holds
∀vh ∈ Uh, th(wh, vh, vh) = 0. (144)We now address the boundedness of the disrete trilinear form th on Uh × Uh × Uh. Reallthat the disrete veloity spae Uh is equipped with the |||·|||vel-norm de�ned by (112). Then,there is τ , independent of h, suh that, for all wh, uh, vh ∈ Uh, there holds

th(wh, uh, vh) ≤ τ |||wh|||vel|||uh|||vel|||vh|||vel.Let ah and bh be the disrete bilinear forms onsidered for the linear Stokes equations,f. (111) for ah and (114) or, equivalently, (115) for bh. Let th be the disrete trilinear formde�ned by (143). The disrete INS problem reads: Find (uh, ph) ∈ Xh suh that
νah(uh, vh) + th(uh, uh, vh) + bh(vh, ph) =

∫

Ω

f ·vh ∀vh ∈ Uh, (145a)
−bh(uh, qh) + ν−1sh(ph, qh) = 0 ∀qh ∈ Ph, (145b)or, equivalently, suh that

ch((uh, ph), (vh, qh)) + th(uh, uh, vh) =

∫

Ω

f ·vh ∀(vh, qh) ∈ Xh, (146)with
ch((uh, ph), (vh, qh)) := νah(uh, vh) + bh(vh, ph) − bh(uh, qh) + ν−1sh(ph, qh).47



We observe that both the di�usion and pressure stabilization terms di�er from the ase of thelinear Stokes equations, f. (120), sine the former is saled by the visosity and the latter bythe reiproal of the visosity.Realling (113), let α > 0 denote the oerivity parameter of the disrete bilinear form ahsuh that
∀vh ∈ Uh, ah(vh, vh) ≥ α|||vh|||

2
vel.This leads to partial oerivity for the disrete bilinear form ch in the form

∀(vh, qh) ∈ Xh, ch((vh, qh), (vh, qh)) ≥ να|||vh|||
2
vel + ν−1|qh|

2
p. (147)Moreover, we rede�ne the |||·|||sto-norm as

|||(vh, qh)|||sto :=
(
ν|||vh|||

2
vel + ‖qh‖

2
P + ν−1|qh|

2
p

)1/2

.It is straightforward to verify, as in the proof of Lemma 5.7, the following disrete inf-supondition: There is γ > 0, independent of h and of the visosity ν, suh that, for all (vh, qh) ∈
Xh,

γ|||(vh, qh)|||sto ≤ sup
(wh,rh)∈Xh\{0}

ch((vh, qh), (wh, rh))

|||(wh, rh)|||sto
. (148)We observe that the fat that γ is independent of ν results from the saling used in the pressurestabilization.Theorem 5.20 (Existene and uniqueness). There exists at least one (uh, ph) ∈ Xh solv-ing (146). Moreover, under the smallness ondition

τ‖f‖[L2(Ω)]d < (να)2, (149)the solution is unique.5.2.3 Convergene analysisIn this setion, we address the onvergene of the sequene (uH, pH) of solutions to the dis-rete problem (146) on the admissible mesh sequene TH to a solution (u, p) of the INS equa-tions (135).Theorem 5.21 (Convergene). Let (uH, pH) be a sequene of approximate solutions generatedby solving the disrete problems (146) on the admissible mesh sequene TH. Then, as h → 0,up to a subsequene,
uh → u in [L2(Ω)]d,

∇huh → ∇u in [L2(Ω)]d,d,

|uh|J → 0,

ph → p in L2(Ω),

|ph|p → 0,where (u, p) ∈ X is a solution of (135). Moreover, under the smallness ondition (149), thewhole sequene onverges to the unique solution of (135).Remark 5.22 (Reformulation of disrete trilinear form). In the onvergene analysis, the fol-lowing equivalent expression of th in terms of disrete gradients and disrete divergene isimportant: For all wh, uh, vh ∈ Uh,
th(wh, uh, vh) =

∫

Ω

d∑

i=1

wh·G
2k
h (uh,i)vh,i +

1

2

∫

Ω

D2k
h (wh)uh·vh

+
1

4

∑

F∈Fi
h

∫

F

JwhK·nF JuhK·JvhK. (150)We observe that the polynomial degree used for the disrete gradients and divergene is 2kowing to the nonlinearities. 48
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