On the discontinuous Galerkin approximation of Maxwell's equations

Alexandre Ern

ENPC and INRIA, Paris, France
joint work with J.-L. Guermond (Texas A\&M) and T. Chaumont-Frelet (INRIA Lille)
Von Mises Lecture, 05 July 2024

Outline

- Maxwell's equations
- Discontinuous Galerkin (dG) approximation
- Correctness for dG spectral problem
- [AE \& JLG, SINUM 23; hal-04145808]
- Asymptotic optimality for dG time-harmonic problem
- [TCF \& AE, hal-04216433, hal-04589791]
- Some further insights on spectral correctness

Maxwell's equations

- Functional setting
- Compactness
- Spectral and time-harmonic problems

Maxwell's equations

- Space-time PDEs posed on $D \times J$ with $D \subset \mathbb{R}^{3}, J:=(0, T)$
- Find $(\boldsymbol{H}, \boldsymbol{E}): D \times J \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3}$ s.t.

$$
\begin{array}{ll}
\partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} & \text { (Faraday) } \\
\partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j} & \text { (Ampère) } \\
\nabla \cdot(\mu \boldsymbol{H})=0 & \text { (Gauss) } \tag{Gauss}\\
\nabla \cdot(\epsilon \boldsymbol{E})=\rho & \text { (Gauss) }
\end{array}
$$

Maxwell's equations

- Space-time PDEs posed on $D \times J$ with $D \subset \mathbb{R}^{3}, J:=(0, T)$
- Find $(\boldsymbol{H}, \boldsymbol{E}): D \times J \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3}$ s.t.

$$
\begin{array}{ll}
\partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} & \text { (Faraday) } \\
\partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j} & \text { (Ampère) } \\
\nabla \cdot(\mu \boldsymbol{H})=0 & \text { (Gauss) } \\
\nabla \cdot(\epsilon \boldsymbol{E})=\rho & \text { (Gauss) } \tag{Gauss}
\end{array}
$$

- Material properties: ϵ (electric permittivity), μ (magnetic permeability)
- Data: ρ (charge density) and \boldsymbol{j} (current) s.t. $\partial_{t} \rho+\nabla \cdot \boldsymbol{j}=0$

Maxwell's equations

- Space-time PDEs posed on $D \times J$ with $D \subset \mathbb{R}^{3}, J:=(0, T)$
- Find $(\boldsymbol{H}, \boldsymbol{E}): D \times J \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3}$ s.t.

$$
\begin{array}{ll}
\partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} & \text { (Faraday) } \\
\partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j} & \text { (Ampère) } \\
\nabla \cdot(\mu \boldsymbol{H})=0 & \text { (Gauss) } \\
\nabla \cdot(\epsilon \boldsymbol{E})=\rho & \text { (Gauss) } \tag{Gauss}
\end{array}
$$

- Material properties: ϵ (electric permittivity), μ (magnetic permeability)
- Data: ρ (charge density) and \boldsymbol{j} (current) s.t. $\partial_{t} \rho+\nabla \boldsymbol{j}=0$
- Prescribe ICs $\left(\boldsymbol{H}_{0}, \boldsymbol{E}_{0}\right): D \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3}$
- Focus on bounded Lipschitz domain D : enforce BC on $\Gamma:=\partial D$
- Simplest BCs: perfect magnetic or electric conductor

$$
\boldsymbol{H} \times\left.\boldsymbol{n}\right|_{\Gamma}=\mathbf{0} \quad \text { or } \quad \boldsymbol{E} \times\left.\boldsymbol{n}\right|_{\Gamma}=\mathbf{0}
$$

- Other possible BCs: impedance, transparent (far field), ...

Involutions for Maxwell's equations

- Recall

$$
\begin{aligned}
& \partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} \\
& \partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
\end{aligned}
$$

Involutions for Maxwell's equations

- Recall

$$
\begin{aligned}
& \partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} \\
& \partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
\end{aligned}
$$

- Observe that $\partial_{t}(\nabla \cdot(\mu \boldsymbol{H}))=0$

Involutions for Maxwell's equations

- Recall

$$
\begin{aligned}
& \partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} \\
& \partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
\end{aligned}
$$

- Observe that $\partial_{t}(\nabla \cdot(\mu \boldsymbol{H}))=0$ and $\partial_{t}(\nabla \cdot(\epsilon \boldsymbol{E}))=-\nabla \cdot \boldsymbol{j}=\partial_{t} \rho$

Involutions for Maxwell's equations

- Recall

$$
\begin{aligned}
& \partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} \\
& \partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
\end{aligned}
$$

- Observe that $\partial_{t}(\nabla \cdot(\mu \boldsymbol{H}))=0$ and $\partial_{t}(\nabla \cdot(\epsilon \boldsymbol{E}))=-\nabla \cdot \boldsymbol{j}=\partial_{t} \rho$
- if $\nabla \cdot\left(\mu \boldsymbol{H}_{0}\right)=0$, then $\nabla \cdot(\mu \boldsymbol{H})=0$ at all times
- if $\nabla \cdot\left(\epsilon \boldsymbol{E}_{0}\right)=\rho_{0}$, then $\nabla \cdot(\epsilon \boldsymbol{E})=\rho$ at all times

One says that Gauss's laws are involutions

Involutions for Maxwell's equations

- Recall

$$
\begin{aligned}
& \partial_{t}(\mu \boldsymbol{H})+\nabla \times \boldsymbol{E}=\mathbf{0} \\
& \partial_{t}(\epsilon \boldsymbol{E})-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
\end{aligned}
$$

- Observe that $\partial_{t}(\nabla \cdot(\mu \boldsymbol{H}))=0$ and $\partial_{t}(\nabla \cdot(\epsilon \boldsymbol{E}))=-\nabla \cdot \boldsymbol{j}=\partial_{t} \rho$
- if $\nabla \cdot\left(\mu \boldsymbol{H}_{0}\right)=0$, then $\nabla \cdot(\mu \boldsymbol{H})=0$ at all times
- if $\nabla \cdot\left(\epsilon \boldsymbol{E}_{0}\right)=\rho_{0}$, then $\nabla \cdot(\epsilon \boldsymbol{E})=\rho$ at all times

One says that Gauss's laws are involutions

- Actually, $\nabla \cdot(\mu \boldsymbol{H})=0$ does not always imply $\mu \boldsymbol{H} \in \operatorname{im}(\nabla \times)$ (depends on domain topology), but the converse is true!
- The topology-blind statement of the involution on \boldsymbol{H} is

$$
\mu \boldsymbol{H} \in \operatorname{im}(\nabla \times)
$$

- Similarly, in the absence of free charges $(\boldsymbol{j}=\mathbf{0})$, the topology-blind statement of the involution on \boldsymbol{E} is

$$
\epsilon \boldsymbol{E} \in \operatorname{im}(\nabla \times)
$$

Functional setting

- Graph spaces for gradient, curl, or divergence

$$
H^{1}(D), \quad \boldsymbol{H}(\operatorname{curl} ; D):=\left\{\boldsymbol{h} \in \boldsymbol{L}^{2}(D) \mid \nabla \times \boldsymbol{h} \in \boldsymbol{L}^{2}(D)\right\}, \quad \boldsymbol{H}(\operatorname{div} ; D)
$$

- Hilbert spaces equipped with natural graph norm, e.g.,

$$
\|\boldsymbol{h}\|_{\boldsymbol{H}(\text { curl } ; D)}^{2}:=\|\boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}+\ell_{D}^{2}\|\nabla \times \boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}
$$

(ℓ_{D} : global length scale to be dimensionally consistent)

Functional setting

- Graph spaces for gradient, curl, or divergence

$$
H^{1}(D), \quad \boldsymbol{H}(\operatorname{curl} ; D):=\left\{\boldsymbol{h} \in \boldsymbol{L}^{2}(D) \mid \nabla \times \boldsymbol{h} \in \boldsymbol{L}^{2}(D)\right\}, \quad \boldsymbol{H}(\operatorname{div} ; D)
$$

- Hilbert spaces equipped with natural graph norm, e.g.,

$$
\|\boldsymbol{h}\|_{\boldsymbol{H}(\text { curl } ; D)}^{2}:=\|\boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}+\ell_{D}^{2}\|\nabla \times \boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}
$$

(ℓ_{D} : global length scale to be dimensionally consistent)

- Subspaces with zero trace, tangential trace, or normal trace

$$
H_{0}^{1}(D), \quad \boldsymbol{H}_{0}(\operatorname{curl} ; D):=\left\{\boldsymbol{h} \in \boldsymbol{H}(\operatorname{curl} ; D)|\boldsymbol{h} \times \boldsymbol{n}|_{\Gamma}=\mathbf{0}\right\}, \quad \boldsymbol{H}_{0}(\operatorname{div} ; D)
$$

Functional setting

- Graph spaces for gradient, curl, or divergence

$$
H^{1}(D), \quad \boldsymbol{H}(\operatorname{curl} ; D):=\left\{\boldsymbol{h} \in \boldsymbol{L}^{2}(D) \mid \nabla \times \boldsymbol{h} \in \boldsymbol{L}^{2}(D)\right\}, \quad \boldsymbol{H}(\operatorname{div} ; D)
$$

- Hilbert spaces equipped with natural graph norm, e.g.,

$$
\|\boldsymbol{h}\|_{\boldsymbol{H}(\text { curl } ; D)}^{2}:=\|\boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}+\ell_{D}^{2}\|\nabla \times \boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}
$$

(ℓ_{D} : global length scale to be dimensionally consistent)

- Subspaces with zero trace, tangential trace, or normal trace

$$
H_{0}^{1}(D), \quad \boldsymbol{H}_{0}(\operatorname{curl} ; D):=\left\{\boldsymbol{h} \in \boldsymbol{H}(\operatorname{curl} ; D)|\boldsymbol{h} \times \boldsymbol{n}|_{\Gamma}=\mathbf{0}\right\}, \quad \boldsymbol{H}_{0}(\operatorname{div} ; D)
$$

- De Rham sequences (with and without BC)

$$
\begin{aligned}
& H_{0}^{1}(D) \xrightarrow{\nabla_{0}} \boldsymbol{H}_{0}(\operatorname{curl} ; D) \xrightarrow{\nabla_{0} \times} \boldsymbol{H}_{0}(\operatorname{div} ; D) \xrightarrow{\nabla_{0}} L_{0}^{2}(D) \\
& L^{2}(D) \longleftarrow \quad \nabla \cdot \boldsymbol{H}(\operatorname{div} ; D) \longleftarrow \quad \nabla \times \quad \boldsymbol{H}(\operatorname{curl} ; D) \longleftarrow \nabla \quad H^{1}(D)
\end{aligned}
$$

Functional setting

- Graph spaces for gradient, curl, or divergence

$$
H^{1}(D), \quad \boldsymbol{H}(\operatorname{curl} ; D):=\left\{\boldsymbol{h} \in \boldsymbol{L}^{2}(D) \mid \nabla \times \boldsymbol{h} \in \boldsymbol{L}^{2}(D)\right\}, \quad \boldsymbol{H}(\operatorname{div} ; D)
$$

- Hilbert spaces equipped with natural graph norm, e.g.,

$$
\|\boldsymbol{h}\|_{\boldsymbol{H}(\text { curl } ; D)}^{2}:=\|\boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}+\ell_{D}^{2}\|\nabla \times \boldsymbol{h}\|_{\boldsymbol{L}^{2}}^{2}
$$

(ℓ_{D} : global length scale to be dimensionally consistent)

- Subspaces with zero trace, tangential trace, or normal trace

$$
H_{0}^{1}(D), \quad \boldsymbol{H}_{0}(\operatorname{curl} ; D):=\left\{\boldsymbol{h} \in \boldsymbol{H}(\operatorname{curl} ; D)|\boldsymbol{h} \times \boldsymbol{n}|_{\Gamma}=\mathbf{0}\right\}, \quad \boldsymbol{H}_{0}(\operatorname{div} ; D)
$$

- De Rham sequences (with and without BC)

$$
\begin{aligned}
& H_{0}^{1}(D) \xrightarrow{\nabla_{0}} \boldsymbol{H}_{0}(\mathbf{c u r l} ; D) \xrightarrow{\nabla_{0} \times} \boldsymbol{H}_{0}(\operatorname{div} ; D) \xrightarrow{\nabla_{0}} L_{0}^{2}(D) \\
& L^{2}(D) \longleftarrow \quad \nabla \cdot \boldsymbol{H}(\operatorname{div} ; D) \longleftarrow \quad \nabla \times \quad \boldsymbol{H}(\operatorname{curl} ; D) \longleftarrow \nabla \quad H^{1}(D)
\end{aligned}
$$

- All operators have closed range
- Pairs of adjoint operators: $\left(\nabla_{0},-\nabla \cdot\right),\left(\nabla_{0} \times, \nabla \times\right),\left(-\nabla_{0} \cdot, \nabla\right)$

Functional setting for involutions

- To fix ideas, enforce BC on magnetic field

$$
\boldsymbol{H} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D), \quad \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; D)
$$

Functional setting for involutions

- To fix ideas, enforce BC on magnetic field

$$
\boldsymbol{H} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D), \quad \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; D)
$$

- Rewriting of involutions using Closed Range Theorem (orthogonalities meant in \boldsymbol{L}^{2}) [Hiptmair 02]
$\mu \boldsymbol{H} \in \operatorname{im}(\nabla \times)=\boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}, \quad \epsilon \boldsymbol{E} \in \operatorname{im}\left(\nabla_{0} \times\right)=\boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}$

Functional setting for involutions

- To fix ideas, enforce BC on magnetic field

$$
\boldsymbol{H} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D), \quad \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; D)
$$

- Rewriting of involutions using Closed Range Theorem (orthogonalities meant in \boldsymbol{L}^{2}) [Hiptmair 02]
$\mu \boldsymbol{H} \in \operatorname{im}(\nabla \times)=\boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}, \quad \epsilon \boldsymbol{E} \in \operatorname{im}\left(\nabla_{0} \times\right)=\boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}$
- Topology-blind statements!
- $\boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp} \subset \boldsymbol{H}($ div $=0 ; D)$ with equality iff Γ is connected
- $\boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp} \subset \boldsymbol{H}_{0}(\operatorname{div}=0 ; D)$ with equality iff D is simply connected

See [Dautray, Lions 90; Amrouche, Bernardi, Dauge, Girault, 98]

Compactness

- Assume D is a Lipschitz polyhedron
- pcw. constant material properties (or multiplier property in $\left.\boldsymbol{H}^{s}, s \in\left(0, \frac{1}{2}\right]\right)$

Compactness

- Assume D is a Lipschitz polyhedron
- pcw. constant material properties (or multiplier property in $\left.\boldsymbol{H}^{s}, s \in\left(0, \frac{1}{2}\right]\right)$
- Involution-aware functional spaces

$$
\begin{aligned}
\boldsymbol{X}_{\mu, 0}^{\mathrm{c}} & :=\left\{\boldsymbol{h} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D) \mid \mu \boldsymbol{h} \in \boldsymbol{H}_{0}(\operatorname{curl}=\mathbf{0} ; D)^{\perp}\right\} \\
\boldsymbol{X}_{\boldsymbol{\epsilon}}^{\mathrm{c}} & :=\left\{\boldsymbol{e} \in \boldsymbol{H}(\mathbf{c u r l} ; D) \mid \boldsymbol{\epsilon} \in \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}\right\}
\end{aligned}
$$

There is $s \in\left(0, \frac{1}{2}\right]$ s.t. for all $\boldsymbol{h} \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}}$ and all $\boldsymbol{e} \in \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$,

$$
|\boldsymbol{h}|_{\boldsymbol{H}^{s}(D)} \lesssim \ell_{D}^{1-s}\left\|\nabla_{0} \times \boldsymbol{h}\right\|_{L^{2}}, \quad|\boldsymbol{e}|_{\boldsymbol{H}^{s}(D)} \lesssim \ell_{D}^{1-s}\|\nabla \times \boldsymbol{e}\|_{L^{2}}
$$

Compactness

- Assume D is a Lipschitz polyhedron
- pcw. constant material properties (or multiplier property in $\left.\boldsymbol{H}^{s}, s \in\left(0, \frac{1}{2}\right]\right)$
- Involution-aware functional spaces

$$
\begin{aligned}
\boldsymbol{X}_{\mu, 0}^{\mathrm{c}} & :=\left\{\boldsymbol{h} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D) \mid \mu \boldsymbol{h} \in \boldsymbol{H}_{0}(\operatorname{curl}=\mathbf{0} ; D)^{\perp}\right\} \\
\boldsymbol{X}_{\boldsymbol{\epsilon}}^{\mathrm{c}} & :=\left\{\boldsymbol{e} \in \boldsymbol{H}(\operatorname{curl} ; D) \mid \boldsymbol{\epsilon} \in \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}\right\}
\end{aligned}
$$

There is $s \in\left(0, \frac{1}{2}\right]$ s.t. for all $\boldsymbol{h} \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}}$ and all $\boldsymbol{e} \in \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$,

$$
|\boldsymbol{h}|_{\boldsymbol{H}^{s}(D)} \lesssim \ell_{D}^{1-s}\left\|\nabla_{0} \times \boldsymbol{h}\right\|_{L^{2}}, \quad|\boldsymbol{e}|_{\boldsymbol{H}^{s}(D)} \lesssim \ell_{D}^{1-s}\|\nabla \times \boldsymbol{e}\|_{L^{2}}
$$

- Improved regularity shift for constant properties: There is $s^{\prime} \in\left(\frac{1}{2}, 1\right]$ s.t. for all $\boldsymbol{\eta} \in \boldsymbol{X}_{0}^{\mathrm{c}}$ and all $\boldsymbol{\varepsilon} \in \boldsymbol{X}^{\mathrm{c}}$,

$$
|\boldsymbol{\eta}|_{\boldsymbol{H}^{s^{\prime}}(D)} \lesssim \ell_{D}^{1-s^{\prime}}\left\|\nabla_{0} \times \boldsymbol{\eta}\right\|_{\boldsymbol{L}^{2}}, \quad|\boldsymbol{\varepsilon}|_{\boldsymbol{H}^{s^{\prime}}(D)} \lesssim \ell_{D}^{1-s^{\prime}}\|\nabla \times \boldsymbol{\varepsilon}\|_{L^{2}}
$$

with $\boldsymbol{X}_{0}^{\mathrm{c}}:=\boldsymbol{H}_{0}(\mathbf{c u r l} ; D) \cap \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}, \boldsymbol{X}^{\mathrm{c}}:=\boldsymbol{H}(\mathbf{c u r l} ; D) \cap \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}$

Compactness

- Assume D is a Lipschitz polyhedron
- pcw. constant material properties (or multiplier property in $\left.\boldsymbol{H}^{s}, s \in\left(0, \frac{1}{2}\right]\right)$
- Involution-aware functional spaces

$$
\begin{aligned}
\boldsymbol{X}_{\mu, 0}^{\mathrm{c}} & :=\left\{\boldsymbol{h} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D) \mid \mu \boldsymbol{h} \in \boldsymbol{H}_{0}(\operatorname{curl}=\mathbf{0} ; D)^{\perp}\right\} \\
\boldsymbol{X}_{\boldsymbol{\epsilon}}^{\mathrm{c}} & :=\left\{\boldsymbol{e} \in \boldsymbol{H}(\operatorname{curl} ; D) \mid \boldsymbol{\epsilon} \in \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}\right\}
\end{aligned}
$$

There is $s \in\left(0, \frac{1}{2}\right]$ s.t. for all $\boldsymbol{h} \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}}$ and all $\boldsymbol{e} \in \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$,

$$
|\boldsymbol{h}|_{\boldsymbol{H}^{s}(D)} \lesssim \ell_{D}^{1-s}\left\|\nabla_{0} \times \boldsymbol{h}\right\|_{L^{2}}, \quad|\boldsymbol{e}|_{\boldsymbol{H}^{s}(D)} \lesssim \ell_{D}^{1-s}\|\nabla \times \boldsymbol{e}\|_{L^{2}}
$$

- Improved regularity shift for constant properties: There is $s^{\prime} \in\left(\frac{1}{2}, 1\right]$ s.t. for all $\boldsymbol{\eta} \in \boldsymbol{X}_{0}^{\mathrm{c}}$ and all $\boldsymbol{\varepsilon} \in \boldsymbol{X}^{\mathrm{c}}$,

$$
|\boldsymbol{\eta}|_{\boldsymbol{H}^{\prime}(D)} \lesssim \ell_{D}^{1-s^{\prime}}\left\|\nabla_{0} \times \boldsymbol{\eta}\right\|_{L^{2}}, \quad|\varepsilon|_{\boldsymbol{H}^{\prime}(D)} \lesssim \ell_{D}^{1-s^{\prime}}\|\nabla \times \boldsymbol{\varepsilon}\|_{L^{2}}
$$

with $\boldsymbol{X}_{0}^{\mathrm{c}}:=\boldsymbol{H}_{0}(\operatorname{curl} ; D) \cap \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}, \boldsymbol{X}^{\mathrm{c}}:=\boldsymbol{H}($ curl $; D) \cap \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}$

- See [Weber, 80; Birman \& Solomyak, 87; Costabel, 90; Amrouche, Bernardi, Dauge, Girault, 98; Jochmann, 99; Bonito, Guermond \& Luddens, 13]

Spectral problem

- For dimensional consistency,
- vacuum properties ϵ_{0}, μ_{0}; speed of light: $\mathfrak{c}:=\left(\mu_{0} \epsilon_{0}\right)^{-\frac{1}{2}}$
- reference frequency $\omega_{D}:=\mathcal{C}_{D}^{-1}$

Spectral problem

- For dimensional consistency,
- vacuum properties ϵ_{0}, μ_{0}; speed of light: $\mathfrak{c}:=\left(\mu_{0} \epsilon_{0}\right)^{-\frac{1}{2}}$
- reference frequency $\omega_{D}:=\mathfrak{c} \ell_{D}^{-1}$
- Find nonzero $\lambda \in \mathbb{C}$ and nonzero $(\boldsymbol{H}, \boldsymbol{E}) \in X_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ s.t.

$$
-\nabla \times \boldsymbol{E}=\frac{\omega_{D}}{\lambda} \mu \boldsymbol{H}, \quad \nabla_{0} \times \boldsymbol{H}=\frac{\omega_{D}}{\lambda} \epsilon \boldsymbol{E}
$$

(eigenvalue λ is nondimensional)

Spectral problem

- For dimensional consistency,
- vacuum properties ϵ_{0}, μ_{0}; speed of light: $\mathfrak{c}:=\left(\mu_{0} \epsilon_{0}\right)^{-\frac{1}{2}}$
- reference frequency $\omega_{D}:=c \ell_{D}^{-1}$
- Find nonzero $\lambda \in \mathbb{C}$ and nonzero $(\boldsymbol{H}, \boldsymbol{E}) \in X_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ s.t.

$$
-\nabla \times \boldsymbol{E}=\frac{\omega_{D}}{\lambda} \mu \boldsymbol{H}, \quad \nabla_{0} \times \boldsymbol{H}=\frac{\omega_{D}}{\lambda} \epsilon \boldsymbol{E}
$$

(eigenvalue λ is nondimensional)

- Eigenfunctions are involution-preserving

$$
\begin{aligned}
\boldsymbol{H} \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} & \Longleftrightarrow\left\{\boldsymbol{H} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D) \wedge \mu \boldsymbol{H} \in \boldsymbol{H}_{0}(\operatorname{curl}=\mathbf{0} ; D)^{\perp}\right\} \\
\boldsymbol{E} \in \boldsymbol{X}_{\epsilon}^{\mathrm{c}} & \Longleftrightarrow\left\{\boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; D) \wedge \epsilon \boldsymbol{E} \in \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}\right\}
\end{aligned}
$$

Boundary-value operator for spectral problem

- Introduce \boldsymbol{L}^{2}-orthogonal projections

$$
\boldsymbol{\Pi}_{0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D), \quad \boldsymbol{\Pi}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

Involutions mean that $\boldsymbol{\Pi}_{0}^{\mathrm{c}}(\mu \boldsymbol{H})=\mathbf{0}, \boldsymbol{\Pi}^{\mathrm{c}}(\epsilon \boldsymbol{E})=\mathbf{0}$

Boundary-value operator for spectral problem

- Introduce \boldsymbol{L}^{2}-orthogonal projections

$$
\boldsymbol{\Pi}_{0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D), \quad \boldsymbol{\Pi}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

Involutions mean that $\boldsymbol{\Pi}_{0}^{\mathrm{c}}(\mu \boldsymbol{H})=\mathbf{0}, \boldsymbol{\Pi}^{\mathrm{c}}(\epsilon \boldsymbol{E})=\mathbf{0}$

- Boundary-value operator $T: L \rightarrow L:=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D)$
- For all $(\boldsymbol{f}, \boldsymbol{g}) \in L, T(f, g)$ is the unique pair $(\boldsymbol{H}, \boldsymbol{E}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}} \subset L$ solving the well-posed problem

$$
-\nabla \times \boldsymbol{E}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\mu \boldsymbol{f}), \quad \nabla_{0} \times \boldsymbol{H}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\epsilon \boldsymbol{g})
$$

By construction, $\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\boldsymbol{\mu} \boldsymbol{f}) \in \operatorname{im}(\nabla \times)$ and $\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\boldsymbol{\epsilon} \boldsymbol{g}) \in \operatorname{im}\left(\nabla_{0} \times\right)$

Boundary-value operator for spectral problem

- Introduce \boldsymbol{L}^{2}-orthogonal projections

$$
\boldsymbol{\Pi}_{0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D), \quad \boldsymbol{\Pi}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

Involutions mean that $\boldsymbol{\Pi}_{0}^{\mathrm{c}}(\mu \boldsymbol{H})=\mathbf{0}, \boldsymbol{\Pi}^{\mathfrak{c}}(\epsilon \boldsymbol{E})=\mathbf{0}$

- Boundary-value operator $T: L \rightarrow L:=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D)$
- For all $(f, g) \in L, T(f, g)$ is the unique pair $(\boldsymbol{H}, \boldsymbol{E}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}} \subset L$ solving the well-posed problem

$$
-\nabla \times \boldsymbol{E}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\mu \boldsymbol{f}), \quad \nabla_{0} \times \boldsymbol{H}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\epsilon \boldsymbol{g})
$$

By construction, $\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\boldsymbol{\mu} \boldsymbol{f}) \in \operatorname{im}(\nabla \times)$ and $\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\boldsymbol{\epsilon} \boldsymbol{g}) \in \operatorname{im}\left(\nabla_{0} \times\right)$

- Since $\boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}} \hookrightarrow \boldsymbol{H}^{S}(D) \times \boldsymbol{H}^{S}(D), T$ is a compact operator
- $(\lambda,(\boldsymbol{H}, \boldsymbol{E})), \lambda \neq 0$, is a Maxwell eigenpair iff

$$
T(\boldsymbol{H}, \boldsymbol{E})=\lambda(\boldsymbol{H}, \boldsymbol{E})
$$

Time-harmonic Maxwell's equations

- To fix ideas, enforce BC on $\boldsymbol{E}: \boldsymbol{E} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D), \boldsymbol{H} \in \boldsymbol{H}(\operatorname{curl} ; D)$
- Fix frequency $\omega>0$, time-harmonic behavior: $\partial_{t} \rightarrow \mathrm{i} \omega$

$$
\mathrm{i} \omega \mu \boldsymbol{H}+\nabla_{0} \times \boldsymbol{E}=\mathbf{0}, \quad \mathrm{i} \omega \epsilon \boldsymbol{E}-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
$$

Time-harmonic Maxwell's equations

- To fix ideas, enforce BC on $\boldsymbol{E}: \boldsymbol{E} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D), \boldsymbol{H} \in \boldsymbol{H}(\operatorname{curl} ; D)$
- Fix frequency $\omega>0$, time-harmonic behavior: $\partial_{t} \rightarrow \mathrm{i} \omega$

$$
\mathrm{i} \omega \mu \boldsymbol{H}+\nabla_{0} \times \boldsymbol{E}=\mathbf{0}, \quad \mathrm{i} \omega \in \boldsymbol{E}-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
$$

- Eliminate $\boldsymbol{H} \rightarrow$ Second-order formulation: Find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$ s.t.

$$
-\omega^{2} \epsilon \boldsymbol{E}+\nabla \times\left(\nu \nabla_{0} \times \boldsymbol{E}\right)=\boldsymbol{J}
$$

with $v:=\mu^{-1}$ and $\boldsymbol{J}:=-\mathrm{i} \omega \boldsymbol{j}$

Time-harmonic Maxwell's equations

- To fix ideas, enforce BC on $\boldsymbol{E}: \boldsymbol{E} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D), \boldsymbol{H} \in \boldsymbol{H}(\operatorname{curl} ; D)$
- Fix frequency $\omega>0$, time-harmonic behavior: $\partial_{t} \rightarrow \mathrm{i} \omega$

$$
\mathrm{i} \omega \mu \boldsymbol{H}+\nabla_{0} \times \boldsymbol{E}=\mathbf{0}, \quad \mathrm{i} \omega \epsilon \boldsymbol{E}-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
$$

- Eliminate $\boldsymbol{H} \rightarrow$ Second-order formulation: Find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$ s.t.

$$
-\omega^{2} \epsilon \boldsymbol{E}+\nabla \times\left(\nu \nabla_{0} \times \boldsymbol{E}\right)=\boldsymbol{J}
$$

with $v:=\mu^{-1}$ and $\boldsymbol{J}:=-\mathrm{i} \omega \boldsymbol{j}$

- The involution is

$$
\omega^{2} \epsilon \boldsymbol{E}+\boldsymbol{J} \in \operatorname{im}(\nabla \times)=\boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}
$$

Time-harmonic Maxwell's equations

- To fix ideas, enforce BC on $\boldsymbol{E}: \boldsymbol{E} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D), \boldsymbol{H} \in \boldsymbol{H}(\operatorname{curl} ; D)$
- Fix frequency $\omega>0$, time-harmonic behavior: $\partial_{t} \rightarrow \mathrm{i} \omega$

$$
\mathrm{i} \omega \mu \boldsymbol{H}+\nabla_{0} \times \boldsymbol{E}=\mathbf{0}, \quad \mathrm{i} \omega \epsilon \boldsymbol{E}-\nabla \times \boldsymbol{H}=-\boldsymbol{j}
$$

- Eliminate $\boldsymbol{H} \rightarrow$ Second-order formulation: Find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$ s.t.

$$
-\omega^{2} \epsilon \boldsymbol{E}+\nabla \times\left(\nu \nabla_{0} \times \boldsymbol{E}\right)=\boldsymbol{J}
$$

with $v:=\mu^{-1}$ and $\boldsymbol{J}:=-\mathrm{i} \omega \boldsymbol{j}$

- The involution is

$$
\omega^{2} \epsilon \boldsymbol{E}+\boldsymbol{J} \in \operatorname{im}(\nabla \times)=\boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}
$$

- Coercive problem with compact perturbation \rightarrow Fredholm's alternative
- well-posed problem if ω is not a resonant frequency

Discontinuous Galerkin approximation

Mesh and broken polynomial spaces

- \mathcal{T}_{h} : shape-regular mesh covering D exactly

simplicial mesh

- We focus on simplicial meshes

Mesh and broken polynomial spaces

- \mathcal{T}_{h} : shape-regular mesh covering D exactly

simplicial mesh

- We focus on simplicial meshes
- Broken polynomial space (order $k \geq 0, \mathbb{R}^{d}$-valued)

$$
\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right):=\left\{\boldsymbol{v}_{h} \in \boldsymbol{L}^{2}(D)\left|\boldsymbol{v}_{h}\right|_{K} \in \mathbb{P}_{k, d}\left(K ; \mathbb{R}^{d}\right), \forall K \in \mathcal{T}_{h}\right\}
$$

- Nonconforming approximation space: $\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \not \subset \boldsymbol{H}($ curl $; D)$
- jumps across mesh interfaces
- BCs not enforced exactly

Mesh and broken polynomial spaces

- \mathcal{T}_{h} : shape-regular mesh covering D exactly

simplicial mesh

- We focus on simplicial meshes
- Broken polynomial space (order $k \geq 0, \mathbb{R}^{d}$-valued)

$$
\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right):=\left\{\boldsymbol{v}_{h} \in \boldsymbol{L}^{2}(D)\left|\boldsymbol{v}_{h}\right|_{K} \in \mathbb{P}_{k, d}\left(K ; \mathbb{R}^{d}\right), \forall K \in \mathcal{T}_{h}\right\}
$$

- Nonconforming approximation space: $\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \not \subset \boldsymbol{H}(\mathbf{c u r l} ; D)$
- jumps across mesh interfaces
- BCs not enforced exactly
- dG textbooks: [Hesthaven \& Warburton 08; Di Pietro \& AE, 12]

Jumps and stabilization

- Mesh interface $F \in \mathcal{F}_{h}^{\circ}$ s.t. $F=\partial K_{l} \cap \partial K_{r}$
- oriented by unit normal \boldsymbol{n}_{F} pointing from K_{l} to K_{r}
- Mesh boundary face $F \in \mathcal{F}_{h}^{\partial}$ s.t. $F=\partial K_{l} \cap \Gamma$
- oriented by unit outward normal \boldsymbol{n}

Jumps and stabilization

- Mesh interface $F \in \mathcal{F}_{h}^{\circ}$ s.t. $F=\partial K_{l} \cap \partial K_{r}$
- oriented by unit normal \boldsymbol{n}_{F} pointing from K_{l} to K_{r}
- Mesh boundary face $F \in \mathcal{F}_{h}^{\partial}$ s.t. $F=\partial K_{l} \cap \Gamma$
- oriented by unit outward normal \boldsymbol{n}
- Tangential jump of field $\boldsymbol{v}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ across mesh interface $F \in \mathcal{F}_{h}^{\circ}$

$$
\left[\boldsymbol{v}_{h}\right]_{F}^{\mathrm{c}}:=\left(\left.\left.\boldsymbol{v}_{h}\right|_{K_{l}}\right|_{F}-\left.\left.\boldsymbol{v}_{h}\right|_{K_{r}}\right|_{F}\right) \times \boldsymbol{n}_{F}
$$

and if F is a boundary face, $\left[\boldsymbol{v}_{h}\right]_{F}^{\mathrm{c}}:=\left.\left.\boldsymbol{v}_{h}\right|_{K_{l}}\right|_{F} \times \boldsymbol{n}$

Jumps and stabilization

- Mesh interface $F \in \mathcal{F}_{h}^{\circ}$ s.t. $F=\partial K_{l} \cap \partial K_{r}$
- oriented by unit normal \boldsymbol{n}_{F} pointing from K_{l} to K_{r}
- Mesh boundary face $F \in \mathcal{F}_{h}^{\partial}$ s.t. $F=\partial K_{l} \cap \Gamma$
- oriented by unit outward normal \boldsymbol{n}
- Tangential jump of field $\boldsymbol{v}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ across mesh interface $F \in \mathcal{F}_{h}^{\circ}$

$$
\left[\boldsymbol{v}_{h}\right]_{F}^{\mathrm{c}}:=\left(\left.\left.\boldsymbol{v}_{h}\right|_{K_{l}}\right|_{F}-\left.\left.\boldsymbol{v}_{h}\right|_{K_{r}}\right|_{F}\right) \times \boldsymbol{n}_{F}
$$

and if F is a boundary face, $\left[\boldsymbol{v}_{h}\right]_{F}^{\mathrm{c}}:=\left.\left.\boldsymbol{v}_{h}\right|_{K_{l}}\right|_{F} \times \boldsymbol{n}$

- Stabilization bilinear forms

$$
s_{h}^{\mathrm{H}}\left(\boldsymbol{H}_{h}, \boldsymbol{h}_{h}\right):=\sum_{F \in \mathcal{F}_{h}}\left(\llbracket \boldsymbol{H}_{h} \rrbracket_{F}^{\mathrm{c}}, \llbracket \boldsymbol{h}_{h} \rrbracket_{F}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}(F)} \quad s_{h}^{\mathrm{E}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):=\sum_{F \in \mathcal{F}_{h}^{\circ}}\left(\llbracket \boldsymbol{E}_{h} \rrbracket_{F}^{\mathrm{c}}, \llbracket \boldsymbol{e}_{h} \rrbracket_{F}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}(F)}
$$

Jump seminorms: $\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}}:=s_{h}^{\mathrm{H}}\left(\boldsymbol{h}_{h}, \boldsymbol{h}_{h}\right)^{\frac{1}{2}},\left|\boldsymbol{e}_{h}\right|_{h}^{\mathrm{E}}:=s_{h}^{\mathrm{E}}\left(\boldsymbol{e}_{h}, \boldsymbol{e}_{h}\right)^{\frac{1}{2}}$

Discrete curl operators

- Broken curl operator $\nabla_{h} \times: \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \rightarrow \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ (acts elementwise)

Discrete curl operators

- Broken curl operator $\nabla_{h} \times: \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \rightarrow \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ (acts elementwise)
- Discrete curl operator $\boldsymbol{C}_{h, 0}^{k, \ell}: \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \rightarrow \boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ includes jump lifting operator in $\boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)(\ell \geq k$ can be useful to improve consistency properties)

$$
\begin{aligned}
\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{v}_{h}\right) & :=\nabla_{h} \times \boldsymbol{v}_{h}+\boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{v}_{h}\right) \\
\left(\boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{v}_{h}\right), \boldsymbol{\phi}_{h}\right)_{\boldsymbol{L}^{2}} & :=\sum_{F \in \mathcal{F}_{h}}\left(\left[\boldsymbol{v}_{h}\right]_{F}^{\mathrm{c}},\left\{\boldsymbol{\phi}_{h}\right\}_{F}\right)_{\boldsymbol{L}^{2}(F)} \quad \forall \boldsymbol{\phi}_{h} \in \boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)
\end{aligned}
$$

and $\left\{\boldsymbol{\phi}_{h}\right\}_{F}$ is the plain (componentwise) average of $\boldsymbol{\phi}_{h}$ at F

Discrete curl operators

- Broken curl operator $\nabla_{h} \times: \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \rightarrow \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ (acts elementwise)
- Discrete curl operator $\boldsymbol{C}_{h, 0}^{k, \ell}: \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \rightarrow \boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ includes jump lifting operator in $\boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)(\ell \geq k$ can be useful to improve consistency properties)

$$
\begin{aligned}
\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{v}_{h}\right) & :=\nabla_{h} \times \boldsymbol{v}_{h}+\boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{v}_{h}\right) \\
\left(\boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{v}_{h}\right), \boldsymbol{\phi}_{h}\right)_{\boldsymbol{L}^{2}} & :=\sum_{F \in \mathcal{F}_{h}}\left(\left[\boldsymbol{v}_{h}\right]_{F}^{\mathrm{c}},\left\{\boldsymbol{\phi}_{h}\right\}_{F}\right)_{\boldsymbol{L}^{2}(F)} \quad \forall \boldsymbol{\phi}_{h} \in \boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)
\end{aligned}
$$

and $\left\{\boldsymbol{\phi}_{h}\right\}_{F}$ is the plain (componentwise) average of $\boldsymbol{\phi}_{h}$ at F

- Integration by parts ($\boldsymbol{C}_{h}^{k, \ell}$ defined without lifting boundary values)

$$
\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{\phi}_{h}\right), \boldsymbol{\psi}_{h}\right)_{\boldsymbol{L}^{2}}=\left(\boldsymbol{\phi}_{h}, \boldsymbol{C}_{h}^{k, \ell}\left(\boldsymbol{\psi}_{h}\right)\right)_{\boldsymbol{L}^{2}}
$$

Discrete curl operators

- Broken curl operator $\nabla_{h} \times: \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \rightarrow \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ (acts elementwise)
- Discrete curl operator $\boldsymbol{C}_{h, 0}^{k, \ell}: \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \rightarrow \boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ includes jump lifting operator in $\boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)(\ell \geq k$ can be useful to improve consistency properties)

$$
\begin{aligned}
\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{v}_{h}\right) & :=\nabla_{h} \times \boldsymbol{v}_{h}+\boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{v}_{h}\right) \\
\left(\boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{v}_{h}\right), \boldsymbol{\phi}_{h}\right)_{\boldsymbol{L}^{2}} & \left.:=\sum_{F \in \mathcal{F}_{h}}\left(\llbracket \boldsymbol{v}_{h}\right]_{F}^{\mathrm{c}},\left\{\boldsymbol{\phi}_{h}\right\}_{F}\right)_{\boldsymbol{L}^{2}(F)} \quad \forall \boldsymbol{\phi}_{h} \in \boldsymbol{P}_{\ell}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)
\end{aligned}
$$

and $\left\{\boldsymbol{\phi}_{h}\right\}_{F}$ is the plain (componentwise) average of $\boldsymbol{\phi}_{h}$ at F

- Integration by parts ($\boldsymbol{C}_{h}^{k, \ell}$ defined without lifting boundary values)

$$
\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{\phi}_{h}\right), \boldsymbol{\psi}_{h}\right)_{\boldsymbol{L}^{2}}=\left(\boldsymbol{\phi}_{h}, \boldsymbol{C}_{h}^{k, \ell}\left(\boldsymbol{\psi}_{h}\right)\right)_{\boldsymbol{L}^{2}}
$$

- Literature
- Discrete gradient for diffusion problems introduced in [Bassi et al., 97] and analyzed in [Brezzi et al., 00]
- Weak consistency and compactness properties [Burman \& AE, 08 ; Buffa \& Ortner, 09; Di Pietro \& AE, 09]
- dG methods with discrete curl for Maxwell's equations [Perugia, Schötzau \& Monk, 02; Houston et al., 05]

Example of weak consistency property

- Consistency defect: For all $\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ and all $\boldsymbol{e} \in \boldsymbol{H}(\mathbf{c u r l} ; D)$,

$$
\delta\left(\boldsymbol{h}_{h}, \boldsymbol{e}\right):=\left(\boldsymbol{h}_{h}, \nabla \times \boldsymbol{e}\right)_{L^{2}}-\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{h}_{h}\right), \boldsymbol{e}\right)_{L^{2}}
$$

Example of weak consistency property

- Consistency defect: For all $\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ and all $\boldsymbol{e} \in \boldsymbol{H}(\mathbf{c u r l} ; D)$,

$$
\delta\left(\boldsymbol{h}_{h}, \boldsymbol{e}\right):=\left(\boldsymbol{h}_{h}, \nabla \times \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}-\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{h}_{h}\right), \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}
$$

- Lemma. For all $\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ and all $\boldsymbol{\varepsilon} \in \boldsymbol{X}^{\mathrm{c}}$,

$$
\left|\delta\left(\boldsymbol{h}_{h}, \boldsymbol{\varepsilon}\right)\right| \lesssim\left(h / \ell_{D}\right)^{s^{\prime}-\frac{1}{2}} \ell_{D}^{\frac{1}{2}}\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}}\|\nabla \times \boldsymbol{\varepsilon}\|_{\boldsymbol{L}^{2}}
$$

with regularity pickup $s^{\prime} \in\left(\frac{1}{2}, 1\right]$ from compactness property

Example of weak consistency property

- Consistency defect: For all $\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ and all $\boldsymbol{e} \in \boldsymbol{H}(\mathbf{c u r l} ; D)$,

$$
\delta\left(\boldsymbol{h}_{h}, \boldsymbol{e}\right):=\left(\boldsymbol{h}_{h}, \nabla \times \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}-\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{h}_{h}\right), \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}
$$

- Lemma. For all $\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ and all $\varepsilon \in X^{\mathrm{c}}$,

$$
\left|\delta\left(\boldsymbol{h}_{h}, \boldsymbol{\varepsilon}\right)\right| \lesssim\left(h / \ell_{D}\right)^{s^{\prime}-\frac{1}{2}} \ell_{D}^{\frac{1}{2}}\left|\boldsymbol{h}_{h}\right|_{h}^{H}\|\nabla \times \boldsymbol{\varepsilon}\|_{\boldsymbol{L}^{2}}
$$

with regularity pickup $s^{\prime} \in\left(\frac{1}{2}, 1\right]$ from compactness property

- Sketch of proof. Using \boldsymbol{L}^{2}-orthogonal projection $\boldsymbol{\Pi}_{h}^{\mathrm{b}}$ onto $\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$,

$$
\delta\left(\boldsymbol{h}_{h}, \boldsymbol{\varepsilon}\right)=\sum_{F \in \mathcal{F}_{h}}\left(\left[\boldsymbol{h}_{h}\right]_{F}^{\mathrm{c}},\left\{\boldsymbol{\varepsilon}-\boldsymbol{\Pi}_{h}^{\mathrm{b}}(\boldsymbol{\varepsilon})\right\}_{F}\right)_{\boldsymbol{L}^{2}(F)}
$$

Use approximation properties of $\boldsymbol{\Pi}_{h}^{\mathrm{b}}$ and $|\boldsymbol{\varepsilon}|_{\boldsymbol{H}^{\prime}(D)} \lesssim \ell_{D}^{1-s^{\prime}}\|\nabla \times \boldsymbol{\varepsilon}\|_{L^{2}}$

Spectral correctness

Discrete spectral problem

- Recall spectral problem: Find nonzero $\lambda \in \mathbb{C}$ and nonzero $(\boldsymbol{H}, \boldsymbol{E}) \in X_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ s.t.

$$
-(\nabla \times \boldsymbol{E}, \boldsymbol{h})_{\boldsymbol{L}^{2}}+\left(\nabla_{0} \times \boldsymbol{H}, \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}=\frac{\omega_{D}}{\lambda}((\mu \boldsymbol{H}, \epsilon \boldsymbol{E}),(\boldsymbol{h}, \boldsymbol{e}))_{L}
$$

for all $(\boldsymbol{h}, \boldsymbol{e}) \in L:=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D)$

Discrete spectral problem

- Recall spectral problem: Find nonzero $\lambda \in \mathbb{C}$ and nonzero $(\boldsymbol{H}, \boldsymbol{E}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ s.t.

$$
-(\nabla \times \boldsymbol{E}, \boldsymbol{h})_{\boldsymbol{L}^{2}}+\left(\nabla_{0} \times \boldsymbol{H}, \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}=\frac{\omega_{D}}{\lambda}((\mu \boldsymbol{H}, \epsilon \boldsymbol{E}),(\boldsymbol{h}, \boldsymbol{e}))_{L}
$$

for all $(\boldsymbol{h}, \boldsymbol{e}) \in L:=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D)$

- Find nonzero $\lambda_{h} \in \mathbb{C}$ and nonzero $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right) \in L_{h}$ s.t.

$$
a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)=\frac{\omega_{D}}{\lambda_{h}}\left(\left(\mu \boldsymbol{H}_{h}, \epsilon \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)_{L}
$$

for all $\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right) \in L_{h}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$

Discrete spectral problem

- Recall spectral problem: Find nonzero $\lambda \in \mathbb{C}$ and nonzero $(\boldsymbol{H}, \boldsymbol{E}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ s.t.

$$
-(\nabla \times \boldsymbol{E}, \boldsymbol{h})_{L^{2}}+\left(\nabla_{0} \times \boldsymbol{H}, \boldsymbol{e}\right)_{L^{2}}=\frac{\omega_{D}}{\lambda}((\mu \boldsymbol{H}, \epsilon \boldsymbol{E}),(\boldsymbol{h}, \boldsymbol{e}))_{L}
$$

for all $(\boldsymbol{h}, \boldsymbol{e}) \in L:=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D)$

- Find nonzero $\lambda_{h} \in \mathbb{C}$ and nonzero $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right) \in L_{h}$ s.t.

$$
a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)=\frac{\omega_{D}}{\lambda_{h}}\left(\left(\mu \boldsymbol{H}_{h}, \epsilon \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)_{L}
$$

for all $\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right) \in L_{h}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$

- Discrete bilinear form (stabilization weights: $\left.\kappa_{\mathrm{H}}:=\left(\mu_{0} / \epsilon_{0}\right)^{\frac{1}{2}}, \kappa_{\mathrm{E}}:=\left(\epsilon_{0} / \mu_{0}\right)^{\frac{1}{2}}\right)$

$$
\begin{aligned}
a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right):= & -\left(\boldsymbol{C}_{h}^{k, \ell}\left(\boldsymbol{E}_{h}\right), \boldsymbol{h}_{h}\right)_{\boldsymbol{L}^{2}}+\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{H}_{h}\right), \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}} \\
& +\kappa_{\mathrm{H}} s_{h}^{\mathrm{H}}\left(\boldsymbol{H}_{h}, \boldsymbol{h}_{h}\right)+\kappa_{\mathrm{E}} \mathrm{E}_{h}^{\mathrm{E}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)
\end{aligned}
$$

Discrete involutions

- Curl-free subspaces of broken polynomial spaces

$$
\begin{aligned}
\boldsymbol{P}_{k 0}^{\mathrm{c}}(\text { curl } & \left.=\mathbf{0} ; \mathcal{T}_{h}\right) \\
\boldsymbol{P}_{k}^{\mathrm{c}}(\mathbf{c u r l} & =\mathbf{0} ; \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap
\end{aligned}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

Discrete involutions

- Curl-free subspaces of broken polynomial spaces

$$
\begin{aligned}
\boldsymbol{P}_{k 0}^{\mathrm{c}}(\text { curl } & \left.=\mathbf{0} ; \mathcal{T}_{h}\right)
\end{aligned}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D), ~\left(\boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right):=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)\right.
$$

- Lemma. The discrete involutions satisfied by any eigenpair $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)$ are

$$
\mu \boldsymbol{H}_{h} \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\text { curl }=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}, \quad \epsilon \boldsymbol{E}_{h} \in \boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}
$$

Discrete involutions

- Curl-free subspaces of broken polynomial spaces

$$
\begin{aligned}
\boldsymbol{P}_{k 0}^{\mathrm{c}}(\text { curl } & \left.=\mathbf{0} ; \mathcal{T}_{h}\right)
\end{aligned}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D), ~\left(\boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right):=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)\right.
$$

- Lemma. The discrete involutions satisfied by any eigenpair $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)$ are

$$
\mu \boldsymbol{H}_{h} \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\text { curl }=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}, \quad \epsilon \boldsymbol{E}_{h} \in \boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}
$$

- Involution defect: (discretely div-free vs. exactly div-free)

$$
\begin{aligned}
\boldsymbol{P}_{k 0}^{\mathrm{c}}(\mathbf{c u r l} & \left.=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp} \not \subset \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D)^{\perp} \\
\boldsymbol{P}_{k}^{\mathrm{c}}(\mathbf{c u r l} & \left.=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp} \not \subset \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}
\end{aligned}
$$

Discrete involutions

- Curl-free subspaces of broken polynomial spaces

$$
\begin{aligned}
\boldsymbol{P}_{k 0}^{\mathrm{c}}(\text { curl } & \left.=\mathbf{0} ; \mathcal{T}_{h}\right) \\
\boldsymbol{P}_{k}^{\mathrm{c}}(\mathbf{c u r l} & =\mathbf{0} ; \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap
\end{aligned}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

- Lemma. The discrete involutions satisfied by any eigenpair $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)$ are

$$
\mu \boldsymbol{H}_{h} \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\text { curl }=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}, \quad \epsilon \boldsymbol{E}_{h} \in \boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}
$$

- Involution defect: (discretely div-free vs. exactly div-free)

$$
\begin{aligned}
\boldsymbol{P}_{k 0}^{\mathrm{c}}(\mathbf{c u r l} & \left.=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp} \not \subset \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D)^{\perp} \\
\boldsymbol{P}_{k}^{\mathrm{c}}(\mathbf{c u r l} & \left.=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp} \not \subset \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}
\end{aligned}
$$

- Curl-free subspaces need to be "sufficiently rich" to enjoy suitable approximation properties
- On simplicial meshes, these subspaces are composed of Nédélec (edge) finite elements, and several effective interpolation operators exist!

Main result

- Theorem [AE \& JLG, 23, 24] Assume simplicial meshes and $k \geq 0$. The dG approximation of the eigenvalue problem is spectrally correct, irrespective of the topology of D

Main result

- Theorem [AE \& JLG, 23, 24] Assume simplicial meshes and $k \geq 0$. The dG approximation of the eigenvalue problem is spectrally correct, irrespective of the topology of D
- Literature
- Spectral correctness known for 2nd-order formulation [Buffa \& Perugia, 06]
- First-order formulation important for coupled systems, e.g., MHD
- Spectral correctness crucial to study long-time behavior

Main result

- Theorem [AE \& JLG, 23, 24] Assume simplicial meshes and $k \geq 0$. The dG approximation of the eigenvalue problem is spectrally correct, irrespective of the topology of D
- Literature
- Spectral correctness known for 2nd-order formulation [Buffa \& Perugia, 06]
- First-order formulation important for coupled systems, e.g., MHD
- Spectral correctness crucial to study long-time behavior
- Numerical simulations in [Hesthaven \& Warburton, 04; Cohen \& Duruflé, 07] indicated spectral correctness for first-order formulation
- Present theorem provides the mathematical foundation

Main result

- Theorem [AE \& JLG, 23, 24] Assume simplicial meshes and $k \geq 0$. The dG approximation of the eigenvalue problem is spectrally correct, irrespective of the topology of D
- Literature
- Spectral correctness known for 2nd-order formulation [Buffa \& Perugia, 06]
- First-order formulation important for coupled systems, e.g., MHD
- Spectral correctness crucial to study long-time behavior
- Numerical simulations in [Hesthaven \& Warburton, 04; Cohen \& Duruflé, 07] indicated spectral correctness for first-order formulation
- Present theorem provides the mathematical foundation
- Spectral correctness also using CIP-stabilized FEM on split meshes (Alfeld or Clough-Tocher) [AE \& JLG, 24, hal-04478683]

Asymptotic optimality, time-harmonic problem

Helmholtz problem

- Consider first Helmholtz problem (positive material properties ϑ, v)

$$
-\omega^{2} \vartheta u-\nabla \cdot(\nu \nabla u)=f,\left.\quad u\right|_{\Gamma}=0
$$

Helmholtz problem

- Consider first Helmholtz problem (positive material properties ϑ, v)

$$
-\omega^{2} \vartheta u-\nabla \cdot(v \nabla u)=f,\left.\quad u\right|_{\Gamma}=0
$$

- Asymptotic optimality of H^{1}-conforming FEM approximation proved using duality argument [Schatz, 74]

$$
(1-c(h))\left\|u-u_{h}\right\|\left\|\leq \inf _{v_{h} \in P_{k}^{(}\left(\mathcal{T}_{h}\right) \cap H_{0}^{1}(D)}\right\| u-v_{h} \|, \quad \lim _{h \rightarrow 0} c(h)=0
$$

with energy norm $\|v\|^{2}:=\omega^{2}\left\|\vartheta^{\frac{1}{2}} v\right\|_{L^{2}}^{2}+\left\|v^{\frac{1}{2}} \nabla u\right\|_{L^{2}}^{2}$

Helmholtz problem

- Consider first Helmholtz problem (positive material properties ϑ, v)

$$
-\omega^{2} \vartheta u-\nabla \cdot(v \nabla u)=f,\left.\quad u\right|_{\Gamma}=0
$$

- Asymptotic optimality of H^{1}-conforming FEM approximation proved using duality argument [Schatz, 74]

$$
(1-c(h))\left\|u-u_{h}\right\|\left\|\leq \inf _{v_{h} \in P_{k}^{b}\left(\mathcal{T}_{h}\right) \cap H_{0}^{1}(D)}\right\| u-v_{h} \|, \quad \lim _{h \rightarrow 0} c(h)=0
$$

with energy norm $\|v\|^{2}:=\omega^{2}\left\|\vartheta^{\frac{1}{2}} v\right\|_{L^{2}}^{2}+\left\|v^{\frac{1}{2}} \nabla u\right\|_{L^{2}}^{2}$

- Explicit-frequency analysis in [Melenk \& Sauter, 10; TCF \& Nicaise, 20; Lafontaine, Spence \& Wunsch, 22]

Helmholtz problem

- Consider first Helmholtz problem (positive material properties ϑ, v)

$$
-\omega^{2} \vartheta u-\nabla \cdot(v \nabla u)=f,\left.\quad u\right|_{\Gamma}=0
$$

- Asymptotic optimality of H^{1}-conforming FEM approximation proved using duality argument [Schatz, 74]

$$
(1-c(h))\left\|u-u_{h}\right\| \leq \leq \inf _{v_{h} \in P_{k}^{b}\left(\mathcal{T}_{h}\right) \cap H_{0}^{1}(D)}\left\|u-v_{h}\right\|, \quad \lim _{h \rightarrow 0} c(h)=0
$$

with energy norm $\|v\|^{2}:=\omega^{2}\left\|\vartheta^{\frac{1}{2}} \nu\right\|_{L^{2}}^{2}+\left\|v^{\frac{1}{2}} \nabla u\right\|_{L^{2}}^{2}$

- Explicit-frequency analysis in [Melenk \& Sauter, 10; TCF \& Nicaise, 20; Lafontaine, Spence \& Wunsch, 22]
- dG approximation of Helmholtz problem analyzed in [TCF, 23]
- bound consistency defect of discrete gradient
- deal with nonconforming setting and stabilization

Maxwell's problem with conforming approximation

- (Recall) Given $\boldsymbol{J} \in \boldsymbol{L}^{2}(D)$, find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$ s.t.

$$
-\omega^{2}(\epsilon \boldsymbol{E}, \boldsymbol{e})_{\boldsymbol{L}^{2}}+\left(\nu \nabla_{0} \times \boldsymbol{E}, \nabla_{0} \times \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}=(\boldsymbol{J}, \boldsymbol{e})_{\boldsymbol{L}^{2}} \quad \forall \boldsymbol{e} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D)
$$

Maxwell's problem with conforming approximation

- (Recall) Given $\boldsymbol{J} \in \boldsymbol{L}^{2}(D)$, find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$ s.t.

$$
-\omega^{2}(\epsilon \boldsymbol{E}, \boldsymbol{e})_{\boldsymbol{L}^{2}}+\left(\nu \nabla_{0} \times \boldsymbol{E}, \nabla_{0} \times \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}=(\boldsymbol{J}, \boldsymbol{e})_{\boldsymbol{L}^{2}} \quad \forall \boldsymbol{e} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D)
$$

- Consider conforming approximation by Nédélec (edge) FEM

Maxwell's problem with conforming approximation

- (Recall) Given $\boldsymbol{J} \in \boldsymbol{L}^{2}(D)$, find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$ s.t.

$$
-\omega^{2}(\epsilon \boldsymbol{E}, \boldsymbol{e})_{\boldsymbol{L}^{2}}+\left(\nu \nabla_{0} \times \boldsymbol{E}, \nabla_{0} \times \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}=(\boldsymbol{J}, \boldsymbol{e})_{\boldsymbol{L}^{2}} \quad \forall \boldsymbol{e} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D)
$$

- Consider conforming approximation by Nédélec (edge) FEM
- Extending Schatz's argument not straightforward as one needs to deal with nonconformity caused by discrete involution

Maxwell's problem with conforming approximation

- (Recall) Given $\boldsymbol{J} \in \boldsymbol{L}^{2}(D)$, find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\boldsymbol{c u r l} ; D)$ s.t.

$$
-\omega^{2}(\epsilon \boldsymbol{E}, \boldsymbol{e})_{\boldsymbol{L}^{2}}+\left(\nu \nabla_{0} \times \boldsymbol{E}, \nabla_{0} \times \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}=(\boldsymbol{J}, \boldsymbol{e})_{\boldsymbol{L}^{2}} \quad \forall \boldsymbol{e} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D)
$$

- Consider conforming approximation by Nédélec (edge) FEM
- Extending Schatz's argument not straightforward as one needs to deal with nonconformity caused by discrete involution
- Asymptotic optimality established very recently

$$
(1-c(h))\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\| \leq \leq \inf _{\boldsymbol{v}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0}(\operatorname{curl} ; D)}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|, \quad \lim _{h \rightarrow 0} c(h)=0
$$

with energy norm $\|\boldsymbol{v}\|^{2}:=\omega^{2}\left\|\epsilon^{\frac{1}{2}} \boldsymbol{v}\right\|_{L^{2}(D)}^{2}+\left\|v^{\frac{1}{2}} \nabla_{0} \times \boldsymbol{v}\right\|_{L^{2}}^{2}$

Maxwell's problem with conforming approximation

- (Recall) Given $\boldsymbol{J} \in \boldsymbol{L}^{2}(D)$, find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\boldsymbol{c u r l} ; D)$ s.t.

$$
-\omega^{2}(\epsilon \boldsymbol{E}, \boldsymbol{e})_{\boldsymbol{L}^{2}}+\left(\nu \nabla_{0} \times \boldsymbol{E}, \nabla_{0} \times \boldsymbol{e}\right)_{\boldsymbol{L}^{2}}=(\boldsymbol{J}, \boldsymbol{e})_{\boldsymbol{L}^{2}} \quad \forall \boldsymbol{e} \in \boldsymbol{H}_{0}(\text { curl } ; D)
$$

- Consider conforming approximation by Nédélec (edge) FEM
- Extending Schatz's argument not straightforward as one needs to deal with nonconformity caused by discrete involution
- Asymptotic optimality established very recently

$$
(1-c(h))\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\| \leq \inf _{\boldsymbol{v}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \cap \boldsymbol{H}_{0}(\operatorname{curl} ; D)}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|, \quad \lim _{h \rightarrow 0} c(h)=0
$$

with energy norm $\|\boldsymbol{v}\|^{2}:=\omega^{2}\left\|\epsilon^{\frac{1}{2}} \boldsymbol{v}\right\|_{L^{2}(D)}^{2}+\left\|v^{\frac{1}{2}} \nabla_{0} \times \boldsymbol{v}\right\|_{L^{2}}^{2}$

- impedance BCs in [Melenk \& Sauter, 23], explicit-frequency analysis, smooth and connected boundary
- perfect conductor BCs in [TCF \& AE, 24], general domain and material properties, frequency-dependence not made explicit

dG approximation of time-harmonic problem

- Discrete problem: Find $\boldsymbol{E}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$ s.t.

$$
b_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)=\left(\boldsymbol{J}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}} \quad \forall \boldsymbol{e}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)
$$

with discrete bilinear form

$$
b_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):=-\omega^{2}\left(\epsilon \boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}}+\left(v \boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{E}_{h}\right), \boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{e}_{h}\right)\right)_{\boldsymbol{L}^{2}}+s_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)
$$

and symmetric, positive-semidefinite stabilization bilinear form s_{h}

Example: Interior penalty dG

- Interior penalty dG bilinear form

$$
\begin{aligned}
b_{h}^{\mathrm{IPDG}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):= & -\omega^{2}\left(\epsilon \boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}}+\left(v \nabla_{h} \times \boldsymbol{E}_{h}, \nabla_{h} \times \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}}+\eta_{*} s_{h}^{\mathrm{IPDG}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right) \\
& +\sum_{F \in \mathcal{F}_{h}}\left\{\left(\left\{\boldsymbol{v} \nabla_{h} \times \boldsymbol{E}_{h}\right\}_{F},\left[\boldsymbol{[} \boldsymbol{e}_{h}\right]_{F}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}(F)}+\left(\left[\boldsymbol{E}_{h}\right]_{F}^{\mathrm{c}},\left\{\boldsymbol{v} \nabla_{h} \times \boldsymbol{e}_{h}\right\}_{F}\right)_{\boldsymbol{L}^{2}(F)}\right\}
\end{aligned}
$$

with stabilization bilinear form $\left(\nu_{F}:=\left.\max _{K \supset F} \nu\right|_{K}\right)$

$$
s_{h}^{\mathrm{PDD}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):=\sum_{F \in \mathscr{F}_{h}} \frac{v_{F}}{h_{F}}\left(\left[\boldsymbol{E}_{h}\right]_{F}^{\mathrm{c}},\left[\boldsymbol{e}_{h}\right]_{F}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}(F)}
$$

Example: Interior penalty dG

- Interior penalty dG bilinear form

$$
\begin{aligned}
b_{h}^{\mathrm{IPDG}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):= & -\omega^{2}\left(\epsilon \boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}}+\left(v \nabla_{h} \times \boldsymbol{E}_{h}, \nabla_{h} \times \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}}+\eta_{*} s_{h}^{\mathrm{IPDG}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right) \\
& +\sum_{F \in \mathcal{F}_{h}}\left\{\left(\left\{\boldsymbol{v} \nabla_{h} \times \boldsymbol{E}_{h}\right\}_{F},\left[\boldsymbol{[} \boldsymbol{e}_{h}\right]_{F}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}(F)}+\left(\left[\boldsymbol{E}_{h}\right]_{F}^{\mathrm{c}},\left\{\boldsymbol{v} \nabla_{h} \times \boldsymbol{e}_{h}\right\}_{F}\right)_{\boldsymbol{L}^{2}(F)}\right\}
\end{aligned}
$$

with stabilization bilinear form $\left(\nu_{F}:=\left.\max _{K \supset F} \nu\right|_{K}\right)$

$$
s_{h}^{\mathrm{PDD}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):=\sum_{F \in \mathscr{F}_{h}} \frac{v_{F}}{h_{F}}\left(\left[\boldsymbol{E}_{h}\right]_{F}^{\mathrm{c}},\left[\boldsymbol{e}_{h}\right]_{F}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}(F)}
$$

- b_{h} can be rewritten using discrete curl operators upon setting

$$
s_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):=\eta_{*} s_{h}^{\mathrm{IPDG}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)-\left(v \boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{E}_{h}\right), \boldsymbol{L}_{h, 0}^{\ell}\left(\boldsymbol{e}_{h}\right)\right)_{\boldsymbol{L}^{2}}
$$

and positivity of s_{h} requires taking $\eta_{*}>0$ large enough

Main result on dG approximation

- Error $\boldsymbol{e}:=\boldsymbol{E}-\boldsymbol{E}_{h}$ lives in $\boldsymbol{V}_{\#}:=\boldsymbol{H}_{0}(\operatorname{curl} ; D)+\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$
- natural extension of $\mathbb{I} \cdot]_{F}^{\mathrm{c}}$ and $\boldsymbol{C}_{h, 0}^{k, \ell}$ to $\boldsymbol{V}_{\#}$
- assume s_{h} can be extended to $\boldsymbol{V}_{\sharp} \rightarrow s_{\sharp}$
- equip \boldsymbol{V}_{\sharp} with extended energy norm

$$
\|\boldsymbol{v}\|_{\sharp s}^{2}:=\omega^{2}\left\|\epsilon^{\frac{1}{2}} \boldsymbol{v}\right\|_{\boldsymbol{L}^{2}}^{2}+\left\|v^{\frac{1}{2}} \boldsymbol{C}_{h, 0}^{k, \ell}(\boldsymbol{v})\right\|_{\boldsymbol{L}^{2}}^{2}+s_{\sharp}(\boldsymbol{v}, \boldsymbol{v})
$$

Main result on dG approximation

- Error $\boldsymbol{e}:=\boldsymbol{E}-\boldsymbol{E}_{h}$ lives in $\boldsymbol{V}_{\#}:=\boldsymbol{H}_{0}(\operatorname{curl} ; D)+\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$
- natural extension of $\mathbb{I} \cdot \mathrm{J}_{F}^{\mathrm{c}}$ and $\boldsymbol{C}_{h, 0}^{k, \ell}$ to $\boldsymbol{V}_{\#}$
- assume s_{h} can be extended to $\boldsymbol{V}_{\sharp} \rightarrow s_{\#}$
- equip \boldsymbol{V}_{\sharp} with extended energy norm

$$
\|\boldsymbol{v}\|_{\sharp s}^{2}:=\omega^{2}\left\|\epsilon^{\frac{1}{2}} \boldsymbol{v}\right\|_{\boldsymbol{L}^{2}}^{2}+\left\|v^{\frac{1}{2}} C_{h, 0}^{k, \ell}(\boldsymbol{v})\right\|_{\boldsymbol{L}^{2}}^{2}+s_{\sharp}(\boldsymbol{v}, \boldsymbol{v})
$$

- Theorem [TCF \& AE, 24] Assume simplicial meshes, $k \geq 1$, and some minimal assumption on stabilization. Then, with $\lim _{h \rightarrow 0} c(h)=0$,

$$
(1-c(h))\|\boldsymbol{e}\|_{\sharp \mathrm{s}}^{2} \leq(1+c(h)) \inf _{\boldsymbol{v}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\sharp \mathrm{s}}^{2}+\underbrace{2 \rho^{-1}\|\boldsymbol{e}\|_{\sharp \mathrm{s}} \min _{\boldsymbol{\Phi}_{h}^{\mathrm{c}} \in \boldsymbol{P}_{\ell}^{\mathrm{c}}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{v} \nabla_{0} \times \boldsymbol{E}-\boldsymbol{\Phi}_{h}^{\mathrm{c}}\right\| \|_{\mathrm{ap} *}}_{\text {nonconformity } \times \text { consistency defect }}
$$

Consistency defect can be tamed by increasing ℓ for smooth solutions

Further insight on spectral correctness

- Roadmap
- Poincaré-Steklov inequalities and inf-sup stability
- Duality argument

Convergence in operator norm (1/3)

- Recall \boldsymbol{L}^{2}-orthogonal projections

$$
\boldsymbol{\Pi}_{0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D), \quad \boldsymbol{\Pi}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

- For all $(f, g) \in L:=L^{2}(D) \times L^{2}(D), T(f, g)$ is the unique pair $(\boldsymbol{H}, \boldsymbol{E}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ solving the well-posed problem

$$
-\nabla \times \boldsymbol{E}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\mu \boldsymbol{f}), \quad \nabla_{0} \times \boldsymbol{H}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\boldsymbol{\epsilon} \boldsymbol{g})
$$

Convergence in operator norm (1/3)

- Recall \boldsymbol{L}^{2}-orthogonal projections

$$
\boldsymbol{\Pi}_{0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D), \quad \boldsymbol{\Pi}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

- For all $(f, g) \in L:=L^{2}(D) \times L^{2}(D), T(f, g)$ is the unique pair $(\boldsymbol{H}, \boldsymbol{E}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ solving the well-posed problem

$$
-\nabla \times \boldsymbol{E}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\mu \boldsymbol{f}), \quad \nabla_{0} \times \boldsymbol{H}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\boldsymbol{\epsilon} \boldsymbol{g})
$$

- $(\lambda,(\boldsymbol{H}, \boldsymbol{E})), \lambda \neq 0$, is a Maxwell eigenpair iff

$$
T(\boldsymbol{H}, \boldsymbol{E})=\lambda(\boldsymbol{H}, \boldsymbol{E})
$$

Convergence in operator norm (1/3)

- Recall \boldsymbol{L}^{2}-orthogonal projections

$$
\boldsymbol{\Pi}_{0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D), \quad \boldsymbol{\Pi}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0} ; D)
$$

- For all $(f, g) \in L:=L^{2}(D) \times L^{2}(D), T(f, g)$ is the unique pair $(\boldsymbol{H}, \boldsymbol{E}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$ solving the well-posed problem

$$
-\nabla \times \boldsymbol{E}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\mu \boldsymbol{f}), \quad \nabla_{0} \times \boldsymbol{H}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\boldsymbol{\epsilon} \boldsymbol{g})
$$

- $(\lambda,(\boldsymbol{H}, \boldsymbol{E})), \lambda \neq 0$, is a Maxwell eigenpair iff

$$
T(\boldsymbol{H}, \boldsymbol{E})=\lambda(\boldsymbol{H}, \boldsymbol{E})
$$

- What is the discrete counterpart?

Convergence in operator norm (2/3)

- Introduce discrete \boldsymbol{L}^{2}-orthogonal projections

$$
\begin{aligned}
& \boldsymbol{\Pi}_{h 0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k, 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right), \quad \boldsymbol{\Pi}_{h}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k}^{\mathrm{c}}\left(\text { curl }=\mathbf{0} ; \mathcal{T}_{h}\right) \\
& \text { and set } \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}}:=\left\{\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \mid \boldsymbol{\Pi}_{h 0}^{\mathrm{c}}\left(\mu \boldsymbol{h}_{h}\right)=\mathbf{0}\right\}, \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}:=\ldots
\end{aligned}
$$

Convergence in operator norm (2/3)

- Introduce discrete \boldsymbol{L}^{2}-orthogonal projections

$$
\begin{aligned}
\boldsymbol{\Pi}_{h 0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) & \rightarrow \boldsymbol{P}_{k, 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right), \quad \boldsymbol{\Pi}_{h}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right) \\
\text { and set } \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}} & :=\left\{\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \mid \boldsymbol{\Pi}_{h 0}^{\mathrm{c}}\left(\mu \boldsymbol{h}_{h}\right)=\mathbf{0}\right\}, \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}:=\ldots
\end{aligned}
$$

- For all $(\boldsymbol{f}, \boldsymbol{g}) \in L, T_{h}(\boldsymbol{f}, \boldsymbol{g})$ is the unique pair $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right) \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}$ solving the well-posed problem (proof to come!)

$$
a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)=\omega_{D}\left(\left(\left(\boldsymbol{I}-\boldsymbol{\Pi}_{h 0}^{\mathrm{c}}\right)(\mu \boldsymbol{f}),\left(\boldsymbol{I}-\boldsymbol{\Pi}_{h}^{\mathrm{c}}\right)(\epsilon \boldsymbol{g})\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)_{L}
$$

for all $\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right) \in L_{h}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$, with discrete bilinear form

$$
\begin{aligned}
a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right):= & -\left(\boldsymbol{C}_{h}^{k, \ell}\left(\boldsymbol{E}_{h}\right), \boldsymbol{h}_{h}\right)_{\boldsymbol{L}^{2}}+\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{H}_{h}\right), \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}} \\
& +\kappa_{\mathrm{H}} s_{h}^{\mathrm{H}}\left(\boldsymbol{H}_{h}, \boldsymbol{h}_{h}\right)+\kappa_{\mathrm{E}} s_{h}^{\mathrm{E}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)
\end{aligned}
$$

Convergence in operator norm (2/3)

- Introduce discrete \boldsymbol{L}^{2}-orthogonal projections

$$
\begin{aligned}
\boldsymbol{\Pi}_{h 0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) & \rightarrow \boldsymbol{P}_{k, 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right), \quad \boldsymbol{\Pi}_{h}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right) \\
\text { and set } X_{\mu, h 0}^{\mathrm{c}} & :=\left\{\boldsymbol{h}_{h} \in \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \mid \boldsymbol{\Pi}_{h 0}^{\mathrm{c}}\left(\mu \boldsymbol{h}_{h}\right)=\mathbf{0}\right\}, \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}:=\ldots
\end{aligned}
$$

- For all $(\boldsymbol{f}, \boldsymbol{g}) \in L, T_{h}(\boldsymbol{f}, \boldsymbol{g})$ is the unique pair $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right) \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}$ solving the well-posed problem (proof to come!)

$$
a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)=\omega_{D}\left(\left(\left(\boldsymbol{I}-\boldsymbol{\Pi}_{h 0}^{\mathrm{c}}\right)(\mu \boldsymbol{f}),\left(\boldsymbol{I}-\boldsymbol{\Pi}_{h}^{\mathrm{c}}\right)(\epsilon \boldsymbol{g})\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)_{L}
$$

for all $\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right) \in L_{h}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$, with discrete bilinear form

$$
\begin{aligned}
a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right):= & -\left(\boldsymbol{C}_{h}^{k, \ell}\left(\boldsymbol{E}_{h}\right), \boldsymbol{h}_{h}\right)_{\boldsymbol{L}^{2}}+\left(\boldsymbol{C}_{h, 0}^{k, \ell}\left(\boldsymbol{H}_{h}\right), \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}} \\
& +\kappa_{\mathrm{H}} s_{h}^{\mathrm{H}}\left(\boldsymbol{H}_{h}, \boldsymbol{h}_{h}\right)+\kappa_{\mathrm{E}} s_{h}^{\mathrm{E}}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)
\end{aligned}
$$

- $\left(\lambda_{h},\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)\right), \lambda_{h} \neq 0$, is a discrete Maxwell eigenpair iff

$$
T_{h}\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)=\lambda_{h}\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)
$$

Convergence in operator norm (3/3)

- Spectral approximation of compact operators [Bramble \& Osborn, 73; Osborn, 75; Boffi, 10]

Convergence in operator norm (3/3)

- Spectral approximation of compact operators [Bramble \& Osborn, 73; Osborn, 75; Boffi, 10]
- To prove spectral correctness, it suffices to prove convergence in operator norm

$$
\lim _{h \rightarrow 0}\left\|T-T_{h}\right\|_{\mathcal{L}(L ; L)}=0
$$

Convergence in operator norm (3/3)

- Spectral approximation of compact operators [Bramble \& Osborn, 73; Osborn, 75; Boffi, 10]
- To prove spectral correctness, it suffices to prove convergence in operator norm

$$
\lim _{h \rightarrow 0}\left\|T-T_{h}\right\|_{\mathcal{L}(L ; L)}=0
$$

- Two key arguments to prove this result
- stability by deflated inf-sup condition using discrete Poincaré-Steklov inequalities
- duality argument

Discrete Poincaré-Steklov inequalities

- Weak PS inequalities

$$
\begin{aligned}
\|\boldsymbol{h}\|_{L^{2}(D)} & =\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}\right\|_{\left(\boldsymbol{X}^{c}\right)^{\prime}}, & & \forall \boldsymbol{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp} \\
\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(D)} & =\ell_{D}\|\nabla \times \boldsymbol{e}\|_{\left(\boldsymbol{X}_{0}^{c}\right)^{\prime}}, & & \forall \boldsymbol{e} \in \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}
\end{aligned}
$$

Discrete Poincaré-Steklov inequalities

- Weak PS inequalities

$$
\begin{aligned}
\|\boldsymbol{h}\|_{L^{2}(D)} & =\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}\right\|_{\left(\boldsymbol{X}^{c}\right)^{\prime}}, & & \forall \boldsymbol{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp} \\
\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(D)} & =\ell_{D}\|\nabla \times \boldsymbol{e}\|_{\left(\boldsymbol{X}_{0}^{c}\right)^{\prime}}, & & \forall \boldsymbol{e} \in \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}
\end{aligned}
$$

- Discrete setting? The difficulty is that

$$
\boldsymbol{P}_{k, 0}^{\mathrm{c}}\left(\text { curl }=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp} \not \subset \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D)^{\perp}
$$

Discrete Poincaré-Steklov inequalities

- Weak PS inequalities

$$
\begin{aligned}
\|\boldsymbol{h}\|_{L^{2}(D)} & =\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}\right\|_{\left(\boldsymbol{X}^{c}\right)^{\prime}}, & & \forall \boldsymbol{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp} \\
\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(D)} & =\ell_{D}\|\nabla \times \boldsymbol{e}\|_{\left(\boldsymbol{X}_{0}^{c}\right)}, & & \forall \boldsymbol{e} \in \boldsymbol{H}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}
\end{aligned}
$$

- Discrete setting? The difficulty is that

$$
\boldsymbol{P}_{k, 0}^{\mathrm{c}}\left(\text { curl }=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp} \not \subset \boldsymbol{H}_{0}(\text { curl }=\mathbf{0} ; D)^{\perp} \quad \ldots
$$

- Lemma [AE \& JLG, 23] Discrete PS inequalities hold with dual norms augmented by jump seminorms

$$
\begin{aligned}
\left\|\boldsymbol{h}_{h}\right\|_{L^{2}(D)} & \lesssim \ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}_{h}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}+h^{\frac{1}{2}}\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}},
\end{aligned} \quad \forall \boldsymbol{h}_{h} \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}}, \left.\quad \boldsymbol{e}_{h}\left\|_{L^{2}(D)} \lesssim \ell_{D}\right\| \nabla \times \boldsymbol{e}_{h} \|_{\left(\boldsymbol{X}_{0}^{\mathrm{c}}\right)^{\prime}}+h^{\frac{1}{2}} \right\rvert\, \boldsymbol{e}_{h}{ }_{h}^{\mathrm{E}}, \quad, \quad \forall \boldsymbol{e}_{h} \in \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}, ~=
$$

(Hidden constant in \lesssim depends on contrast factors $\mu / \mu_{0}, \epsilon / \epsilon_{0}$)

Sketch of proof (1/2)

- Proof uses averaging and commuting quasi-interpolation operators from the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)

Sketch of proof (1/2)

- Proof uses averaging and commuting quasi-interpolation operators from the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)
- Let $\boldsymbol{h}_{h} \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}}$; set

$$
\boldsymbol{h}_{h}^{\mathrm{c}}:=I_{h 0}^{\mathrm{c}, \mathrm{av}}\left(\boldsymbol{h}_{h}\right), \quad \xi:=\boldsymbol{h}_{h}^{\mathrm{c}}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)
$$

with $\boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$-conforming averaging operator from [AE \& JLG, 17]

Sketch of proof (1/2)

- Proof uses averaging and commuting quasi-interpolation operators from the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)
- Let $\boldsymbol{h}_{h} \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}}$; set

$$
\boldsymbol{h}_{h}^{\mathrm{c}}:=\mathcal{I}_{h 0}^{\mathrm{c}, \mathrm{av}}\left(\boldsymbol{h}_{h}\right), \quad \boldsymbol{\xi}:=\boldsymbol{h}_{h}^{\mathrm{c}}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)
$$

with $\boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$-conforming averaging operator from [AE \& JLG, 17]

- Since $\boldsymbol{\xi} \in \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}$, weak PS inequality gives

$$
\|\xi\|_{L^{2}} \leq \ell_{D}\left\|\nabla_{0} \times \xi\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}=\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}_{h}^{\mathrm{c}}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}
$$

Sketch of proof (1/2)

- Proof uses averaging and commuting quasi-interpolation operators from the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)
- Let $\boldsymbol{h}_{h} \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}}$; set

$$
\boldsymbol{h}_{h}^{\mathrm{c}}:=\mathcal{I}_{h 0}^{\mathrm{c}, \mathrm{av}}\left(\boldsymbol{h}_{h}\right), \quad \boldsymbol{\xi}:=\boldsymbol{h}_{h}^{\mathrm{c}}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)
$$

with $\boldsymbol{H}_{0}(\mathbf{c u r l} ; D)$-conforming averaging operator from [AE \& JLG, 17]

- Since $\boldsymbol{\xi} \in \boldsymbol{H}_{0}(\mathbf{c u r l}=\mathbf{0} ; D)^{\perp}$, weak PS inequality gives

$$
\|\boldsymbol{\xi}\|_{\boldsymbol{L}^{2}} \leq \ell_{D}\left\|\nabla_{0} \times \boldsymbol{\xi}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}=\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}_{h}^{\mathrm{c}}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}
$$

- Triangle inequality and approximation properties of $I_{h 0}^{\mathrm{c}, \text { av }}$ give

$$
\begin{aligned}
\|\boldsymbol{\xi}\|_{\boldsymbol{L}^{2}} & \leq \ell_{D}\left\|\nabla_{0} \times\left(\boldsymbol{h}_{h}-\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}+\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}_{h}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}} \\
& \leq\left\|\boldsymbol{h}_{h}-\boldsymbol{h}_{h}^{\mathrm{c}}\right\|_{\boldsymbol{L}^{2}}+\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}_{h}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}} \\
& \lesssim h^{\frac{1}{2}}\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}}+\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}_{h}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}
\end{aligned}
$$

Sketch of proof (2/2)

- Commuting approximation operators for Nédélec and Raviart-Thomas FEM; see [AE \& JLG, 21 (vol. I)] and [Schöberl 01; Christiansen, Winther 06]

$$
\mathcal{J}_{h 0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right), \quad \mathcal{J}_{h 0}^{\mathrm{d}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right)
$$

- $\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right) \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)$ by commuting property

$$
\nabla_{0} \times\left(\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}\left(\nabla_{0} \times\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}(\mathbf{0})=\mathbf{0}
$$

Sketch of proof (2/2)

- Commuting approximation operators for Nédélec and Raviart-Thomas FEM; see [AE \& JLG, 21 (vol. I)] and [Schöberl 01; Christiansen, Winther 06]

$$
\mathcal{J}_{h 0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right), \quad \mathcal{J}_{h 0}^{\mathrm{d}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right)
$$

- $\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right) \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\right.$ curl $\left.=\mathbf{0} ; \mathcal{T}_{h}\right)$ by commuting property

$$
\nabla_{0} \times\left(\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}\left(\nabla_{0} \times\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}(\mathbf{0})=\mathbf{0}
$$

- So $\boldsymbol{h}_{h}^{\mathrm{c}}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}-\boldsymbol{\xi}\right)=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right) \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)$

Sketch of proof (2/2)

- Commuting approximation operators for Nédélec and Raviart-Thomas FEM; see [AE \& JLG, 21 (vol. I)] and [Schöberl 01; Christiansen, Winther 06]

$$
\mathcal{J}_{h 0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right), \quad \mathcal{J}_{h 0}^{\mathrm{d}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right)
$$

- $\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right) \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\right.$ curl $\left.=\mathbf{0} ; \mathcal{T}_{h}\right)$ by commuting property

$$
\nabla_{0} \times\left(\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}\left(\nabla_{0} \times\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}(\mathbf{0})=\mathbf{0}
$$

- So $\boldsymbol{h}_{h}^{\mathrm{c}}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}-\boldsymbol{\xi}\right)=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right) \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)$
- Since $\mu \boldsymbol{h}_{h} \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}$ by assumption, this gives

$$
\begin{aligned}
\left\|\mu^{\frac{1}{2}} \boldsymbol{h}_{h}\right\|_{\boldsymbol{L}^{2}}^{2} & =\left(\mu \boldsymbol{h}_{h}, \boldsymbol{h}_{h}-\boldsymbol{h}_{h}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}}+\left(\mu \boldsymbol{h}_{h}, \boldsymbol{h}_{h}^{\mathrm{c}}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})\right)_{\boldsymbol{L}^{2}}+\left(\mu \boldsymbol{h}_{h}, \mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})\right)_{\boldsymbol{L}^{2}} \\
& =\left(\mu \boldsymbol{h}_{h}, \boldsymbol{h}_{h}-\boldsymbol{h}_{h}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}}+\left(\mu \boldsymbol{h}_{h}, \mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})\right)_{\boldsymbol{L}^{2}}
\end{aligned}
$$

Sketch of proof (2/2)

- Commuting approximation operators for Nédélec and Raviart-Thomas FEM; see [AE \& JLG, 21 (vol. I)] and [Schöberl 01; Christiansen, Winther 06]

$$
\mathcal{J}_{h 0}^{\mathrm{c}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right), \quad \mathcal{J}_{h 0}^{\mathrm{d}}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right)
$$

- $\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right) \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\right.$ curl $\left.=\mathbf{0} ; \mathcal{T}_{h}\right)$ by commuting property

$$
\nabla_{0} \times\left(\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}\left(\nabla_{0} \times\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right)\right)=\mathcal{J}_{h 0}^{\mathrm{d}}(\mathbf{0})=\mathbf{0}
$$

- So $\boldsymbol{h}_{h}^{\mathrm{c}}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}-\boldsymbol{\xi}\right)=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\Pi}_{0}^{\mathrm{c}}\left(\boldsymbol{h}_{h}^{\mathrm{c}}\right)\right) \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)$
- Since $\mu \boldsymbol{h}_{h} \in \boldsymbol{P}_{k 0}^{\mathrm{c}}\left(\mathbf{c u r l}=\mathbf{0} ; \mathcal{T}_{h}\right)^{\perp}$ by assumption, this gives

$$
\begin{aligned}
\left\|\mu^{\frac{1}{2}} \boldsymbol{h}_{h}\right\|_{\boldsymbol{L}^{2}}^{2} & =\left(\mu \boldsymbol{h}_{h}, \boldsymbol{h}_{h}-\boldsymbol{h}_{h}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}}+\left(\mu \boldsymbol{h}_{h}, \boldsymbol{h}_{h}^{\mathrm{c}}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})\right)_{\boldsymbol{L}^{2}}+\left(\mu \boldsymbol{h}_{h}, \mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})\right)_{\boldsymbol{L}^{2}} \\
& =\left(\mu \boldsymbol{h}_{h}, \boldsymbol{h}_{h}-\boldsymbol{h}_{h}^{\mathrm{c}}\right)_{\boldsymbol{L}^{2}}+\left(\mu \boldsymbol{h}_{h}, \mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\xi})\right)_{\boldsymbol{L}^{2}}
\end{aligned}
$$

- Since $\mathcal{J}_{h 0}^{\mathrm{c}}$ is \boldsymbol{L}^{2}-stable, we conclude that

$$
\left\|\boldsymbol{h}_{h}\right\|_{\boldsymbol{L}^{2}} \lesssim\left\|\boldsymbol{h}_{h}-\boldsymbol{h}_{h}^{\mathrm{c}}\right\|_{\boldsymbol{L}^{2}}+\|\boldsymbol{\xi}\|_{\boldsymbol{L}^{2}} \lesssim h^{\frac{1}{2}}\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}}+\ell_{D}\left\|\nabla_{0} \times \boldsymbol{h}_{h}\right\|_{\left(\boldsymbol{X}^{\mathrm{c}}\right)^{\prime}}
$$

Inf-sup stability

- Mesh-dependent norm on $L_{h}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$,

$$
\begin{aligned}
\left\|\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right\|_{\mathrm{b}, h}:= & \omega_{D}^{\frac{1}{2}}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{h}_{h}, \epsilon^{\frac{1}{2}} \boldsymbol{e}_{h}\right)\right\|_{L} \\
& +\kappa_{\mathrm{H}}^{\frac{1}{2}}\left\{\left\|h^{\frac{1}{2}} \boldsymbol{C}_{h 0}\left(\boldsymbol{h}_{h}\right)\right\|_{L^{2}}+\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}}\right\}+\kappa_{\mathrm{E}}^{\frac{1}{2}}\left\{\left\|h^{\frac{1}{2}} \boldsymbol{C}_{h}\left(\boldsymbol{e}_{h}\right)\right\|_{L^{2}}+\mid \boldsymbol{e}_{h} \mathrm{E}_{h}^{\mathrm{E}}\right\}
\end{aligned}
$$

(Notice $h^{\frac{1}{2}}$-weighted curls as expected in Friedrichs systems [AE \& JLG, 06])

Inf-sup stability

- Mesh-dependent norm on $L_{h}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$,

$$
\begin{aligned}
\left\|\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right\|_{\mathrm{b}, h}:= & \omega_{D}^{\frac{1}{2}}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{h}_{h}, \epsilon^{\frac{1}{2}} \boldsymbol{e}_{h}\right)\right\|_{L} \\
& +\kappa_{\mathrm{H}}^{\frac{1}{2}}\left\{\left\|h^{\frac{1}{2}} \boldsymbol{C}_{h 0}\left(\boldsymbol{h}_{h}\right)\right\|_{L^{2}}+\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}}\right\}+\kappa_{\mathrm{E}}^{\frac{1}{2}}\left\{\left\|h^{\frac{1}{2}} \boldsymbol{C}_{h}\left(\boldsymbol{e}_{h}\right)\right\|_{L^{2}}+\left|\boldsymbol{e}_{h}\right|_{h}^{\mathrm{E}}\right\}
\end{aligned}
$$

(Notice $h^{\frac{1}{2}}$-weighted curls as expected in Friedrichs systems [AE \& JLG, 06])

- Deflated inf-sup condition: For all $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right) \in X_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}$,

$$
\omega_{D}^{\frac{1}{2}}\left\|\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)\right\|_{\mathrm{b}, h} \lesssim \sup _{\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right) \in L_{h}} \frac{\left|a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)\right|}{\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{h}_{h}, \epsilon^{\frac{1}{2}} \boldsymbol{e}_{h}\right)\right\|_{L}}
$$

(different norms, different spaces)
(proof uses techniques for Friedrichs systems and discrete PS inequalities)

Inf-sup stability

- Mesh-dependent norm on $L_{h}:=\boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{\mathrm{b}}\left(\mathcal{T}_{h}\right)$,

$$
\begin{aligned}
\left\|\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right\|_{\mathrm{b}, h}:= & \omega_{D}^{\frac{1}{2}}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{h}_{h}, \epsilon^{\frac{1}{2}} \boldsymbol{e}_{h}\right)\right\|_{L} \\
& +\kappa_{\mathrm{H}}^{\frac{1}{2}}\left\{\left\|h^{\frac{1}{2}} \boldsymbol{C}_{h 0}\left(\boldsymbol{h}_{h}\right)\right\|_{L^{2}}+\left|\boldsymbol{h}_{h}\right|_{h}^{\mathrm{H}}\right\}+\kappa_{\mathrm{E}}^{\frac{1}{2}}\left\{\left\|h^{\frac{1}{2}} \boldsymbol{C}_{h}\left(\boldsymbol{e}_{h}\right)\right\|_{L^{2}}+\left|\boldsymbol{e}_{h}\right|_{h}^{\mathrm{E}}\right\}
\end{aligned}
$$

(Notice $h^{\frac{1}{2}}$-weighted curls as expected in Friedrichs systems [AE \& JLG, 06])

- Deflated inf-sup condition: For all $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right) \in X_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}$,

$$
\omega_{D}^{\frac{1}{2}}\left\|\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right)\right\|_{\mathrm{b}, h} \lesssim \sup _{\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right) \in L_{h}} \frac{\left|a_{h}\left(\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{h}_{h}, \boldsymbol{e}_{h}\right)\right)\right|}{\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{h}_{h}, \epsilon^{\frac{1}{2}} \boldsymbol{e}_{h}\right)\right\|_{L}}
$$

(different norms, different spaces)
(proof uses techniques for Friedrichs systems and discrete PS inequalities)

- Corollary. Discrete BVP problem defining $T_{h}: L \rightarrow L_{h}$ is well-posed

Duality argument (1/2)

- Let $(\boldsymbol{f}, \boldsymbol{g}) \in L$
- Let $(\boldsymbol{H}, \boldsymbol{E}):=T(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$
- Let $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right):=T_{h}(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\boldsymbol{\epsilon}, h}^{\mathrm{c}}$

Duality argument (1/2)

- Let $(\boldsymbol{f}, \boldsymbol{g}) \in L$
- Let $(\boldsymbol{H}, \boldsymbol{E}):=T(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$
- Let $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right):=T_{h}(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}$
- The goal is to prove that $\lim _{h \rightarrow 0}\left\|\left(\mu^{\frac{1}{2}} \delta \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta}\right)\right\|_{L}=0$ with the errors

$$
\delta \boldsymbol{h}:=\boldsymbol{H}-\boldsymbol{H}_{h}, \quad \delta \boldsymbol{e}:=\boldsymbol{E}-\boldsymbol{E}_{h}
$$

Duality argument (1/2)

- Let $(\boldsymbol{f}, \boldsymbol{g}) \in L$
- Let $(\boldsymbol{H}, \boldsymbol{E}):=T(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$
- Let $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right):=T_{h}(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}$
- The goal is to prove that $\lim _{h \rightarrow 0}\left\|\left(\mu^{\frac{1}{2}} \delta \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta}\right)\right\|_{L}=0$ with the errors

$$
\delta \boldsymbol{h}:=\boldsymbol{H}-\boldsymbol{H}_{h}, \quad \delta \boldsymbol{e}:=\boldsymbol{E}-\boldsymbol{E}_{h}
$$

- Dual problem: Find $(\boldsymbol{\eta}, \boldsymbol{\varepsilon}) \in \boldsymbol{X}_{0}^{\mathrm{c}} \times \boldsymbol{X}^{\mathrm{c}}$ s.t. (involution with constant properties!!)

$$
-\nabla_{0} \times \boldsymbol{\eta}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\epsilon \boldsymbol{\delta} \boldsymbol{e}), \quad \nabla \times \boldsymbol{\varepsilon}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\mu \boldsymbol{\delta} \boldsymbol{h})
$$

Duality argument (1/2)

- Let $(\boldsymbol{f}, \boldsymbol{g}) \in L$
- Let $(\boldsymbol{H}, \boldsymbol{E}):=T(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon}^{\mathrm{c}}$
- Let $\left(\boldsymbol{H}_{h}, \boldsymbol{E}_{h}\right):=T_{h}(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{X}_{\mu, h 0}^{\mathrm{c}} \times \boldsymbol{X}_{\epsilon, h}^{\mathrm{c}}$
- The goal is to prove that $\lim _{h \rightarrow 0}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}=0$ with the errors

$$
\delta \boldsymbol{h}:=\boldsymbol{H}-\boldsymbol{H}_{h}, \quad \delta \boldsymbol{e}:=\boldsymbol{E}-\boldsymbol{E}_{h}
$$

- Dual problem: Find $(\boldsymbol{\eta}, \boldsymbol{\varepsilon}) \in \boldsymbol{X}_{0}^{\mathrm{c}} \times \boldsymbol{X}^{\mathrm{c}}$ s.t. (involution with constant properties!!)

$$
-\nabla_{0} \times \boldsymbol{\eta}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}^{\mathrm{c}}\right)(\epsilon \boldsymbol{\delta} \boldsymbol{e}), \quad \nabla \times \boldsymbol{\varepsilon}=\omega_{D}\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{\mathrm{c}}\right)(\mu \boldsymbol{\delta} \boldsymbol{h})
$$

- Improved regularity shift, $s^{\prime} \in\left(\frac{1}{2}, 1\right]$

$$
|\boldsymbol{\eta}|_{\boldsymbol{H}^{s^{\prime}}} \lesssim \ell_{D}^{1-s^{\prime}}\left\|\nabla_{0} \times \boldsymbol{\eta}\right\|_{L^{2}}, \quad|\boldsymbol{\varepsilon}|_{\boldsymbol{H}^{\prime}} \leqslant \ell_{D}^{1-s^{\prime}}\|\nabla \times \boldsymbol{\varepsilon}\|_{L^{2}}
$$

(Notice that $\left.\ell_{D}\left(\mu_{0}^{\frac{1}{2}}\left\|\nabla_{0} \times \boldsymbol{\eta}\right\|_{L^{2}}+\epsilon_{0}^{\frac{1}{2}}\|\nabla \times \boldsymbol{\varepsilon}\|_{L^{2}}\right) \lesssim\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}\right)$

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \delta \boldsymbol{h}, \epsilon^{\frac{1}{2}} \delta \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \delta \boldsymbol{h}, \epsilon^{\frac{1}{2}} \delta \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

- Approximation error: $\theta_{\text {app }}:=a_{h}\left((\delta h, \delta e),\left(\left(I-\Pi_{h}^{\mathrm{b}}\right)(\eta),\left(I-\Pi_{h}^{\mathrm{b}}\right)(\varepsilon)\right)\right)$

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

- Approximation error: $\theta_{\text {app }}:=a_{h}\left((\delta h, \delta e),\left(\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\eta),\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\varepsilon)\right)\right)$
- Galerkin orthogonality error caused by inconsistency on rhs:

$$
\theta_{\text {gal }}:=\omega_{D}\left\{\left(\left(\Pi_{0}^{\mathrm{c}}-\Pi_{h 0}^{\mathrm{c}}\right)(\mu f), \eta_{h}\right)_{L^{2}}+\left(\left(\Pi^{\mathrm{c}}-\Pi_{h}^{\mathrm{c}}\right)(\epsilon g), \varepsilon_{h}\right)_{L^{2}}\right\}
$$

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

- Approximation error: $\theta_{\text {app }}:=a_{h}\left((\delta h, \delta e),\left(\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\eta),\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\varepsilon)\right)\right)$
- Galerkin orthogonality error caused by inconsistency on rhs:

$$
\theta_{\text {gal }}:=\omega_{D}\left\{\left(\left(\Pi_{0}^{\mathrm{c}}-\Pi_{h 0}^{\mathrm{c}}\right)(\mu f), \eta_{h}\right)_{L^{2}}+\left(\left(\boldsymbol{\Pi}^{\mathrm{c}}-\Pi_{h}^{\mathrm{c}}\right)(\epsilon g), \varepsilon_{h}\right)_{L^{2}}\right\}
$$

- Curl commuting error: $(\boldsymbol{\eta}, \boldsymbol{\varepsilon}$ are not polynomials!)

$$
\theta_{\mathrm{crl}}:=\left\{\left(\boldsymbol{h}_{h}, \nabla \times \varepsilon\right)_{L^{2}}-\left(C_{h, 0}^{k, \ell}\left(h_{h}\right), \varepsilon\right)_{L^{2}}\right\}-\left\{\left(e_{h}, \nabla_{0} \times \eta\right)_{L^{2}}-\left(C_{h}^{k, \ell}\left(e_{h}\right), \eta\right)_{L^{2}}\right\}
$$

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

- Approximation error: $\theta_{\text {app }}:=a_{h}\left((\delta h, \delta e),\left(\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\eta),\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\varepsilon)\right)\right)$
- Galerkin orthogonality error caused by inconsistency on rhs:

$$
\theta_{\text {gal }}:=\omega_{D}\left\{\left(\left(\Pi_{0}^{\mathrm{c}}-\Pi_{h 0}^{\mathrm{c}}\right)(\mu f), \eta_{h}\right)_{L^{2}}+\left(\left(\Pi^{\mathrm{c}}-\Pi_{h}^{\mathrm{c}}\right)(\epsilon g), \varepsilon_{h}\right)_{L^{2}}\right\}
$$

- Curl commuting error: $(\boldsymbol{\eta}, \boldsymbol{\varepsilon}$ are not polynomials!)

$$
\theta_{\mathrm{crl}}:=\left\{\left(h_{h}, \nabla \times \varepsilon\right)_{L^{2}}-\left(C_{h, 0}^{k, \ell}\left(h_{h}\right), \varepsilon\right)_{L^{2}}\right\}-\left\{\left(e_{h}, \nabla_{0} \times \eta\right)_{L^{2}}-\left(C_{h}^{k, \ell}\left(e_{h}\right), \eta\right)_{L^{2}}\right\}
$$

- Divergence conformity error: $\left(\Pi_{h 0}^{\mathrm{c}}(\mu \delta h)=\mathbf{0} \Rightarrow \boldsymbol{\Pi}_{0}^{\mathrm{c}}(\mu \delta h)=\mathbf{0}\right)$ $\theta_{\text {div }}:=\omega_{D}\left\{\left(\delta h, \Pi_{0}^{\mathrm{c}}(\mu \delta h)\right)_{L^{2}}+\left(\delta e, \Pi^{\mathrm{c}}(\epsilon \delta e)\right)_{L^{2}}\right\}$

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

- Approximation error: $\theta_{\text {app }}:=a_{h}\left((\delta h, \delta e),\left(\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\eta),\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\varepsilon)\right)\right)$
- Galerkin orthogonality error caused by inconsistency on rhs:

$$
\theta_{\text {gal }}:=\omega_{D}\left\{\left(\left(\Pi_{0}^{\mathrm{c}}-\Pi_{h 0}^{\mathrm{c}}\right)(\mu f), \eta_{h}\right)_{L^{2}}+\left(\left(\Pi^{\mathrm{c}}-\Pi_{h}^{\mathrm{c}}\right)(\epsilon g), \varepsilon_{h}\right)_{L^{2}}\right\}
$$

- Curl commuting error: $(\boldsymbol{\eta}, \boldsymbol{\varepsilon}$ are not polynomials!)

$$
\theta_{\mathrm{crl}}:=\left\{\left(h_{h}, \nabla \times \varepsilon\right)_{L^{2}}-\left(C_{h, 0}^{k, \ell}\left(h_{h}\right), \varepsilon\right)_{L^{2}}\right\}-\left\{\left(e_{h}, \nabla_{0} \times \eta\right)_{L^{2}}-\left(C_{h}^{k, \ell}\left(e_{h}\right), \eta\right)_{L^{2}}\right\}
$$

- Divergence conformity error: $\left(\Pi_{h 0}^{\mathrm{c}}(\mu \delta \boldsymbol{h})=\mathbf{0} \Rightarrow \boldsymbol{\Pi}_{0}^{\mathrm{c}}(\mu \delta h)=\mathbf{0}\right)$

$$
\theta_{\text {div }}:=\omega_{D}\left\{\left(\delta \boldsymbol{h}, \Pi_{0}^{\mathrm{c}}(\mu \delta \boldsymbol{h})\right)_{L^{2}}+\left(\delta e, \Pi^{\mathrm{c}}(\epsilon \delta e)\right)_{L^{2}}\right\}
$$

- All terms bounded using improved regularity shift on dual solution and a priori estimate from deflated inf-sup condition

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

- Approximation error: $\theta_{\text {app }}:=a_{h}\left((\delta h, \delta e),\left(\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\eta),\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\varepsilon)\right)\right)$
- Galerkin orthogonality error caused by inconsistency on rhs:

$$
\theta_{\text {gal }}:=\omega_{D}\left\{\left(\left(\Pi_{0}^{\mathrm{C}}-\Pi_{h 0}^{\mathrm{C}}\right)(\mu f), \eta_{h}\right)_{L^{2}}+\left(\left(\Pi^{\mathrm{c}}-\Pi_{h}^{\mathrm{c}}\right)(\epsilon g), \varepsilon_{h}\right)_{L^{2}}\right\}
$$

- Curl commuting error: $(\boldsymbol{\eta}, \boldsymbol{\varepsilon}$ are not polynomials!)

$$
\theta_{\mathrm{crl}}:=\left\{\left(\boldsymbol{h}_{h}, \nabla \times \varepsilon\right)_{L^{2}}-\left(C_{h, 0}^{k, \ell}\left(h_{h}\right), \varepsilon\right)_{L^{2}}\right\}-\left\{\left(e_{h}, \nabla_{0} \times \eta\right)_{L^{2}}-\left(C_{h}^{k, \ell}\left(e_{h}\right), \eta\right)_{L^{2}}\right\}
$$

- Divergence conformity error: $\left(\Pi_{h 0}^{\mathrm{c}}(\mu \delta h)=\mathbf{0} \Rightarrow \boldsymbol{\Pi}_{0}^{\mathrm{c}}(\mu \delta h)=\mathbf{0}\right)$

$$
\theta_{\text {div }}:=\omega_{D}\left\{\left(\delta \boldsymbol{h}, \Pi_{0}^{\mathrm{c}}(\mu \delta \boldsymbol{h})\right)_{L^{2}}+\left(\delta e, \Pi^{\mathrm{c}}(\epsilon \delta e)\right)_{L^{2}}\right\}
$$

- All terms bounded using improved regularity shift on dual solution and a priori estimate from deflated inf-sup condition
- Altogether, $\left\|T-T_{h}\right\|_{\mathcal{L}(L ; L)} \lesssim\left(h / \ell_{D}\right)^{\sigma}$ with $\sigma:=\min \left(s, s^{\prime}-\frac{1}{2}\right)$, i.e.,

$$
\left\|\left(\mu^{\frac{1}{2}} \delta \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L} \lesssim\left(h / \ell_{D}\right)^{\sigma}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{f}, \epsilon^{\frac{1}{2}} \boldsymbol{g}\right)\right\|_{L}
$$

Duality argument (2/2)

- Error representation

$$
\omega_{D}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{e}\right)\right\|_{L}^{2}=\theta_{\mathrm{app}}+\theta_{\mathrm{gal}}+\theta_{\mathrm{crl}}+\theta_{\mathrm{div}}
$$

- Approximation error: $\theta_{\text {app }}:=a_{h}\left((\delta h, \delta e),\left(\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\eta),\left(\boldsymbol{I}-\Pi_{h}^{\mathrm{b}}\right)(\varepsilon)\right)\right)$
- Galerkin orthogonality error caused by inconsistency on rhs:

$$
\theta_{\text {gal }}:=\omega_{D}\left\{\left(\left(\Pi_{0}^{\mathrm{c}}-\Pi_{h 0}^{\mathrm{c}}\right)(\mu f), \eta_{h}\right)_{L^{2}}+\left(\left(\boldsymbol{\Pi}^{\mathrm{c}}-\Pi_{h}^{\mathrm{c}}\right)(\epsilon g), \varepsilon_{h}\right)_{L^{2}}\right\}
$$

- Curl commuting error: $(\boldsymbol{\eta}, \boldsymbol{\varepsilon}$ are not polynomials!)

$$
\theta_{\mathrm{crl}}:=\left\{\left(h_{h}, \nabla \times \varepsilon\right)_{L^{2}}-\left(C_{h, 0}^{k, \ell}\left(h_{h}\right), \varepsilon\right)_{L^{2}}\right\}-\left\{\left(e_{h}, \nabla_{0} \times \eta\right)_{L^{2}}-\left(C_{h}^{k, \ell}\left(e_{h}\right), \eta\right)_{L^{2}}\right\}
$$

- Divergence conformity error: $\left(\Pi_{h 0}^{\mathrm{c}}(\mu \delta \boldsymbol{h})=\mathbf{0} \Rightarrow \boldsymbol{\Pi}_{0}^{\mathrm{c}}(\mu \delta h)=\mathbf{0}\right)$

$$
\theta_{\text {div }}:=\omega_{D}\left\{\left(\delta \boldsymbol{h}, \Pi_{0}^{\mathrm{c}}(\mu \delta \boldsymbol{h})\right)_{L^{2}}+\left(\delta e, \Pi^{\mathrm{c}}(\epsilon \delta e)\right)_{L^{2}}\right\}
$$

- All terms bounded using improved regularity shift on dual solution and a priori estimate from deflated inf-sup condition
- Altogether, $\left\|T-T_{h}\right\|_{\mathcal{L}(L ; L)} \lesssim\left(h / \ell_{D}\right)^{\sigma}$ with $\sigma:=\min \left(s, s^{\prime}-\frac{1}{2}\right)$, i.e.,

$$
\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{\delta} \boldsymbol{h}, \epsilon^{\frac{1}{2}} \boldsymbol{d} \boldsymbol{e}\right)\right\|_{L} \lesssim\left(h / \ell_{D}\right)^{\sigma}\left\|\left(\mu^{\frac{1}{2}} \boldsymbol{f}, \epsilon^{\frac{1}{2}} \boldsymbol{g}\right)\right\|_{L}
$$

!! Thank you for your attention !!

