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e Maxwell’s equations
e Discontinuous Galerkin (dG) approximation

e Correctness for dG spectral problem
@ [AE & JLG, SINUM 23; hal-04145808]

e Asymptotic optimality for dG time-harmonic problem
o [TCF & AE, hal-04216433, hal-04589791]

e Some further insights on spectral correctness
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e Functional setting
e Compactness

e Spectral and time-harmonic problems

/36



@ Space-time PDEs posed on D x J with D c R3, J := (0, T)
@ Find (H,E) : DxJ — R} xR3s.t.

O(uH) + VXE =0 (Faraday)
0,(eE) — VXH = —j (Ampere)
V-(uH) =0 (Gauss)
V-(eE) =p (Gauss)
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Maxwell

@ Space-time PDEs posed on D x J with D c R3, J := (0, T)
@ Find (H,E) : DxJ — R} xR3s.t.

O(uH) + VXE =0 (Faraday)
0/(eE) — VxH = —j (Ampere)
V-(uH) =0 (Gauss)
V-(eE) =p (Gauss)

@ Material properties: € (electric permittivity), u (magnetic permeability)

@ Data: p (charge density) andj (current) s.t. 9,0 + Vj =0
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@ Space-time PDEs posed on D x J with D c R3, J := (0, T)

Find (H,E) : DxJ — R3>xR3 s t.

O(uH) + VXE =0 (Faraday)
0/(eE) — VxH = —j (Ampere)
V-(uH) =0 (Gauss)
V-(eE) =p (Gauss)

Material properties: € (electric permittivity), 4 (magnetic permeability)

Data: p (charge density) andj (current) s.t. 9,0 + Vj =0

Prescribe ICs (Hy, Eg) : D — R3 x R3

@ Focus on bounded Lipschitz domain D: enforce BC on I" := 9D
e Simplest BCs: perfect magnetic or electric conductor

Hxn|p =0 or Exn|r =0

e Other possible BCs: impedance, transparent (far field), ...
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@ Recall

8 (uH) + VXE = 0
8,(eE) — VxH = —j
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@ Recall

8 (uH) + VXE = 0
8,(eE) — VxH = —j

@ Observe that 9,(V-(uH)) =0
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@ Recall

8 (uH) + VXE = 0
8,(eE) — VxH = —j

@ Observe that 9,(V-(uH)) = 0 and 9,(V-(eE)) = =Vj = 0,p
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Inv

@ Recall

O(uH) + VXE =0
0/(eE) — VxH = —j
@ Observe that 9,(V-(uH)) = 0 and 9,(V-(eE)) = =Vj = 0,p
o if V-(uH() = 0, then V-(uH) = 0 at all times
e if V-(eE() = pg, then V-(eE) = p at all times
One says that Gauss’s laws are involutions
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@ Recall
O (uH) +VXE =0
0,(eE) — VXH = —j

@ Observe that 9,(V-(uH)) = 0 and 0,(V-(eE)) = =V = d,p
o if V-(uH() = 0, then V-(uH) = 0 at all times
e if V-(eE() = pg, then V-(eE) = p at all times
One says that Gauss’s laws are involutions

@ Actually, V-(uH) = 0 does not always imply uH € im(Vx) (depends on
domain topology), but the converse is true!

@ The topology-blind statement of the involution on H is
uH € im(Vx)
@ Similarly, in the absence of free charges (j = 0), the topology-blind
statement of the involution on E is

eE € im(Vx)
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_ Functional setting

@ Graph spaces for gradient, curl, or divergence

H'(D), H(curl;D) :={h € L*(D) | Vxh € L*(D)}, H(div;D)

@ Hilbert spaces equipped with natural graph norm, e.g.,
1112 iy = 112, + 31V,

({p: global length scale to be dimensionally consistent)
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@ Graph spaces for gradient, curl, or divergence
H'(D), H(curl;D) :={h € L*(D) | Vxh € L*(D)}, H(div;D)
@ Hilbert spaces equipped with natural graph norm, e.g.,
1112 iy = 112, + 31V,
({p: global length scale to be dimensionally consistent)

@ Subspaces with zero trace, tangential trace, or normal trace

H(l) (D), Hy(curl;D) :={h € H(curl; D) | hxn|r =0}, Hy(div;D)
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@ Graph spaces for gradient, curl, or divergence
H' (D), H(curl;D) := {h € L*(D) | Vxh € L*(D)}, H(div;D)
@ Hilbert spaces equipped with natural graph norm, e.g.,
1 curtipy = 112 + 51 VxR 2,

(¢p: global length scale to be dimensionally consistent)
@ Subspaces with zero trace, tangential trace, or normal trace

Hé (D), Hy(curl;D) :={h € H(curl; D) | hxn|r =0}, Hy(div;D)
@ De Rham sequences (with and without BC)

Vi Vox Vo-
HY(D) ———— Hy(curl;D) ————— Hy(div; D) ——— 13(D)

V. v v
[2(D) ~—— H(div:D) ~—> H(curl;D) ~—— H'(D)
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Functional setting

@ Graph spaces for gradient, curl, or divergence

H' (D), H(curl;D) := {h € L*(D) | Vxh € L*(D)}, H(div;D)

Hilbert spaces equipped with natural graph norm, e.g.,
11 cartp <= IBIZ, + C3 1 V<R 2,

(¢p: global length scale to be dimensionally consistent)

Subspaces with zero trace, tangential trace, or normal trace
Hé (D), Hy(curl;D) :={h € H(curl; D) | hxn|r = 0}, Hy(div;D)
@ De Rham sequences (with and without BC)

\Y Vo X Yo+
HY(D) ———— Hy(curl;D) ————— Hy(div; D) ——— 13(D)

V. \Y \%
[2(D) ~—— H(div:D) ~——> H(curl;D) ~——— H'(D)

All operators have closed range

Pairs of adjoint operators: (Vy, =V-), (Vo%, VX), (=Vp+, V)
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@ To fix ideas, enforce BC on magnetic field

H € Hy(curl; D), E € H(curl;D)
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@ To fix ideas, enforce BC on magnetic field

H € Hy(curl; D), E € H(curl;D)

@ Rewriting of involutions using Closed Range Theorem (orthogonalities
meant in L2) [Hiptmair 02]

uH € im(Vx) = Hyo(curl = 0; D), €E € im(Vox) = H(curl = 0;D)*
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@ To fix ideas, enforce BC on magnetic field

H € Hy(curl; D), E € H(curl;D)

@ Rewriting of involutions using Closed Range Theorem (orthogonalities
meant in Lz) [Hiptmair 02]

uH € im(Vx) = Hyo(curl = 0; D), €E € im(Vox) = H(curl = 0;D)*
@ Topology-blind statements!
e Hy(curl = 0; D)* c H(div = 0; D) with equality iff " is connected

o H(curl = 0; D)+ c Hy(div = 0; D) with equality iff D is simply connected
See [Dautray, Lions 90; Amrouche, Bernardi, Dauge, Girault, 98]
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@ Assume D is a Lipschitz polyhedron
@ pcw. constant material properties (or multiplier property in H*, s € (O, %])
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Compeciness

@ Assume D is a Lipschitz polyhedron
@ pcw. constant material properties (or multiplier property in H*, s € (O, %])

@ Involution-aware functional spaces

X o = {h € Hy(curl; D) | ph € Ho(curl = 0;D)*}
XS :={e € H(curl; D) | €e € H(curl = 0;D)*}

There is s € (0, %] s.t. forall h € XZ,O and all e € X¢,

Bl o) < € *I1VoxRll2,  lelmr o) < £ IVxelly2
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@ Assume D is a Lipschitz polyhedron
@ pcw. constant material properties (or multiplier property in H*, s € (O, %])

@ Involution-aware functional spaces

X}, o= {h € Hy(curl; D) | ph € Ho(curl = 0;D)*}
XS :={e € H(curl; D) | €e € H(curl = 0;D)*}

There is s € (0, %] s.t. forall h € XZ,O and all e € X¢,
Il oy S € IVoxRll2,  lelmspy < € IVxell,2

@ Improved regularity shift for constant properties: There is s” € (%, 1]
s.t. for all 7 € X{ and all & € X°,

Ml o) < 65 INoxnlze L6l ) < €57 19l

with X§ := Hy(curl; D) N Ho(curl = 0;D)*, X := H(curl; D) N H(curl = 0; D)*
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@ Assume D is a Lipschitz polyhedron
@ pcw. constant material properties (or multiplier property in H*, s € (O, %])

@ Involution-aware functional spaces
X}, o= {h € Hy(curl; D) | ph € Ho(curl = 0;D)*}
XS :={e € H(curl; D) | €e € H(curl = 0;D)*}
There is s € (0, %] s.t.forallh € X;,O and all e € X¢,
klee oy < € I1YoxRll2, el ) < €I Vxellp2

@ Improved regularity shift for constant properties: There is s” € (%, 1]
s.t. for all 7 € X{ and all & € X°,

1-s' 1-s'
mlH“'(D) < {p ’ ”VOX']”LZ, |8|H.V'(D) < * ||VX8||L2
with X§ := Hy(curl; D) N Ho(curl = 0;D)*, X := H(curl; D) N H(curl = 0; D)*

@ See [Weber, 80; Birman & Solomyak, 87; Costabel, 90; Amrouche, Bernardi, Dauge,
Girault, 98; Jochmann, 99; Bonito, Guermond & Luddens, 13]
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@ For dimensional consistency,

@ vacuum properties €y, tq; speed of light: ¢ := (,uoeo)'%
e reference frequency wp := ¢f},
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@ For dimensional consistency,

@ vacuum properties €y, tq; speed of light: ¢ := (,uoeo)'%
e reference frequency wp := ¢f},

@ Find nonzero A € C and nonzero (H,E) € XZ’O x X¢ s.t.
—VxE = %/JH, VoxH = %EE

(eigenvalue A is nondimensional)
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@ For dimensional consistency,

@ vacuum properties €y, tq; speed of light: ¢ := (,uoeo)'%
e reference frequency wp := ¢f},

@ Find nonzero A € C and nonzero (H,E) € Xf;,o x X¢ s.t.
_VXE = %MH, VoxH = %EE

(eigenvalue A is nondimensional)

@ Eigenfunctions are involution-preserving
HeX,, e {H € Ho(curl; D) A uH € Hoy(curl = 0;D)l}

EeXS — {E € H(curl; D) A €E € H(curl = 0;D)l}
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Bou

e Introduce L>-orthogonal projections
IT;, : L*(D) — Hy(curl = 0;D), TI°:L*(D) — H(curl = 0;D)

Involutions mean that I (uH) = 0, II°(eE) = 0
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e Introduce L>-orthogonal projections
IT;, : L*(D) — Hy(curl = 0;D), TI°:L*(D) — H(curl = 0;D)
Involutions mean that I (uH) = 0, I1°(eE) = 0
@ Boundary-value operator T : L — L := L*(D) x L*(D)

o Forall (f,g) € L, T(f,g) is the unique pair (H,E) € XZ’OXXCE cL
solving the well-posed problem

=VXE = wp(I - ) (uf),  VoxH = wp(I - TI°)(eg)

By construction, (I - TI{) (uf) € im(Vx) and (I - II) (eg) € im(Vpx)
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Boundary-value operator for spectral problem

e Introduce L?-orthogonal projections
I0j L*(D) — Hy(curl =0; D), TI°:L*(D) — H(curl = 0;D)
Involutions mean that I (uH) = 0, I1°(eE) = 0
@ Boundary-value operator T : L — L := L*(D) x L*(D)

@ Forall (f,g) € L, T(f,g) is the unique pair (H,E) € X;»OXXCG cL
solving the well-posed problem

“UXE = wp(I - T (uf),  VoxH = wp(I - 1) (eg)
By construction, (I - TI{) (uf) € im(Vx) and (I - II) (eg) € im(Vpx)

@ Since XZ,OXX(; — H*(D) x H*(D), T is a compact operator

o (4, (H,E)), A # 0, is a Maxwell eigenpair iff

T(H,E) = \(H,E)
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@ To fix ideas, enforce BC on E: E € Hy(curl; D), H € H(curl; D)
@ Fix frequency w > 0, time-harmonic behavior: d; — iw

iwuH + VoxE =0,  iweE — VXH = —j
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@ To fix ideas, enforce BC on E: E € Hy(curl; D), H € H(curl; D)
@ Fix frequency w > 0, time-harmonic behavior: 9, — iw

iwuH + VoxE = 0, iweE — VxH = —j

@ Eliminate H — Second-order formulation: Find E € Hy(curl; D) s.t.
~w?€eE + VX(vVyxE) = J

with v := y~! and J = —iwj
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@ To fix ideas, enforce BC on E: E € Hy(curl; D), H € H(curl; D)

@ Fix frequency w > 0, time-harmonic behavior: 9, — iw

iwuH + VoxE = 0, iweE — VxH = —j

@ Eliminate H — Second-order formulation: Find E € Hy(curl; D) s.t.
~w?€eE + VX(vVyxE) = J
with v := y~! and J = —iwj
@ The involution is

w?€eE +J € im(Vx) = Hy(curl = 0; D)*
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@ To fix ideas, enforce BC on E: E € Hy(curl; D), H € H(curl; D)

Fix frequency w > 0, time-harmonic behavior: d; — iw

iwuH + VoxE = 0, iweE — VxH = —j

Eliminate H — Second-order formulation: Find E € Hy(curl; D) s.t.
~w?€eE + VX(vVyxE) = J

with v := u~! and J := —iwyj

@ The involution is

w?€eE +J € im(Vx) = Hy(curl = 0; D)*

Coercive problem with compact perturbation — Fredholm’s alternative
o well-posed problem if w is not a resonant frequency
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@ 7j: shape-regular mesh covering D exactly

simplicial mesh  polygonal mesh

@ We focus on simplicial meshes
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@ 7j: shape-regular mesh covering D exactly

simplicial mesh  polygonal mesh

@ We focus on simplicial meshes
@ Broken polynomial space (order k > 0, R%-valued)

P2(Ty) := {vy € LX(D) | vilk € Pra(K;RY), VK € T}

@ Nonconforming approximation space: P‘,:(‘E) ¢ H(curl; D)
@ jumps across mesh interfaces
e BCs not enforced exactly
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@ 7j: shape-regular mesh covering D exactly

simplicial mesh  polygonal mesh

@ We focus on simplicial meshes
@ Broken polynomial space (order k > 0, R%-valued)

P2(Ty) := {vy € LX(D) | vilk € Pra(K;RY), VK € T}

@ Nonconforming approximation space: P‘,:(‘E) ¢ H(curl; D)
@ jumps across mesh interfaces
e BCs not enforced exactly

@ dG textbooks: [Hesthaven & Warburton 08; Di Pietro & AE, 12]
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@ Mesh interface F' € F,° s.t. F = 0K; N 9K,
o oriented by unit normal ny pointing from K; to K-

@ Mesh boundary face F € 7—;15 st. F=0K,NnT
o oriented by unit outward normal n
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@ Mesh interface F € 7—;: s.t. F = 0K; N 0K,
o oriented by unit normal ny pointing from K; to K-

@ Mesh boundary face F € 7—2’9 st. F=0K,NnT
o oriented by unit outward normal n

@ Tangential jump of field v;, € PE(’]Z) across mesh interface F' € ¥,

[vilf = nlk,|F = valk, |F) X np

and if F is a boundary face, [vi]} := vl |r X n
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@ Mesh interface F € ﬁf s.t. F = 0K; N 0K,
o oriented by unit normal ny pointing from K; to K-

@ Mesh boundary face F € ﬁa st. F=0K,NnT
o oriented by unit outward normal n

@ Tangential jump of field v, € PZ(’]Z) across mesh interface ' € ¥,
il == Wil lr = valk, |F) x np
and if F is a boundary face, [vi]} := vl |r X n
@ Stabilization bilinear forms

SEHp, ) = (TG DG T D)2 ey Sh(Ensen) = ) (IEATS Tend§)pz gy
FeF, Fe?‘;

Jump seminorms: |k |, = sZ(hh,hh)%, lenl); = sZ(eh,eh)%
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@ Broken curl operator VX : P‘,:(‘]Z) — P‘,:(‘]Z) (acts elementwise)
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Discreto ourl operators

@ Broken curl operator VX : Pz(‘];',) — Pz(‘]z) (acts elementwise)
@ Discrete curl operator C’;’g : Pz(‘];) — P?(‘];) includes jump lifting
operator in PE (7h) (¢ = k can be useful to improve consistency properties)

Cﬁ:g(l’h) = VpXv, + L,‘;O(vh)

(L o0n), Bz = > (nd5 Ay Vo € PY(Th)

Fe¥,

and {¢,,}r is the plain (componentwise) average of ¢, at F
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@ Broken curl operator VX : Pz(‘];',) — Pz(‘];) (acts elementwise)
@ Discrete curl operator C];’g : Pz(‘];',) - P?(‘];;) includes jump lifting
operator in PE (7};) ({ > k can be useful to improve consistency properties)
k,€ .
Ch’o(vh) = VpXv, + Li,o(vh)

(L o0n), Bz = > (nd5 Ay Vo € PY(Th)

Fe¥,

and {¢,,}r is the plain (componentwise) average of ¢, at F

@ Integration by parts (Cﬁ’[ defined without lifting boundary values)

(Clo (@)Y = (84, CE (W),
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Discrete curl operators

@ Broken curl operator VX : PZ(‘E) — Pz(ﬁ) (acts elementwise)

@ Discrete curl operator C];lzg : PE(‘];) — P'g('];) includes jump lifting

operator in P 2 (7};) (¢ = k can be useful to improve consistency properties)

k,€ .
Ch,O (Vh) N

(LZ,O (vn), ¢I1)L2 :

Vixv, + LZ’O(V/,)

D (s Addr)zry Vi € PH(TH)

Fe¥,

and {¢, }r is the plain (componentwise) average of ¢, at F

@ Integration by parts (Cﬁ’[ defined without lifting boundary values)

(Clo (@)Y = (84, CE (W),
@ Literature
o Discrete gradient for diffusion problems introduced in [Bassi et al., 97] and
analyzed in [Brezzi et al., 00]
o Weak consistency and compactness properties [Burman & AE, 08; Buffa &
Ortner, 09; Di Pietro & AE, 09]
o dG methods with discrete curl for Maxwell’s equations [Perugia, Schotzau &
Monk, 02; Houston et al., 05]
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@ Consistency defect: For all &, € PZ(?;',) and all e € H(curl; D),

S(hn,€) := (hy, Vxe) 2 — (Cyg (), €)p2
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@ Consistency defect: For all k, € PE(‘E) and all e € H(curl; D),

S(hy, €) = (hy, Vxe) 2 — (Cyg (hi), €)p2
@ [emma. Forall hy, € PE(?;',) and all € € X¢,

, 1
16(hn, &)| < (h/Cp)* 2 C2 a1V e 2

with regularity pickup s’ € (%, 1] from compactness property
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@ Consistency defect: For all k, € P}{’(?;',) and all e € H(curl; D),
S(hy, €) = (hy, Vxe) 2 — (Cyg (hi), €)p2

@ [emma. Forall by, € P}{’(‘];'l) and all € € X¢,
(6, &) 5 (1 £6)* €5 a1Vl

with regularity pickup s’ € (%, 1] from compactness property

@ Sketch of proof. Using L?-orthogonal projection 1'[2 onto PZ(‘];),

S &) = > (Ihl§, £ = (&) }r)p2 i,

FeFy,

Use approximation properties of IIZ and |&|gy o St ll)“' IVxell,2
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@ Recall spectral problem: Find nonzero A € C and nonzero
(H,E) € XZ,O x X¢ s.t.

—(VXE, ), + (VoxH, )2 = %((,uH, ¢E), (h.e)),

for all (h,e) € L := L>(D) x L*(D)
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@ Recall spectral problem: Find nonzero A € C and nonzero
(H,E) € XZ’O x X¢ s.t.

—(VXE, ), + (VoxH, )2 = %((,uH, ¢E), (h.e)),

for all (h,e) € L := L>(D) x L*(D)

@ Find nonzero A € C and nonzero (H;,, E;) € Ly, s.t.
wp
an((Hp Ep), (hp,en)) = /l_h((lth, €Ey), (hp,ep)),

for all (hy, en) € Ly := P2 () X P2 (Ty)
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@ Recall spectral problem: Find nonzero A € C and nonzero
(H,E) € X,Z,o x X¢ s.t.

—(VXE, ) + (VoxH, )2 = %((,uH, ¢E), (h.e)),

for all (h,e) € L := L>(D) x L*(D)

@ Find nonzero A € C and nonzero (H;,, E;) € Ly, s.t.

an((Hp, Ep), (hy,ep)) = %((HHh, €Ey), (hp,ep)),

for all (hy, en) € Ly := P2 () X P2 (Ty)
@ Discrete bilinear form (stabilization weights: xy; = (uo/ eo)%, K = (eo/yo)%)

an((Hy, Ep), (hn, 1)) := = (Cp*(En), hu)2 + (Cy o (Hp), en);2

+ KHSZ (Hh’ hh) + KESZ (Eha eh)
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@ Curl-free subspaces of broken polynomial spaces

P, (curl = 0; ;) := P (7;) N Ho(curl = 0; D)
P (curl = 0;7) := PE(?;) N H(curl = 0; D)
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Dis

@ Curl-free subspaces of broken polynomial spaces

P, (curl = 0; ;) := P (7;) N Ho(curl = 0; D)
P (curl = 0;7) := Pz(‘iﬁ) N H(curl = 0; D)

@ [emma. The discrete involutions satisfied by any eigenpair (Hp, Ej,) are

uHy, € P{y(curl = 0;7;)*, €Ej € P;(curl = 0;7;)*
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@ Curl-free subspaces of broken polynomial spaces

Py (curl =0;7,) := PE(‘E) N Hy(curl = 0; D)
P (curl = 0;7) := Pz(‘iﬁ) N H(curl = 0; D)

@ [emma. The discrete involutions satisfied by any eigenpair (Hp, Ej,) are
uHy, € P{y(curl = 0;7;)*, €Ej € P;(curl = 0;7;)*

@ Involution defect: (discretely div-free vs. exactly div-free)

Pjy(curl = 0;7;)* ¢ Ho(curl = 0;D)*
P (curl = 0;7;)* ¢ H(curl = 0;D)*

19/36



@ Curl-free subspaces of broken polynomial spaces

Py (curl =0;7,) := PZ(%',) N Hy(curl = 0; D)
P (curl = 0;7) := PZ(‘];) N H(curl = 0; D)

@ [emma. The discrete involutions satisfied by any eigenpair (H},, E;,) are
uHy, € P{y(curl = 0;7;)*, €Ej € P;(curl = 0;7;)*
@ Involution defect: (discretely div-free vs. exactly div-free)
Pjy(curl = 0;7;)* ¢ Ho(curl = 0;D)*
P (curl = 0;7;)* ¢ H(curl = 0;D)*
@ Curl-free subspaces need to be “sufficiently rich” to enjoy suitable
approximation properties

@ On simplicial meshes, these subspaces are composed of Nédélec (edge)
finite elements, and several effective interpolation operators exist!
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@ Theorem [AE & JLG, 23, 24] Assume simplicial meshes and k > 0. The
dG approximation of the eigenvalue problem is spectrally correct,
irrespective of the topology of D
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dG approximation of the eigenvalue problem is spectrally correct,
irrespective of the topology of D

@ Literature

@ Spectral correctness known for 2nd-order formulation [Buffa & Perugia, 06]
o First-order formulation important for coupled systems, e.g., MHD
e Spectral correctness crucial to study long-time behavior
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Numerical simulations in [Hesthaven & Warburton, 04; Cohen & Duruflé, 07]
indicated spectral correctness for first-order formulation

Present theorem provides the mathematical foundation
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@ Theorem [AE & JLG, 23, 24] Assume simplicial meshes and k > 0. The
dG approximation of the eigenvalue problem is spectrally correct,
irrespective of the topology of D

@ Literature

@ Spectral correctness known for 2nd-order formulation [Buffa & Perugia, 06]
First-order formulation important for coupled systems, e.g., MHD
Spectral correctness crucial to study long-time behavior

Numerical simulations in [Hesthaven & Warburton, 04; Cohen & Duruflé, 07]
indicated spectral correctness for first-order formulation

Present theorem provides the mathematical foundation

@ Spectral correctness also using CIP-stabilized FEM on split meshes
(Alfeld or Clough—Tocher) [AE & JLG, 24, hal-04478683]
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@ Consider first Helmholtz problem (positive material properties , v)

—*0u—-V-(0Vu)=f, ulr=0

2926



Hel

@ Consider first Helmholtz problem (positive material properties , v)

—*0u—-V-(0Vu)=f, ulr=0

@ Asymptotic optimality of H'-conforming FEM approximation proved
using duality argument [Schatz, 74]

(I =c(h)llu—unll < inf = vull,  limc(h) =0
v €PY (Tp)NH] (D) h—0

with energy norm [[v]|? = w?|[92 ]2, + ||V%Vu||iz
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Helmholt

@ Consider first Helmholtz problem (positive material properties , v)
—*0u—-V-(0Vu)=f, ulr=0
@ Asymptotic optimality of H'-conforming FEM approximation proved
using duality argument [Schatz, 74]

(1= c(M)llu — unll < inf e = vill,  lim c(h) =0
Vi Py () N} (D) h—0

with energy norm [[v]|? = w?|[92 ]2, + ||V%Vu||iz

@ Explicit-frequency analysis in [Melenk & Sauter, 10; TCF & Nicaise, 20;
Lafontaine, Spence & Wunsch, 22]
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@ Consider first Helmholtz problem (positive material properties , v)

—*0u—-V-(0Vu)=f, ulr=0

@ Asymptotic optimality of H'-conforming FEM approximation proved
using duality argument [Schatz, 74]

(1= c(M)llu — unll < inf e = vill,  lim c(h) =0
Vi Py () N} (D) h—0

with energy norm [[v]|? = w?|[92 ]2, + ||v%vu||iz

@ Explicit-frequency analysis in [Melenk & Sauter, 10; TCF & Nicaise, 20;
Lafontaine, Spence & Wunsch, 22]

@ dG approximation of Helmholtz problem analyzed in [TCF, 23]

e bound consistency defect of discrete gradient
o deal with nonconforming setting and stabilization
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_ Maxwell's problom with confommiglE N

@ (Recall) Given J € L*(D), find E € Hy(curl; D) s.t.

—w*(€eE, e);2 + (VWoxXE, Voxe),2 = (J,e);2 Ve € Hy(curl; D)
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@ (Recall) Given J € L*(D), find E € Hy(curl; D) s.t.

—w*(€eE, e);2 + (VWoxXE, Voxe),2 = (J,e);2 Ve € Hy(curl; D)

@ Consider conforming approximation by Nédélec (edge) FEM
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@ (Recall) Given J € L*(D), find E € Hy(curl; D) s.t.

—w*(€eE, e);2 + (VWoxXE, Voxe),2 = (J,e);2 Ve € Hy(curl; D)

@ Consider conforming approximation by Nédélec (edge) FEM

@ Extending Schatz’s argument not straightforward as one needs to deal
with nonconformity caused by discrete involution
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@ (Recall) Given J € L*(D), find E € Hy(curl; D) s.t.

—w*(€eE, e)2 + (VWoxE, Voxe);» = (J,e);2 Ve € Hy(curl; D)

@ Consider conforming approximation by Nédélec (edge) FEM

@ Extending Schatz’s argument not straightforward as one needs to deal
with nonconformity caused by discrete involution

@ Asymptotic optimality established very recently

(L=c(M)IE - Enll < inf IE = wull,  limc(h) =0
i EPE(‘E)(‘\HO(curl;D) h—0

2

1 2
LZ(D) + ”VZVOXV”LZ

with energy norm [[v[|? := w?||e2v||
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Maxwell’s problem with conforming _

@ (Recall) Given J € L*(D), find E € Hy(curl; D) s.t.

—w*(€eE, e)2 + (VWoxE, Voxe);» = (J,e);2 Ve € Hy(curl; D)

@ Consider conforming approximation by Nédélec (edge) FEM

@ Extending Schatz’s argument not straightforward as one needs to deal
with nonconformity caused by discrete involution

@ Asymptotic optimality established very recently

(I=c(M)IIE - Enll < inf IE = vpll, limc(h) =0
v €P? (7;)NH (curl;D) h—0
. 1 1
with energy norm ||v||? := a)2||62v||z2(D) + ||v2V0><v||i2

e impedance BCs in [Melenk & Sauter, 23], explicit-frequency analysis,
smooth and connected boundary

e perfect conductor BCs in [TCF & AE, 24], general domain and material
properties, frequency-dependence not made explicit
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@ Discrete problem: Find Ej, € P2(7;) s.t.
bu(En,en) = (J,en);>  Vey € P2(T;)
with discrete bilinear form
bi(En, en) = —w*(eEy, e1);2 + (vC}( (En), €y (e1))2 + su(En 1)

and symmetric, positive-semidefinite stabilization bilinear form s,
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Exam

@ Interior penalty dG bilinear form

b;lPDG (Ep,ep) = — wz(eEh, ep)2 + (VVipxEy, Vi xep) 2 + U*s;zPDG (Ep,en)

+ Z {({vVixEn}r, Len)f)i2 ) + (LER)G £vVixen}r)p ) }
FeF,

with stabilization bilinear form (v¢ := maxg-r v|g)

VF
s, "¢ (Ep, ep) = E h—([Eh]fv, lenli)rz(r)
reg, T
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@ Interior penalty dG bilinear form

b;lPDG(Eh,eh) = — wz(eEh, ep)2 + (VVXEy, Vixep) 2 + U*SZPDG(Eh,eh)

+ Z {({vVixEn}r, Len)f)i2 ) + (LER)G £vVixen}r)p ) }
FeF,

with stabilization bilinear form (v¢ := maxg-r v|g)

VF
s, "¢ (Ep, ep) = E h—([Eh]fr, lenli)rz(r)
reg, T

@ b, can be rewritten using discrete curl operators upon setting

sn(En, en) := 0.3 (En, ) — (VL o (En), L, o (e5)) 2

and positivity of s;, requires taking 77. > 0 large enough
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_ Main resutt on dG approx o

@ Errore := E — Ej lives in Vy := Hy(curl; D) + PZ(?Z)
@ natural extension of [-];- and Cﬁ’g to Vy
@ assume s, can be extended to Vy — sy
e equip Vy with extended energy norm

1

2 . 2 L2 L ke 2
Wl = w?lle2vlly +11v2Cry Il + sy (v, v)
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@ Errore := E — Ej, lives in Vy := Hy(curl; D) +P2(7ﬁ)

@ natural extension of [-]fF and C];l’g to Vy
@ assume s, can be extended to Vy — sy
e equip Vy with extended energy norm

2 . 2 L2 Lkl 2
Wil = w”lle2vll, + 1y Cpro W5 +s3(v,v)

@ Theorem [TCF & AE, 24] Assume simplicial meshes, k > 1, and some
minimal assumption on stabilization. Then, with limj,_,o c(k) = 0,

(T=c)llellZ, < (1+c(h) inf  (IE—vyllz, +20 " llelllys  min [y VoxE — @5 [laps
o V4P (75) b " e ep (73) nlap

nonconformityxconsistency defect

Consistency defect can be tamed by increasing £ for smooth solutions
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e Roadmap

e Poincaré—Steklov inequalities and inf-sup stability

e Duality argument
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Conver

@ Recall L*-orthogonal projections

I : L*(D) — Hy(curl = 0;D), H°:L*(D) — H(curl = 0; D)

e Forall (f,g) € L := L>(D) x L>(D), T(f,g) is the unique pair
(H,E) € X'Z’OXXCE solving the well-posed problem

—VXE = wp(I - T5) (uf),  VoxH = wp(I - TI°)(eg)
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@ Recall L*-orthogonal projections

I : L*(D) — Hy(curl = 0;D), H°:L*(D) — H(curl = 0; D)

e Forall (f,g) € L := L>(D) x L>(D), T(f,g) is the unique pair
(H,E) € X'Z’OXXCe solving the well-posed problem

—VXE = wp(I - 1) (uf ),  VoxH = wp(I - 1) (€g)

e (A, (H,E)), A #0,is a Maxwell eigenpair iff

T(H,E) = A(H,E)
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@ Recall L*-orthogonal projections

I : L*(D) - Hy(curl = 0; D), M°:L*(D) — H(curl = 0;D)

e Forall (f,g) € L := L*(D) x L*(D), T(f,g) is the unique pair
(H,E) € XZ’OXXCG solving the well-posed problem

—VXE = wp(I - T5) (uf),  VoxH = wp(I - I1°)(eg)

e (A, (H,E)), A #0,is a Maxwell eigenpair iff

T(H,E) = A(H,E)

@ What is the discrete counterpart?
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e Introduce discrete L?-orthogonal projections
I, : L*(D) — P o(curl =0;7,), IIj: L*(D) — P (curl = 0; 7;)

and set X, o == {hy, € PY(T;) | M5 (phy) = 0}, X | o= . ..
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e Introduce discrete L?-orthogonal projections
I, : L*(D) — Py o(curl =0;7,), IIj: L*(D) — P (curl = 0; 7;)
and set X, o == {hy, € PY(T;) | M5 (phy) = 0}, X | o= . ..

@ Forall (f,g) € L, Ty(f, g) is the unique pair (Hy, E;,) € XZ,hOXXCe,h
solving the well-posed problem (proof to come!)

an((Hp, Ep), (hp,ep)) = wp (I - TL5) (uf), (I - 1I}) (eg)), (hp, €n)),

for all (hy,ey) € Ly, = Pg(?ﬁ) X Pg(‘]ﬁ), with discrete bilinear form

an((Hp, Ep), (hi en)) = = (Cy (En), i)y + (Cyg (Ha), en)p2

+ kuS), (Hp, hy,) + k), (Ep, ep)
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Convergence in operator norm (2/3)

e Introduce discrete L*-orthogonal projections
I, : L*(D) — Py o(curl =0;7;), IIj: L*(D) — P (curl = 0; 7;)
and set X¢, o = {hy, € PR(T;) | W5 (uhy) = 0}, X | o= . ..

e Forall (f,g) € L, Ty(f, g) is the unique pair (Hy, Ej) € X;’,qoxX?,l
solving the well-posed problem (proof to come!)

an((Hp, Ep), (hp,ep)) = wp(((I = T50) (uf), (I - 105) (eg)), (hp, en)),
for all (hy,e,) € Ly, := PE(‘T;) X Pg(‘];;), with discrete bilinear form
an((Hy Ep), (i e)) = = (Cy(Ep), )2 + (Cp(Ha), en)p2
+ KusS), (Hp, hpy) + kes), (Ep, ep,)
° (/lh, (Hp, Eh)), A # 0, is a discrete Maxwell eigenpair iff

Ty (Hy, Ep) = 2,(Hy, Ep)
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@ Spectral approximation of compact operators [Bramble & Osborn, 73;
Osborn, 75; Boffi, 10]
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_ Gonvergence in operaton rori(E/c) N

@ Spectral approximation of compact operators [Bramble & Osborn, 73;
Osborn, 75; Bofhi, 10]

@ To prove spectral correctness, it suffices to prove convergence in
operator norm
im | T = Tyl gy =0
h—0

20/36



@ Spectral approximation of compact operators [Bramble & Osborn, 73;
Osborn, 75; Bofhi, 10]

@ To prove spectral correctness, it suffices to prove convergence in
operator norm
lim |7~ Tyl g(z;0) = 0
h—0

@ Two key arguments to prove this result
e stability by deflated inf-sup condition using discrete Poincaré—Steklov
inequalities
o duality argument
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@ Weak PS inequalities

||h”L2(D) = fD”VOXh”(XC)/, Vh € H()(Clll'l = O;D)J'
llellz2(py = CollVxellxsy, Ve € H(curl = 0; D)*
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Discr

@ Weak PS inequalities

||h”L2(D) = fD”V()Xh”(XC)/, Vh € H()(Clll'l = O;D)J'

@ Discrete setting? The difficulty is that

Py y(curl = 0;7,)* ¢ Ho(curl = 0;D)*
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@ Weak PS inequalities
Ikl 2 oy = ol Voxhllxey Vh € Hy(curl = 0; D)*
llellz2py = EollVxellxs), Ve € H(curl = 0; D)™
@ Discrete setting? The difficulty is that

Pi,o(curl =0;7;)" ¢ Hy(curl = 0; D)*

@ Lemma [AE & JLG, 23] Discrete PS inequalities hold with dual norms
augmented by jump seminorms

1

Wrnllzzpy < EollVoxbullxey +h2 kil Vhy € X5, 40
1

lenllz2(py < EollVxenllxsy + 2 lenl),s Ve, € X,

(Hidden constant in < depends on contrast factors /g, €/ €)
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@ Proof uses averaging and commuting quasi-interpolation operators from
the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)
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_ Sketoh of proof (1/2)

@ Proof uses averaging and commuting quasi-interpolation operators from
the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)

@ Lethy € X,Z,ho; set
K =I5 (hy), €= kS~ TG (RS)

with Hy(curl; D)-conforming averaging operator from [AE & JLG, 17]
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Sketch of

@ Proof uses averaging and commuting quasi-interpolation operators from
the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)

@ Lethy € X,Z,h09 set
hj, == 1,5 (hy), & :=h; - II;(h;)
with Hy(curl; D)-conforming averaging operator from [AE & JLG, 17]
@ Since & € Hy(curl = 0; D)*, weak PS inequality gives

€12 < EpllVox€lxey = EollVoxhy |l (xey
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@ Proof uses averaging and commuting quasi-interpolation operators from
the discrete de Rham sequence (Nédélec, Raviart-Thomas elements)

@ Lethy € X,Z,ho; set
B =I5 (hy), €= hE - TIS(S)
with Hy(curl; D)-conforming averaging operator from [AE & JLG, 17]
@ Since & € Hy(curl = 0; D)*, weak PS inequality gives

€12 < EollVoxéllxey = pllVoxhy |l x<y

e Triangle inequality and approximation properties of 7, give

€12 < EollVox (i — )l (xey + Epll Voxh | x<)
< |lhy = i ll2 + Eoll Voxhu | x<y

1
< h2 [yl + ol Voxhy | xey

1232/26



@ Commuting approximation operators for Nédélec and Raviart-Thomas
FEM; see [AE & JLG, 21 (vol. I)] and [Schéberl 01; Christiansen, Winther 06]

Ty 1 LA(D) = Piy(Th), T - L2 (D) — Py (Th)
o J (I (h})) € Py (curl = 0;7,) by commuting property
Vox (o (TG (h5))) = T (Vox (T () = F0(0) =
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@ Commuting approximation operators for Nédélec and Raviart-Thomas
FEM; see [AE & JLG, 21 (vol. I)] and [Schéberl 01; Christiansen, Winther 06]

T - L2(D) = Pi(Th),  Fg : L (D) — Pigy(T5)

e 9, (II5(h})) € Py (curl = 0;7;) by commuting property
Vox (Jo (TG (5))) = Fo(Vox (TG () = F6(0) =

® Sohj, — (&) = T (hy, — &) = F(I5(h})) € Pyy(curl = 0: F;)

23/36



o Commuting approximation operators for Nédélec and Raviart—-Thomas
FEM; see [AE & JLG, 21 (vol. I)] and [Schéberl 01; Christiansen, Winther 06]

Tio + LA(D) = Pig(Th). Ty : L*(D) — Pio(T)
e 9, (II5(h})) € Py (curl = 0;7;) by commuting property
Vox (Jo (TG (5))) = Fo(Vox (TG () = F6(0) =

o o — T (£) = T (s — €) = T (0 (RS)) € Py (curl = 0: ;)

@ Since phy, € Py,(curl = 0; 7;)* by assumption, this gives

||ﬂ2hh||Lz = (php, by, = b))y + (hy, by — G50 (6))p2 + (phiy, Jo ()2
= (uhy, by, — h;)Lz + (phy, j;,((:)(f))LZ

23/36



o Commuting approximation operators for Nédélec and Raviart—-Thomas
FEM; see [AE & JLG, 21 (vol. I)] and [Schéberl 01; Christiansen, Winther 06]

Tio + LA(D) = Pig(Th). Ty : L*(D) — Pio(T)
e 9, (II5(h})) € Py (curl = 0;7;) by commuting property
Vox (Jo (TG (5))) = Fo(Vox (TG () = F6(0) =

® Sohj, — (&) = T (hy, — &) = F(I5(h})) € Pyy(curl = 0: F;)

@ Since phy, € Py,(curl = 0; 7;)* by assumption, this gives

||,U2hh||Lz = (php, by, = b))y + (hy, by — G50 (6))p2 + (phiy, Jo ()2
= (uhy, by, — h‘;,)Lz + (phy, J;,((:)(f))LZ

@ Since hf) is Lz—stable, we conclude that

1
hnll2 < Ny = Ryl + €Nz < R2 1Ryl + Ep || Yoxh| xe)
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@ Mesh-dependent norm on Lj, := P2(7;) X P2(7,),

i 1 1
| (B, en)llbn == wpll(uZhn, €2ep) ||

1 1 1 1
+ k2 {12 Cro(hp) Iz + [hali } + k2 {Ilh2Ch(en)lly2 + lenl) }

I
(Notice h2 -weighted curls as expected in Friedrichs systems [AE & JLG, 06])
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@ Mesh-dependent norm on Ly, := PZ('IZ) X PZ(?;),
i 1 1
| (B, en)llbn == wpll(uZhn, €2ep) ||
1 1 1 1
+ k2 {12 Cro(hp) Iz + [hali } + k2 {Ilh2Ch(en)lly2 + lenl) }

I
(Notice h2 -weighted curls as expected in Friedrichs systems [AE & JLG, 06])

@ Deflated inf-sup condition: For all (Hj, Ej) € XZ,hOXXCE’ B

1 |an((Hp, Er), (hy,en))]
wp|(Hp, Ep) by S sup ( T T )
(hn.en)eln  ||[(u2hp, €2ep)||L

(different norms, different spaces)
(proof uses techniques for Friedrichs systems and discrete PS inequalities)
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@ Mesh-dependent norm on Ly, := PZ(']Z) X PZ(?;),
i 1 1
(B en)llo,n == wpll (b, €2en) I
1 1 1 1
+ k2 {12 Cro(hp) Iz + [hali } + k2 {Ilh2Ch(en)lly2 + lenl) }

I
(Notice h2 -weighted curls as expected in Friedrichs systems [AE & JLG, 06])

@ Deflated inf-sup condition: For all (Hj, Ej) € XZ,hOXXCE, B

1 |an((Hp, Er), (hy,en))]
wp|(Hp, Ep) by S sup ( T T )
(hn.en)eln  ||[(u2hp, €2ep)||L

(different norms, different spaces)

(proof uses techniques for Friedrichs systems and discrete PS inequalities)

@ Corollary. Discrete BVP problem defining 7}, : L — Ly, is well-posed
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o Let(f,g)elL
o Let (H,E) :=T(f,g) € Xf;,o x X¢
o Let (H,Ep) :=Ty(f,g) € X:t,hO XXCE’h
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o Let(f,g)elL
o Let (H,E) :=T(f,g) € XZ,O x X¢
o Let (H,Ep) :=Ty(f,g) € X:t,hO XXCE’h

@ The goal is to prove that limj_q || (,u%(Sh, €? ée)||L = 0 with the errors

oh :=H - H,, oe =E-E,
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Let (f,g) € L
Let (H,E) :=T(f,g) € X;’o x X¢
Let (Hy, Ey) = Ty(f,g) € XZ,hO XXCE’h

The goal is to prove that lim;,_, || ( ,u%6h, €? de) || = 0 with the errors

oh :=H - H,, oe =E-E,

Dual problem: Find (l], 8) € XSXXC S.t. (involution with constant properties!!)

—Voxn = wp(I — TI°) (ebe), Vxe = wp(I — ) (udh)
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Let (f,g) €L
Let (H,E) ':T(fg)eXcoxXc
Let (Hy, Ey) —Th(fg)EX OXX

The goal is to prove that lim;_,q || ( ,u%6h, €? de) || = 0 with the errors

oh :=H - H,, oe =E-E,

Dual problem: Find (l], g) € XSXXC S.t. (involution with constant properties!!)

—Voxn = wp(I — TI°) (ebe), Vxe = wp(I — ) (udh)

Improved regularity shift, s’ € (1, 1]
Ml < 7 1Y%z, lelye < €57 1Vxell2

1 1 1 1
(Notice that £p (ul | Voxn |2 + € 1IVx&ll2) < |(u28h, €26e) L)
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@ Error representation

1 1
wp||(u20h, €2 69)”1% = Oupp + Ogal + Ocrt + Oaiy
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@ Error representation
1 1
wp||(u20h, €2 69)”1% = Oupp + Ogal + Ocrt + Oaiy

e Approximation error: 0., := a;((6h,de), ((I — HZ)(:]), I - HZ)(s)))
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@ Error representation
1 1
wp||(u20h, €2 63)”1% = Oupp + Ogal + Ocrt + Oaiy
e Approximation error: 0., := a;((6h,de), ((I — HZ)(:]), I - HE)(S)))

o Galerkin orthogonality error caused by inconsistency on rhs:
Ogal := wp{ (T = 150 (f ), M) 2 + (M€ ~ 105 ) (), £4)p2
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@ Error representation
1 1
wp||(u20h, €2 63)”1% = Oupp + Ogal + Ocrt + Oaiy

e Approximation error: 0., := a;((6h,de), ((I — HE)(;]), I - HE)(S)))
o Galerkin orthogonality error caused by inconsistency on rhs:

anl = wD{((“8 - “20)(ﬂf)s ’lh)LZ + ((“C - I]Z)(eg), Sh)L2 }
o Curl commuting error: (7,  are not polynomials!)

Ocrt = { (i, VX&) 2= (Cp (), &) 2} ={ (ens Yoxm) 2 = (€ (en) m) 2}
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@ Error representation

1 1
wp||(u20h, €2 6e)”1% = Oupp + Ogal + Ocrt + Oaiy

Approximation error: 0,,, = a,((6h.de). (I - HE)(:]), I - HE)(S)))
Galerkin orthogonality error caused by inconsistency on rhs:
Ogat := wp { (0§ = TS ) (uf), )2 + (M€ = T0) (eg), &4),2 }
o Curl commuting error: (7,  are not polynomials!)

Ocrt = { (i, VX&) 2= (Cp (), &) 2} ={ (ens Yoxm) 2 = (€ (en) m) 2}
o Divergence conformity error: (ITj (u6h) = 0 = TI{ (udh) = 0)

0
Ogiv := wp{(6h, TS (uSh)), > + (6e, T (ebe)), 2 }
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@ Error representation

1 1
wp||(u20h, €2 63)”12‘ = Oapp + Ogal + Ocrt + Oaiv

e Approximation error: 0., := a;((6h,de), ((I — mb )(1]) I - l'[ )(s)))
o Galerkin orthogonality error caused by 1ncons1stency on rhs:

Ogal = wp { (TG~ T1E)) (), mp)p2 + ((T° — 1) (eg). £4)2}
o Curl commuting error: (7,  are not polynomials!)

Ocrt = { (hy, VX&) 2= (Cy () (hy), &)} ={ (en, Voxm) 2 - <Ci;’f<eh>, M2}
o Divergence conformity error: (ITj (u6h) = 0 = II{ (udh) =

Odiy = wD{(6h 1 1 o(u6h)) 2 + (e, ¢ (668))”}

@ All terms bounded using improved regularity shift on dual solution and
a priori estimate from deflated inf-sup condition
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@ Error representation

1 1
wp||(u20h, €2 6e)||£ = Oapp + Ogal + Ocrt + Oaiv

o Approximation error: ., == a;,((6/. de), (1= T1))(5). (1= T1})(£)))
o Galerkin orthogonality error caused by inconsistency on rhs:

O = wp { (TS — TS (uf). )2 + (I — IS (eg). &)}
o Curl commuting error: (7,  are not polynomials!)

Ocrt = {Urn, V&), 2= (Cp (), 8);2} — { (e, Yoxm) 2 = (€1 (en), )2}
o Divergence conformity error: (ITj (u6h) = 0 = TI{ (udh) = 0)
Odiv := wp{(6h, I (ubh)),2 + (6e, T (ebe)), 2 }

@ All terms bounded using improved regularity shift on dual solution and
a priori estimate from deflated inf-sup condition

o Altogether, ||7 — Tyl .0y < (h/Cp)? with o := min(s, s” — %), ie.,

1 1 1 1
(2 6h,e26e)llL < (h/tp) 7 Il(n2f, €28l
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@ Error representation

1 1
wp||(u20h, €2 6e)||£ = Oapp + Ogal + Ocrt + Oaiv

o Approximation error: ., == a;,((6/. de), (1= T1))(5). (1= T1})(£)))
o Galerkin orthogonality error caused by inconsistency on rhs:

O = wp { (TS — TS (uf). )2 + (I — IS (eg). &)}
o Curl commuting error: (7,  are not polynomials!)

Ocrt = {Urn, V&), 2= (Cp (), 8);2} — { (e, Yoxm) 2 = (€1 (en), )2}
o Divergence conformity error: (ITj (u6h) = 0 = TI{ (udh) = 0)
Odiv := wp{(6h, I (ubh)),2 + (6e, T (ebe)), 2 }

@ All terms bounded using improved regularity shift on dual solution and
a priori estimate from deflated inf-sup condition

o Altogether, ||7 — Tyl .0y < (h/Cp)? with o := min(s, s” — %), ie.,
1 1 1 1
[(u26h,e26e)llL < (/o) I(n2f, €28) I

! Thank you for your attention !!
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