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Maxwell’s equations

Space-time PDEs posed on D × J with D ⊂ R3, J := (0, T)

Find (H,E) : D × J → R3 × R3 s.t.

mt (`H) + ∇×E = 0 (Faraday)
mt (nE) − ∇×H = −j (Ampère)
∇·(`H) = 0 (Gauss)
∇·(nE) = d (Gauss)

Material properties: n (electric permittivity), ` (magnetic permeability)

Data: d (charge density) and j (current) s.t. mtd + ∇·j = 0

Prescribe ICs (H0,E0) : D→ R3 × R3

Focus on bounded Lipschitz domain D: enforce BC on Γ := mD
Simplest BCs: perfect magnetic or electric conductor

H×n|Γ = 0 or E×n|Γ = 0

Other possible BCs: impedance, transparent (far field), ...
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Involutions for Maxwell’s equations

Recall

mt (`H) + ∇×E = 0
mt (nE) − ∇×H = −j

Observe that mt (∇·(`H)) = 0 and mt (∇·(nE)) = −∇·j = mtd

if ∇·(`H0) = 0, then ∇·(`H) = 0 at all times
if ∇·(nE0) = d0, then ∇·(nE) = d at all times

One says that Gauss’s laws are involutions

Actually, ∇·(`H) = 0 does not always imply `H ∈ im(∇×) (depends on
domain topology), but the converse is true!

The topology-blind statement of the involution on H is

`H ∈ im(∇×)

Similarly, in the absence of free charges (j = 0), the topology-blind
statement of the involution on E is

nE ∈ im(∇×)
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Functional setting
Graph spaces for gradient, curl, or divergence

H1 (D), H(curl; D) := {h ∈ L2 (D) | ∇×h ∈ L2 (D)}, H(div; D)

Hilbert spaces equipped with natural graph norm, e.g.,

‖h‖2H (curl;D) := ‖h‖2L2 + ℓ2D‖∇×h‖2L2

(ℓD: global length scale to be dimensionally consistent)

Subspaces with zero trace, tangential trace, or normal trace

H1
0 (D), H0 (curl; D) := {h ∈ H(curl; D) | h×n|Γ = 0}, H0 (div; D)

De Rham sequences (with and without BC)

H1
0 (D)

∇0 - H0 (curl; D)
∇0× - H0 (div; D)

∇0 · - L2
0 (D)

L2 (D) �
∇·

H (div; D) �
∇×

H (curl; D) �
∇

H1 (D)

All operators have closed range

Pairs of adjoint operators: (∇0,−∇·), (∇0×,∇×), (−∇0·,∇)
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Functional setting for involutions

To fix ideas, enforce BC on magnetic field

H ∈ H0 (curl; D), E ∈ H(curl; D)

Rewriting of involutions using Closed Range Theorem (orthogonalities
meant in L2) [Hiptmair 02]

`H ∈ im(∇×) = H0 (curl = 0; D)⊥, nE ∈ im(∇0×) = H(curl = 0; D)⊥

Topology-blind statements!
H0 (curl = 0; D)⊥ ⊂ H(div = 0; D) with equality iff Γ is connected
H(curl = 0; D)⊥ ⊂ H0 (div = 0; D) with equality iff D is simply connected

See [Dautray, Lions 90; Amrouche, Bernardi, Dauge, Girault, 98]
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Compactness
Assume D is a Lipschitz polyhedron

pcw. constant material properties (or multiplier property in Hs, s ∈ (0, 12 ])

Involution-aware functional spaces

Xc
`,0 := {h ∈ H0 (curl; D) | `h ∈ H0 (curl = 0; D)⊥}
Xc
n := {e ∈ H(curl; D) | ne ∈ H(curl = 0; D)⊥}

There is s ∈ (0, 12 ] s.t. for all h ∈ Xc
`,0 and all e ∈ Xc

n ,

|h|Hs (D) . ℓ
1−s
D ‖∇0×h‖L2 , |e|Hs (D) . ℓ

1−s
D ‖∇×e‖L2

Improved regularity shift for constant properties: There is s′ ∈ ( 12 , 1]
s.t. for all ( ∈ Xc

0 and all 9 ∈ Xc,

|( |Hs′ (D) . ℓ
1−s′
D ‖∇0×(‖L2 , |9 |Hs′ (D) . ℓ

1−s′
D ‖∇×9‖L2

with Xc
0 := H0 (curl; D) ∩H0 (curl = 0; D)⊥, Xc := H (curl; D) ∩H (curl = 0; D)⊥

See [Weber, 80; Birman & Solomyak, 87; Costabel, 90; Amrouche, Bernardi, Dauge,
Girault, 98; Jochmann, 99; Bonito, Guermond & Luddens, 13]
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Spectral problem

For dimensional consistency,
vacuum properties n0, `0; speed of light: c := (`0n0)−

1
2

reference frequency lD := cℓ−1D

Find nonzero _ ∈ C and nonzero (H,E) ∈ Xc
`,0 × Xc

n s.t.

−∇×E =
lD

_
`H, ∇0×H =

lD

_
nE

(eigenvalue _ is nondimensional)

Eigenfunctions are involution-preserving

H ∈ Xc
`,0 ⇐⇒

{
H ∈ H0 (curl; D) ∧ `H ∈ H0 (curl = 0; D)⊥

}
E ∈ Xc

n ⇐⇒
{
E ∈ H(curl; D) ∧ nE ∈ H(curl = 0; D)⊥

}
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Boundary-value operator for spectral problem

Introduce L2-orthogonal projections

�c
0 : L2 (D) → H0 (curl = 0; D), �c : L2 (D) → H(curl = 0; D)

Involutions mean that �c
0 (`H) = 0, �c (nE) = 0

Boundary-value operator T : L→ L := L2 (D) × L2 (D)

For all (f , g) ∈ L, T (f , g) is the unique pair (H,E) ∈ Xc
`,0×Xc

n ⊂ L
solving the well-posed problem

−∇×E = lD (I −�c
0) (`f ), ∇0×H = lD (I −�c) (ng)

By construction, (I −�c
0) (`f ) ∈ im(∇×) and (I −�c) (n g) ∈ im(∇0×)

Since Xc
`,0×Xc

n ↩→ Hs (D) ×Hs (D), T is a compact operator(
_, (H,E)

)
, _ ≠ 0, is a Maxwell eigenpair iff

T (H,E) = _(H,E)
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Time-harmonic Maxwell’s equations

To fix ideas, enforce BC on E: E ∈ H0 (curl; D), H ∈ H(curl; D)

Fix frequency l > 0, time-harmonic behavior: mt → il

il`H + ∇0×E = 0, ilnE − ∇×H = −j

Eliminate H→ Second-order formulation: Find E ∈ H0 (curl; D) s.t.

−l2nE + ∇×(a∇0×E) = J

with a := `−1 and J := −ilj

The involution is

l2nE + J ∈ im(∇×) = H0 (curl = 0; D)⊥

Coercive problem with compact perturbation→ Fredholm’s alternative
well-posed problem if l is not a resonant frequency

11/36
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Mesh and broken polynomial spaces

Th: shape-regular mesh covering D exactly

simplicial mesh polygonal mesh

We focus on simplicial meshes

Broken polynomial space (order k ≥ 0, Rd-valued)

Pb
k (Th) := {vh ∈ L2 (D) | vh |K ∈ Pk,d (K;Rd), ∀K ∈ Th}

Nonconforming approximation space: Pb
k (Th) ⊄ H(curl; D)

jumps across mesh interfaces
BCs not enforced exactly

dG textbooks: [Hesthaven & Warburton 08; Di Pietro & AE, 12]
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Jumps and stabilization

Mesh interface F ∈ F ◦h s.t. F = mKl ∩ mKr
oriented by unit normal nF pointing from Kl to Kr

Mesh boundary face F ∈ F mh s.t. F = mKl ∩ Γ
oriented by unit outward normal n

Tangential jump of field vh ∈ Pb
k (Th) across mesh interface F ∈ F ◦h

[[vh]]cF := (vh |Kl |F − vh |Kr |F) × nF

and if F is a boundary face, [[vh]]cF := vh |Kl |F × n

Stabilization bilinear forms

shh (Hh, hh) :=
∑

F∈Fh

( [[Hh ]]cF , [[hh ]]cF)L2 (F) se
h (Eh, eh) :=

∑
F∈F◦h

( [[Eh ]]cF , [[eh ]]cF)L2 (F)

Jump seminorms: |hh |hh := sh
h (hh, hh)

1
2 , |eh |eh := se

h (eh, eh)
1
2
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Discrete curl operators
Broken curl operator ∇h× : Pb

k (Th) → Pb
k (Th) (acts elementwise)

Discrete curl operator Ck,ℓ
h,0 : Pb

k (Th) → Pb
ℓ (Th) includes jump lifting

operator in Pb
ℓ (Th) (ℓ ≥ k can be useful to improve consistency properties)

Ck,ℓ
h,0 (vh) := ∇h×vh + Lℓh,0 (vh)

(Lℓh,0 (vh), 5h)L2 :=
∑

F∈Fh

( [[vh]]cF, {{5h}}F)L2 (F) ∀5h ∈ Pb
ℓ (Th)

and {{5h}}F is the plain (componentwise) average of 5h at F

Integration by parts (Ck,ℓ
h defined without lifting boundary values)

(Ck,ℓ
h,0 (5h),7h)L2 = (5h,C

k,ℓ
h (7h))L2

Literature
Discrete gradient for diffusion problems introduced in [Bassi et al., 97] and
analyzed in [Brezzi et al., 00]
Weak consistency and compactness properties [Burman & AE, 08; Buffa &
Ortner, 09; Di Pietro & AE, 09]
dG methods with discrete curl for Maxwell’s equations [Perugia, Schötzau &
Monk, 02; Houston et al., 05]
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Example of weak consistency property

Consistency defect: For all hh ∈ Pb
k (Th) and all e ∈ H(curl; D),

X(hh, e) := (hh,∇×e)L2 − (Ck,ℓ
h,0 (hh), e)L2

Lemma. For all hh ∈ Pb
k (Th) and all 9 ∈ Xc,

|X(hh, 9) | . (h/ℓD)s
′− 1

2 ℓ
1
2
D |hh |hh ‖∇×9‖L2

with regularity pickup s′ ∈ ( 12 , 1] from compactness property

Sketch of proof. Using L2-orthogonal projection �b
h onto Pb

k (Th),

X(hh, 9) =
∑

F∈Fh

( [[hh]]cF, {{9 −�
b
h (9)}}F)L2 (F)

Use approximation properties of �b
h and |9 |Hs′ (D) . ℓ

1−s′
D ‖∇×9‖L2
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Spectral correctness
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Discrete spectral problem

Recall spectral problem: Find nonzero _ ∈ C and nonzero
(H,E) ∈ Xc

`,0 × Xc
n s.t.

−(∇×E, h)L2 + (∇0×H, e)L2 =
lD

_

(
(`H, nE), (h, e)

)
L

for all (h, e) ∈ L := L2 (D) × L2 (D)

Find nonzero _h ∈ C and nonzero (Hh,Eh) ∈ Lh s.t.

ah
(
(Hh,Eh), (hh, eh)

)
=
lD

_h

(
(`Hh, nEh), (hh, eh)

)
L

for all (hh, eh) ∈ Lh := Pb
k (Th) × Pb

k (Th)

Discrete bilinear form (stabilization weights: ^h := (`0/n0)
1
2 , ^e := (n0/`0)

1
2 )

ah
(
(Hh,Eh), (hh, eh)

)
:= − (Ck,ℓ

h (Eh), hh)L2 + (Ck,ℓ
h,0 (Hh), eh)L2

+ ^hsh
h (Hh, hh) + ^ese

h (Eh, eh)
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Discrete involutions

Curl-free subspaces of broken polynomial spaces

Pc
k0 (curl = 0;Th) := Pb

k (Th) ∩H0 (curl = 0; D)
Pc

k (curl = 0;Th) := Pb
k (Th) ∩H(curl = 0; D)

Lemma. The discrete involutions satisfied by any eigenpair (Hh,Eh) are

`Hh ∈ Pc
k0 (curl = 0;Th)⊥, nEh ∈ Pc

k (curl = 0;Th)⊥

Involution defect: (discretely div-free vs. exactly div-free)

Pc
k0 (curl = 0;Th)⊥ ⊄ H0 (curl = 0; D)⊥

Pc
k (curl = 0;Th)⊥ ⊄ H(curl = 0; D)⊥

Curl-free subspaces need to be “sufficiently rich” to enjoy suitable
approximation properties

On simplicial meshes, these subspaces are composed of Nédélec (edge)
finite elements, and several effective interpolation operators exist!
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Main result

Theorem [AE & JLG, 23, 24] Assume simplicial meshes and k ≥ 0. The
dG approximation of the eigenvalue problem is spectrally correct,
irrespective of the topology of D

Literature
Spectral correctness known for 2nd-order formulation [Buffa & Perugia, 06]
First-order formulation important for coupled systems, e.g., MHD
Spectral correctness crucial to study long-time behavior
Numerical simulations in [Hesthaven & Warburton, 04; Cohen & Duruflé, 07]
indicated spectral correctness for first-order formulation
Present theorem provides the mathematical foundation

Spectral correctness also using CIP-stabilized FEM on split meshes
(Alfeld or Clough–Tocher) [AE & JLG, 24, hal-04478683]
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Asymptotic optimality, time-harmonic problem
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Helmholtz problem

Consider first Helmholtz problem (positive material properties o, a)

−l2ou − ∇·(a∇u) = f , u|Γ = 0

Asymptotic optimality of H1-conforming FEM approximation proved
using duality argument [Schatz, 74]

(1 − c(h)) |||u − uh ||| ≤ inf
vh∈Pb

k (Th)∩H1
0 (D)
|||u − vh |||, lim

h→0
c(h) = 0

with energy norm |||v|||2 := l2‖o 1
2 v‖2L2 + ‖a

1
2∇u‖2

L2

Explicit-frequency analysis in [Melenk & Sauter, 10; TCF & Nicaise, 20;
Lafontaine, Spence & Wunsch, 22]

dG approximation of Helmholtz problem analyzed in [TCF, 23]
bound consistency defect of discrete gradient
deal with nonconforming setting and stabilization
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deal with nonconforming setting and stabilization
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Helmholtz problem
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Maxwell’s problem with conforming approximation

(Recall) Given J ∈ L2 (D), find E ∈ H0 (curl; D) s.t.

−l2 (nE, e)L2 + (a∇0×E,∇0×e)L2 = (J, e)L2 ∀e ∈ H0 (curl; D)

Consider conforming approximation by Nédélec (edge) FEM

Extending Schatz’s argument not straightforward as one needs to deal
with nonconformity caused by discrete involution

Asymptotic optimality established very recently

(1 − c(h)) |||E − Eh ||| ≤ inf
vh∈Pb

k (Th)∩H0 (curl;D)
|||E − vh |||, lim

h→0
c(h) = 0

with energy norm |||v|||2 := l2‖n 1
2 v‖2L2 (D) + ‖a

1
2∇0×v‖2

L2

impedance BCs in [Melenk & Sauter, 23], explicit-frequency analysis,
smooth and connected boundary
perfect conductor BCs in [TCF & AE, 24], general domain and material
properties, frequency-dependence not made explicit
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dG approximation of time-harmonic problem

Discrete problem: Find Eh ∈ Pb
k (Th) s.t.

bh (Eh, eh) = (J, eh)L2 ∀eh ∈ Pb
k (Th)

with discrete bilinear form

bh (Eh, eh) := −l2 (nEh, eh)L2 + (aCk,ℓ
h,0 (Eh),Ck,ℓ

h,0 (eh))L2 + sh (Eh, eh)

and symmetric, positive-semidefinite stabilization bilinear form sh
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Example: Interior penalty dG

Interior penalty dG bilinear form

bipdg
h (Eh, eh) := − l2 (nEh, eh)L2 + (a∇h×Eh,∇h×eh)L2 + [∗sipdg

h (Eh, eh)

+
∑

F∈Fh

{
({{.∇h×Eh}}F, [[eh]]cF)L2 (F) + ([[Eh]]cF, {{.∇h×eh}}F)L2 (F)

}
with stabilization bilinear form (aF := maxK⊃F a |K )

sipdg
h (Eh, eh) :=

∑
F∈Fh

aF

hF
( [[Eh]]cF, [[eh]]cF)L2 (F)

bh can be rewritten using discrete curl operators upon setting

sh (Eh, eh) := [∗sipdg
h (Eh, eh) − (aLℓh,0 (Eh),Lℓh,0 (eh))L2

and positivity of sh requires taking [∗ > 0 large enough
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Main result on dG approximation

Error e := E − Eh lives in V♯ := H0 (curl; D) + Pb
k (Th)

natural extension of [[·]]cF and Ck,ℓ
h,0 to V♯

assume sh can be extended to V♯ → s♯
equip V♯ with extended energy norm

|||v|||2
♯s := l2‖n

1
2 v‖2L2 + ‖a

1
2 Ck,ℓ

h,0 (v)‖
2
L2 + s♯ (v, v)

Theorem [TCF & AE, 24] Assume simplicial meshes, k ≥ 1, and some
minimal assumption on stabilization. Then, with limh→0 c(h) = 0,

(1 − c(h)) |||e |||2
♯s ≤ (1 + c(h)) inf

vh∈Pbk (Th )
|||E − vh |||2♯s + 2d

−1 |||e |||♯s min
�c

h∈P
c
ℓ
(Th )
|||.∇0×E −�c

h |||ap∗︸                                                 ︷︷                                                 ︸
nonconformity×consistency defect

Consistency defect can be tamed by increasing ℓ for smooth solutions
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Further insight on spectral correctness

Roadmap

Poincaré–Steklov inequalities and inf-sup stability

Duality argument
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Convergence in operator norm (1/3)

Recall L2-orthogonal projections

�c
0 : L2 (D) → H0 (curl = 0; D), �c : L2 (D) → H(curl = 0; D)

For all (f , g) ∈ L := L2 (D) × L2 (D), T (f , g) is the unique pair
(H,E) ∈ Xc

`,0×Xc
n solving the well-posed problem

−∇×E = lD (I −�c
0) (`f ), ∇0×H = lD (I −�c) (ng)

(
_, (H,E)

)
, _ ≠ 0, is a Maxwell eigenpair iff

T (H,E) = _(H,E)

What is the discrete counterpart?
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Convergence in operator norm (2/3)

Introduce discrete L2-orthogonal projections

�c
h0 : L2 (D) → Pc

k,0 (curl = 0;Th), �c
h : L2 (D) → Pc

k (curl = 0;Th)

and set Xc
`,h0 := {hh ∈ Pb

k (Th) |�
c
h0 (`hh) = 0}, Xc

n ,h := . . .

For all (f , g) ∈ L, Th (f , g) is the unique pair (Hh,Eh) ∈ Xc
`,h0×Xc

n ,h
solving the well-posed problem (proof to come!)

ah
(
(Hh,Eh), (hh, eh)

)
= lD

(
((I −�c

h0) (`f ), (I −�c
h) (ng)), (hh, eh)

)
L

for all (hh, eh) ∈ Lh := Pb
k (Th) × Pb

k (Th), with discrete bilinear form

ah
(
(Hh,Eh), (hh, eh)

)
:= − (Ck,ℓ

h (Eh), hh)L2 + (Ck,ℓ
h,0 (Hh), eh)L2

+ ^hsh
h (Hh, hh) + ^ese

h (Eh, eh)(
_h, (Hh,Eh)

)
, _h ≠ 0, is a discrete Maxwell eigenpair iff

Th (Hh,Eh) = _h (Hh,Eh)
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Convergence in operator norm (3/3)

Spectral approximation of compact operators [Bramble & Osborn, 73;
Osborn, 75; Boffi, 10]

To prove spectral correctness, it suffices to prove convergence in
operator norm

lim
h→0
‖T − Th‖L(L;L) = 0

Two key arguments to prove this result
stability by deflated inf-sup condition using discrete Poincaré–Steklov
inequalities
duality argument
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Discrete Poincaré–Steklov inequalities

Weak PS inequalities

‖h‖L2 (D) = ℓD‖∇0×h‖(Xc)′ , ∀h ∈ H0 (curl = 0; D)⊥

‖e‖L2 (D) = ℓD‖∇×e‖(Xc
0)′ , ∀e ∈ H(curl = 0; D)⊥

Discrete setting? The difficulty is that

Pc
k,0 (curl = 0;Th)⊥ ⊄ H0 (curl = 0; D)⊥ . . .

Lemma [AE & JLG, 23] Discrete PS inequalities hold with dual norms
augmented by jump seminorms

‖hh‖L2 (D) . ℓD‖∇0×hh‖(Xc)′ + h
1
2 |hh |hh , ∀hh ∈ Xc

`,h0

‖eh‖L2 (D) . ℓD‖∇×eh‖(Xc
0)′ + h

1
2 |eh |eh, ∀eh ∈ Xc

n ,h

(Hidden constant in . depends on contrast factors `/`0, n /n0)
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Sketch of proof (1/2)

Proof uses averaging and commuting quasi-interpolation operators from
the discrete de Rham sequence (Nédélec, Raviart–Thomas elements)

Let hh ∈ Xc
`,h0; set

hc
h := Ic,avh0 (hh), / := hc

h −�
c
0 (h

c
h)

with H0 (curl; D)-conforming averaging operator from [AE & JLG, 17]

Since / ∈ H0 (curl = 0; D)⊥, weak PS inequality gives

‖/‖L2 ≤ ℓD‖∇0×/‖(Xc)′ = ℓD‖∇0×hc
h‖(Xc)′

Triangle inequality and approximation properties of Ic,avh0 give

‖/‖L2 ≤ ℓD‖∇0×(hh − hc
h)‖(Xc)′ + ℓD‖∇0×hh‖(Xc)′

≤ ‖hh − hc
h‖L2 + ℓD‖∇0×hh‖(Xc)′

. h
1
2 |hh |hh + ℓD‖∇0×hh‖(Xc)′
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Sketch of proof (2/2)

Commuting approximation operators for Nédélec and Raviart–Thomas
FEM; see [AE & JLG, 21 (vol. I)] and [Schöberl 01; Christiansen, Winther 06]

J c
h0 : L2 (D) → Pc

k0 (Th), J d
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h0 (�

c
0 (h

c
h))) = J

d
h0 (∇0×(�

c
0 (h
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h))) = J

d
h0 (0) = 0
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h − J c

h0 (/) = J
c

h0 (h
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h0 (�
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Inf-sup stability

Mesh-dependent norm on Lh := Pb
k (Th) × Pb

k (Th),

‖(hh, eh)‖♭,h := l
1
2
D‖(`

1
2 hh, n

1
2 eh)‖L

+ ^
1
2
h
{
‖h 1

2 Ch0 (hh)‖L2 + |hh |hh
}
+ ^

1
2
e
{
‖h 1

2 Ch (eh)‖L2 + |eh |eh
}

(Notice h
1
2 -weighted curls as expected in Friedrichs systems [AE & JLG, 06])

Deflated inf-sup condition: For all (Hh,Eh) ∈ Xc
`,h0×Xc

n ,h,

l
1
2
D‖(Hh,Eh)‖♭,h . sup

(hh ,eh) ∈Lh

|ah
(
(Hh,Eh), (hh, eh)

)
|

‖ (` 1
2 hh, n

1
2 eh)‖L

(different norms, different spaces)
(proof uses techniques for Friedrichs systems and discrete PS inequalities)

Corollary. Discrete BVP problem defining Th : L→ Lh is well-posed
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Duality argument (1/2)

Let (f , g) ∈ L
Let (H,E) := T (f , g) ∈ Xc

`,0 × Xc
n

Let (Hh,Eh) := Th (f , g) ∈ Xc
`,h0 × Xc

n ,h

The goal is to prove that limh→0 ‖(`
1
2 %h, n 1

2 %e)‖L = 0 with the errors

%h := H −Hh, %e := E − Eh

Dual problem: Find ((, 9) ∈ Xc
0×Xc s.t. (involution with constant properties!!)

−∇0×( = lD (I −�c) (n%e), ∇×9 = lD (I −�c
0) (`%h)

Improved regularity shift, s′ ∈ ( 12 , 1]

|( |Hs′ . ℓ1−s′
D ‖∇0×(‖L2 , |9 |Hs′ . ℓ1−s′

D ‖∇×9‖L2

(Notice that ℓD
(
`

1
2
0 ‖∇0×( ‖L2 + n

1
2
0 ‖∇×9 ‖L2

)
. ‖ (`

1
2 %h, n

1
2 %e) ‖L)
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Duality argument (2/2)

Error representation

lD‖(`
1
2 %h, n

1
2 %e)‖2L = \app + \gal + \crl + \div

Approximation error: \app := ah ((%h, %e), ((I −�b
h) ((), (I −�

b
h) (9)))

Galerkin orthogonality error caused by inconsistency on rhs:
\gal := lD

{
((�c

0 −�
c
h0) (`f ), (h)L2 + ((�c −�c

h) (ng), 9h)L2
}

Curl commuting error: ((, 9 are not polynomials!)
\crl :=

{
(hh,∇×9)L2−(Ck,ℓ

h,0 (hh), 9)L2
}
−
{
(eh,∇0×()L2−(Ck,ℓ

h (eh), ()L2
}

Divergence conformity error: (�c
h0 (`%h) = 0; �c

0 (`%h) = 0)
\div := lD

{
(%h,�c

0 (`%h))L2 + (%e,�c (n%e))L2
}

All terms bounded using improved regularity shift on dual solution and
a priori estimate from deflated inf-sup condition

Altogether, ‖T − Th‖L(L;L) . (h/ℓD)f with f := min(s, s′ − 1
2 ), i.e.,

‖(` 1
2 %h, n

1
2 %e)‖L . (h/ℓD)f ‖(`

1
2 f , n

1
2 g)‖L

!! Thank you for your attention !!
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