Edge finite element approximation of Maxwell's equations with low regularity solutions

Alexandre Ern and Jean-Luc Guermond

Université Paris-Est, CERMICS, ENPC and INRIA, Paris

Vienna, 18 July 2018

Alexandre Ern Edge FEM for Maxwell ENPC and INRIA

Outline

- Maxwell's equations
- Edge FEM discretization
- Analysis tools
- Back to Maxwell's equations
- Nonconforming approximation of elliptic PDEs

Disclaimer/announcement

- Some of the contents are possibly textbook material ...
- Shrinking-based mollification operators
 - you can live without them ...
- Averaging quasi-interpolation
 - decay rates for best-approximation with minimal Sobolev regularity
- Nonconforming error analysis (elliptic PDEs)
 - novel extension of the flux at faces
- New Finite Element book(s) (Fall 2018)
 - \blacktriangleright 10 chapters of 50 pages \rightarrow 65 chapters of 14 pages with exercices

Maxwell		

Maxwell's equations

- ▶ Lipschitz polyhedron $D \subset \mathbb{R}^3$ with simple topology
- Model problem: Find $\mathbf{A}: D \to \mathbb{C}^3$ s.t.

 $\mu \mathbf{A} + \nabla \times (\kappa \nabla \times \mathbf{A}) = \mathbf{f}, \qquad \mathbf{A}_{|\partial D} \times \mathbf{n} = \mathbf{0}$ (for simplicity)

- Assumptions on μ and κ
 - ▶ boundedness: $\mu, \kappa \in L^{\infty}(D; \mathbb{C})$, set $\mu_{\sharp} = \|\mu\|_{L^{\infty}}$, $\kappa_{\sharp} = \|\kappa\|_{L^{\infty}}$
 - positivity: there are real numbers θ , $\mu_{\flat} > 0$, $\kappa_{\flat} > 0$ s.t.

 $\mathop{\mathrm{ess\,inf}}_{\mathbf{x}\in D} \Re(\mathsf{e}^{i\theta}\mu(\mathbf{x})) \geq \mu_\flat, \qquad \mathop{\mathrm{ess\,inf}}_{\mathbf{x}\in D} \Re(\mathsf{e}^{i\theta}\kappa(\mathbf{x})) \geq \kappa_\flat$

- ▶ heterogeneous medium: μ and κ can have jumps, but are pcw. smooth (W^{1,∞}) on a Lipschitz partition of D
- ▶ no tracking of contrast factors $\mu_{\sharp/\flat} = \mu_{\sharp}/\mu_{\flat}$, $\kappa_{\sharp/\flat} = \kappa_{\sharp}/\kappa_{\flat}$
- Assumptions on source term: $f \in L^2(D)$ and $\nabla \cdot f = 0 \Longrightarrow$

 $\nabla \cdot (\mu \mathbf{A}) = 0$

・ロット (雪) (日) (日)

Maxwell		

Two examples

- Time-harmonic regime (frequency ω)
- Source current \mathbf{j}_s
- ► Helmholtz problem: **A** = **E**

$$\mu = -\omega^2 \epsilon + i\omega\sigma, \quad \kappa = \hat{\mu}^{-1}, \quad \boldsymbol{f} = -i\omega\boldsymbol{j}_s$$

 ϵ : electric permittivity, $\hat{\mu}$: magnetic permeability, σ : electric conductivity

Eddy-current problem: A = **H**

$$\mu = i\omega\hat{\mu}, \quad \kappa = \sigma^{-1}, \quad \boldsymbol{f} = \nabla \times (\sigma^{-1}\boldsymbol{j}_s)$$

Maxwell		

Basic functional setting

- ▶ $\boldsymbol{V}_0 = \boldsymbol{H}_0(\operatorname{curl}; D) = \{ \boldsymbol{v} \in \boldsymbol{L}^2(D) \mid \nabla \times \boldsymbol{v} \in \boldsymbol{L}^2(D), \ \boldsymbol{v}_{\mid \partial D} \times \boldsymbol{n} = \boldsymbol{0} \}$
 - ▶ norm $\|\mathbf{v}\|_{\boldsymbol{H}(\operatorname{curl};D)}^2 = \|\mathbf{v}\|_{L^2(D)}^2 + \ell_D^2 \|\nabla \times \mathbf{v}\|_{L^2(D)}^2$
 - ℓ_D is a characteristic length of D (for dimensional coherence)
- ▶ Weak formulation: Find $A \in V_0$ s.t. $a(A, b) = \ell(b)$, $\forall b \in V_0$

$$a(\boldsymbol{A}, \boldsymbol{b}) = \int_{D} (\mu \boldsymbol{A} \cdot \overline{\boldsymbol{b}} + \kappa \nabla \times \boldsymbol{A} \cdot \nabla \times \overline{\boldsymbol{b}}) \, \mathrm{d}x, \quad \ell(\boldsymbol{b}) = \int_{D} \boldsymbol{f} \cdot \overline{\boldsymbol{b}} \, \mathrm{d}x$$

▶ $a(\cdot, \cdot)$ is bounded and coercive on V_0 (Lax–Milgram Lemma)

$$Re(e^{i\theta}a(\boldsymbol{b},\boldsymbol{b})) \geq \min(\mu_{\flat},\ell_D^{-2}\kappa_{\flat}) \|\boldsymbol{b}\|_{\boldsymbol{H}(\operatorname{curl};D)}^2$$

- Coercivity parameter **not robust w.r.t.** μ_{\flat} ; this is relevant
 - in the low-frequency limit for the eddy-current problem
 - \blacktriangleright in the limit $\sigma \ll \omega \epsilon$ with $\kappa \in \mathbb{R}$ for the Helmholtz problem

Maxwell		

Control on the divergence

• Since $\nabla \cdot \boldsymbol{f} = 0$, we have $\nabla \cdot (\mu \boldsymbol{A}) = 0$, so that

 $A \in X_{0\mu} = \{ b \in V_0 \mid (\mu b, \nabla m)_{L^2(D)} = 0, \ \forall m \in M_0 \}, \quad M_0 = H_0^1(D)$

Poincaré(–Steklov) inequality

 $\exists \check{\boldsymbol{C}}_{\mathsf{P},D} > 0 \text{ s.t. } \check{\boldsymbol{C}}_{\mathsf{P},D} \ell_D^{-1} \| \boldsymbol{b} \|_{\boldsymbol{L}^2(D)} \leq \| \nabla \times \boldsymbol{b} \|_{\boldsymbol{L}^2(D)}, \quad \forall \boldsymbol{b} \in \boldsymbol{X}_{0\mu}$

- ▶ Č_{P,D} depends on D and contrast factor µ_{♯/♭}
- in H¹₀(D), see [Poincaré 1894; Steklov 1897]

• On $X_{0\mu}$, the coercivity of $a(\cdot, \cdot)$ is robust w.r.t. μ_{b}

$$\begin{split} \Re(e^{i\theta}\boldsymbol{a}(\boldsymbol{b},\boldsymbol{b})) &\geq \mu_{\flat} \|\boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2} + \kappa_{\flat} \|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2} \geq \kappa_{\flat} \|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2} \\ &\geq \frac{1}{2}\kappa_{\flat}(\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2} + \check{\boldsymbol{C}}_{\mathsf{P},D}^{-2} \|\boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2}) \\ &\geq \frac{1}{2}\kappa_{\flat} \ell_{D}^{-2} \min(1,\check{\boldsymbol{C}}_{\mathsf{P},D}^{2}) \|\boldsymbol{b}\|_{\boldsymbol{H}(\mathsf{curl};D)}^{2} \end{split}$$

Maxwell		

Regularity pickup on **A**

► $\exists s > 0$ and \check{C}_D (depending on D and contrast factor $\mu_{\sharp/\flat}$) s.t.

 $\check{C}_D \ell_D^{-1} \| oldsymbol{b} \|_{oldsymbol{H}^{\mathfrak{s}}(D)} \leq \|
abla imes oldsymbol{b} \|_{oldsymbol{L}^2(D)}, \quad orall oldsymbol{b} \in oldsymbol{X}_{0\mu}$

with $\|\cdot\|_{H^s} = (\|\cdot\|_{L^2}^2 + \ell_D^{2s}|\cdot|_{H^s}^2)^{1/2}$ and Sobolev–Slobodeckij seminorm

▶ \implies **A** ∈ **H**^s(D), s > 0, and typically s < $\frac{1}{2}$

Proofs in [Jochmann 99] and [Bonito, Guermond, Luddens 13]

- earlier results by [Birman, Solomyak 87; Costabel 90] for constant μ

$$\boldsymbol{X}_0 = \{ \boldsymbol{b} \in \boldsymbol{V}_0 \mid \nabla \cdot \boldsymbol{b} = 0 \} \hookrightarrow \boldsymbol{H}^s(D)$$

with $s = \frac{1}{2}$ and $s \in (\frac{1}{2}, 1]$ for a Lipschitz polyhedron [Amrouche, Bernardi, Dauge, Girault 98]

イロト イポト イヨト イヨト

Maxwell		

Regularity pickup on $\nabla \times \boldsymbol{A}$

▶ Let $V = H(\operatorname{curl}; D)$, $M_* := \{q \in H^1(D) \mid (q, 1)_{L^2(D)} = 0\}$, and

 $\pmb{X}_{*\kappa^{-1}} = \{\pmb{b} \in \pmb{H}(\mathsf{curl}; \mathbf{D}) \mid (\kappa^{-1}\pmb{b}, \nabla \mathbf{m})_{\pmb{L}^2(\mathbf{D})} = \pmb{0}, \ \forall \mathbf{m} \in \mathbf{M}_*\}$

► $\exists s' > 0$ and \check{C}'_D (depending on D and contrast factor $\kappa_{\sharp/\flat}$) s.t. $\check{C}'_D \ell_D^{-1} \| \boldsymbol{b} \|_{\boldsymbol{H}^{s'}(D)} \leq \| \nabla \times \boldsymbol{b} \|_{\boldsymbol{L}^2(D)}, \quad \forall \boldsymbol{b} \in \boldsymbol{X}_{*\kappa^{-1}}$

▶ The field $\mathbf{R} = \kappa \nabla \times \mathbf{A}$ is in $\mathbf{X}_{*\kappa^{-1}}$, so that $\mathbf{R} \in \mathbf{H}^{s'}(D)$

- ► Multiplier property: $|\kappa^{-1}\boldsymbol{\xi}|_{\boldsymbol{H}^{\tau}(D)} \leq C_{\kappa^{-1}}|\boldsymbol{\xi}|_{\boldsymbol{H}^{\tau}(D)}, \forall \boldsymbol{\xi} \in \boldsymbol{H}^{\tau}(D)$
- Letting $\sigma := \min(s, s', \tau) \in (0, \frac{1}{2})$, we conclude that

 $A \in H^{\sigma}(D), \qquad \nabla \times A \in H^{\sigma}(D)$

(日)

Maxwell	Edge FEM	Analysis tools	Back to Maxwell	Elliptic PDEs

Finite element setting

- ▶ Shape-regular sequence of affine simplicial meshes $(T_h)_{h>0}$
- De Rham sequence for canonical FE spaces

$$P^{\mathrm{g}}(\mathcal{T}_h) \stackrel{\nabla}{\longrightarrow} \boldsymbol{P}^{\mathrm{c}}(\mathcal{T}_h) \stackrel{\nabla \times}{\longrightarrow} \boldsymbol{P}^{\mathrm{d}}(\mathcal{T}_h) \stackrel{\nabla}{\longrightarrow} P^{\mathrm{b}}(\mathcal{T}_h)$$

- Lagrange/Nédélec/Raviart–Thomas/dG FEM spaces
- conforming in $H^1(D)/H(\operatorname{curl}; D)/H(\operatorname{div}; D)/L^2(D)$
- degrees (k+1)/k/k/k

Similar sequence with BCs

$$P_0^{\mathrm{g}}(\mathcal{T}_h) \stackrel{\nabla}{\longrightarrow} \boldsymbol{P}_0^{\mathrm{c}}(\mathcal{T}_h) \stackrel{\nabla \times}{\longrightarrow} \boldsymbol{P}_0^{\mathrm{d}}(\mathcal{T}_h) \stackrel{\nabla \cdot}{\longrightarrow} P_0^{\mathrm{b}}(\mathcal{T}_h)$$

with $P_0^{\mathrm{g}}(\mathcal{T}_h) = P^{\mathrm{g}}(\mathcal{T}_h) \cap H_0^1(D)$, $P_0^{\mathrm{c}}(\mathcal{T}_h) = P^{\mathrm{c}}(\mathcal{T}_h) \cap H(\operatorname{curl}; D)$, etc.

▶ Unified notation: $P(\mathcal{T}_h), P_0(\mathcal{T}_h)$ with \mathbb{R}^q -valued functions, $q \in \{1, 3\}$

イロト イヨト イヨト イヨ

Edge FEM		

Periodic table of finite elements [Arnold & Logg 14]

Edge FEM		

Maxwell's equations

- ▶ Conforming edge FEM approximation in $V_{h0} = P_0^c(\mathcal{T}_h) \subset V_0$
- ▶ Discrete problem: Find $A_h \in V_{h0}$ s.t. $a(A_h, b_h) = \ell(b_h)$, $\forall b_h \in V_{h0}$
- The discrete problem is well-posed (Lax–Milgram Lemma)
- Main questions to be addressed
 - μ_b-robust coercivity in the discrete setting
 - error estimates for $\mathbf{A} \in \mathbf{H}^{\sigma}(D)$, $\nabla \times \mathbf{A} \in \mathbf{H}^{\sigma}(D)$, $\sigma \in (0, \frac{1}{2})$

Edge FEM		

Robust coercivity

Since ∇P^g₀(T_h) ⊂ P^c₀(T_h), we do have a discrete control on the divergence of A_h

 $\boldsymbol{A}_h \in \boldsymbol{X}_{h0\mu} = \{ \boldsymbol{b}_h \in \boldsymbol{V}_{h0} \mid (\mu \boldsymbol{b}_h, \nabla m_h)_{\boldsymbol{L}^2(D)} = 0, \ \forall m_h \in P^{\mathrm{g}}_0(\mathcal{T}_h) \}$

but $\boldsymbol{X}_{h0\mu}$ is not a subspace of $\boldsymbol{X}_{0\mu}$...

- One needs a discrete PS inequality in $X_{h0\mu}$
 - one can invoke a discrete compactness argument [Kikuchi 89; Caorsi, Fernandes, Raffetto 00; Monk & Demkowicz 01]
 - alternatively, one invokes commuting quasi-interpolation operators [Arnold, Falk & Winther 10]

	Edge FEM		
 1.1			

Error estimates

- The canonical interpolation operators commute with differential operators ... but have poor stability properties
- ▶ For edge elements, stability only holds in $H^{s}(D)$, s > 1 (d = 3)
 - ▶ using [Amrouche et al. 98] shows stability in $\{ \mathbf{v} \in \mathbf{H}^{s}(D), s > \frac{1}{2}, \nabla \times \mathbf{v} \in L^{p}(D), p > 2 \}$ [Boffi, Gastaldi 06]
 - regularity barrier $\overline{s} > \frac{1}{2}$ still remains ...
- To approximate fields in H^s(D), s > 0, we shall invoke averaging quasi-interpolation operators from [AE, Guemond, 15-17]

	Analysis tools	

FE analysis tools

• Commuting quasi-interpolation $\mathcal{J}_h : L^1(D; \mathbb{R}^q) \to P(\mathcal{T}_h)$

$$\|v - \mathcal{J}_h(v)\|_{L^p(D;\mathbb{R}^q)} \leq c \inf_{v_h \in P(\mathcal{T}_h)} \|v - v_h\|_{L^p(D;\mathbb{R}^q)}$$

- [Schöberl 01; Christiansen & Winther 08]
- Averaging quasi-interpolation $\mathcal{I}_h : L^1(D; \mathbb{R}^q) \to P(\mathcal{T}_h)$

 $\inf_{v_h\in P(\mathcal{T}_h)}\|v-v_h\|_{L^p(D;\mathbb{R}^q)}\leq \|v-\mathcal{I}_h(v)\|_{L^p(D;\mathbb{R}^q)}\leq c\,h^s|v|_{W^{s,p}(D)}$

▶ for *H*¹-conforming FEM [Clément 75; Scott, Zhang 90]

	Analysis tools	

Commuting quasi-interpolation

There exist operators $\mathcal{J}_h : L^1(D; \mathbb{R}^q) \to P(\mathcal{T}_h)$ s.t.

• \mathcal{J}_h leaves $P(\mathcal{T}_h)$ pointwise invariant $(\mathcal{J}_h \circ \mathcal{J}_h = \mathcal{J}_h)$

•
$$\|\mathcal{J}_h\|_{\mathcal{L}(L^p;L^p)}\leq c$$
, $orall p\in [1,\infty]$

• \mathcal{J}_h commutes with the standard differential operators

$$\begin{array}{cccc} H^{1}(D) & \stackrel{\nabla}{\longrightarrow} & H(\operatorname{curl}; D) & \stackrel{\nabla \times}{\longrightarrow} & H(\operatorname{div}; D) & \stackrel{\nabla \cdot}{\longrightarrow} & L^{2}(D) \\ & & \downarrow \mathcal{J}_{h}^{\mathrm{g}} & & \downarrow \mathcal{J}_{h}^{\mathrm{c}} & & \downarrow \mathcal{J}_{h}^{\mathrm{d}} & & \downarrow \mathcal{J}_{h}^{\mathrm{b}} \\ P^{\mathrm{g}}(\mathcal{T}_{h}) & \stackrel{\nabla}{\longrightarrow} & P^{\mathrm{c}}(\mathcal{T}_{h}) & \stackrel{\nabla \times}{\longrightarrow} & P^{\mathrm{d}}(\mathcal{T}_{h}) & \stackrel{\nabla \cdot}{\longrightarrow} & P^{\mathrm{b}}(\mathcal{T}_{h}) \end{array}$$

► Stability and polynomial invariance imply approximation

$$\|v - \mathcal{J}_h(v)\|_{L^p(D;\mathbb{R}^q)} \leq c \inf_{v_h \in P(\mathcal{T}_h)} \|v - v_h\|_{L^p(D;\mathbb{R}^q)}$$

A similar construction is possible with boundary prescription

$$\mathcal{J}_{h0}: L^1(D; \mathbb{R}^q) \to P_0(\mathcal{T}_h)$$

Alexandre Ern Edge FEM for Maxwell

	Analysis tools	

Main ideas of the construction

- See [Schöberl 01, 05; Christiansen 07, Christiansen & Winther 08]
- Compose canonical interpolation *Î_h* operator with some mollification operator *K_δ*, *δ* > 0

$$L^1(D; \mathbb{R}^q) \xrightarrow{\mathcal{K}_{\delta}} C^{\infty}(\overline{D}; \mathbb{R}^q) \xrightarrow{\widehat{\mathcal{I}}_h} P(\mathcal{T}_h)$$

• $\widehat{\mathcal{J}}_h := \widehat{\mathcal{I}}_h \circ \mathcal{K}_\delta$ achieves stability and commutation

- $\widehat{\mathcal{J}}_h$ is invertible on $P(\mathcal{T}_h)$ if $\delta \leq ch$, c small enough
- on shape-regular meshes, δ is a (smooth) space-dependent function []
- $\mathcal{J}_h := (\widehat{\mathcal{J}}_h|_{P(\mathcal{T}_h)})^{-1} \circ \widehat{\mathcal{J}}_h$ satisfies all the required properties
- Boundary conditions can be prescribed

	Analysis tools	

Shrinking-based mollification [AE, Guermond 16]

- \blacktriangleright Globally transversal field $\pmb{j}\in \pmb{C}^\infty(\mathbb{R}^d)$ to D [Hofmann, Mitrea, Taylor 07]
- ▶ Shrinking map $\varphi_{\delta} : \mathbb{R}^d \ni \mathbf{x} \mapsto \mathbf{x} \delta \mathbf{j}(\mathbf{x}) \in \mathbb{R}^d$: There is r > 0 s.t.

$$\varphi_{\delta}(D) + B(\mathbf{0}, \delta r) \subset D, \quad \forall \delta \in [0, 1]$$

- ► The shrinking technique avoids invoking extensions outside D
- Shrinking-based mollification operators inspired from [Schöberl 01]

$$\begin{split} (\mathcal{K}^{\mathrm{g}}_{\delta}f)(\boldsymbol{x}) &:= \int_{B(\boldsymbol{0},1)} \rho(\boldsymbol{y}) f(\varphi_{\delta}(\boldsymbol{x}) + (\delta r) \boldsymbol{y}) \, \mathrm{d} \boldsymbol{y} \\ (\mathcal{K}^{\mathrm{c}}_{\delta}\boldsymbol{g})(\boldsymbol{x}) &:= \int_{B(\boldsymbol{0},1)} \rho(\boldsymbol{y}) \mathbb{J}^{\mathsf{T}}_{\delta}(\boldsymbol{x}) \boldsymbol{g}(\varphi_{\delta}(\boldsymbol{x}) + (\delta r) \boldsymbol{y}) \, \mathrm{d} \boldsymbol{y}, \quad \text{etc.} \end{split}$$

with $\mathbb{J}_{\delta}(\mathbf{x})$ the Jacobian matrix of φ at $\mathbf{x} \in D$ and ρ is a smooth kernel supported in $B(\mathbf{0}, 1)$

Averaging quasi-interpolation

- Finite element generation
- Main result: no boundary prescription
- Main result with boundary prescription

Image: Image:

	Analysis tools	

Finite element generation

- ▶ Reference finite element $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ of degree $k \ge 0$
 - $\blacktriangleright \ \mathbb{P}_{k,d}(\widehat{K};\mathbb{R}^q) \subset \widehat{P} \subset W^{1,\infty}(\widehat{K};\mathbb{R}^q)$
 - reference shape functions { ∂_i}_{i∈N} and dof's { ∂_i}_{i∈N}
- For any mesh cell $K \in \mathcal{T}_h$, we consider
 - an affine geometric map $T_K : \widehat{K} \to K$
 - a functional map $\psi_{\mathcal{K}} : L^1(\mathcal{K}; \mathbb{R}^q) \to L^1(\widehat{\mathcal{K}}; \mathbb{R}^q)$ s.t.

$$\psi_{\mathcal{K}}(\boldsymbol{v}) = \mathbb{A}_{\mathcal{K}}(\boldsymbol{v} \circ \boldsymbol{T}_{\mathcal{K}})$$

for some matrix $\mathbb{A}_{K} \in \mathbb{R}^{d \times d}$ (Piola transformations)

• FE generation in each mesh cell $K \in \mathcal{T}_h$

$$(K, P_K, \Sigma_K), \quad P_K = \psi_K^{-1} \circ \widehat{P}, \quad \Sigma_K = \widehat{\Sigma} \circ \psi_K$$

 \implies local shape functions $\{\theta_{\mathcal{K},i}\}_{i\in\mathcal{N}}$ and dof's $\{\sigma_{\mathcal{K},i}\}_{i\in\mathcal{N}}$

Maxwell	Edge FEM	Analysis tools	Back to Maxwell	Elliptic PDEs

Finite element spaces

► Broken (or dG) FE space

$$\mathcal{P}^{\mathrm{b}}(\mathcal{T}_h) := \{ v_h \in L^{\infty}(D; \mathbb{R}^q) \mid v_{h|K} \in \mathcal{P}_K, \, \forall K \in \mathcal{T}_h \}$$

leading to $P^{g,b}(\mathcal{T}_h)$ for H^1 -conf. FE, $P^{c,b}(\mathcal{T}_h)$ for H(curl)-conf. FE, etc.

▶ H^{1} -, H(curl)-, and H(div)-conforming subspaces

$$\begin{split} & \mathcal{P}^{\mathrm{g}}(\mathcal{T}_{h}) = \{ \boldsymbol{v}_{h} \in \mathcal{P}^{\mathrm{g},\mathrm{b}}(\mathcal{T}_{h}) \mid \llbracket \boldsymbol{v}_{h} \rrbracket_{F} = 0, \; \forall F \in \mathcal{F}_{h}^{\circ} \} \\ & \boldsymbol{P}^{\mathrm{c}}(\mathcal{T}_{h}) = \{ \boldsymbol{v}_{h} \in \boldsymbol{P}^{\mathrm{c},\mathrm{b}}(\mathcal{T}_{h}) \mid \llbracket \boldsymbol{v}_{h} \rrbracket_{F} \times \boldsymbol{n}_{F} = \boldsymbol{0}, \; \forall F \in \mathcal{F}_{h}^{\circ} \} \\ & \boldsymbol{P}^{\mathrm{d}}(\mathcal{T}_{h}) = \{ \boldsymbol{v}_{h} \in \boldsymbol{P}^{\mathrm{d},\mathrm{b}}(\mathcal{T}_{h}) \mid \llbracket \boldsymbol{v}_{h} \rrbracket_{F} \cdot \boldsymbol{n}_{F} = \boldsymbol{0}, \; \forall F \in \mathcal{F}_{h}^{\circ} \} \end{split}$$

where \mathcal{F}_{h}° collects the mesh interfaces

	Analysis tools	

Fundamental property of face dof's

- Let $K \in \mathcal{T}_h$ be a mesh cell, let $F \in \mathcal{F}_K$ be a face of K
- ▶ Face unisolvence: \exists nonempty subset $\mathcal{N}_{K,F} \subset \mathcal{N}$ s.t., for all $p \in P_K$,

 $[\sigma_{\mathcal{K},i}(p) = 0, \forall i \in \mathcal{N}_{\mathcal{K},\mathcal{F}}] \iff [\gamma_{\mathcal{K},\mathcal{F}}(p) = 0]$

where $\gamma_{K,F}$ is one of the above trace operators from K to F

- ► This implies that for all $i \in \mathcal{N}_{K,F}$, there is a unique linear map $\sigma_{K,F,i} : P_{K,F} := \gamma_{K,F}(P_K) \to \mathbb{R}$ s.t. $\sigma_{K,i} = \sigma_{K,F,i} \circ \gamma_{K,F}$
- ▶ The fundamental property is that there is *c*, uniform, s.t.

 $|\sigma_{\mathcal{K},\mathcal{F},i}(q)| \leq c \, \|\mathbb{A}_{\mathcal{K}}\|_{\ell^2} \|q\|_{L^{\infty}(\mathcal{F};\mathbb{R}^t)} \qquad \forall q \in \mathcal{P}_{\mathcal{K},\mathcal{F}}, \; \forall i \in \mathcal{N}_{\mathcal{K},\mathcal{F}}$

This assumption is satisfied by all FE elements from de Rham complex (all degree, all type, all kind)

イロト イボト イヨト

	Analysis tools	

Two-step construction procedure

$$\mathcal{I}_h: L^1(D; \mathbb{R}^q) \xrightarrow{\mathcal{I}_h^{\sharp}} P^{\mathrm{b}}(\mathcal{T}_h) \xrightarrow{\mathcal{I}_h^{\mathrm{av}}} P(\mathcal{T}_h)$$

- First apply the projection operator \mathcal{I}_h^{\sharp} onto the **broken FE space**
 - L²-orthogonal or oblique projection
 - \mathcal{I}_h^{\sharp} enjoys local stability and approximation properties
- Then stitch the result by averaging dof's using $\mathcal{I}_h^{\mathrm{av}}$
 - the averaging step only handles discrete functions
- Some literature
 - nodal-averaging for scalar FEM has a long history [Oswald 93; Brenner 93; Hoppe, Wohlmuth 96; Karakashian, Pascal 03; Burman, AE 07 ...]
 - see also [Peterseim 14], [Kornhuber & Yserentant 16] for recent two-step construction in scalar-valued case

	Analysis tools	

Averaging operator (1)

- ▶ Recall the local shape functions $\theta_{K,i}$, $\forall (K,i) \in \mathcal{T}_h \times \mathcal{N}$
- ▶ Global shape functions φ_a , $\forall a \in \mathcal{A}_h$
 - connectivity array a : $\mathcal{T}_h \times \mathcal{N} \to \mathcal{A}_h$ s.t. $\varphi_{\mathsf{a}(K,i)|K} = \theta_{K,i}$
 - connectivity set $C_a := \{(K, i) \in \mathcal{T}_h \times \mathcal{N} \mid a(K, i) = a\}$
- $\mathcal{I}_h^{\mathrm{av}}: P^{\mathrm{b}}(\mathcal{T}_h) \to P(\mathcal{T}_h)$ is defined by averaging dof's

$$\mathcal{I}_{h}^{\mathrm{av}}(v_{h})(\boldsymbol{y}) = \sum_{\boldsymbol{a} \in \mathcal{A}_{h}} \left(\frac{1}{\#(\mathcal{C}_{\boldsymbol{a}})} \sum_{(K,i) \in \mathcal{C}_{\boldsymbol{a}}} \sigma_{K,i}(v_{h|K}) \right) \varphi_{\boldsymbol{a}}(\boldsymbol{y})$$

	Analysis tools	

Averaging operator (2)

Bound on averaging error

$$|v_h - \mathcal{I}_h^{\mathrm{av}}(v_h)|_{W^{m,p}(K;\mathbb{R}^q)} \leq c h_K^{\frac{1}{p}-m} \sum_{F \in \mathcal{F}_K^{\circ}} \|\llbracket v_h \rrbracket_F \|_{L^p(F;\mathbb{R}^t)}$$

for all $m \in \{0: k+1\}$, all $p \in [1, \infty]$, all $v_h \in P^{\mathrm{b}}(\mathcal{T}_h)$

- \mathcal{F}_{K}° is the collection of mesh interfaces sharing a dof with K
- A discrete trace inequality shows that $\mathcal{I}_h^{\text{av}}$ is L^p -stable on $\mathcal{P}^{\text{b}}(\mathcal{T}_h)$

 $\|\mathcal{I}_h^{\mathrm{av}}(\mathbf{v}_h)\|_{L^p(K;\mathbb{R}^q)} \leq c \, \|\mathbf{v}_h\|_{L^p(D_K;\mathbb{R}^q)}$

• D_K collects all the mesh cells sharing a dof with K

Maxwell	Edge FEM	Analysis tools	Back to Maxwell	Elliptic PDEs
Theorem				

 $\mathcal{I}_h: L^1(D; \mathbb{R}^q) \to P(\mathcal{T}_h)$

▶ leaves $P(T_h)$ pointwise invariant $(I_h \circ I_h = I_h)$

▶
$$\|\mathcal{I}_h\|_{\mathcal{L}(L^p;L^p)} \leq c$$
, $\forall p \in [1,\infty]$

has optimal local approximation properties

 $|v - \mathcal{I}_h(v)|_{W^{m,p}(K;\mathbb{R}^q)} \leq c \ h_K^{s-m} |v|_{W^{s,p}(D_K;\mathbb{R}^q)}$

for all $s \in [0, k+1]$ and $m \in \{0: \lfloor s \rfloor\}$, all $p \in [1, \infty)$ $(p \in [1, \infty]$ if $s \in \mathbb{N}$), all $K \in \mathcal{T}_h$, all $v \in W^{s,p}(D_K; \mathbb{R}^q)$

In particular, we infer that

$$\inf_{w_h \in P_0(\mathcal{T}_h)} \|v - w_h\|_{L^p(D;\mathbb{R}^q)} \le c \, h^s |v|_{W^{s,p}(D;\mathbb{R}^q)}$$

(日) (同) (三) (三)

	Analysis tools	

Polynomial approximation in D_K

$$\inf_{p\in\mathbb{P}_{k,d}}|v-p|_{W^{m,p}(D_{K})}\leq c\,h_{K}^{s-m}|v|_{W^{s,p}(D_{K})}$$

▶ Poincaré(-Steklov) in $W^{s,p}(D_K)$, $s \in (0,1)$ (direct proof)

 $\|v-\underline{v}_{D_{\mathcal{K}}}\|_{L^{p}(D_{\mathcal{K}})} \leq c h_{U}^{s}|v|_{W^{s,p}(D_{\mathcal{K}})}$

with $\underline{v}_{D_K} = \frac{1}{|D_K|} \int_{D_K} v \, \mathrm{d}x$

• Poincaré(–Steklov) in $W^{s,p}(D_K)$, s = 1

$$\|v - \underline{v}_{D_{K}}\|_{L^{p}(D_{K})} \leq c h_{K}|v|_{W^{1,p}(D_{K})}$$

- ▶ D_K possibly nonconvex, cannot use the result from [Bebendorf 03]
- break D_K into sub-simplices and combine PS in simplices with multiplicative trace inequality (see also [Veeser & Verfürth 12])

	Analysis tools	

Main result with boundary prescription

Two-step construction

$$\mathcal{I}_{h0}: L^1(D; \mathbb{R}^q) \xrightarrow{\mathcal{I}_h^{\sharp}} P^{\mathrm{b}}(\mathcal{T}_h) \xrightarrow{\mathcal{I}_{h0}^{\mathrm{av}}} P_0(\mathcal{T}_h)$$

 BCs enforced at the second stage (on polynomials) by zeroing out the components of *I*^{av}_{h0}(*v*_h) attached to boundary dof's

► Theorem

- \mathcal{I}_{h0} leaves $P_0(\mathcal{T}_h)$ pointwise invariant
- $\|\mathcal{I}_{h0}\|_{\mathcal{L}(L^p;L^p)} \leq c, \ \forall p \in [1,\infty]$
- best approximation: for all $s \in [0, k + 1]$

 $\inf_{w_h \in P_0(\mathcal{T}_h)} \|v - w_h\|_{L^p} \le \begin{cases} c \ h^s |v|_{W^{s,p}}, & \forall v \in W^{s,p}_{0,\gamma}(D; \mathbb{R}^q) \text{ if } sp > 1\\ c \ h^s \ell_D^{-s} \|v\|_{W^{s,p}}, & \forall v \in W^{s,p}(D; \mathbb{R}^q) \text{ if } sp < 1 \end{cases}$

where $W^{s,p}_{0,\gamma}(D;\mathbb{R}^q)=\{v\in W^{s,p}(D;\mathbb{R}^q)\mid \gamma(v)=0\}$

Iocalized versions and bounds on higher-order norms available

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

	Analysis tools	

Comments on the case sp < 1

$$\inf_{w_h \in P_0(\mathcal{T}_h)} \|v - w_h\|_{L^p} \le c \, h^s \ell_D^{-s} \|v\|_{W^{s,p}(D;\mathbb{R}^q)}$$

• v is not smooth enough to have a trace on ∂D , it can even blow up

- Yet, we can achieve an *h*-optimal decay estimate of best approximation w.r.t. discrete functions with boundary prescription
- The reason is that v cannot blow up too fast (as ρ^{-s} , $\rho = d(\cdot, \partial D)$)
 - see [Grisvard 85]
 - estimate cannot be localized close to ∂D
- This result seems to be new even in the H¹-conforming setting
 - see [Ciarlet Jr. 13] for Scott–Zhang operator and sp > 1

	Back to Maxwell	

Robust coercivity for Maxwell's equations

- ► Recall $\boldsymbol{X}_{0\mu} = \{ \boldsymbol{b} \in \boldsymbol{V}_0 \mid (\mu \boldsymbol{b}, \nabla m)_{\boldsymbol{L}^2(D)} = 0, \forall m \in H_0^1(D) \}$ and that $\check{C}_{\mathsf{P},D} \ell_D^{-1} \| \boldsymbol{b} \|_{\boldsymbol{L}^2(D)} \leq \| \nabla \times \boldsymbol{b} \|_{\boldsymbol{L}^2(D)}, \quad \forall \boldsymbol{b} \in \boldsymbol{X}_{0\mu}$
- ▶ Recall $\boldsymbol{X}_{h0\mu} = \{ \boldsymbol{b}_h \in \boldsymbol{V}_{h0} \mid (\mu \boldsymbol{b}_h, \nabla m_h)_{\boldsymbol{L}^2(D)} = 0, \forall m_h \in P_0^{\mathrm{g}}(\mathcal{T}_h) \}$ and that $\boldsymbol{X}_{h0\mu}$ is not a subspace of $\boldsymbol{X}_{0\mu}$
- ► Letting $\check{C}_{\mathsf{P},\mathcal{T}_h} := \mu_{\sharp/b}^{-1} \|\mathcal{J}_{h0}^c\|_{\mathcal{L}(\boldsymbol{L}^2;\boldsymbol{L}^2)}^{-1}\check{C}_{\mathsf{P},D}$, we have

 $\check{\boldsymbol{C}}_{\mathsf{P},\mathcal{T}_h} \ell_D^{-1} \|\boldsymbol{b}_h\|_{\boldsymbol{L}^2(D)} \leq \|\nabla \times \boldsymbol{b}_h\|_{\boldsymbol{L}^2(D)}, \quad \forall \boldsymbol{b}_h \in \boldsymbol{X}_{h0\mu}$

ENPC and INRIA

Alexandre Ern Edge FEM for Maxwell

	Back to Maxwell	

H(curl)-error estimate

▶
$$\boldsymbol{A}_h \in \boldsymbol{X}_{h0\mu}$$
 is s.t. $a(\boldsymbol{A}_h, \boldsymbol{b}_h) = \ell(\boldsymbol{b}_h), \forall \boldsymbol{b}_h \in \boldsymbol{X}_{h0\mu}$

• Discrete PS inequality yields μ_{\flat} -robust coercivity on $X_{h0\mu}$

Standard techniques lead to

$$\| \boldsymbol{A} - \boldsymbol{A}_h \|_{\boldsymbol{H}(\operatorname{curl};D)} \lesssim \inf_{\boldsymbol{b}_h \in \boldsymbol{X}_{h0\mu}} \| \boldsymbol{A} - \boldsymbol{b}_h \|_{\boldsymbol{H}(\operatorname{curl};D)}$$

 $\lesssim \inf_{\boldsymbol{b}_h \in \boldsymbol{V}_{h0}} \| \boldsymbol{A} - \boldsymbol{b}_h \|_{\boldsymbol{H}(\operatorname{curl};D)}$

where hidden constants depend on the contrast factors $\mu_{\sharp/\flat}$, $\kappa_{\sharp/\flat}$, and the magnetic Reynolds number $\gamma_{\rm m} = \mu_{\sharp} \ell_D^{-2} \kappa_{\sharp}^{-1}$

	Back to Maxwell	

Convergence rates

Convergence rates follow from

$$\begin{split} \inf_{\boldsymbol{b}_{h}\in\boldsymbol{V}_{h0}} \|\boldsymbol{A}-\boldsymbol{b}_{h}\|_{\boldsymbol{H}(\operatorname{curl};D)}^{2} \leq \|\boldsymbol{A}-\mathcal{J}_{h0}^{c}(\boldsymbol{A})\|_{\boldsymbol{H}(\operatorname{curl};D)}^{2} \\ &= \|\boldsymbol{A}-\mathcal{J}_{h0}^{c}(\boldsymbol{A})\|_{\boldsymbol{L}^{2}(D)}^{2} + \ell_{D}^{2}\|\nabla\times\boldsymbol{A}-\nabla\times\mathcal{J}_{h0}^{c}(\boldsymbol{A})\|_{\boldsymbol{L}^{2}(D)}^{2} \\ &= \|\boldsymbol{A}-\mathcal{J}_{h0}^{c}(\boldsymbol{A})\|_{\boldsymbol{L}^{2}(D)}^{2} + \ell_{D}^{2}\|\nabla\times\boldsymbol{A}-\mathcal{J}_{h0}^{d}(\nabla\times\boldsymbol{A})\|_{\boldsymbol{L}^{2}(D)}^{2} \\ &\leq c \inf_{\boldsymbol{b}_{h}\in\boldsymbol{P}_{0}^{c}(\mathcal{T}_{h})} \|\boldsymbol{A}-\boldsymbol{b}_{h}\|_{\boldsymbol{L}^{2}(D)}^{2} + c'\ell_{D}^{2} \inf_{\boldsymbol{d}_{h}\in\boldsymbol{P}_{0}^{d}(\mathcal{T}_{h})} \|\nabla\times\boldsymbol{A}-\boldsymbol{d}_{h}\|_{\boldsymbol{L}^{2}(D)}^{2} \\ &\leq c \|\boldsymbol{A}-\mathcal{I}_{h0}^{c}(\boldsymbol{A})\|_{\boldsymbol{L}^{2}(D)}^{2} + c'\ell_{D}^{2}\|\nabla\times\boldsymbol{A}-\mathcal{I}_{h0}^{d}(\nabla\times\boldsymbol{A})\|_{\boldsymbol{L}^{2}(D)}^{2} \end{split}$$

and we can now use the decay estimates for averaging quasi-int.

Maxwell	Edge FEM	Back to Maxwell	Elliptic PDEs
L^2 -erro	r estimate		

- Recall that $\mathbf{A} \in \mathbf{H}^{\sigma}(D)$, $\nabla \times \mathbf{A} \in \mathbf{H}^{\sigma}(D)$, $\sigma \in (0, \frac{1}{2})$
- Main steps of the proof for L^2 -error estimate
 - duality argument + bound on curl-preserving lifting
 - main obstruction: dual solution is only in $H^{\sigma}(D)$
 - see [Zhong, Shu, Wittum, Xu 09] with assumption $\sigma > \frac{1}{2}$
- ▶ New result [AE, Guermond 17]

 $\|\boldsymbol{A} - \boldsymbol{A}_h\|_{\boldsymbol{L}^2} \lesssim \inf_{\boldsymbol{v}_h \in \boldsymbol{V}_{h0}} (\|\boldsymbol{A} - \boldsymbol{v}_h\|_{\boldsymbol{L}^2} + h^{\sigma} \ell_D^{-\sigma} \|\boldsymbol{A} - \boldsymbol{v}_h\|_{\boldsymbol{H}(\operatorname{curl})})$

where hidden constant depends on $\mu_{\sharp/\flat}$, $\kappa_{\sharp/\flat}$, $\kappa_{\sharp} {\it C}_{\kappa^{-1}}$, $\gamma_{\rm m}$

		Elliptic PDEs

Elliptic PDEs with contrasted coefficients

▶ Lipschitz polyhedron *D* in \mathbb{R}^d , source term $f \in L^q(D)$, $q > \frac{2d}{2+d}$

- ▶ q > 1 if d = 2, $q = \frac{6}{5}$ if d = 3, one can always take q = 2
- $L^q(D) \hookrightarrow (H^1(D))'$ (minimal requirement is $q > \frac{2d}{2+d}$)
- ▶ $\lambda \in L^{\infty}(D)$, uniformly positive and pcw. constant on a Lipschitz polyhedral partition of D
 - possible extensions: λ tensor-valued and pcw. Lipschitz
- ▶ Weak formulation: Find $u \in H_0^1(D)$ s.t., for all $w \in H_0^1(D)$,

$$a(u,w) := \int_D \sigma(u) \cdot \nabla w \, \mathrm{d}x = \int_D f w \, \mathrm{d}x =: \ell(w), \qquad \sigma(u) := \lambda \nabla u$$

• Modest elliptic regularity pickup: $u \in H^{1+r}(D)$, r > 0

		Elliptic PDEs

Nonconforming approximation

- ▶ Shape-regular sequence of (simplicial affine) meshes $(T_h)_{h>0}$
- ▶ Mesh faces $\mathcal{F}_h = \mathcal{F}_h^\circ \cup \mathcal{F}_h^\partial$: interfaces \mathcal{F}_h° and boundary faces \mathcal{F}_h^∂
 - $F \in \mathcal{F}_h$ is oriented by the unit normal vector \boldsymbol{n}_F
 - $\llbracket \cdot \rrbracket_F$ is the jump across $F \in \mathcal{F}_h^\circ$ or the value at $F \in \mathcal{F}_h^\partial$

• Broken polynomial space $(k \ge 0)$

 $P_k^{\mathrm{b}}(\mathcal{T}_h) = \{ v_h \in L^{\infty}(D) \mid v_{h|K} \in \mathbb{P}_k, \, \forall K \in \mathcal{T}_h \}$

- ▶ Broken gradient $\nabla_h : (H^1(D) + P_k^{\mathrm{b}}(\mathcal{T}_h)) \to L^2(D; \mathbb{R}^d)$
 - $\nabla_h v = \nabla v \text{ on } H^1(D)$
 - $(\nabla_h v_h)_{|K} = \nabla(v_{h|K})$ on $P_k^{\mathrm{b}}(\mathcal{T}_h)$, for all $K \in \mathcal{T}_h$
- Broken bilinear form on $P_k^{\rm b}(\mathcal{T}_h) \times P_k^{\rm b}(\mathcal{T}_h)$

$$a_h(v_h, w_h) := \int_D \sigma_h(v_h) \cdot \nabla_h w_h \, \mathrm{d} x, \qquad \sigma_h(v_h) := \lambda \nabla_h v_h$$

イロト 不得 トイヨト イヨト

Examples of nonconforming methods (I)

Crouzeix–Raviart finite elements

Edge FEM

- $\blacktriangleright V_h := P_{1,0}^{\scriptscriptstyle \mathrm{CR}}(\mathcal{T}_h) = \{ v_h \in P_1^{\scriptscriptstyle \mathrm{b}}(\mathcal{T}_h) \mid \int_F \llbracket v_h \rrbracket_F \, \mathrm{d}s = 0, \, \forall F \in \mathcal{F}_h \}$
- discrete problem: Find $u_h \in V_h$ s.t., for all $w_h \in V_h$,

$$b_h(u_h, w_h) := a_h(u_h, w_h) = \ell(w_h)$$

- ► Nitsche's boundary penalty with conforming FEM
 - $\blacktriangleright V_h := P_k^{\mathrm{g}}(\mathcal{T}_h) = \{ v_h \in P_k^{\mathrm{b}}(\mathcal{T}_h) \mid \llbracket v_h \rrbracket_F = 0, \, \forall F \in \mathcal{F}_h^{\circ} \}$
 - functions in V_h can be nonzero at the boundary ∂D
 - ▶ discrete problem: Find $u_h \in V_h$ s.t., for all $w_h \in V_h$,

$$b_h(u_h, w_h) := a(u_h, w_h) - n_h(u_h, w_h) + s_h(u_h, w_h) = \ell(w_h)$$

consistency term (one can symmetrize)

$$n_h(\mathbf{v}_h, \mathbf{w}_h) = \sum_{F \in \mathcal{F}_h^{\partial}} \int_F (\mathbf{n} \cdot \nabla \mathbf{v}_h) \mathbf{w}_h \, \mathrm{d}s$$

► stabilization $s_h(v_h, w_h) = \sum_{F \in \mathcal{F}_h^{\partial}} \eta_0 \frac{\lambda_{K_F}}{h_F} \int_F v_h w_h \, \mathrm{d}s \left(\eta_0 \text{ large enough}\right)$

Maxwell

Examples of nonconforming methods (II)

Discontinuous Galerkin

Edge FEM

• discrete problem: find $u_h \in V_h := P_k^{\mathrm{b}}(\mathcal{T}_h)$ s.t., for all $w_h \in V_h$,

 $b_h(u_h, w_h) := a_h(u_h, w_h) - n_h(u_h, w_h) + s_h(u_h, w_h) = \ell(w_h)$

consistency term (one can symmetrize)

$$n_h(\mathbf{v}_h, \mathbf{w}_h) = \sum_{F \in \mathcal{F}_h} \int_F \mathbf{n}_F \cdot \{\nabla_h \mathbf{v}_h\}_{\theta} \llbracket \mathbf{w}_h \rrbracket \, \mathrm{d}\mathbf{s}$$

▶ stabilization $s_h(v_h, w_h) = \sum_{F \in \mathcal{F}_h} \eta_0 \frac{\lambda_F}{h_F} \int_F \llbracket v_h \rrbracket \llbracket w_h \rrbracket \, \mathrm{d}s, \ \lambda_F := \frac{2\lambda_{K_l} \lambda_{K_r}}{\lambda_{K_l} + \lambda_{K_r}}$ for all $F = \partial K_l \cap \partial K_r \in \mathcal{F}_h^\circ, \ \eta_0$ large enough (independent of λ)

Robustness w.r.t. contrast: weighted averages

 $\{\phi\}_{\theta} = \theta_{F,K_l}\phi_{|K_l} + \theta_{F,K_r}\phi_{|K_r}, \quad \theta_{F,K_l}, \theta_{F,K_r} \in [0,1], \quad \theta_{F,K_l} + \theta_{F,K_r} = 1$

- $\theta_{F,K_l} = \theta_{F,K_r} = \frac{1}{2}$ recovers usual averages
- ► **diffusion-dependent averages**: $\theta_{F,K_l} = \frac{\lambda_{K_r}}{\lambda_{K_l} + \lambda_{K_r}}$, see [Dryja 03; Burman & Zunino 06; Di Pietro, AE, JLG 08]

Alexandre Ern Edge FEM for Maxwell

Maxwell

Quasi-optimal error estimate

- Quasi-minimal regularity space $V_{\rm s} \subset V$, assume $u \in V_{\rm s}$
 - $V_{\sharp} := V_{\mathrm{S}} + V_h \ni (u u_h)$, with norm $\|\cdot\|_{V_{\sharp}}$ (unbounded in V)
 - ► discrete norm equivalence: $\|v_h\|_{V_{\sharp}} \leq c_{\sharp} \|v_h\|_{V_h}$, $\forall v_h \in V_h$
- ▶ **Bounded extension** of n_h to n_{\sharp} on $V_{\sharp} \times V_h$ s.t. $\forall w_h \in V_h$,

$$\begin{split} n_{\sharp}(v_h, w_h) &= n_h(v_h, w_h), & \forall v_h \in V_h \\ n_{\sharp}(v, w_h) &= \int_D \left\{ (\nabla \cdot \boldsymbol{\sigma}(v)) w_h + \boldsymbol{\sigma}(v) \cdot \nabla_h w_h \right\} \mathrm{d}x, \quad \forall v \in V_\mathrm{s} \\ |n_{\sharp}(v, w_h)| &\leq \omega \|v\|_{V_{\sharp}} \|w_h\|_{V_h} \end{split}$$

Quasi-optimal error estimate

$$\|u-u_h\|_{V_{\sharp}} \leq c \inf_{v_h \in V_h} \|u-v_h\|_{V_{\sharp}}$$

See also [Zanotti PhD Thesis 17; Veeser & Zanotti, 17-]

- energy-norm estimates, $f \in H^{-1}(D)$
- ▶ requires to modify RHS $\ell(w_h)$ (using, e.g., bubble functions)
- assumes (so far) constant diffusion coefficient λ

Alexandre Ern Edge FEM for Maxwell

Choice of space $V_{\rm s}$

• Let $\boldsymbol{\sigma} \in L^2(D; \mathbb{R}^d)$ with $\nabla \cdot \boldsymbol{\sigma} \in L^2(D)$

- $(\boldsymbol{\sigma} \cdot \boldsymbol{n}_{\mathcal{K}})$ can be given a meaning in $H^{-\frac{1}{2}}(\partial \mathcal{K})$ by Green's formula
- this object cannot be localized to the faces composing ∂K
- The classical route is to set $V_{s} := H^{1+r}(D)$, $r > \frac{1}{2}$
 - $[u \in V_{\mathrm{S}}] \Longrightarrow [\sigma(u)|_{F} \in L^{1}(F; \mathbb{R}^{d}), \forall F \in \mathcal{F}_{h}]$
 - ► one can set $n_{\sharp}(v, w_h) := \sum_{F \in \mathcal{F}_h} \int_F \mathbf{n}_F \cdot \{\nabla v\}_{\theta} \llbracket w_h \rrbracket \, \mathrm{d}s, \, \forall v \in V_{\mathrm{S}}$
 - the ansatz $r > \frac{1}{2}$ is **unrealistic** for heterogeneous diffusion
- Letting p > 2, $q > \frac{2d}{2+d}$, we are going to work in

 $V_{\scriptscriptstyle \mathrm{S}} := \{ v \in H^1_0(D) \mid \boldsymbol{\sigma}(v) \in L^p(D; \mathbb{R}^d), \; \nabla \cdot \boldsymbol{\sigma}(v) \in L^q(D) \}$

► realistic choice since $[u \in H^{1+r}(D), r > 0] \Longrightarrow [\sigma(v) \in L^p(D; \mathbb{R}^d)]$ and $\nabla \cdot \sigma(u) = f \in L^q(D)$

$$\|v\|_{V_{\sharp}}^{2} = \sum_{K \in \mathcal{T}_{h}} \lambda_{K} \|\nabla v\|_{L^{2}}^{2} + \lambda_{K}^{-1} (h_{K}^{d(\frac{1}{2} - \frac{1}{p})} \|\sigma\|_{L^{p}} + h_{K}^{1 + d(\frac{1}{2} - \frac{1}{q})} \|\nabla \cdot \sigma\|_{L^{q}})^{2}$$

イロト 不得 ト イヨト イヨト

		Elliptic PDEs

Face-to-cell lifting operators

- ▶ Let $K \in \mathcal{T}_h$ be a mesh cell (outward normal \boldsymbol{n}_K), face $F \subset \partial K$
- ► ∃ stable face-to-cell lifting operator based on zero-extension

$$L_F^{\kappa}: W^{rac{1}{t},t'}(F)
ightarrow W^{1,t'}(K) \hookrightarrow W^{1,p'}(K) \cap L^{q'}(K)$$

with $t \in (2, p]$ be s.t. $q \geq \frac{td}{t+d}$

- ▶ Let $\sigma \in L^p(K; \mathbb{R}^d)$, p > 2, with $\nabla \cdot \sigma \in L^q(K)$, $q > \frac{2d}{2+d}$
- ► Local normal component $(\boldsymbol{\sigma} \cdot \boldsymbol{n}_K)_{|F} \in (W^{\frac{1}{t},t'}(F))'$: $\forall \phi \in W^{\frac{1}{t},t'}(F)$

$$\langle (\boldsymbol{\sigma} \cdot \boldsymbol{n}_{K})_{|F}, \phi \rangle := \int_{K} \left(\boldsymbol{\sigma} \cdot \nabla L_{F}^{K}(\phi) + (\nabla \cdot \boldsymbol{\sigma}) L_{F}^{K}(\phi) \right) \mathrm{d}x$$

Maxwell	Edge FEM	Back to Maxwell	Elliptic PDEs
Devising	n_{\sharp}		

- ► Recall $V_{\scriptscriptstyle S} := \{ v \in H^1_0(D) \mid \sigma(v) \in L^p(D; \mathbb{R}^d), \ \nabla \cdot \sigma(v) \in L^q(D) \}$
- Recall $V_{\sharp} = V_{\text{s}} + V_{h}$ with $V_{h} = P_{k}^{\text{b}}(\mathcal{T}_{h})$

▶ For all $(v, w_h) \in V_{\sharp} \times V_h$, we set

$$n_{\sharp}(v, w_h) := \sum_{F \in \mathcal{F}_h} \sum_{K \in \mathcal{T}_F} \epsilon_{K,F} \theta_{K,F} \langle (\boldsymbol{\sigma}(v)_{|K} \cdot \boldsymbol{n}_K)_{|F}, \llbracket w_h \rrbracket \rangle$$

with $\epsilon_{K,F} = \mathbf{n}_K \cdot \mathbf{n}_F = \pm 1$ and diffusion-dependent weights $\theta_{K,F}$

Boundedness (robust w.r.t. λ)

 $|n_{\sharp}(\mathbf{v}, \mathbf{w}_{h})| \leq \omega \|\mathbf{v}\|_{V_{\sharp}} s_{h}(\mathbf{w}_{h}, \mathbf{w}_{h})^{\frac{1}{2}}$

 $(s_h \text{ uses harmonic average } \lambda_F \text{ and is controlled by stability norm})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Edge FEM	Analysis tools	Back to Maxwell	Elliptic PDEs

The two key properties

► The following holds true:

$$n_{\sharp}(v_{h}, w_{h}) = n_{h}(v_{h}, w_{h}), \qquad \forall v_{h} \in V_{h} \quad (A)$$
$$n_{\sharp}(v, w_{h}) = \int_{D} \left\{ (\nabla \cdot \boldsymbol{\sigma}(v)) w_{h} + \boldsymbol{\sigma}(v) \cdot \nabla_{h} w_{h} \right\} \mathrm{d}x, \quad \forall v \in V_{\mathrm{s}} \quad (B)$$

- Property (A) results from elementary manipulations (we work with pcw. polynomials)
- ▶ Property (B) is a bit more subtle
 - being based on a "density argument", it is "part of the folklore"
 - we believe it deserves a rigorous proof
 - this proof completes previous literature "claims", e.g., [Cai, Ye, Zhang, SINUM, 2011, p. 1767]

$$\langle \nabla \phi \cdot \boldsymbol{n}, \boldsymbol{g} \rangle = \langle \nabla \phi \cdot \boldsymbol{n}, \boldsymbol{v}_{\boldsymbol{g}} \rangle_{\partial \kappa} = (\Delta \phi, \boldsymbol{v}_{\boldsymbol{g}})_{\kappa} + (\nabla \phi, \nabla \boldsymbol{v}_{\boldsymbol{g}})_{\kappa}$$

(first equality could be a definition and second one could deserve a proof)

Image: A mathematical states and a mathem

Maxwell	Edge FEM		Back to Maxwell	Elliptic PDEs				
The density argument Based on commuting mollification operators 								

$$\begin{aligned} (\mathcal{K}^{\mathrm{g}}_{\delta} \mathbf{v})(\mathbf{x}) &:= \int_{B(\mathbf{0},1)} \zeta(\mathbf{y}) \mathbf{v}(\varphi_{\delta}(\mathbf{x}) + (\delta\rho)\mathbf{y}) \,\mathrm{d}\mathbf{y} \\ (\mathcal{K}^{\mathrm{c}}_{\delta} \theta)(\mathbf{x}) &:= \int_{B(\mathbf{0},1)} \zeta(\mathbf{y}) \mathbb{J}^{\mathrm{T}}_{\delta}(\mathbf{x}) \theta(\ldots) \,\mathrm{d}\mathbf{y} \\ (\mathcal{K}^{\mathrm{d}}_{\delta} \sigma)(\mathbf{x}) &:= \int_{B(\mathbf{0},1)} \zeta(\mathbf{y}) \mathrm{d}\mathbf{t}(\mathbb{J}_{\delta}(\mathbf{x})) \mathbb{J}^{-1}_{\delta}(\mathbf{x}) \sigma(\ldots) \,\mathrm{d}\mathbf{y} \\ (\mathcal{K}^{\mathrm{b}}_{\delta} f)(\mathbf{x}) &:= \int_{B(\mathbf{0},1)} \zeta(\mathbf{y}) \mathrm{d}\mathbf{t}(\mathbb{J}_{\delta}(\mathbf{x})) f(\ldots) \,\mathrm{d}\mathbf{y} \end{aligned}$$

 $\mathbb{J}_{\delta}(\textbf{\textit{x}})$: Jacobian of arphi at $\textbf{\textit{x}}\in D$; ζ : smooth kernel in B(0,1)

▶ Proof of key property (B): evaluate in two ways (Green's formula)

$$\sum_{F \in \mathcal{F}_h} \sum_{K \in \mathcal{T}_F} \epsilon_{K,F} \theta_{K,F} \langle (\mathcal{K}^{\mathrm{d}}_{\delta}(\boldsymbol{\sigma}(\boldsymbol{v}))_{|K} \cdot \boldsymbol{n}_K)_{|F}, \llbracket w_h \rrbracket \rangle$$

and pass to limit $\delta \to 0$ using commuting pty. $\nabla \cdot (\mathcal{K}^d_{\delta}(\sigma)) = \mathcal{K}^b_{\delta}(\nabla \cdot \sigma)$

			Elliptic PDEs
Summa	ary		

- New quasi-interpolation operators for FEM best-approximation
- ▶ Optimal H(curl)- and L^2 -estimates for Maxwell's equations with Sobolev regularity H^s , $s \in (0, \frac{1}{2})$
- ► Nonconforming error estimates for elliptic PDEs with Sobolev regularity H^{1+s}, s ∈ (0, ½)

Thank you for your attention