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Problem and motivation

• Multistage and multi agent stochastic optimization problems
are naturally large scale

• Decomposition-coordination methods make it possible
to tackle such problems numerically

• Time Consistency is known
to be a key ingredient
for dynamic programming

• We introduce Agent Consistency
that is a key ingredient
for parallel computing
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Idea of Time Consistency in a deterministic setting

• You are offered the choice of two
desserts with a fixed meal

• You have preferences
I over desserts
I over main course+dessert

• You are Time Consistent if after the main course,
you stick to your previous choice of dessert
as if one individual is two consecutive agent

• Time consistency is a form of stability over time

• Time consistency is closely related to dynamic programming
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Idea of Agent Consistency in a deterministic case

• You are now offered the choice of
two main courses and two desserts

• You have preferences
I over main courses
I over desserts
I over main course+dessert

• You are Agent Consistent if the menu that you prefer
is composed of the main course that you prefer and the
dessert that you prefer as if one individual is two parallel agent

• Agent consistency is a form of stability over product set

• Agent consistency is closely related to parallel computing
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Our goals

• We first define an abstract framework for Time Consistency
that connects a disparate literature and prove
an equivalence between Time Consistency and Nested Formula

• We recover dynamic programming

• We generalize Time Consistency to
Consistency for binary relations and define Agent Consistency

• We recover parallel computing

• We apply our results to equilibrium on energy markets
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Definition of Weak Time Consistency

• Let H (headset), T (tailset), A and F be four sets
• Let A (aggregator) and F (factor) be the two mappings:

A : H× T→ A︸ ︷︷ ︸
head+tail assessment

, F : T→ F︸ ︷︷ ︸
tail assessment

Definition (Weak Time Consistency)
The couple aggregator-factor (A,F ) is
said to satisfy Weak Time Consistency
(WTC) if we have

F (t) = F (t ′)⇒ A(h, t) = A(h, t ′)
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Examples

• The mapping F averages the end of the process
• Consider two aggregators:

I A1 averages the entire process
I A2 returns the maximum of the process

• (A1,F ) are WTC but not (A2,F )
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Characterization of Weak Time Consistency

Theorem (Nested decomposition of WTC mappings)
The couple aggregator-factor (A,F ) is WTC if and only if
there exist a mapping SF ,A such that the following Nested Formula
between mappings holds true:

A(h, t) = SF ,A(h,F (t)
)

Remark
The mapping SF ,A is unique on H× Im(F ) and called
subaggregator. It is defined by

SF ,A : H× Im(F )→ A
(h, f ) 7→ SF ,A(h, f ) =

{
A(h, t) | F (t) = f

}
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Application to dynamic programming

• Under technical assumptions (monotony and infimum
achieved), the following dynamic programming equation holds
true

∧
h∈H,t∈T

A(h, t)︸ ︷︷ ︸
global optimization

= ∧
h∈H

SF ,A(h, ∧
t∈T

F (t)
)

︸ ︷︷ ︸
sequential optimization

1. We first solve ∧
t∈T

F (t) and denote the solution f ]

2. Then we optimize ∧
h∈H

SF ,A(h, f ]
)
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A disparate literature under this framework

Article Objects Head Tail Assessment

T
im

e
Co

ns
ist
en
cy

︷︸
︸︷ Kreps and Porteus Lottery Lottery
from 1 to s

Lottery from
s + 1 to T

Expected utility

Epstein and Schneider Lottery Lottery
from 1 to s

Lottery from
s + 1 to T

Not necessarily
expected utility

Ruszczyński Process Process
from 1 to s

Process from
s + 1 to T

Dynamic
risk measure

Artzner et al. Process Process
from 1 to τ

Process from
τ to T ,
τ stopping time

Coherent
risk measure

N
es
te
d

Fo
rm

ul
a

︷︸︸
︷ Shapiro Process Process

from 1 to s
Process from
s + 1 to T

Coherent
risk measure

Ruszczynski and Shapiro Process Process
from 1 to s

Process from
s + 1 to T

Coherent
risk measure

De Lara and Leclère Process Process
from 1 to s

Process from
s + 1 to T

Dynamic
risk measure

Table 1: Sketch of papers selected on Time Consistency and Nested
Formulas
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Additional assumption to Time Consistency among authors

Article Monotony Translation
invariance

Convexity
T
im

e
Co

ns
ist
en
cy

︷︸
︸︷ (Kreps and Porteus, 1978) Yes No Yes

(Kreps and Porteus, 1979) Yes No Yes
(Epstein and Schneider, 2003) Yes No Yes

(Ruszczyński, 2010) Yes Yes No
(Artzner, Delbaen, Eber, Heath, and Ku, 2007) Yes Yes Yes

N
es
te
d

Fo
rm

ul
a ︷︸︸︷ (Shapiro, 2016) Yes Yes Yes

(Ruszczynski and Shapiro, 2006) Yes Yes Yes
(De Lara and Leclère, 2016) Yes No No

Table 2: Most common assumptions in the selection of papers on Time
Consistency and Nested Formula

Under technical assumptions on the mappings A and F ,
(detailed in Gérard, De Lara, and Chancelier (2017))
we can show that the subaggregator is monotone, continuous,
convex, positively homogeneous and/or translation invariant
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From equality to inequality: Usual and Strong Time Consis-
tency

Weak ⇐ Usual ⇐ Strong

Definition

F (t) = F (t′)

⇓

A(h, t) = A(h, t′)

F (t) ≤ F (t′)

⇓

A(h, t) ≤ A(h, t′)

h ≤ h′
,

F (t) ≤ F (t′)

⇓

A(h, t) ≤ A(h′
, t′)

Characterization
in terms of

subaggregator
SF,A is a mapping

SF,A is a mapping
increasing

in its second argument

SF,A is a mapping
increasing

in both arguments

Table 3: Characterization of Time Consistency in terms of
subaggregator
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Conclusion on Time Consistency

• Time Consistency is a notion widely discussed
in various fields, ranging from economics to mathematics

• We have presented a framework of Weak Time Consistency
which allows us to prove under minimal assumptions
an equivalence with a Nested Formula,

• We have derived analytical properties of the subaggregator

• We believe that this makes the notion easy to handle
and that it opens the way for extensions
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Agent consistency as extension of Time Consistency

• Time Consistency relies upon two dimensions
that we are going to generalize

• First the set H plays a particular role and represents
elements “that occurs before” elements of the set T.
We now consider sets in a symmetric way

• Second, we have used mappings to compare elements.
We now use binary relations

We want to obtain a formula of the kind

∧
(sa∈Sa)a∈A

A
(
(sa)a∈A

)
︸ ︷︷ ︸

global optimization

= S
((
∧

sa∈Sa
Fa(sa)

)
a∈A

)
︸ ︷︷ ︸

parallel optimization
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Consistency for binary relations

Definition

• A is a set of agents
• For each a ∈ A, (Sa)a∈A is a set
• For each a ∈ A, Sa is a relation on the

set SA
• R is a relation on the product set Πa∈ASa

The tuple of relations
(
(Sa)a∈A,R

)
is said to be consistent if

Πa∈ASa︸ ︷︷ ︸
product of relations

⊂ R︸︷︷︸
relation over product set

When the tuple is consistent, we say that
relations (Sa)a∈A are factors of the relation R
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Time Consistency included in Consistency

Proposition

Let A : H× T→ A and F : T→ F be two mappings.
(A,F ) is WTC if and only if the triplet (∆H,T/F ,H× T/A) is consistent
where

• ∆H is the equality relation on H,

• T/F is the equivalence relation on T induced F , that is,

t T t ′ ⇔ F (t) = F (t ′)

• H× T/A is the equivalence relation on H× T induced by A, that is,

(h, t) R (h′, t ′)⇔ A(h, t) = A(h′, t ′)
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Strong agent consistency (SAC)

• Let (Sa)a∈A be a collection of sets
• Let A and (Fa)a∈A be sets equipped with orders denoted by ≤
• Let A : Πa∈ASa → A and Fa : Sa → Fa be mappings

Definition (Definition of strong agent consistency)
The tuple (A, (Fa)a∈A) is said to satisfy Strong Agent Consistency
(SAC) if we have

Fa(sa) ≤ Fa(s ′
a)⇒ A

(
(sa)a∈A

)
≤ A

(
(s ′

a)a∈A

)

17/29



Parallel computing with Strong Agent Consistency

Proposition (Nested decomposition for SAC mappings)
The tuple (A, (Fa)a∈A) is Strong Agent Consistent if and only if
there exists a mapping S increasing in all arguments such that
we have the Nested Formula

A
(
(sa)a∈A

)
= S

((
Fa(sa)

)
a∈A

)

Proposition
Under technical assumptions (monotony and infimum achieved),
the following parallel computing equation holds true

∧
(sa∈Sa)a∈A

A
(
(sa)a∈A

)
︸ ︷︷ ︸

global optimization

= S
((
∧

sa∈Sa
Fa(sa)

)
a∈A

)
︸ ︷︷ ︸

parallel optimization
18/29



Outline

Time consistency

Agent Consistency

Applications of Agent Consistency to Equilibrium

Ingredients of the problem

Agent Consistency and Equilibrium with risk neutral agents

Agent Consistency and Equilibrium with risk averse agents

Conclusion

18/29



Remark on economy

• In economy, prices are instrument used to coordinate agents
to share a ressource

• Does the prices play also a role to make the preferences of a
group of agent consistent ?
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Applications of Agent Consistency to Equilibrium

Ingredients of the problem

Agent Consistency and Equilibrium with risk neutral agents

Agent Consistency and Equilibrium with risk averse agents
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Ingredients of the problem

Figure 1: Illustration of the toy
problem

• Two time-step market

• One good traded

• Two agents:
producer and consumer

• Finite number of scenarios
ω ∈ Ω

• Consumption
on second stage only

In the remain of this talk, we consider that agents are price takers
i.e. they act as if they have no influence on the price.
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Producer’s welfare and Consumer’s welfare

• Step 1: production of x at a marginal cost cx
• Step 2: random production xr at uncertain marginal cost crxr

Wp(ω)︸ ︷︷ ︸
producer’s welfare

= − 1
2cx

2︸ ︷︷ ︸
cost step 1

− 1
2cr (ω)xr (ω)2︸ ︷︷ ︸

cost step 2

• Step 1: no consumption ∅

• Step 2: random consumption y at marginal utility V− ry

Wc(ω)︸ ︷︷ ︸
consumer’s welfare

= V(ω)y(ω)− 1
2r(ω)y(ω)2︸ ︷︷ ︸

consumer’s utility at step 2
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Social planner’s welfare

The welfare of the social planner is defined by

Wp(ω)︸ ︷︷ ︸
Producer’s welfare

+ Wc(ω)︸ ︷︷ ︸
Consumer’s welfare
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Applications of Agent Consistency to Equilibrium

Ingredients of the problem

Agent Consistency and Equilibrium with risk neutral agents

Agent Consistency and Equilibrium with risk averse agents
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Equilibrium and social planner problems
(See Arrow and Debreu or Uzawa)

Given a probability P on Ω, a risk neutral social planner problem
and an risk neutral equilibrium are defined by

max
x ,xr ,y

EP[Wp + Wc ]︸ ︷︷ ︸
expected welfare

s.t. x + xr (ω)︸ ︷︷ ︸
supply

= y(ω)︸ ︷︷ ︸
demand

max
x ,xr

EP
[
Wp + π

(
x + xr

)]
︸ ︷︷ ︸

expected profit

max
y

EP
[
Wc − πy

]︸ ︷︷ ︸
expected utility

0 ≤ x + xr (ω)− y(ω) ⊥ π(ω) ≥ 0︸ ︷︷ ︸
market clears
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Decomposing social’s planner criterion

When we dualize the constraint, the social planner’s problem for a
system of price π reads

max
x ,xr ,y

EP
[
Wp + Wc + π(x + xr − y)

]
and we naturally have

EP
[
Wp + Wc + π(x + xr − y)

]︸ ︷︷ ︸
translated central planner problem

=

EP
[
Wp + π

(
x + xr

)]
︸ ︷︷ ︸

producer problem

+ EP
[
Wc − πy

]︸ ︷︷ ︸
consumer problem
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Behind coordination, agent consistency ?

• Modifying the criterion of the social planner make it possible
to align preferences of social planner
with the ones of producer and consumer

• We obtain strong agent consistency

• For equilibrium prices π
] , the term π

](x + xr − y)
vanishes at the optimum
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Applications of Agent Consistency to Equilibrium

Ingredients of the problem

Agent Consistency and Equilibrium with risk neutral agents
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Equilibrium and social planner problems

Given three risk measures F, Fp and Fc
1, a risk averse social

planner problem and an risk averse equilibrium are defined by

max
x ,xr ,y

F[Wp + Wc ]︸ ︷︷ ︸
risk adjusted welfare

s.t. x + xr (ω)︸ ︷︷ ︸
supply

= y(ω)︸︷︷︸
demand

max
x ,xr

Fp

[
Wp + π

(
x + xr

)]
︸ ︷︷ ︸

risk adjusted profit

max
y

Fc
[
Wc − πy

]︸ ︷︷ ︸
risk adjusted consumption

0 ≤ x + xr (ω)− y(ω) ⊥ π(ω) ≥ 0︸ ︷︷ ︸
market clears

• When we dualize does price π go inside Fsp ?

• If so, is Fsp
(
Wc + Wp + π(x + xr − y)

)
decomposable ?

1A risk measure is numerical mapping F : Ω → R
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Consumer is insensitive to the choice of risk measure

• If Fc is monotonic, consumer can optimize scenario per
scenario and we have latitude to chose the risk measure Fc

max
y

Fc
[
Wc − πy

]︸ ︷︷ ︸
risk adjusted consumption

m
∀ω ∈ Ω , max

y(ω)
Wc(ω)− π(ω)y(ω)︸ ︷︷ ︸
scenario independant

• An idea: assume that the risk measure Fp has the form

Fp(X ) = inf
Q∈Q

EQ[X ]

does there exists Q] to apply risk neutral case ?
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Conclusion

• In this talk we have
I presented a general framework of Time Consistency adapted to

dynamic programming
and we have shown an equivalence with Nested Formula

I presented a more general framework of
Consistency for binary relations adapted parallel computing

• ongoing work
I discuss connections between coordination by price and

consistency

More results can be found
in https://arxiv.org/abs/1711.08633
and in my future PhD thesis.
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