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Why are we studying decomposition methods

e Multistage stochastic optimization problems (SOP)
are large scale due to

» the number of scenarios
» the number of time steps
» the number of agents, units

@ Decomposition methods can make such problems more tractable

@ Having in mind possible applications to the management of electricity
networks under risk (black-out, failures, reliability...),
what happens when the traditional mathematical expectation
is replaced by a risk measure?
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The path we are going to follow

In the talk, we develop two resolution methods
@ by time decomposition (nested formulation)

@ by scenario decomposition (duality)
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Outline

@ Working out the example of a risk averse newsvendor problem

© Resolution by time decomposition

© Resolution by dualization of the non-anticipativity constraints
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Two stage newsvendor

Outline of the section

o Working out the example of a risk averse newsvendor problem
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Presentation of the two stage newsvendor
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Cost function

We consider the following cost function:

i(ug, u1,d) =co g —pmin{ug,d
J(uo, ur,d) =co ug pmin{uo, d}

order t=0

+c up —pmin{uy, d — min{ug, d
1 1 P {1 {uo }}

order t=1 unsatisfied demand
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How we express the non-anticipativity constraints

@ We consider a first control ug € U
to express that it does not depend on D;
we denote that by
UO = U({®7 Q})

e We consider a recourse control U, € L0
because it is allowed to depend on D;
we denote that by

U, 2 o(D)
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Introduction of a risk measure

We denote by IF a risk measure
e F[X] = Ep[X]: risk neutral case
o F[X] = max,ecq X (w): worst case

o Conditional Value-at-risk definition

Ep[(X —s)"]

CVAR3[X] :5.2%[2{ T

+s} , Be[0,1]
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Risk averse formulation with non-anticipativity constraints

risk measure controls demand
. =~ . —~ = =
min o F [ Jj (w,U;, D )]
Uo < U’ U1 cU criterion

non-anticipativity constraints
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Statement of the problem
What will follow

@ On a toy problem, we have presented
» how we formulate a risk averse problem
» the CVAR risk measure for numerical applications
@ Now we develop methods to solve more general
stochastic optimization problems under risk

» by time decomposition
» by scenario decomposition
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Assumptions for the two decompositions methods

We consider the probability space (2, F,P) where
@ The set Q is finite
@ The probability P charges every point of Q
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Time decomposition

Outline of the section

© Resolution by time decomposition
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Temporal structure and statement of the problem

Temporal structure of information

We consider two o —fields

FoC T, Fo#T1

We write a two stage optimization problem

risk measure
. /\ .
min F [j(UO,Ul, w) ]
UyeUg, U, €UF —_———
controls uncertainty

subject to non-anticipativity constraints

UO = 970
s.t.{ U1 =
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Time consistency is an extension of tower property

Remark
With ¥y C F1, we have the following tower property

Ep[U] = Ep [EP[EP[U | F1] | %H

Definition
A dynamic risk measure (I, Fo,F1) has the time consistency property if

FlU] =F[ TFol[U] ]:F[]Fo[ F;[U] H,VUGUQ

Fo—measurable F1—measurable
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Time decomposition in the risk neutral case

Proposition (Time decomposition)
When Fy C F1, the problem

min Ep|j(U,, U;, W
Uyelg, U, ey P[J( 01 )]

UO = SFO

is equivalent to

E]p[ min E]p[ min E[p[j(Uo,Ul, w) | ?1] ’ CJFOH

up€Up u1 €U

Algorithm: Backward resolution and dynamic programming
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LR TNl From risk neutral to risk averse case

Extension of time decomposition to the risk averse case

Proposition
] I'f.rfo cH

o if there exists a dynamic risk measure (F,Fo,[F1)
which is time consistent

o if (F,Fo) are monotonous

min Fij(U,, U, W
Uy €U, U, €03 [J( 01 )]

UO = SFO
“‘{ U, <=5

is equivalent to

IF{ min FO[ min Fy [j(uo, u1, W)}H

up€Up u1€Uy
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LR TNl From risk neutral to risk averse case

Comment on time decomposition

@ Conclusion

» We have extended the time decomposition method
from the risk neutral to the risk averse case

@ Perspectives

» It can be difficult to exhibit time consistent dynamic risk measures
» We look for weaker assumptions
that however make possible a dynamic programming equation
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Scenario decomposition

Outline of the section

9 Resolution by dualization of the non-anticipativity constraints
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Scenario decomposition

From non-anticipativity to measurability constraints

@ Time decomposition requires Fy C F1 to arrive to a nested formulation
@ We no longer require this assumption for scenario decomposition

@ The constraints

Uojffo
U]_jg'l

are now called measurability constraints
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Linearising measurability constraints
Statement of the SOP

@ In the risk-neutral case, we rewrite the measurability constraints as
min Ep(j(U,, U, W)
UyeUg, U, 1P I, Uy, W)

oo EelUp | 5] = U
T\ Bl | T = U

@ Primal problem

min max Ep[j(UO, U, W)] + Z 7'l',-(EIE”[U,' | Fi] - U,-)
U, Uy mo,m1 ic{0,1}

@ Dual problem

max min Ep[j(Uo, U, W)] + Z W;(EIP[U,' | Fi] - Ui)
70,1 Ug,Uy ic{0,1}
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SISO ETTINC T LA Linearising measurability constraints

Resolution by dualization in the risk-neutral case

Proposition

Under technical assumptions, primal and dual problems are equivalent.
They are also equivalent to

max E [ min i(ug, ur, W
moE(R™)2,my €(R"M)? ¥ UoEUo,U1€U1J( 071 )
+ (Ep[my | Fo] — m,) uo
+ (Bplmy | Fa] — )

Scheme of the algorithm (Progressive hedging)

@ For fixed multiplier 7, the problem is solved scenario by scenario
o Update of the multiplier 7
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YU ETINC T ENA I From risk neutral case to risk averse case

Statement of the problem in the risk averse case

min Flj(U,, U, W
UyeUg, U, €Ug [J( 0r 1 )]

s't.{ Ep[U, | Fo] = U,
Ep[U, | F1] = U,
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YU ETINC T ENA I From risk neutral case to risk averse case

Dualization in the risk averse case

Proposition

If the risk measure F has the following form (coherent risk measure)
F[U] = Eq[U
[U] = max Eq[U]

with Qp a closed convex set of probability laws and under technical
assumptions, primal and dual problems are equivalent to

. , d
max max Ep{ min  j(uo, vz, W)@
mHE(RM)2 ) €(R"M )2 Qs up€Uo,u1 €U dP

+ (E[p[ﬂ'o | .rfo] — TFO)UO
+ (Bplmy | Fa] — )

v
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YU ETINC T ENA I From risk neutral case to risk averse case

Comment on scenario decomposition

@ Conclusion

» We have extended the scenario decomposition method
from the risk neutral to the risk averse case

@ Perspectives
» We want to use scenario decomposition to solve multi-agents problems
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YU ETINC T ENA I From risk neutral case to risk averse case

Conclusion and perspectives

@ Conclusion

» We studied stochastic optimization problems with risk and time
» We presented two results of decomposition in the risk averse case

@ Perspectives
» We are currently working on time consistent risk measures
and their extensions to arrive at nested formulations
» We are trying to extend time and scenario decompositions
to solve multi-agent problems
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