A Non-Local Transport Equation modelling Dislocations Dynamics

Amin Ghorbel, Cermics-ENPC

CANUM 2006

A joint work with Régis Monneau

http://cermics.enpc.fr/~ghorbel
1. Presentation of the Physical Model
2. First Main Result
3. Main Ideas for Proof of the First Result
4. Error Estimate
5. Numerical Simulations
6. Conclusion and Perspectives
Dislocations are lines defects in a crystal material (Hirth & Lothe, 1992).

The jumps of $E(u)$ correspond to the positions of dislocations.

Figure: Representation of dislocations with the function $E(u)$
Presentation of the Physical Model

\[
\begin{align*}
\frac{\partial u}{\partial t} (x, t) &= c[u](x, t) \frac{\partial u}{\partial x} (x, t) \quad \text{in } \mathbb{R} \times (0, +\infty) \\
c[u](x, t) &= c^{\text{ext}}(x) + \int_{\mathbb{R}} c^0(x') E \left((u(x - x', t)) \right) \, dx' \\
u(x, 0) &= u^0(x) \quad \text{in } \mathbb{R}
\end{align*}
\] (1)

where \(E \) is the floor function.

Dislocations move with a non-local velocity \(c[u] \). It is the sum of two terms:

- \(c^{\text{ext}} \) represents the exterior stress created by obstacles (such as precipitates, other defects, ...).
- The second term is non-local and represents the elastic interior stress created by all the dislocations in the material.
We make the following assumptions for the exterior stress c^{ext} and the kernel c^0:

$$\begin{cases}
 c^{\text{ext}} \in W^{1,\infty}(\mathbb{R}) & \text{such that } c^{\text{ext}}(x+1) = c^{\text{ext}}(x) \text{ in } \mathbb{R}, \\
 c^0 \in C^\infty_0(\mathbb{R}) & \text{such that } c^0(x) = c^0(-x) \text{ and } \int_{\mathbb{R}} c^0(x) \, dx = 0.
\end{cases} \tag{2}$$

We consider the initial condition $u^0 \in \text{Lip}(\mathbb{R})$ such that for $x \in \mathbb{R}$

$$u^0(x+1) = u^0(x) + P \quad \text{and} \quad 0 < b_0 \leq \frac{\partial u^0}{\partial x} \leq B_0 < +\infty \quad \text{a.e.} \tag{3}$$

with b_0 and B_0 some constants and $P \in \mathbb{N} \setminus \{0\}$. A natural case to study the solutions of (1) is the continuous viscosity solutions (Barles, 1994).

Theorem 1

Under Assumptions (2) and (3), there exists a unique continuous viscosity solution $u \in W^{1,\infty}_{\text{loc}}(\mathbb{R} \times (0, +\infty))$ of (1) such that

$$u(x+1, t) = u(x, t) + P \quad \forall (x, t) \in \mathbb{R} \times (0, +\infty). \tag{4}$$
We prove the previous theorem in two steps.

1. First, we prove the result for a short time (Alvarez and al., 2005; Ghorbel and al., 2005) using a fixed point theorem. Given \(T > 0 \) and a function \(\nu \) satisfying (4), we consider the function \(w = \phi(\nu) \) satisfying (4), solution of

\[
\frac{\partial w}{\partial t}(x, t) = c[\nu](x, t) \frac{\partial w}{\partial x}(x, t) \quad \text{in } \mathbb{R} \times (0, T).
\]

(5)

For \(T \) chosen sufficiently small, we prove that the map \(\phi \) is a contraction in a well chosen space.

2. Secondly, we repeat this short time result on a sequence of time intervals of lengths \(T_n \) decreasing to zero, such that \(\sum_{n \in \mathbb{N}} T_n = +\infty \).
Error Estimate

Given a mesh size $\Delta x, \Delta t$ and a lattice $l_d = \{(i\Delta x, n\Delta t); \ i \in \mathbb{Z}, \ n \in \mathbb{N}\}, (x_i, t_n)$ denotes the node $(i\Delta x, n\Delta t)$ and $v^n = (v^n_i)_i$ the values of the numerical approximation of the continuous solution $u(x_i, t_n)$.

$$v^0_i = u^0(x_i), \quad v^{n+1}_i = v^n_i + \Delta t \ c_i(v^n) \times \begin{cases} \frac{v^n_{i+1} - v^n_i}{\Delta x} & \text{if } c_i(v^n) \geq 0 \\ \frac{v^n_i - v^n_{i-1}}{\Delta x} & \text{if } c_i(v^n) < 0 \end{cases}$$ (6)

We choose $\Delta x = \frac{1}{K}, K \in \mathbb{N} \setminus \{0\}$ because of the 1-periodicity in space. We denote $c^\text{ext}_i = c^\text{ext}(x_i)$ which satisfies $c^\text{ext}_{i+K} = c^\text{ext}_i$. The discrete velocity is

$$c_i(v^n) = c^\text{ext}_i + \sum_{l \in \mathbb{Z}} c^0_i \ E(v^n_{i-l}) \ \Delta x$$ (7)

where

$$c^0_i = \frac{1}{\Delta x} \int_{l_i} c^0(x) \ dx \quad \text{and} \quad l_i = \left[x_i - \frac{\Delta x}{2}, x_i + \frac{\Delta x}{2} \right].$$ (8)
We assume the CFL (Courant, Friedrichs, Levy) condition. Then

Theorem 2

there exists two constants $T, C > 0$ such that

$$\sup_{i \in \mathbb{Z}} |u(i\Delta x, n\Delta t) - v^n_i| \leq C\sqrt{\Delta x} \quad \text{for all } n \leq \frac{T}{\Delta t}.$$

Main Idea of Proof of Theorem 2

We apply the technical reasoning of Alvarez and *al.*, 2005.
Figure: Linear: $\Delta x = 0.01$, $\Delta t = 2.438 \times 10^{-3}$
Dynamics of several dislocations through obstacles

Figure: Trapping: $\Delta x = 0.01$, $\Delta t = 1.239 \times 10^{-3}$
Figure: Pile-Up: $\Delta x = 0.01, \Delta t = 1.102 \times 10^{-3}$
Dynamics of several dislocations through obstacles

Figure: Pile-Up: $\Delta x = 0.01$, $\Delta t = 1.10219 \times 10^{-3}$
Conclusion and Perspectives

- Homogenization of a large number of dislocations through obstacles.

- Friction of dislocations.

- Homogenization of walls of dislocations. Joint works with P. Hoch (CEA) and R. Monneau (Cermics).