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Motivation

Non-magnetic Hamiltonian for N-electrons:

H(v) =
N∑

i=1

−1
2

∆i︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N

|ri − rj |−1

︸ ︷︷ ︸
interaction energy

+
N∑

i=1

v(ri )︸ ︷︷ ︸
external potential

.

Example: For Helium placed at the origin,

H = −1
2

∆1 −
1
2

∆2︸ ︷︷ ︸
kinetic energy

− 2
|r1|
− 2
|r2|︸ ︷︷ ︸

attraction with He

+
1

|r1 − r2|︸ ︷︷ ︸
electronic interaction

H(v) is linear and acts on the fermionic space
∧N

i=1 L2(R3). Its domain is
∧N

i=1 H1(R3):

Ψ ∈
N∧

i=1

H1(R3) =⇒ Ψ(rp(1), rp(2), . . . , rp(N)) = ε(p)Ψ(r1, r2, . . . , rN).

Problem: Ψ lives in R3N !
Example: 10 DOFs/direction, Uranium (N = 92): 103×92 DOFs

Impossible for a computer
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Density Functional Theory

Usually, one main object of interest is the ground state energy,

E(v) = min
Ψ∈

∧
H1,‖Ψ‖L2 =1

〈Ψ|H(v)|Ψ〉.

We have
〈Ψ|H(v)|Ψ〉 = 〈Ψ|T + W |Ψ〉+

∫
R3

v(r)ρ(r) d3r

with the electronic density

ρΨ(r) := N
∫
R3(N−1)

|Ψ(r, r2, . . . , rN)|2 d3r2 . . .d3rN

so that

E(v) = inf
ρ∈IN


∫

vρ+ inf
Ψ∈

∧
H1(R3),ρΨ=ρ

{〈Ψ|T + W |Ψ〉}︸ ︷︷ ︸
F (ρ)


Question: What is the set IN ? (question of representability)
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Theorem of Hohenberg-Kohn

Theorem (Hohenberg-Kohn 65)

If Ψ1 (resp. Ψ2) is a ground state for H(v1) (resp. H(v2)), with v1 6= v2, then ρ1 6= ρ2.

Corollary : There exists a map ρ→ v → Ψ.

Proof (very easy)
Recall that

〈Ψ|H(v)|Ψ〉 = 〈Ψ|T + W |Ψ〉+

∫
R3

v(r)ρ(r) d3r

Assume the non degeneracy of the ground state, and suppose that ρ1 = ρ2 := ρ, so that

〈Ψ1|H(v1)|Ψ1〉 < 〈Ψ2|H(v1)|Ψ2〉 = 〈Ψ2|H(v2)|Ψ2〉+ 〈Ψ2|H(v1)− H(v2)|Ψ2〉

or
E(v1) < E(v2) +

∫
(v1(r)− v2(r)) ρ(r) d3r.

In a similar way, we get

E(v2) < E(v1) +

∫
(v2(r)− v1(r)) ρ(r) d3r

which is a contradiction!
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Density Functional Theory with HK theorem

According to the Hohenberg-Kohn theorem, there is a map ρ→ Ψ, so that we can work
with the variable ρ ∈ L1(R3) instead of Ψ ∈

∧N
i=1 H1(R3):

We have transform the linear problem on a high dimensional space:

inf
Ψ∈

∧N
i=1 H1(R3),‖Ψ‖L2 =1

{〈Ψ|T + W + V |Ψ〉}

into the non linear one on a three dimensional space:

inf
ρ∈IN

{∫
vρ+ F (ρ)

}
with F (ρ) = inf

Ψ∈
∧N

i=1 H1(R3),‖Ψ‖L2 =1
{〈Ψ|T + W |Ψ〉}

and both problems are equivalent.

Problems:

We do not know an explicit form for F (ρ)
But we know some very accurate approximations of F (large literature).

We do not know an explicit form for IN (question of representability).
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Representability

What is the space IN ?
According to the Hohenberg-Kohn theorem, we should introduce

VN = {v measurable, H(v) has a unique ground state}

and

AN =

{
Ψ ∈

N∧
i=1

H1(R3), ‖Ψ‖L2 = 1, ∃v ∈ VN , ψ is the ground state of H(v)

}

to finally take
Iv

N =
{
ρ ∈ L1(R3), ∃Ψ ∈ AN , ρ = ρΨ

}
.

This problem is called the v -representability, and is very difficult. We prefer to take the
N-representability:

IN =

{
ρ ∈ L1(R3), ∃Ψ ∈

N∧
i=1

H1(R3), ‖Ψ‖L2 = 1, ρ = ρΨ

}

Remark : Of course, Iv
N ( IN , so that

inf
ρ∈In

F (ρ) ≤ inf
ρ∈Iv

n
F (ρ)
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N-representability

Theorem (Gilbert ’75, Lieb ’81)

IN =

{
ρ ∈ L1(R3) ∩ L3(R3), ρ ≥ 0,

∫
ρ = N,

√
ρ ∈ H1(R3)

}
.

Remarks:

IN is a convex set (while Iv
N is not).

F (ρ) is well-defined on In:

F (ρ) = inf
Ψ,Ψ−→ρ

〈Ψ|T + W |Ψ〉
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N-representability (proof)

Theorem (Gilbert ’75, Lieb ’81)

IN =

{
ρ ∈ L1(R3) ∩ L3(R3), ρ ≥ 0,

∫
ρ = N,

√
ρ ∈ H1(R3)

}
.

Idea of the proof (Harriman).
If {Φ1, . . . ,ΦN} is in H1 and is a L2-orthonormal, then

Ψ(r1, r2, . . . , rN) =
1√
N!

det (Φi (rj ))1≤i,j≤N satisfies Ψ ∈
N∧

i=1

H1(R3) and ‖Ψ‖L2 = 1.

For this Ψ, we can calculate

ρΨ(r) =
N∑

i=1

|Φi (r)|2

We choose

Φk(r) =

√
ρ(r)
N
· exp(2πik f (r))

where f is carefully chosen to ensure orthogonality.
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We want to do the same work for the magnetic case

Before that, let us introduce some new mathematical objects
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One body density matrices

For Ψ(r1, r2, . . . , rN) ∈
∧N

i=1 H1(R3) such that ‖Ψ‖L2 = 1, we introduce the one body
density matrix

γΨ(x , y) = N
∫
R3(N−2)

Ψ(x , x2, . . . xN)Ψ(y , x2, . . . , xN) dx2 . . .dxN

Remarks:
We have ρΨ(x) = γΨ(x , x)

γ(y , x) = γ(x , y)∫
γ(x , x) = N

Now, we think of γ as an operator acting on L2(R3) via

(γf )(x) =

∫
R3
γ(x , y)f (y)dy .

Example: If Ψ(x1, . . . xN) =
1√
N

det (Φi (xj )), then

γ(x , y) =
N∑

i=1

Φi (x)Φi (y)

and, as an operator, γ is the projector on the space spanned by {Φ1, . . . ,Φn}.
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Mixed states

The set of γ we can obtain with this method is the set of projectors on N-dimensional
subspace of H1(R3):

γ ∈ PN := {γ ∈ S(L2(R3)), γ is a projector, Tr (γ) = N, Tr (−∆γ) <∞}

where

Tr (γ) =

∫
R3
γ(x , x)dx and Tr (−∆γ) =

N∑
i=1

‖∇Φi‖2L2 .

Now, note that the map γ −→ ρ is linear (ρ(x) = γ(x , x)), and that, according to
N-representability, the image of PN is exactly IN . Because IN is a convex set, the image
of the convex hull of PN is also IN .

We define the set of mixed states as the convex hull of PN :

DN := {γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (−∆γ) <∞}

This space is very useful for finite temperature systems: it allows Boltzmann statistic
superposition of states (different from quantum superposition).
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Mixed states (2)

Set of mixed states:

DN := {γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (−∆γ) <∞}

According to the spectral theorem, we can write, for γ ∈ DN ,

γ(x , y) =
∞∑
i=1

niΦi (x)Φi (y), 0 ≤ ni ≤ 1,
∞∑
i=1

ni = N

where Φi is a base of H1(R3) (for the L2 scalar product).

With this notation,

ρ(x) =
∞∑
i=1

ni |φ(x)|2 and Tr (−∆γ) =
∞∑
i=1

ni‖∇Φi‖2L2

Remark: The condition 0 ≤ ni ≤ 1 may be interpreted as the Pauli principle, stating that
maximum one fermion can be at a given state.

It is useful to work with mixed states, and DN is convex while PN is not
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Magnetic Case

Finally, we can see how to translate the DFT arguments
into Hamiltonian with a magnetic field
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Magnetic Hamiltonian

According to the Dirac equation, the Hamiltonian for N-electrons is

H(v ,A) =
N∑

i=1

1
2

(
σi ·

(
−i∇i +

1
c
A(ri )

))2

︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N

|ri − rj |−1

︸ ︷︷ ︸
interaction energy

+
N∑

i=1

v(ri )︸ ︷︷ ︸
external potential

It is linear, and acts on the fermionic space
∧N

i=1 H1(R3,C2):

Ψ ∈
N∧

i=1

H1(R3,C2) has 2N components :


Ψ(r1, ↑, r2, ↑, . . . , rN , ↑)
Ψ(r1, ↑, r2, ↑, . . . , rN , ↓)

...
Ψ(r1, ↓, r2, ↓, . . . , rN , ↓)


and still satisfies

Ψ(rp(1), αp(1), rp(2), αp(2), . . . , rp(N), αp(N)) = ε(p)Ψ(r1, α1, r2, α2, . . . rN , αN).

A is the magnetic potential vector (recall that rot(A) = B is the magnetic field), and σi

contains the Pauli-matrices acting on the i-th spin.
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Mixed states

We changed the Hilbert space, it is now

H = L2(R3,C2) := {Φ = (φ↑, φ↓) ∈ L2(R3), ‖Φ‖H <∞}

with
〈Φ|Ψ〉 =

∫
R3

(
φ↑(x)ψ↑(x) + φ↓(x)ψ↓(x)

)
dx .

For instance, for one-body density matrices are acting on this Hilbert space. We write

γ(x , y) =

(
γ↑↑ γ↑↓

γ↓↑ γ↓↓

)
(x , y) with γαβ(x , y) = γ(xα, yβ) =

∞∑
i=1

niφ
α
i (x)φβi (y)

and the set of mixed states is

D̃N := {γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (−∆γ) <∞}.

The Pauli matrices are also acting on this Hilbert space. We have

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

David Gontier Magnetic DFT April 26th 2013 16 / 23



Magnetic DFT

This time, we write :

〈Ψ|H(v ,A)|Ψ〉 = 〈Ψ|T + W |Ψ〉

+

∫ (
v(r) +

1
2
|A(r)|2

c2

)
ρ(r)d3r +

∫
R3

A(r) · jp(r) d3r + µB

∫
R3

B(r) ·m(r) d3r

where new objects have appeared:

ρ is still the electronic density

jp is the paramagnetic current

m is the spin density



ρ(x) = γ↑↑(x , x) + γ↓↓(x , x) =
∑

ni

(
|φ↑k(x)|2 + |φ↓k(x)|2

)
jp(x) = Im

(
∇2γ

↑↑(x , x) +∇2γ
↓↓(x , x)

)
=
∑

ni Im
(
φ↑(x)∇φ↑i (x) + . . .

)
mz = γ↑↑(x , x)− γ↓↓(x , x) =

∑
ni

(
|φ↑k(x)|2 − |φ↓k(x)|2

)
mx = γ↑↓(x , x) + γ↓↑(x , x) = 2

∑
ni Re

(
φ↑i (x)φ↓i (x)

)
my = −i

(
γ↑↓(x , x)− γ↓↑(x , x)

)
= −2

∑
ni Im

(
φ↑i (x)φ↓i (x)

)
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Several approximations

Recall that A and B satisfy B = rot A. However, as A acts on the orbitals, whereas B
acts on the spin, we usually study the two effects separately and choose:

A = 0 and B 6= 0 for spin effects. Spin Density Functional Theory (SDFT).
B = 0 and A 6= 0 for orbital effects. Current Density Functional Theory (CDFT).

In this presentation, I will present SDFT:

〈Ψ|H(v ,B)|Ψ〉 = 〈Ψ|T + W |Ψ〉+

∫
R3

v(r)ρ(r)d3r + µB

∫
R3

B(r) ·m(r) d3r

For Ψ ∈
∧N

i=1 H1(R3), we introduce

RΨ(r) =

(
ρ↑↑(r) ρ↑↓(r)
ρ↓↑(r) ρ↓↓(r)

)
=

(
γ↑↑(r, r) γ↑↓(r, r)
γ↓↑(r, r) γ↓↓(r, r)

)
.

Then, RΨ is hermitian, positive, satisfies
∫

Tr(RΨ) = N, and we have

〈Ψ|H(v ,B)|Ψ〉 = 〈Ψ|T+W |Ψ〉+
∫
R3

Tr


(

v + µBBz µBBx + iµBBy

µBBx − iµBBy v − µBBz

)
(r)︸ ︷︷ ︸

V(v,B)

RΨ(r)
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SDFT

Similarly to standard DFT, we write:

E(v ,B) := inf
Ψ∈

∧N H1(R3,C2),‖Ψ‖=1
〈Ψ|H(v ,B)|Ψ〉 = inf

R∈JN
{F (R) + (V(v ,B)|R)}

with
F (R) := inf

Ψ∈
∧N H1(R3,C2),‖Ψ‖=1,RΨ=R

〈Ψ|T + W |Ψ〉

Problems

We still do not know the functional F .

What is the set JN ?
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N-Representability of the spin density

We are looking for N-representability, i.e.

J p
N :=

{
R ∈M2×2(L1(R3)), ∃Ψ ∈

N∧
H1(R3,C2), ‖Ψ‖ = 1, R = RΨ

}
(pure states)

or
Jm

N :=
{

R ∈M2×2(L1(R3)), ∃γ ∈ D̃N , R = Rγ
}

(mixed states)

We recall that, by definition, Jm
N is the convex hull of J p

N .

Remark:

For N = 1, J p
1 only contains rank-1 matrices, while Jm

1 contains more matrices.

We chose to work with mixed states only (and the proof is easier, due to convexity)
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N-Representability of mixed states

Theorem

Jm
N =

{
R ∈M2×2(L1(R3)),R is hermitian positive,

∫
Tr(R) = N,

√
R ∈M2×2(H1(R3))

}

The √ is in the hermitian matrices sense

Very beautiful analog of the previous DFT ({ρ, . . . ,√ρ ∈ H1(R3)}).

Idea of the proof

Construct representability for rank-1 matrices using the previous construction.

Show that all R ∈ Jm
N is the convex combination of two matrices of rank-one.

Use convexity to conclude.

Remark
The fact that this Jm

N is a convex set is not obvious. Actually, I cannot prove it!
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Future work

Future work

Do the proof for CDFT: N-representability for (ρ, jp).

Study the model with some used approximations of F (R)

For this point, the problem is not convex. For instance, for the free spinless electron gas,
we have the translational invariant problem:

E(γ) =
1
2
Tr (−∆γ) +

∫ ∫
ρ(x)ρ(y)

|x − y | dxdy − cx

∫
ρ4/3 +

∫
V0ρ︸ ︷︷ ︸

=cst

and we can prove the following two facts:

If V0 is large enough, then the gas is the only minimizer

If V0 is small enough, then the gas is not the minimizer (Wigner crystals)
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