Representability in non-collinear spin-polarized density functional theory

David GONTIER

Advisor : Eric Cancès CERMICS, Ecole des Ponts ParisTech and INRIA

July 10th 2013

David Gontier

MOTIVATION

Non-magnetic Hamiltonian for N-electrons:

H(v) is linear and acts on the fermionic space $\bigwedge_{i=1}^{N} L^{2}(\mathbb{R}^{3})$. Its domain is $\bigwedge_{i=1}^{N} H^{1}(\mathbb{R}^{3})$:

$$\Psi \in \bigwedge_{i=1}^{N} H^{1}(\mathbb{R}^{3}) \Longrightarrow \begin{cases} \Psi(\mathbf{r}_{\rho(1)}, \mathbf{r}_{\rho(2)}, \dots, \mathbf{r}_{\rho(N)}) = \varepsilon(p)\Psi(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}) \\ \\ \sum_{i=1}^{N} \int_{\mathbb{R}^{3N}} |\nabla_{i}\Psi|^{2} \mathrm{d}^{3}\mathbf{r}_{1} \dots \mathrm{d}^{3}\mathbf{r}_{N} < \infty \end{cases}$$

Problem: Ψ lives in \mathbb{R}^{3N} !

"Curse of dimensionality" : impossible for a computer

For $\Psi \in igwedge_{i=1}^{N} H^1(\mathbb{R}^3)$, we can define

$$\left \lceil \Psi
ight
angle \left < \Psi
ight
angle = \left |\Psi
ight
angle \left < \left < \Psi
ight
angle = \mathcal{S} \left (L^2(\mathbb{R}^{3N})
ight)$$
 the N-body density matrix

and we introduce

 $\mathcal{P}_{\textit{N}}:=\{\Gamma_{\Psi}, \quad \Psi\in H^1(\mathbb{R}^3), \quad \|\Psi\|_{\textit{L}^2}=1\} \quad \text{the set of pure state N-body density matrices}.$

 \mathcal{P}_N is not convex. Its convex hull is

 $\mathcal{M}_N := \operatorname{CH}(\mathcal{P}_N)$ the set of mixed state N-body density matrices.

Example: for N=1,

- \mathcal{P}_1 only contains rank-1 orthogonal projector.
- \mathcal{M}_1 is the set of operators Γ such that $0 \leq \Gamma \leq 1$ and $\operatorname{Tr}(\Gamma) = 1$.

Usually, one main object of interest is the ground state energy,

$$E(v) = \min_{\Psi \in \bigwedge H^{\mathbf{1}}, \|\Psi\|_{L^{2}} = 1} \langle \Psi | H(v) | \Psi \rangle,$$

or, equivalently,

$$E(v) = \min_{\Gamma \in \mathcal{P}_{N}} \operatorname{Tr} (H(v)\Gamma).$$

We will also be interested in the minimization problem

$$E'(v) = \min_{\Gamma \in \mathcal{M}_{N}} \operatorname{Tr} (H(v)\Gamma).$$

With some calculations, it holds

$$\operatorname{Tr}\left(H(\nu)\Gamma\right) = \operatorname{Tr}\left(H_0\Gamma\right) + \int_{\mathbb{R}^3} \nu(\mathbf{r})\rho_{\Gamma}(\mathbf{r}) \, \mathrm{d}^3\mathbf{r}$$

with the electronic density

$$\rho_{\Gamma}(\mathbf{r}) := N \int_{\mathbb{R}^{3(N-1)}} \Gamma(\mathbf{r}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}; \mathbf{r}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}) \, \mathrm{d}^{3}\mathbf{r}_{2} \dots \mathrm{d}^{3}\mathbf{r}_{N}.$$

The density functional theory (DFT), such as presented by Levy (1979) and Lieb (1983), comes from the following calculations (here, X represents either \mathcal{P}_N of \mathcal{M}_N):

$$\begin{split} \min_{\Gamma \in \mathcal{X}} \operatorname{Tr} \left(H(v) \Gamma \right) &= \min_{\Gamma \in \mathcal{X}} \left\{ \operatorname{Tr} \left(H_0 \Gamma \right) + \int_{\mathbb{R}^3} v(\mathbf{r}) \rho_{\Gamma}(\mathbf{r}) \, \mathrm{d}^3 \mathbf{r} \right\} \\ &= \min_{\rho \in \mathcal{I}_{\mathcal{N}}(\mathcal{X})} \left\{ \int_{\mathbb{R}^3} v(\mathbf{r}) \rho(\mathbf{r}) \, \mathrm{d}^3 \mathbf{r} + \min_{\Gamma \in \mathcal{X}, \Gamma \to \rho} \left\{ \operatorname{Tr} \left(H_0 \Gamma \right) \right\} \right\} \end{split}$$

where the set $\mathcal{I}_N(X)$ is defined by

$$\mathcal{I}_{N} := \{ \rho_{\Gamma}, \quad \Gamma \in X \}$$
 set of representable electronic densities.

Introducing

$$F(\rho) := \min_{\Gamma \in \boldsymbol{X}, \Gamma \to \rho} \left\{ \operatorname{Tr} \left(H_0 \Gamma \right) \right\},\,$$

The minimization problem into the wave function can be recast into a minimization problem for the electronic density!

Questions:

- What is the functional F? (approximations: LDA, GGA,...)
- Do we have an explicit form of the set $\mathcal{I}_N(X)$? N-representability problem

David Gontier

We are looking for the explicit form of

$$\mathcal{I}_{N}(X) := \{ \rho_{\Gamma}, \Gamma \in X \}.$$

Note that this problem is "Hamiltonian free": we do not suppose that Γ is the ground state of some Hamiltonian.

Historically, the DFT has been derived by Hohenberg and Kohn (1964). They considered:

 $\tilde{\mathcal{I}}_{N}(X) := \{ \rho_{\Gamma}, \Gamma \in X, \exists v \text{ such that } \Gamma \text{ is the unique ground state of } H(v) \}.$

Characterizing this set is the *v*-representability problem.

- it is much more difficult and useless
- when considering the magnetic case, the HK theory does no longer work

Theorem (Harriman '81, Lieb '83)

It holds $\mathcal{I}_N(\mathcal{P}_N) = \mathcal{I}_N(\mathcal{M}_N) := \mathcal{I}_N$, with

$$\mathcal{I}_{N} = \left\{ \rho \in L^{1}(\mathbb{R}^{3}) \cap L^{3}(\mathbb{R}^{3}), \quad \rho \geq 0, \quad \int_{\mathbb{R}^{3}} \rho = N, \quad \sqrt{\rho} \in H^{1}(\mathbb{R}^{3}) \right\}.$$

Remarks:

- The map $\Gamma \rightarrow \rho_{\Gamma}$ is linear
- \mathcal{M}_N is the convex hull of \mathcal{P}_N
- Therefore, $\mathcal{I}_N(\mathcal{M}_N) = \rho(\mathcal{M}_N)$ is the convex hull of $\mathcal{I}_N(\mathcal{P}_N) = \rho(\mathcal{P}_N)$
- In particular, \mathcal{I}_N is convex (not obvious)

Theorem (Harriman '81, Lieb '83)

$${\mathcal I}_{N}=\left\{
ho\in L^{1}({\mathbb R}^{3})\cap L^{3}({\mathbb R}^{3}),\quad
ho\geq 0,\quad \int
ho=N,\quad \sqrt{
ho}\in H^{1}({\mathbb R}^{3})
ight\}.$$

Idea of the proof (Harriman). If $\{\Phi_1, \ldots, \Phi_N\}$ are in H^1 and are L^2 -orthonormal, then

$$\Psi(\mathsf{r}_1,\mathsf{r}_2,\ldots,\mathsf{r}_N) = \frac{1}{\sqrt{N!}} \det \left(\Phi_i(\mathsf{r}_j) \right)_{1 \leq i,j \leq N} \quad \text{satisfies} \quad \Psi \in \bigwedge_{i=1}^N H^1(\mathbb{R}^3) \quad \text{and} \quad \|\Psi\|_{L^2} = 1.$$

For this Ψ , we can calculate

$$\rho_{\Psi}(\mathbf{r}) = \sum_{i=1}^{N} |\Phi_i(\mathbf{r})|^2.$$

Inverse problem: for a given $\rho \in \mathcal{I}_N$, it is enough to take

$$\Phi_k(\mathbf{r}) := \sqrt{rac{
ho(\mathbf{r})}{N}} \cdot \exp(2\pi \mathrm{i}k \ f(\mathbf{r}))$$

where f is carefully chosen to ensure orthogonality.

David Gontier

We want to do the same work for the magnetic case

MAGNETIC HAMILTONIAN

According to the Dirac equation, the Hamiltonian for N-electrons is

$$H(v, \mathbf{A}) = \underbrace{\sum_{i=1}^{N} \frac{1}{2} \left(\sigma_i \cdot \left(-i\nabla_i + \frac{1}{c} \mathbf{A}(\mathbf{r}_i) \right) \right)^2}_{\text{kinetic energy}} + \underbrace{\sum_{1 \le i < j \le N} |\mathbf{r}_i - \mathbf{r}_j|^{-1}}_{\text{interaction energy}} + \underbrace{\sum_{i=1}^{N} v(\mathbf{r}_i)}_{\text{external potential}}$$

It is linear, and acts on the fermionic space $\bigwedge_{i=1}^{N} H^{1}(\mathbb{R}^{3}, \mathbb{C}^{2})$:

$$\Psi \in \bigwedge_{i=1}^{N} H^{1}(\mathbb{R}^{3}, \mathbb{C}^{2}) \text{ has } 2^{N} \text{ components} : \begin{pmatrix} \Psi(\mathbf{r}_{1}, \uparrow, \mathbf{r}_{2}, \uparrow, \dots, \mathbf{r}^{N}, \uparrow) \\ \Psi(\mathbf{r}_{1}, \uparrow, \mathbf{r}_{2}, \uparrow, \dots, \mathbf{r}^{N}, \downarrow) \\ \vdots \\ \Psi(\mathbf{r}_{1}, \downarrow, \mathbf{r}_{2}, \downarrow, \dots, \mathbf{r}^{N}, \downarrow) \end{pmatrix}$$

and still satisfies

$$\left(\begin{array}{c} \Psi(\mathbf{r}_{p(1)}, \alpha_{p(1)}, \mathbf{r}_{p(2)}, \alpha_{p(2)}, \dots, \mathbf{r}_{p(N)}, \alpha_{p(N)}) = \varepsilon(p)\Psi(\mathbf{r}_{1}, \alpha_{1}, \mathbf{r}_{2}, \alpha_{2}, \dots \mathbf{r}_{N}, \alpha_{N}) \\ \sum_{i=1}^{N} \sum_{\alpha_{1}, \dots, \alpha_{N} \in \{\uparrow, \downarrow\}} \int_{\mathbb{R}^{3N}} |\nabla_{i}\Psi(\mathbf{r}_{1}, \alpha_{1}, \dots)|^{2} \mathrm{d}^{3}\mathbf{r}_{1} \dots \mathrm{d}^{3}\mathbf{r}_{N} < \infty \end{array} \right)$$

A is the magnetic potential vector (recall that $rot(\mathbf{A}) = \mathbf{B}$ is the magnetic field), and σ_i contains the Pauli-matrices acting on the *i*-th spin.

David Gontier

New Hilbert space:

$$\mathcal{H} = L^2(\mathbb{R}^3, \mathbb{C}^2) := \{ \Phi = (\phi^{\uparrow}, \phi^{\downarrow}) \in L^2(\mathbb{R}^3), \quad \|\Phi\|_{\mathcal{H}} < \infty \}$$

with

$$\langle \Phi | \Psi \rangle_{\mathcal{H}} = \int_{\mathbb{R}^3} \left(\overline{\phi^{\uparrow}}(x) \psi^{\uparrow}(x) + \overline{\phi^{\downarrow}}(x) \psi^{\downarrow}(x) \right) \, \mathrm{d}^3 x.$$

For instance, the set of *N*-body pure states is now:

$$\mathcal{P}_{\mathcal{N}} := \left\{ \mathsf{\Gamma} = |\Psi\rangle \; \langle \Psi|, \quad \Psi \in \bigwedge_{i=1}^{\mathcal{N}} H^1(\mathbb{R}^3, \mathbb{C}^2), \quad \|\Psi\|_{\otimes \mathcal{H}} = 1
ight\},$$

and the set of N-body mixed states \mathcal{M}_N is again the convex hull of \mathcal{P}_N .

Magnetic DFT

We want to minimize expression of the form

 $\min_{\Gamma\in \boldsymbol{X}} \operatorname{Tr} \left(\boldsymbol{H}(\boldsymbol{\nu},\boldsymbol{\mathsf{A}}) \boldsymbol{\Gamma} \right).$

This time, it holds

$$\begin{aligned} &\operatorname{Tr}\left(\boldsymbol{H}(\boldsymbol{v},\boldsymbol{\mathsf{A}})\boldsymbol{\Gamma}\right) = \operatorname{Tr}\left(\boldsymbol{H}_{0}\boldsymbol{\Gamma}\right) \\ &+ \int \left(\boldsymbol{v}(\boldsymbol{\mathsf{r}}) + \frac{1}{2}\frac{|\boldsymbol{\mathsf{A}}(\boldsymbol{\mathsf{r}})|^{2}}{c^{2}}\right)\rho(\boldsymbol{\mathsf{r}})\mathrm{d}^{3}\boldsymbol{\mathsf{r}} + \int_{\mathbb{R}^{3}}\boldsymbol{\mathsf{A}}(\boldsymbol{\mathsf{r}})\cdot\boldsymbol{\mathsf{j}}_{\rho}(\boldsymbol{\mathsf{r}})\;\mathrm{d}^{3}\boldsymbol{\mathsf{r}} + \mu_{B}\int_{\mathbb{R}^{3}}\boldsymbol{\mathsf{B}}(\boldsymbol{\mathsf{r}})\cdot\boldsymbol{\mathsf{m}}(\boldsymbol{\mathsf{r}})\;\mathrm{d}^{3}\boldsymbol{\mathsf{r}} \end{aligned}$$

where new objects have appeared:

- ρ is still the electronic density
- j_p is the paramagnetic current
- m is the spin density

Recall that **A** and **B** satisfy $\mathbf{B} = \mathbf{rot} \mathbf{A}$. However, as **A** acts on the orbitals, whereas **B** acts on the spin, we usually study the two effects separately and choose:

- A = 0 and $B \neq 0$ for spin effects. Spin Density Functional Theory (SDFT).
- $A \neq 0$ and B = 0 for orbital effects. Current Density Functional Theory (CDFT).

SDFT

In this presentation, I will present SDFT ($A = 0, B \neq 0$):

$$\operatorname{Tr}(H(\mathbf{v},\mathbf{B})\mathbf{\Gamma}) = \operatorname{Tr}(H_0\mathbf{\Gamma}) + \int_{\mathbb{R}^3} \mathbf{v}(\mathbf{r})\rho(\mathbf{r}) \mathrm{d}^3\mathbf{r} + \mu_B \int_{\mathbb{R}^3} \mathbf{B}(\mathbf{r}) \cdot \mathbf{m}(\mathbf{r}) \, \mathrm{d}^3\mathbf{r}.$$

For $\Gamma \in \mathcal{M}_N$, we can define the spin-polarized electronic densities:

$$\rho_{\Gamma}^{\alpha\beta}(\mathbf{r}) := N \sum_{\alpha_{2}...\alpha_{N} \in \{\uparrow,\downarrow\}^{N-1}} \int_{\mathbb{R}^{3(N-1)}} \Gamma(\mathbf{r}\alpha, \mathbf{r}_{2}\alpha_{2}, \ldots, \mathbf{r}_{N}\alpha_{N}; \mathbf{r}\beta, \mathbf{r}_{2}\alpha_{2}, \ldots, \mathbf{r}_{N}\alpha_{N}) \, \mathrm{d}^{3}\mathbf{r}_{2} \ldots \, \mathrm{d}^{3}\mathbf{r}_{N}.$$

With those notations, the usual electronic density is $\rho := \rho^{\uparrow\uparrow} + \rho^{\downarrow\downarrow}$. We also introduce the matrix of spin-polarized electronic densities

$$R_{\Gamma}(\mathbf{r}) = \begin{pmatrix} \rho^{\uparrow\uparrow}(\mathbf{r}) & \rho^{\uparrow\downarrow}(\mathbf{r}) \\ \rho^{\downarrow\uparrow}(\mathbf{r}) & \rho^{\downarrow\downarrow}(\mathbf{r}) \end{pmatrix}$$

We can then recast the above equation under the form

$$\operatorname{Tr}\left(H(v, \mathbf{B})\Gamma\right) = \operatorname{Tr}\left(H_{0}\Gamma\right) + \int_{\mathbb{R}^{3}} \operatorname{tr}_{\mathbb{C}^{2}}\left(\underbrace{\begin{pmatrix} v + \mu_{B}\mathbf{B}_{z} & \mu_{B}\mathbf{B}_{x} + i\mu_{B}\mathbf{B}_{y} \\ \mu_{B}\mathbf{B}_{x} - i\mu_{B}\mathbf{B}_{y} & v - \mu_{B}\mathbf{B}_{z} \end{pmatrix}(\mathbf{r}) \\ \underbrace{\nu(v, \mathbf{B})} \\ \underbrace{\nu(v, \mathbf{B})}$$

SDFT

Similarly to standard DFT, we write:

$$E(v, \mathbf{B}) := \min_{\Gamma \in \mathbf{X}} \operatorname{Tr} \left(H(v, \mathbf{B}) \Gamma \right) = \min_{R \in \mathcal{J}_{\mathbf{N}}(\mathbf{X})} \left\{ F(R) + \left(\mathcal{V}(v, \mathbf{B}) | R \right) \right\}$$

with

$$F(R) := \inf_{\Gamma \in X, \Gamma \to R} \operatorname{Tr} (H_0 \Gamma)$$

and

 $\mathcal{J}_N(X) := \{R_{\Gamma}, \Gamma \in X\}$ set of representable spin-polarized electronic densities.

Problems

- We still do not know the functional F (approximations LSDA, GGA, ...)
- Can we have a characterization of the sets $\mathcal{J}_N(X)$? *N*-representability problem Remarks
 - The representability of the R's is the same as the representability of (ρ, \mathbf{m}) .
 - In CDFT, we need the representability of (ρ, j_ρ). Lieb gave the answer to this question... 23 days ago!

We only have the answer for mixed states:

Theorem (DG)

$$\begin{split} \mathcal{J}_{N}(\mathcal{M}_{N}) &= \mathcal{C}_{N} := \Big\{ R \in \mathcal{M}_{2 \times 2} \left(L^{1}(\mathbb{R}^{3}) \right), \quad R \text{ is hermitian positive a.e.}, \\ &\int_{\mathbb{R}^{3}} \operatorname{tr}_{\mathbb{C}^{2}}(R) = N, \quad \sqrt{R} \in \mathcal{M}_{2 \times 2} \left(H^{1}(\mathbb{R}^{3}) \right) \Big\} \end{split}$$

- The $\sqrt{}$ is in the hermitian matrices sense
- Very beautiful extension of the standard result:

Theorem (Harriman '81, Lieb '83)

$$\mathcal{I}_{N} = \left\{
ho \in L^{1}(\mathbb{R}^{3}), \quad
ho \geq 0, \quad \int_{\mathbb{R}^{3}}
ho = N, \quad \sqrt{
ho} \in H^{1}(\mathbb{R}^{3})
ight\}.$$

Remark

In particular, C_N is a convex set. This is not obvious,... I cannot prove it directly!

Some -useful- ideas of the proof

To check that some matrix R is indeed in C_N , we use the following result.

Lemma

$$\begin{split} R &:= \begin{pmatrix} \rho^{\uparrow} & \sigma \\ \sigma^{*} & \rho^{\downarrow} \end{pmatrix} \text{ is in } \mathcal{C}_{N} \text{ if and only if} \\ \\ \begin{cases} \rho^{\uparrow/\downarrow} \geq 0, \quad \rho^{\uparrow}\rho^{\downarrow} - |\sigma|^{2} \geq 0, \quad \int \rho^{\uparrow} + \int \rho^{\downarrow} = N, \\ \sqrt{\rho^{\uparrow/\downarrow}} \in H^{1}(\mathbb{R}^{3}), \quad \sigma, \sqrt{\det} \in W^{1,3/2}(\mathbb{R}^{3}), \\ |\nabla\sigma|^{2}\rho^{-1} \in L^{1}(\mathbb{R}^{3}), \\ |\nabla\sqrt{\det(R)}|^{2}\rho^{-1} \in L^{1}(\mathbb{R}^{3}). \end{split}$$

- We will assume this lemma, and the fact that $\mathcal{J}_N(\mathcal{M}_N) \subset \mathcal{C}_N$.
- We now prove the converse, i.e. $\mathcal{C}_N \subset \mathcal{J}_N(\mathcal{M}_N)$.
- Recall that $\mathcal{J}_N(\mathcal{M}_N)$ is convex.

Proof

Lemma

If $R = \begin{pmatrix} \rho^{\uparrow} & \sigma \\ \sigma^* & \rho^{\downarrow} \end{pmatrix} \in \mathcal{C}_N$ satisfies det(R) = 0 and $\rho^{\uparrow} \leq 2\rho^{\downarrow}$ a.e., then R is pure state representable.

Proof : similar to the original proof by Harriman. Introduce $\Phi^{\uparrow} = \sigma / \sqrt{\rho^{\downarrow}}$, $\Phi^{\downarrow} = \sqrt{\rho^{\downarrow}}$ and

$$\Phi_k(\mathbf{r}) := rac{1}{\sqrt{N}} \begin{pmatrix} \phi^{\uparrow} \\ \phi^{\downarrow} \end{pmatrix}$$
. exp(2i $\pi k f(\mathbf{r})$),

where again, f is chosen to ensure orthogonality of $\{\Phi_1, \ldots, \Phi_N\}$. It is easy to check that $\Gamma = |\Psi\rangle\langle\Psi|$ with $\Psi = (N!)^{1/2} \det(\phi_i(\mathbf{r}_j))$ satisfies $R_{\Gamma} = R$.

We check that $\Phi_k \in H^1(\mathbb{R}^3, \mathbb{C}^2)$. It is enough to check that $\phi^{\uparrow/\downarrow} \in H^1(\mathbb{R}^3)$. Let us do for instance ϕ^{\uparrow} :

$$\left|\nabla\phi^{\uparrow}\right|^{2} = \left|\frac{\sqrt{\rho^{\downarrow}}\nabla\sigma - \sigma\nabla\sqrt{\rho^{\downarrow}}}{\rho^{\downarrow}}\right|^{2}$$

Proof

Then,

$$\begin{split} |\nabla\phi^{\uparrow}|^{2} &= \left| \frac{\sqrt{\rho^{\downarrow}} \nabla \sigma - \sigma \nabla \sqrt{\rho^{\downarrow}}}{\rho^{\downarrow}} \right|^{2} \quad (\text{use } |a + b|^{2} \leq 2|a|^{2} + 2|b|^{2}) \\ &\leq 2 \frac{|\nabla\sigma|^{2}}{\rho^{\downarrow}} + 2 \frac{|\sigma|^{2}}{(\rho^{\downarrow})^{2}} |\nabla \sqrt{\rho^{\downarrow}}|^{2} \quad (\text{use } |\sigma|^{2} = \rho^{\uparrow} \rho^{\downarrow}) \\ &\leq 2 \frac{|\nabla\sigma|^{2}}{\rho} \frac{\rho^{\uparrow} + \rho^{\downarrow}}{\rho^{\downarrow}} + 2 \frac{\rho^{\uparrow}}{\rho^{\downarrow}} |\nabla \sqrt{\rho^{\downarrow}}|^{2} \quad (\text{use } \rho^{\uparrow} \leq 2\rho^{\downarrow}) \\ &\leq 6 \frac{|\nabla\sigma|^{2}}{\rho} + 4 |\nabla \sqrt{\rho^{\downarrow}}|^{2} \quad (\text{use characterization of } \mathcal{C}_{N}) \\ &\in L^{1}(\mathbb{R}^{3}) \end{split}$$

Remark:

- The condition $\rho^{\uparrow} \leq 2\rho^{\downarrow}$ is essential! I do not know whether we can remove this condition, and still ensure pure state representability...
- For the rest of the proof, we use the convexity of $\mathcal{J}_N(\mathcal{M}_N)$.

Lemma

If
$$R = \begin{pmatrix} \rho^{\uparrow} & \sigma \\ \sigma^{*} & \rho^{\downarrow} \end{pmatrix} \in \mathcal{C}_{N}$$
 satisfies $\det(R) = 0$ a.e., then R is mixed state representable.

Proof: space decomposition

Let
$$\chi \in \mathcal{C}^{\infty}(\mathbb{R})$$
 such that $\chi(x) = \begin{cases} 0 & \text{if } x < \frac{1}{2}, \\ 1 & \text{if } x > 2. \end{cases}$

Introduce

$$ilde{R}_1 = \chi^2 \left(rac{
ho^{\uparrow}}{
ho^{\downarrow}}
ight) R \quad ext{and} \quad ilde{R}_2 = \left(1 - \chi^2 \left(rac{
ho^{\uparrow}}{
ho^{\downarrow}}
ight)
ight) R.$$

Let $t = N^{-1} \int \operatorname{tr}_{\mathbb{C}^2}(\tilde{R}_1(\mathbf{x})) \, \mathrm{d}^3 \mathbf{x} \in [0, 1]$, and finally $R_1 = t^{-1} \tilde{R}_1$ and $R_2 = (1 - t)^{-1} \tilde{R}_2$. Then,

$$R=tR_1+(1-t)R_2,$$

and R_1, R_2 satisfy the hypothesis of the previous lemma, so are pure-state representable.

 $R_1 \in \mathcal{J}_N(\mathcal{M}_N), \quad R_2 \in \mathcal{J}_N(\mathcal{M}_N) \quad \text{and} \quad \mathcal{J}_N(\mathcal{M}_N) \text{ is convex} \Longrightarrow R \in \mathcal{J}_N(\mathcal{M}_N)$

Lemma

If
$$R = \begin{pmatrix} \rho^{\uparrow} & \sigma \\ \sigma^{*} & \rho^{\downarrow} \end{pmatrix} \in \mathcal{C}_{N}$$
, then R is mixed state representable.

Proof: rank-1 decomposition

Let us note

$$\sqrt{R} = \begin{pmatrix} r^{\uparrow} & s \\ s^{*} & r^{\downarrow} \end{pmatrix} \text{ so that } R = \begin{pmatrix} (r^{\uparrow})^{2} + |s|^{2} & s(r^{\uparrow} + r^{\downarrow}) \\ s^{*}(r^{\uparrow} + r^{\downarrow}) & (r^{\downarrow})^{2} + |s|^{2} \end{pmatrix}$$

We introduce this time

$$ilde{R}_1 = egin{pmatrix} (r^\uparrow)^2 & sr^\uparrow \ s^*r^\uparrow & |s|^2 \end{pmatrix} \quad ext{and} \quad ilde{R}_2 = egin{pmatrix} |s|^2 & sr^\downarrow \ s^*r^\downarrow & (r^\downarrow)^2 \end{pmatrix}.$$

Let $t = N^{-1} \int \operatorname{tr}_{\mathbb{C}^2}(\tilde{R}_1(\mathbf{x})) \, \mathrm{d}^3 \mathbf{x} \in [0, 1]$, and finally $R_1 = t^{-1} \tilde{R}_1$ and $R_2 = (1 - t)^{-1} \tilde{R}_2$. Then,

$$R = tR_1 + (1-t)R_2.$$

Because $R \in C_N$, then $r^{\uparrow}, r^{\downarrow}$ and *s* are in $H^1(\mathbb{R}^3)$. Moreover, $\det(R_{1,2}) = 0$ a.e., so that $R_{1,2}$ satisfy the conditions of the previous lemma, and therefore are representable. We conclude as before.

One application of this result

In the polarized case, we write

$$F(R) := \min_{\Gamma \in X, \Gamma \to R} \operatorname{Tr} \left(H_0 \Gamma \right) = E_{\mathcal{K}}^{HF}(R) + \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\rho(\mathbf{x}) \rho(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} \mathrm{d}^3 \mathbf{x} \, \mathrm{d}^3 \mathbf{y} + E_{\mathsf{xc}}(R)$$

and find approximations for $E_{xc}(R)$.

Local approximation: E_{xc} is a local functional. In particular, if $U(\mathbf{r})$ is a field of unitary matrices, it holds

$$E_{xc}(R) = E_{xc}(U^*RU).$$

Therefore,

$$E_{xc}(R) = \tilde{E}_{xc}(\rho^+, \rho^-)$$

where ρ^+ and ρ^- are the eigenvalues of *R*.

What is the functional space for (ρ^+, ρ^-) ?

Lemma

If $R \in \mathcal{J}_N(\mathcal{M}_N)$, then $\sqrt{\rho^{+/-}} \in H^1(\mathbb{R}^3)$.

Proof

•
$$\sqrt{\rho^{+/-}}$$
 are the eigenvalues of $\sqrt{R} := \begin{pmatrix} r^{\uparrow} & s \\ s^{*} & r^{\downarrow} \end{pmatrix} \in \mathcal{M}_{2 \times 2} \left(\mathcal{H}^{1}(\mathbb{R}^{3}) \right).$

•
$$\sqrt{\rho^{+/-}}$$
 are the roots of $x \mapsto x^2 - (r^{\uparrow} + r^{\downarrow})x + (r^{\uparrow}r^{\downarrow} - |s|^2)$.

• The discriminant is
$$\Delta:=(r^\uparrow+r^\downarrow)^2-4(r^\uparrow r^\downarrow-|s|^2)=(r^\uparrow-r^\downarrow)^2+4|s|^2$$

• The functional $\|\nabla\sqrt{\cdot}\|_{L^2}^2$ is convex, so $\sqrt{\Delta} \in H^1(\mathbb{R}^3)$.

• Finally,
$$\rho^{+/-} := \frac{r^{\uparrow} + r^{\downarrow} \pm \sqrt{\Delta}}{2} \in H^1(\mathbb{R}^3).$$

Conclusion

Conclusion

- We have extended the representability result in the non-collinear spin-polarized case
- The result only holds in the mixed state setting

Future work

- With the recent work of Lieb in CDFT, we can probably find the representability conditions in CSDFT: representability of $(\rho, \mathbf{j}, \mathbf{m})$
- Study mathematically some models used in physics (well-posedness of LSDA...)
- Study some non-collinear spin effects (magnons, frustrated solid)

THANK YOU FOR YOUR ATTENTION