Complexity of a Sudoku

David Gontier

CERMICS InterLab Seminar

March 27, 2014

David Gontier (CERMICS) [Complexity of a Sudoku](#page-41-0) March 27, 2014 1/28

WHAT IS A SUDOKU?

WHAT IS A SUDOKU?

WHAT IS A SUDOKU?

May be seen as a matrix $(X_{i,j})_{1 \leq i,j \leq 9} \in \{1..9\}^{9 \times 9}$ with missing entries. All the digit from 1 to 9 must appear only once in each row, column and block.

This puzzle was invented in 1979 by the American Howard Garns.

For each cell (i, j) of the Sudoku, create 9 variables $x_{i,j,k}$ such that :

$$
x_{i,j,k} = \begin{cases} 1 & \text{if } X_{i,j} = k \\ 0 & \text{else} \end{cases}
$$

Then, the Sudoku rules are:

- *unique value constraint*: one cell of the sudoku has only one value : $\forall j, \sum_{k} \mathsf{x}_{i,j,k} = 1$
- row constraint: $\forall i, \forall k, \sum_j x_{i,j,k} = 1$
- column constraint: $\forall j, \forall k, \sum_i x_{i,j,k} = 1$
- *block constraint*: for all block B , $\forall k, \sum_{(i,j) \in B} , x_{i,j,k} = 1$
- *initial clue constraint*: for all initial value of the type $X_{i,j} = k$, it must hold $x_{i,j,k} = 1$

If x is a line containing the values $(x_{i,j,k})$:

$$
\mathbf{x} = (x_{1,1,1}, x_{1,2,1}, \cdots, x_{1,9,1}, x_{2,1,1}, \cdots, x_{9,9,1}, x_{9,9,2}, \cdots, x_{9,9,9})^T
$$

All the constraints can be re-written as $A\cdot\mathbf{x}=\mathbf{\mathit{U}}=(1,1,\cdots,1)^{\mathsf{T}}$, with $A=[A_{uniqueValue}, A_{rows}, A_{columns}, A_{blocks}, A_{clus}]^T$.

OTHER CRAZY SUDOKU

Just change the matrix A

No: 37

3

 Δ

 $\overline{6}$

copyright @www.10/subblu.com

 $\overline{4}$

9

 $\overline{3}$

If the Sudoku has only one solution, then:

- \bullet this solution x is unique
- this x has only 81 non zero entries.

$$
(IP) \quad \text{find} \quad \mathbf{x} \in \{0,1\}^{729} \quad \text{such that} \quad A \cdot \mathbf{x} = U
$$

It is an Integer Program. Solving a general (IP) problem is NP-complete.

A common trick (LP-relaxation) is to relax the binary constraint: $\mathsf{x} \in \{0,1\}^{729}$ becomes $\mathsf{x} \in [0,1]^{729}$. We can even choose $\mathsf{x} \geq 0.$

$$
(LP) \quad \text{find} \quad \mathbf{x} \in \mathbb{R}^{729} \quad \text{such that} \quad \left\{ \begin{array}{ccc} A \cdot \mathbf{x} &=& U \\ \mathbf{x} &=& 0 \end{array} \right.
$$

$$
(LP) \quad \text{find} \quad \mathbf{x} \in \mathbb{R}^{729} \quad \text{such that} \quad \left\{ \begin{array}{ccc} A \cdot \mathbf{x} &=& U \\ \mathbf{x} &=& 0 \end{array} \right.
$$

Facts:

- The set of x satisfying (LP) is a convex set P (it is a polytope).
- The true solution x_0 is in P.
- \bullet Find a point in P may be done in polynomial time.

Problem: P may contain other solutions, which are not related to the Sudoku solution.

Ideas:

• x_0 is the sparsest solution in $P \implies$ Optimization problem:

(OP) Minimize $\|\mathbf{x}\|_1$ with $\begin{cases} A \cdot \mathbf{x} = U \\ \mathbf{x} = 0 \end{cases}$ $x \tgeq 0$

It can still be done in polynomial time, but again, it does not necessary lead to a Sudoku solution.

• In some cases, $P = \{x_0\}$.

Question: When do we have $P = \{x_0\}$?

FROM THE LOGIC TO THE STRUCTURE OF THE POLYTOPE

David Gontier (CERMICS) [Complexity of a Sudoku](#page-0-0) March 27, 2014 11 / 28

1/ UNIQUE CANDIDATE

Unique Candidate

The only valid candidate in the first cell is 1.

Unique Candidate

The only valid candidate in the first cell is 1.

Unique Candidate

The only valid candidate in the first cell is 1.

Theorem: $\forall x \in P, x_{1,1,1} = 1$

UNIQUE CANDIDATE

		6	8	9
	5			

Theorem: $\forall x \in P, x_{1,1,1} = 1$

Proof:

- $\bullet \forall k > 1$, there exists a constraint c_k and a cell (i_k, i_k) such that :
	- $\mathsf{x}_{i_k,j_k,k} = 1$: this cell has already the value k
	- $(1, 1)$ and (i_k, j_k) are linked by the constraint c_k
- Thus, $\forall k > 1, x_{1,1,k} = 0$
- Finally, because the cell $(1, 1)$ must have a value, $x_{1,1,1} = 1$

On the first line, the only cell where 1 can be is $(1, 1)$.

On the first line, the only cell where 1 can be is $(1, 1)$.

On the first line, the only cell where 1 can be is $(1, 1)$.

Theorem: $\forall x \in P, x_{1,1,1} = 1$

Theorem: $\forall x \in P, x_{1,1,1} = 1$

Proof:

- for all other cell $(r,1)$, there exists a constraint c_r and a cell $\left(i_r,j_r\right)$ such that:
	- $x_{i_{r},i_{r},1} = 1$: this cell has already the value 1,
	- $(r,1)$ and (i_r,j_r) are linked by the constraint c_r .
- Thus, $\forall r > 1, x_{r,1,1} = 0$.
- Finally, the first line constraint leads to $x_{1,1,1} = 1$.

3/ MULTIPLE CANDIDATES

MULTIPLE CANDIDATES

On the first line, the digits 2, 3 and 4 are all in the cells $(1, 4)$, $(1, 5)$ and (1, 8) in an order we do not know. Therefore, the first cell contains 1.

MULTIPLE CANDIDATES

On the first line, the digits 2, 3 and 4 are all in the cells $(1, 4)$, $(1, 5)$ and (1, 8) in an order we do not know. Therefore, the first cell contains 1.

Multiple Candidates

On the first line, the digits 2, 3 and 4 are all in the cells $(1, 4)$, $(1, 5)$ and (1, 8) in an order we do not know. Therefore, the first cell contains 1.

Theorem:
$$
\forall x \in P, x_{1,1,2} = x_{1,1,3} = x_{1,1,4} = 0
$$

MULTIPLE CANDIDATES

Theorem:
$$
\forall x \in P, x_{1,1,2} = x_{1,1,3} = x_{1,1,4} = 0
$$

Proof: We have the following equations :

$$
\begin{cases}\n x_{1,4,2} + x_{1,5,3} + x_{1,8,2} + \cdots = 1 \\
x_{1,4,3} + x_{1,5,3} + x_{1,8,3} + \cdots = 1 \\
+ x_{1,5,4} + x_{1,8,4} + \cdots = 1\n\end{cases}
$$

But when we sum everything by column, we have

$$
(x_{1,4,2} + x_{1,4,3})
$$
 + $(x_{1,5,3} + x_{1,5,4})$ + $(x_{1,8,2} + x_{1,8,3} + x_{1,8,4})$ + \cdots = 3
1 + 1 + 1 + 1 + ... = 3

In particular, everything that appears in the dots must have the value 0.

David Gontier (CERMICS) [Complexity of a Sudoku](#page-0-0) March 27, 2014 20 / 28

4/ X-WING ¹

¹Great title for a slide, isn't it ?

David Gontier (CERMICS) [Complexity of a Sudoku](#page-0-0) March 27, 2014 21 / 28

On the first line, the cell $(1, 4)$ has value 2, or the cell $(1, 7)$ has value 2. In the two cases, 2 cannot be in $(1, 1)$.

On the first line, the cell $(1, 4)$ has value 2, or the cell $(1, 7)$ has value 2. In the two cases, 2 cannot be in $(1, 1)$.

On the first line, the cell $(1, 4)$ has value 2, or the cell $(1, 7)$ has value 2. In the two cases, 2 cannot be in $(1, 1)$.

Theorem: $\forall x \in P, x_{1,1,2} = 0$

On the first line, the cell $(1, 4)$ has value 2, or the cell $(1, 7)$ has value 2. In the two cases, 2 cannot be in $(1, 1)$.

Theorem:
$$
\forall x \in P, x_{1,1,2} = 0
$$

Proof:

$$
x_{1,4,2} + x_{1,7,2} = (x_{1,4,2} + x_{4,4,2}) - (x_{4,4,2} + x_{4,7,2}) + (x_{4,7,2} + x_{1,7,2}) = 1
$$

AND SO ON

Theorem:

If a Sudoku can be solved using only the following tricks:

- Unique Candidate
- Single Position
- Hidden Pair (or more)
- Naked Pair (or more)
- X-Wing, Swordfish....

Then (P) shrinks to one point, which correspond to the Sudoku solution.

Corollary: Solving those sudoku may be done in polynomial time.

DOES THE POLYTOPE ALWAYS SHRINK TO A POINT?

Non-shrinkable logic: XY-Wing.

Non-shrinkable logic: XY-Wing.

The cell (2,4) can have only 1 or 2 as values. In both cases, 3 cannot be in $(1,1)$. Therefore, $(1,1)$ has value 1.

Non-shrinkable logic: XY-Wing.

The cell (2,4) can have only 1 or 2 as values. In both cases, 3 cannot be in $(1,1)$. Therefore, $(1,1)$ has value 1.

Theorem: $\forall x \in P$, $x_{1,1,3} \leq 1/2$. (instead of $x_{1,1,3} = 0$).

Non-shrinkable logic: XY-Wing.

The cell (2,4) can have only 1 or 2 as values. In both cases, 3 cannot be in $(1,1)$. Therefore, $(1,1)$ has value 1.

Theorem: $\forall x \in P$, $x_{1,1,3} \leq 1/2$. (instead of $x_{1,1,3} = 0$).

Take for instance $x_{2,4,1} = x_{2,4,2} = x_{1,4,1} = x_{1,4,3} = x_{2,1,1} = x_{2,1,3} = 1/2$, then $x_{1,1,3} = 1/2$ is compatible.

A difficult Sudoku...

...with two solutions

(d) Other point inside the polytope

...with two solutions

(e) Solution

(f) Other point inside the polytope

CONCLUSION

Conclusions:

- A Sudoku problem is equivalent to a Integer Programming problem.
- We can relax such a problem, and the relaxation is solvable in polynomial time.
- For most Sudoku, the solution of the relaxed problem is the Sudoku solution.

Thank you for your attention