Complexity of a Sudoku

David Gontier

CERMICS InterLab Seminar

March 27, 2014

David Gontier (CERMICS)

What is a Sudoku ?

		6						
8	1			4				
		5	8		1		4	6
	6	7		2			1	
	4			1				
					6		2	
6		2	5	7		1		
			2			8		
7	3							4

What is a Sudoku ?

4	7	6	9	5	2	3	8	1
8	1	3	6	4	7	5	9	2
9	2	5	8	3	1	7	4	6
3	6	7	4	2	5	9	1	8
2	4	8	3	1	9	6	7	5
5	9	1	7	8	6	4	2	3
6	8	2	5	7	4	1	3	9
1	5	4	2	9	3	8	6	7
7	3	9	1	6	8	2	5	4

What is a Sudoku ?

May be seen as a matrix $(X_{i,j})_{1 \le i,j \le 9} \in \{1..9\}^{9 \times 9}$ with missing entries. All the digit from 1 to 9 must appear only once in each row, column and block.

This puzzle was invented in 1979 by the American Howard Garns.

For each cell (i, j) of the Sudoku, create 9 variables $x_{i,j,k}$ such that :

$$x_{i,j,k} = \begin{cases} 1 & \text{if } X_{i,j} = k \\ 0 & \text{else} \end{cases}$$

Then, the Sudoku rules are:

- unique value constraint: one cell of the sudoku has only one value : $\forall i, \forall j, \sum_k x_{i,j,k} = 1$
- row constraint: $\forall i, \forall k, \sum_j x_{i,j,k} = 1$
- column constraint: $\forall j, \forall k, \sum_i x_{i,j,k} = 1$
- block constraint: for all block B, $\forall k, \sum_{(i,j)\in B}, x_{i,j,k} = 1$
- initial clue constraint: for all initial value of the type X_{i,j} = k, it must hold x_{i,j,k} = 1

If x is a line containing the values $(x_{i,j,k})$:

 $\mathbf{x} = (x_{1,1,1}, x_{1,2,1}, \cdots, x_{1,9,1}, x_{2,1,1}, \cdots, x_{9,9,1}, x_{9,9,2}, \cdots, x_{9,9,9})^{T}$

All the constraints can be re-written as $A \cdot \mathbf{x} = U = (1, 1, \dots, 1)^T$, with $A = [A_{uniqueValue}, A_{rows}, A_{columns}, A_{blocks}, A_{clues}]^T$.

OTHER CRAZY SUDOKU

	Y.				D.		a	¢	к	n.			ħ			t		T.				đ		
			3			h					d	4			-	0	k						w	P
N	h		m						k	P					5		d	9						D.
b													m		v.		9							
х			d			P				•					u		¥.							
	×	Q	U	1			1		e		×	b.	6	m	a.			0	h	k	0	5		
n					×	x		3			q				-	•		k						
4									n			k	¥		9					٥	0		b	
5							p	0	b.	U					_						n.			0
	b	đ		m								ρ			0	9		ж						
y.	9		e.	T.		n.		v	ъ	0	b		×	1	τ	5	9	U	×		1	4	đ	k
	4	P			e		3			h					1	Ł								0
												n	٩			b	a					Ρ		
	×			w.	2			k.				e			_			m			q			v
	1			ь	4			9	¥	k				P	Y.		0						n	
1	0	\$	9	v	х	Y	ħ		v	τ.	ρ	0	0	1	an i		1	đ			×	1	k	1
u.		×	ь			e		P	•	rn.			ø		x						3	q		
d										9					Q.	×		b						
			0	e	4		×	n	0		×		υ		1							Ð.	p	n
T.	k				х	J	t.	w		•	1	h					U.	1	q	c	d	1		
			9	đ	Y	1	×			٥.		1	1		0	9	×.	ð.	r	٠			4	
			p				ь			đ					×			9			۰			
			ж			9							a		1	d						m		
		٥				đ		e		×				ħ			b.				p.			
q							m					×			h									0

5			9		6			3						
	2			8			1							
		7				9								
8			1		2			7	Γ		6	1		
	4			3			5			4				
3			4		5									
		3				5			7		3			1
	5			6			9			5			6	
1	0.5		3			2		4				9		
					4			100	3					9
				8			1			2			5	
			7			9					8			2
				•				7				1		
							3			8			9	
						1			2		7			4

Just change the matrix A

If the Sudoku has only one solution, then:

- this solution x is unique
- this x has only 81 non zero entries.

(*IP*) find
$$\mathbf{x} \in \{0,1\}^{729}$$
 such that $A \cdot \mathbf{x} = U$

It is an Integer Program. Solving a general (IP) problem is NP-complete.

A common trick (LP-relaxation) is to relax the binary constraint: $\mathbf{x} \in \{0,1\}^{729}$ becomes $\mathbf{x} \in [0,1]^{729}$. We can even choose $\mathbf{x} \ge 0$.

$$(LP) \quad \text{find} \quad \mathbf{x} \in \mathbb{R}^{729} \quad \text{such that} \quad \left\{ \begin{array}{ll} A \cdot \mathbf{x} &= & U \\ \mathbf{x} &\geq & 0 \end{array} \right.$$

(LP) find
$$\mathbf{x} \in \mathbb{R}^{729}$$
 such that $\begin{cases} A \cdot \mathbf{x} = U \\ \mathbf{x} \ge 0 \end{cases}$

Facts:

- The set of x satisfying (LP) is a convex set P (it is a polytope).
- The true solution x_0 is in P.
- Find a point in *P* may be done in polynomial time.

Problem: *P* may contain other solutions, which are not related to the Sudoku solution.

Ideas:

• x_0 is the sparsest solution in $P \implies$ Optimization problem:

(*OP*) Minimize $\|\mathbf{x}\|_1$ with $\begin{cases} A \cdot \mathbf{x} = U \\ \mathbf{x} \ge 0 \end{cases}$

It can still be done in polynomial time, but again, it does not necessary lead to a Sudoku solution.

• In some cases, $P = \{x_0\}$.

Question: When do we have $P = \{x_0\}$?

FROM THE LOGIC TO THE STRUCTURE OF THE POLYTOPE

			6	7	8	9
	3	5				
2		4				

The only valid candidate in the first cell is 1.

1			6	7	8	9
	3	5				
2		4				

The only valid candidate in the first cell is 1.

1			6	7	8	9
	3	5				
2		4				

The only valid candidate in the first cell is 1.

Theorem: $\forall x \in P, x_{1,1,1} = 1$

1			6	7	8	9
	3	5				
2		4				

Theorem: $\forall x \in P, x_{1,1,1} = 1$

Proof:

- $\forall k > 1$, there exists a constraint c_k and a cell (i_k, j_k) such that :
 - $x_{i_k,j_k,k} = 1$: this cell has already the value k
 - (1, 1) and (i_k, j_k) are linked by the constraint c_k
- Thus, $\forall k > 1, x_{1,1,k} = 0$
- Finally, because the cell (1,1) must have a value, $x_{1,1,1} = 1$

2	3				
				1	
		1			

On the first line, the only cell where 1 can be is (1, 1).

1	2	3				
					1	
			1			

On the first line, the only cell where 1 can be is (1, 1).

1	2	3				
					1	
			1			

On the first line, the only cell where 1 can be is (1, 1).

Theorem: $\forall x \in P, x_{1,1,1} = 1$

Theorem: $\forall x \in P, x_{1,1,1} = 1$

Proof:

- for all other cell (r, 1), there exists a constraint c_r and a cell (i_r, j_r) such that:
 - $x_{i_r,i_r,1} = 1$: this cell has already the value 1,
 - (r, 1) and (i_r, j_r) are linked by the constraint c_r .
- Thus, $\forall r > 1, x_{r,1,1} = 0.$
- Finally, the first line constraint leads to $x_{1,1,1} = 1$.

3/ MULTIPLE CANDIDATES

On the first line, the digits 2, 3 and 4 are all in the cells (1,4), (1,5) and (1,8) in an order we do not know. Therefore, the first cell contains 1.

On the first line, the digits 2, 3 and 4 are all in the cells (1,4), (1,5) and (1,8) in an order we do not know. Therefore, the first cell contains 1.

On the first line, the digits 2, 3 and 4 are all in the cells (1,4), (1,5) and (1,8) in an order we do not know. Therefore, the first cell contains 1.

Theorem:
$$\forall x \in P, x_{1,1,2} = x_{1,1,3} = x_{1,1,4} = 0$$

Theorem:
$$\forall x \in P, x_{1,1,2} = x_{1,1,3} = x_{1,1,4} = 0$$

Proof: We have the following equations :

$$\begin{cases} x_{1,4,2} + & + & x_{1,8,2} + & \cdots & = & 1 \\ x_{1,4,3} + & x_{1,5,3} + & x_{1,8,3} + & \cdots & = & 1 \\ & + & x_{1,5,4} + & x_{1,8,4} + & \cdots & = & 1 \end{cases}$$

But when we sum everything by column, we have

In particular, everything that appears in the dots must have the value 0.

David Gontier (CERMICS)

20 / 28

OUTLINE

4/ X-WING ¹

¹Great title for a slide, isn't it ?

David Gontier (CERMICS)

On the first line, the cell (1, 4) has value 2, or the cell (1, 7) has value 2. In the two cases, 2 cannot be in (1, 1).

On the first line, the cell (1, 4) has value 2, or the cell (1, 7) has value 2. In the two cases, 2 cannot be in (1, 1).

On the first line, the cell (1, 4) has value 2, or the cell (1, 7) has value 2. In the two cases, 2 cannot be in (1, 1).

Theorem:
$$\forall x \in P, x_{1,1,2} = 0$$

On the first line, the cell (1, 4) has value 2, or the cell (1, 7) has value 2. In the two cases, 2 cannot be in (1, 1).

Theorem:
$$\forall x \in P, x_{1,1,2} = 0$$

Proof:

$$x_{1,4,2} + x_{1,7,2} = (x_{1,4,2} + x_{4,4,2}) - (x_{4,4,2} + x_{4,7,2}) + (x_{4,7,2} + x_{1,7,2}) = 1$$

And so on

Theorem:

If a Sudoku can be solved using only the following tricks:

- Unique Candidate
- Single Position
- Hidden Pair (or more)
- Naked Pair (or more)
- X-Wing, Swordfish,...

Then (P) shrinks to one point, which correspond to the Sudoku solution.

Corollary: Solving those sudoku may be done in polynomial time.

DOES THE POLYTOPE ALWAYS SHRINK TO A POINT?

Of course not

Non-shrinkable logic: XY-Wing.

1,3		2,3			
1,3		1,2			

OF COURSE NOT

Non-shrinkable logic: XY-Wing.

The cell (2,4) can have only 1 or 2 as values. In both cases, 3 cannot be in (1,1). Therefore, (1,1) has value 1.

OF COURSE NOT

Non-shrinkable logic: XY-Wing.

The cell (2,4) can have only 1 or 2 as values. In both cases, 3 cannot be in (1,1). Therefore, (1,1) has value 1.

Theorem: $\forall x \in P$, $x_{1,1,3} \le 1/2$. (instead of $x_{1,1,3} = 0$).

Non-shrinkable logic: XY-Wing.

The cell (2,4) can have only 1 or 2 as values. In both cases, 3 cannot be in (1,1). Therefore, (1,1) has value 1.

Theorem: $\forall x \in P$, $x_{1,1,3} \le 1/2$. (instead of $x_{1,1,3} = 0$).

Take for instance $x_{2,4,1} = x_{2,4,2} = x_{1,4,1} = x_{1,4,3} = x_{2,1,1} = x_{2,1,3} = 1/2$, then $x_{1,1,3} = 1/2$ is compatible.

A difficult Sudoku...

	2	3			9		8	1
9	1	7	2		8		6	
5	8			1		7		
8	9							6
7	3	5	6	8	1	2		
1			9			8	3	7
		9		2				8
	7	8	1		4	9		
2	5	1	8	9		6		

...WITH TWO SOLUTIONS

									
6	2	3	5	7	9	4	8	1	
9	1	7	2	4	8	5	6	3	
5	8	4	3	1	6	7	9	2	
8	9	2	4	3	7	1	5	6	
7	3	5	6	8	1	2	4	9	
1	4	6	9	5	2	8	3	7	
4	6	9	7	2	5	3	1	8	
3	7	8	1	6	4	9	2	5	
2	5	1	8	9	3	6	7	4	

(c) Solution

4,6	2	3	5,7	6,7	9	4,5	8	1
9	1	7	2	4,5	8	3,4	6	3,5
5	8	4,6	3,4	1	3,6	7	2,9	2,9
8	9	2,4	3,4	5,7	2,7	1,5	1,5	6
7	3	5	6	8	1	2	4,9	4,9
1	4,6	2,6	9	4,5	2,5	8	3	7
3,4	4,6	9	7,5	2	5,6	1,3	1,7	8
3,6	7	8	1	3,6	4	9	2,5	2,5
2	5	1	8	9	3,7	6	4,7	3,4

(d) Other point inside the polytope

...WITH TWO SOLUTIONS

7	2	4	~			
4			8	5	6	3
4	3	1	6	7	9	2
2	4	3	7	1	5	6
5	6	8	1	2	4	9
6	9	5	2	8	3	7
9	7	2	5	3	1	8
8	1	6	4	9	2	5
1	8	9	3	6	7	4
	2 5 6 9 8	2 4 5 6 6 9 9 7 8 1	2 4 3 5 6 8 6 9 5 9 7 2 8 1 6 1 8 9	2 4 3 7 5 6 8 1 6 9 5 2 9 7 2 5 8 1 6 4 1 8 9 3	2 4 3 7 1 5 6 8 1 2 6 9 5 2 8 9 7 2 5 3 8 1 6 4 9 1 8 9 3 6	2 4 3 7 1 5 5 6 8 1 2 4 6 9 5 2 8 3 9 7 2 5 3 1 8 1 6 4 9 2

(e) Solution

4,6	2	3	5,7	6,7	9	4,5	8	1
9	1	7	2	4,5	8	3,4	6	3,5
5	8	4,6	3,4	1	3,6	7	2,9	2,9
8	9	2,4	3,4	5,7	2,7	1,5	1,5	6
7	3	5	6	8	1	2	4,9	4,9
1	4,6	2,6	9	4,5	2,5	8	3	7
3,4	4,6	9	7,5	2	5,6	1,3	1,7	8
3,6	7	8	1	3,6	4	9	2,5	2,5
2	5	1	8	9	3,7	6	4,7	3,4

(f) Other point inside the polytope

CONCLUSION

Conclusions:

- A Sudoku problem is equivalent to a Integer Programming problem.
- We can relax such a problem, and the relaxation is solvable in polynomial time.
- For most Sudoku, the solution of the relaxed problem is the Sudoku solution.

Thank you for your attention