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Motivation

Non-magnetic Hamiltonian for N-electrons:

H(v) =
N∑

i=1

−1
2

∆i︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N

|ri − rj |−1

︸ ︷︷ ︸
interaction energy

+
N∑

i=1

v(ri )︸ ︷︷ ︸
external potential

.

H(v) is linear and acts on the fermionic space
∧N

i=1 L
2(R3). Its domain is

∧N
i=1 H

1(R3):

Ψ ∈
N∧

i=1

H1(R3) =⇒


Ψ(rp(1), rp(2), . . . , rp(N)) = ε(p)Ψ(r1, r2, . . . , rN).

N∑
i=1

∫
R3N
|∇i Ψ|2d3r1 . . .d3rN <∞

Problem: Ψ lives in R3N .

"Curse of dimensionality" : impossible for a computer
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Definition : mixed state

For Ψ ∈
∧N

i=1 H
1(R3), we can define

ΓΨ = |Ψ〉 〈Ψ| ∈ S
(
L2(R3N)

)
the N-body density matrix

and we introduce

PN :=
{

ΓΨ, Ψ ∈ H1(R3), ‖Ψ‖L2 = 1
}

the set of pure state N-body density matrices.

PN is not convex. Its convex hull is

MN := CH (PN) the set of mixed state N-body density matrices.

Example: for N=1,

P1 only contains rank-1 projectors.

M1 is the set of operators Γ such that 0 ≤ Γ ≤ 1 and Tr(Γ) = 1.1 0 . . .
0 0 . . .
...

...
. . .

 versus

n1 0 . . .
0 n2 . . .
...

...
. . .

 ni ≥ 0, n1 + n2 + . . . = 1.
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Density Functional Theory

One main object of interest is the ground state energy,

E(v) = min
Ψ∈

∧
H1,‖Ψ‖L2 =1

〈Ψ|H(v)|Ψ〉,

or, equivalently,
E(v) = min

Γ∈PN
Tr (H(v)Γ) .

Because H(v) is linear, and becauseMN is the convex hull of PN , it holds

E(v) = min
Γ∈MN

Tr (H(v)Γ) .

With some calculations, it holds

Tr (H(v)Γ) = Tr (H0Γ) +

∫
R3

v(r)ρΓ(r) d3r

with the electronic density

ρΓ(r) := N
∫
R3(N−1)

Γ(r, r2, . . . , rN ; r, r2, . . . , rN) d3r2 . . .d3rN .
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Introduction of the representability problem

The density functional theory (DFT), such as presented by Levy (1979) and Lieb (1983),
comes from the following calculations:

min
Γ∈MN

Tr (H(v)Γ) = min
Γ∈MN

{
Tr (H0Γ) +

∫
R3

v(r)ρΓ(r) d3r
}

= min
ρ∈IN (MN )

{∫
R3

v(r)ρ(r) d3r + min
Γ∈MN ,Γ→ρ

{Tr (H0Γ)}
}

where the set IN(MN) is defined by

IN :=
{
ρΓ, Γ ∈MN

}
set of N-representable electronic densities.

Introducing the universal functional

F (ρ) := min
Γ∈X ,Γ→ρ

{Tr (H0Γ)} ,

The minimization problem for the wave function can be recast into a minimization
problem for the electronic density.

Questions:

What is the functional F? (approximations: LDA, GGA,...)
Do we have an explicit form of the set IN(MN)? N-representability problem
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N-representability versus v-representability

We are looking for the explicit form of

IN(MN) :=
{
ρΓ, Γ ∈MN

}
.

Note that this problem is "Hamiltonian free": we do not suppose that Γ is the ground
state of some Hamiltonian.

Historically, the DFT has been derived by Hohenberg and Kohn (1964). They considered:

ĨN(MN) :=
{
ρΓ, Γ ∈MN , ∃ v such that Γ is the unique ground state of H(v)

}
.

Characterizing this set is the v -representability problem.

it is much more difficult and useless

when considering the magnetic case, the HK theory does no longer work

David Gontier Magnetic DFT April 8, 2014 6 / 26



N-representability

Theorem (Harriman ’81, Lieb ’83)

It holds IN(PN) = IN(MN) := IN , with

IN =

{
ρ ∈ L1(R3) ∩ L3(R3), ρ ≥ 0,

∫
R3
ρ = N,

√
ρ ∈ H1(R3)

}
.

Remarks:

The map Γ→ ρΓ is linear

MN is a convex set (it is the convex hull of PN)

In particular, IN is convex
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We want to do the same work for the magnetic case
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Magnetic Hamiltonian

According to the Schrödinger-Pauli equation, the Hamiltonian for N-electrons is

H(v ,A) =
N∑

i=1

1
2

(
σi ·

(
−i∇i +

1
c
A(ri )

))2

︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N

|ri − rj |−1

︸ ︷︷ ︸
interaction energy

+
N∑

i=1

v(ri )︸ ︷︷ ︸
external potential

It is linear, and its form domain is
∧N

i=1 H
1(R3,C2):

Ψ ∈
N∧

i=1

H1(R3,C2) has 2N components :


Ψ(r1, ↑, r2, ↑, . . . , rN , ↑)
Ψ(r1, ↑, r2, ↑, . . . , rN , ↓)

...
Ψ(r1, ↓, r2, ↓, . . . , rN , ↓)


and still satisfies

Ψ(rp(1), αp(1), rp(2), αp(2), . . . , rp(N), αp(N)) = ε(p)Ψ(r1, α1, r2, α2, . . . rN , αN)

N∑
i=1

∑
α1,...αN∈{↑,↓}

∫
R3N
|∇i Ψ(r1, α1, . . .)|2d3r1 . . .d3rN <∞

A is the magnetic potential vector (recall that rot(A) = B is the magnetic field), and σi

contains the Pauli-matrices acting on the i-th spin.
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The new setting

New Hilbert space:

H = L2(R3,C2) :=
{

Φ = (φ↑, φ↓) ∈ L2(R3), ‖Φ‖H <∞
}

with
〈Φ|Ψ〉H =

∫
R3

(
φ↑(x)ψ↑(x) + φ↓(x)ψ↓(x)

)
d3x .

For instance, the set of N-body pure states is now:

PN :=

{
Γ = |Ψ〉 〈Ψ|, Ψ ∈

N∧
i=1

H1(R3,C2), ‖Ψ‖H = 1

}
,

and the set of N-body mixed statesMN is again the convex hull of PN .
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Magnetic DFT

We want to minimize expression of the form

min
Γ∈MN

Tr (H(v ,A)Γ) .

This time, it holds

Tr (H(v ,A)Γ) = Tr (H0Γ)

+

∫ (
v(r) +

1
2
|A(r)|2

c2

)
ρ(r)d3r +

∫
R3

A(r) · jp(r) d3r − µB

∫
R3

B(r) ·m(r) d3r︸ ︷︷ ︸
Zeeman energy

where new objects have appeared:
ρ is still the electronic density
jp is the paramagnetic current
m is the spin density.

Recall that A and B satisfy B = rot A. However, as A acts on the orbitals, whereas B
acts on the spin, we usually study the two effects separately and choose:

A = 0 and B 6= 0 for spin effects. Spin Density Functional Theory (SDFT).
A 6= 0 and B = 0 for orbital effects. Current Density Functional Theory (CDFT).
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SDFT

In this presentation, I will present SDFT (A = 0,B 6= 0):

Tr (H(v ,B)Γ) = Tr (H0Γ) +

∫
R3

v(r)ρ(r)d3r − µB

∫
R3

B(r) ·m(r) d3r.

For Γ ∈MN , we can define the spin-polarized electronic densities: for α, β ∈ {↑, ↓}2,

ραβΓ (r) := N
∑

α2...αN∈{↑,↓}N−1

∫
R3(N−1)

Γ(rα, r2α2, . . . , rNαN ; rβ, r2α2, . . . , rNαN) d3r2 . . .d3rN .

We introduce the matrix of spin-polarized electronic densities

RΓ(r) =

(
ρ↑↑(r) ρ↑↓(r)
ρ↓↑(r) ρ↓↓(r)

)
With those notation,

the usual electronic density is ρ := ρ↑↑ + ρ↓↓

the spin density is m = trC2(σ · RΓ).
We can then recast the above equation under the form

Tr (H(v ,B)Γ) = Tr (H0Γ)+

∫
R3

trC2


(

v − µBBz −µBBx + iµBBy

−µBBx − iµBBy v + µBBz

)
(r)︸ ︷︷ ︸

U

RΓ(r)
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SDFT

Similarly to standard DFT, we write:

E(v ,B) := min
Γ∈MN

Tr (H(v ,B)Γ) = min
R∈JN (MN )

{
F (R) +

∫
trC2 [UR]

}
with

F (R) := inf
Γ∈MN ,Γ→R

Tr (H0Γ)

and

JN(MN) :=
{
RΓ, Γ ∈MN

}
set of representable spin-polarized electronic densities.

Problems

We still do not know the functional F (approximations LSDA, GGA, ...)

Can we have a characterization of the sets JN(MN) ? N-representability problem
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N-Representability of mixed states

We only have the answer for mixed states:

Theorem (DG)

JN(MN) := JN =
{
R ∈M2×2

(
L1(R3)

)
, R is hermitian positive a.e.,∫

R3
trC2(R) = N,

√
R ∈M2×2

(
H1(R3)

)}
.

The √ is in the hermitian matrix sense

Extension of the standard result:

Theorem (Harriman ’81, Lieb ’83)

IN =

{
ρ ∈ L1(R3), ρ ≥ 0,

∫
R3
ρ = N,

√
ρ ∈ H1(R3)

}
.

Remark: In particular, JN is a convex set.
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Local Spin Density Approximation (LSDA)
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Back to LSDA

Recall that, in SDFT, we want to find:

EN := min
Γ∈MN

Tr (H(v ,B)Γ) = min
R∈JN

{
F (R) +

∫
trC2 [UR]

}
with

F (R) := inf
Γ∈X ,Γ→R

Tr (H0Γ) .

Approximation of F?
For Γ ∈MN , introduce the 1-body density matrix

γ(r, r′) =

(
γ↑↑ γ↑↓

γ↓↑ γ↓↓

)
(r, r′)

with, for α, β ∈ {↑, ↓}2,

γαβΓ (r, r′) := N
∑

α2...αN∈{↑,↓}N−1

∫
R3(N−1)

Γ(rα, r2α2, . . . , rNαN ; r′β, r2α2, . . . , rNαN) d3r2 . . .d3rN .

Remarks
It holds RΓ(r) = γΓ(r, r).
The set AN := {γΓ, Γ ∈MN} is (Coleman 1963)

AN =
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr(γ) = N,

Tr(−∆γ) := Tr(−∆γ↑↑) + Tr(−∆γ↓↓) <∞
}
.
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Kohn-Sham approximation

Following Kohn and Sham (1965), we split F (R) in three parts:

F (R) = TKS(R) + J(R) + Exc(R).

TKS(R) is the Kohn-Sham kinetic energy:

TKS(R) := inf
γ∈AN ,γ→R

{
1
2
Tr(−∆γ)

}
J(R) is the Hartree energy:

J(R) :=
1
2

∫∫
ρ(r)ρ(r′)
|r − r′| dr dr′

Exc(R) is the exchange correlation term: Exc(R) := F (R)− TKS(R)− J(R).

How to choose Exc(R) ?
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Local Spin Density Approximation

Local Spin Density Approximation (von Barth and Hedin 1972):
If for an unpolarized model, a local density approximation (LDA) functional is used

ELDA(ρ) =

∫
g(ρ),

then the following ansatz can be used for a polarized model,

Exc(R) ≈ ELSDA
xc (R) :=

1
2

(∫
g(2ρ+) +

∫
g(2ρ−)

)
.

where ρ+ and ρ− are the two eigenvalues of R.

Remarks

This ansatz is exact for the exchange energy.

Depends only on the eigenvalues =⇒ invariance under local spin-rotations.

We recover the unpolarized case: ρ+ = ρ− = ρ/2.

Is a well-posed? Do the eigenvalues of R have good properties?
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Well-posedness of SLDA

ELSDA
xc (R) =

1
2

∫
g(2ρ+) + g(2ρ−)

Lemma

If R is such that
√
R ∈ H1(R3), then

√
ρ+/− ∈ H1(R3) ↪→ L1(R3)

⋂
L6(R3).

In particular, if g is a good function for the unpolarized case, then g is also a good
function for the polarized case.
Examples

Xα-functional: g(ρ) = −CXρ
4/3.

Homogeneous Electron Gas: g(ρ) = gHEG(ρ).
. . .

Usually, g satisfies the following conditions:

(∗)



g(0) = 0

g ′ ≤ 0

∃ 0 < β− ≤ β+ <
2
3
, sup

ρ∈R+

|g ′(ρ)|
ρβ− + ρβ+ <∞

∃ 1 ≤ α < 3
2
, lim sup

ρ→0+

g(ρ)

ρα
< 0.
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Formulation of SDFT

Finally, we recast the problem into 1-body density matrices:

ELSDA
N := inf

γ∈AN

{1
2
Tr(−∆γ) +

∫
trC2 [UR] + J(R) +

1
2

(∫
g(2ρ+) +

∫
g(2ρ−)

)}
,

with ∫
trC2 [UR] =

∫
V ρ− µB

∫
B ·m

and
Tr(−∆γ) = Tr(−∆γ↑↑) + Tr(−∆γ↓↓).

Objects spin-unpolarized spin-polarized

Hilbert space L2(R3,C) L2(R3,C2)

1-boby density matrix γ(r, r′) complex γ(r, r′) hermitian 2× 2 matrix

Density ρ(r) real R(r) hermitian 2× 2 matrix

Condition for the density ρ ≥ 0,
√
ρ ∈ H1 R ≥ 0,

√
R ∈ H1

Magnetic contribution none −µB
∫

B ·m (Zeeman term)

xc energy in the L(S)DA
∫
g(ρ) 1

2

∫
g(2ρ+) + g(2ρ−)
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Some other models

Let

ELSDA(γ) :=
1
2
Tr(−∆γ) +

∫
trC2 [UR] + J(R) +

1
2

(∫
g(2ρ+) +

∫
g(2ρ−)

)
.

Collinear SDFT

E collinear
N = inf

{
E(γ), γ ∈ AN , γ↑↓ = γ↓↑ = 0

}
.

Then, {ρ+, ρ−} = {ρ↑↑, ρ↓↓}, and∫
trC2 [UR] =

∫
V ρ−µB

∫
Bzρζ, where ζ =

ρ↑↑ − ρ↓↓

ρ↑↑ + ρ↓↓
is the relative spin polarization.

Unpolarized DFT

Eunpolarized
N = inf

{
E(γ), γ ∈ AN , γ↑↓ = γ↓↑ = 0, γ↑↑ = γ↓↓

}
.

Then, ρ+ = ρ− = ρ/2, and ∫
trC2 [UR] =

∫
V ρ.
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Existence of minimizers

ELSDA
N := inf

γ∈AN

{1
2
Tr(−∆γ) +

∫
trC2 [UR] + J(R) +

1
2

(∫
g(2ρ+) +

∫
g(2ρ−)

)}
.

Question:
Does a minimizer exist? (not obvious, this a non-convex problem due to the g term).

For the unpolarized case (ρ+ = ρ−)

Theorem (Anantharaman, Cancès, 2009)

If the functional g satisfies the conditions (∗), and if the electronic potential has the form

V (r) = −
∑
k≤M

zk
|r − rk |

, zk ∈ N∗,
∑
k∈M

zk = Z ,

then, for N ≤ Z, the problem Eunpolarized
N admits a minimizer.

For the polarized case

Theorem (DG)

Under the same conditions, and if B ∈ L3/2+ε + L∞ is a magnetic field that vanishes at
infinity, then, for N ≤ Z, the problem ELSDA

N admits a minimizer.
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Idea of the proof

The proof relies on concentration-compacity techniques (Lions 1984).

For λ ∈ R+, introduce

Aλ =
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr(γ) = λ, Tr(−∆γ) <∞

}
,

the minimization problem for λ

ELSDA
λ := inf

γ∈Aλ

{1
2
Tr(−∆γ) +

∫
trC2 [UR] + J(R) +

1
2

(∫
g(2ρ+) +

∫
g(2ρ−)

)}
,

and the problem at infinity for λ

ELSDA,∞
λ = inf

γ∈Aλ

{1
2
Tr(−∆γ) + J(R) +

1
2

(∫
g(2ρ+) +

∫
g(2ρ−)

)}
.

Lemma (Binding inequality)

For all 0 ≤ µ ≤ λ, it holds ELSDA
λ ≤ ELSDA

µ + ELSDA,∞
λ−µ .

This lemma tells that electrons are not leaking away (≈ compactness)
Allows to prove the convergence of the minimizing sequences.
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The flip transform

Lemma

For all 0 ≤ µ ≤ λ, it holds ELSDA
λ ≤ ELSDA

µ + ELSDA,∞
λ−µ .

Proof (for the potential part):
Let γ ∈ Aµ, and γ∞ ∈ Aλ−µ. Let γ0 = γ + γ∞ ∈ Aλ. Then,

trC2 [Uγ0] = trC2 [Uγ] + trC2 [Uγ∞] = trC2 [Uγ] +

<0︷ ︸︸ ︷
V ρ∞−

sign?︷ ︸︸ ︷
µBB ·m∞ .

In order to control the sign of the last term, we introduce the flip transform.

If γ∞ =

(
γ↑↑,∞ γ↑↓,∞

γ↓↑,∞ γ↓↓,∞

)
, then γ̃∞(r, r′) =

(
γ↓↓,∞ −γ↑↓,∞
−γ↓↑,∞ γ↑↑,∞

)
(r′, r).

Lemma

γ̃∞ ∈ Aλ−µ, and it holds ρ̃∞ = ρ∞, m̃∞ = −m∞.

Introducing γ]0 = γ + γ̃∞ ∈ Aλ, we get

trC2 [Uγ0] + trC2

[
Uγ]0

]
= 2trC2 [Uγ] + 2V ρ∞ < 2trC2 [Uγ] .

Therefore, one of two real numbers trC2 [Uγ0] or trC2

[
Uγ]0

]
is strictly less than trC2 [Uγ].
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Euler-Lagrange equation

We also get the Euler-Lagrange equation.

Theorem

If γ0 is a minimizer for ELSDA
λ , then γ0 satisfies the Euler-Lagrange equation

γ0 = 1(Hγ0 < εF ) + δ with δ ⊂ Ker(Hγ0 − εF ),

where εF is the Fermi energy, and

Hγ0 =

(
−1
2

∆ + ρ0 ? | · |−1
)
12 + U+

+
g ′(ρ+

0 )

2

(1 0
0 1

)
+

1√
(ρ↑↑0 − ρ

↓↓
0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ

↓↓
0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ
↑↑
0

)
+

g ′(ρ−0 )

2

(1 0
0 1

)
− 1√

(ρ↑↑0 − ρ
↓↓
0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ

↓↓
0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ
↑↑
0

) .
It holds σess(Hγ0) = [0,+∞[. Moreover, if 0 < λ < Z, then

Hγ0 has infinitely many negative eigenvalues

every eigenvector corresponding to such an eigenvalue is exponentially decreasing.
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Conclusion

Conclusion

We extended the representability result in the non-collinear spin-polarized case.

We proved the existence of minimizers for SDFT within the LSDA.

Future work

Prove the existence of minimizers with other xc functionals (GGA,...).

Numerical questions.

Thank you for your attention
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