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MOTIVATION

Non-magnetic Hamiltonian for N-electrons:

N 1 N
-1
H(V): E —EA,'—F E |I’,‘—I’j| + E V(I’,‘)
i=1 1<i<j<N i=1
—_——— ———
kinetic energy interaction energy external potential

H(v) is linear and acts on the fermionic space AN, L*(R®). Its domain is AN, H*(R®):
\Il(rp(l), rp(z), ey rp(N)) = E(p)\u(n, r,..., rN),

N
ve NHI(R) =<

=1 Z/ |Viw)d®r ... d%ry < o0
i—1 JR3N
Problem: W lives in R3V.
"Curse of dimensionality" : impossible for a computer
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DEFINITION : MIXED STATE

For W € AY, H(R®), we can define
Ny =V) (V] €8 (LZ(R3N)) the N-body density matrix
and we introduce
Pn:={Ty, Ve HY(R?), V|2 = 1} the set of pure state N-body density matrices.
‘P is not convex. Its convex hull is

My := CH (Pn) the set of mixed state N-body density matrices.

Example: for N=1,
@ P only contains rank-1 projectors.
@ My is the set of operators ' such that 0 < T <1 and Tx(') = 1.
1 0 ... n O
o 0 ... versus 0 n
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DENsITY FUNCTIONAL THEORY

One main object of interest is the ground state energy,

E(v) = i WIH(v) W
(v) WE/\Hrln,Il\r‘}/H,_z:1< [H(V)[V),

or, equivalently,
E(v) = min Tr (H(v)I).
(v) re7|?n,., r (H(v)r)

Because H(v) is linear, and because My is the convex hull of Py, it holds
E(v) = rg}\l/rl\’v Tr (H(v)IN).
With some calculations, it holds
Tr (H(v)IN) = Tr (Holl) +/ v(r)pr(r) &3r
R3

with the electronic density

pr(r) == N/ F(r,ro, ... rn;r T2, ... Ty) d3rp. .. d3rp.
R3(N—1)
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INTRODUCTION OF THE REPRESENTABILITY PROBLEM

The density functional theory (DFT), such as presented by Levy (1979) and Lieb (1983),
comes from the following calculations:

min Tr (H(v)[) = min {Tr(HoF) + /Rs v(r)pr(r) d3r}

remMy reMey
_ ; 43 i Tr (Hol"
m(M){ [, 4000 @i (35 (Ho )}}

where the set Zy(Mn) is defined by
In = {pr, e MN} set of N-representable electronic densities.
Introducing the universal functional

F(p):=_min {Tr(Hol)}.

rex,r—

The minimization problem for the wave function can be recast into a minimization
problem for the electronic density.

Questions:

o What is the functional F? (approximations: LDA, GGA,...)
o Do we have an explicit form of the set Zy(Mpy)? N-representability problem
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N-REPRESENTABILITY VERSUS V-REPRESENTABILITY

We are looking for the explicit form of
IN(MN) = {pr,r € MN}

Note that this problem is "Hamiltonian free": we do not suppose that I is the ground
state of some Hamiltonian.

Historically, the DFT has been derived by Hohenberg and Kohn (1964). They considered:

In(Mp) = {pr,T € Mn,3 v such that T is the unique ground state of H(v)}.

Characterizing this set is the v-representability problem.
@ it is much more difficult and useless

@ when considering the magnetic case, the HK theory does no longer work
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N-REPRESENTABILITY

Theorem (Harriman '81, Lieb '83)
It holds IN(PN) = IN(MN) = In, with

In = {p e "R} NLR?), p>0, /Ra p=N, pe Hl(R3)}.

Remarks:
@ The map I' — pr is linear
e My is a convex set (it is the convex hull of Py)

@ In particular, Zy is convex
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We want to do the same work for the magnetic case
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MAGNETIC HAMILTONIAN
According to the Schrodinger-Pauli equation, the Hamiltonian for N-electrons is

H(v,A):zN:;<U,~< iv; + Ar,)) + > i—nl Tt _ZN:V(H)

i=1 1<i<j<N i=
————

kinetic energy interaction energy external potential

It is linear, and its form domain is AN, H*(R?, C?):

w(r17T7 |"27T, ceey rN7T)
N w(r17T7r27T,~'~7rN7~L)

Ve /\ H*(R?,C?) has 2" components : )
i=1

\U(l’l,\l/, r27\l/7 ey rNy\I/)
and still satisfies

W(rp1)s Ap(1)s Fp(2)s Xp(2)s - - - Fp(N) Ap(ny) = E(P)V(r1, 1,12, 02, .. . Py, un)

N
g E / N \V,'\U(rl,al, .. 4)|2d3r1 .. .d3I'N < o0
R3

i=1 ay,...aye{t,}

A is the magnetic potential vector (recall that rot(A) = B is the magnetic field), and o;
contains the Pauli-matrices acting on the i-th spin.
David Gontier Magnetic DFT April 8, 2014 9 /26



THE NEW SETTING

New Hilbert space:

H= 1R, C%) = {0 = (¢, ¢") € (),

with

@[3 < oo}

@) = [ (60" () + 3w () .

For instance, the set of N-body pure states is now:

N
pm=%=wuw,WEAW®“ﬂ’

i=1

W]l = 1}»

and the set of N-body mixed states My is again the convex hull of Py.
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MacNETIC DEFT

We want to minimize expression of the form

cmin Tr (H(v,A)N).

This time, it holds

Tr (H(v,A)l') = Tr (Ho
+/ (v(r) + % |A‘(:;)‘ ) p(r)dr + /]RS A(r) - jp(r) &3 — s /3 B(r) - m(r) &

R

Zeeman energy

where new objects have appeared:
@ p is still the electronic density
@ jp is the paramagnetic current

@ m is the spin density.

Recall that A and B satisfy B = rot A. However, as A acts on the orbitals, whereas B
acts on the spin, we usually study the two effects separately and choose:

@ A =0 and B # 0 for spin effects. Spin Density Functional Theory (SDFT).
@ A # 0 and B = 0 for orbital effects. Current Density Functional Theory (CDFT).
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SDFET
In this presentation, | will present SDFT (A = 0,B # 0):

v(r)p(r)d3r — ,uB/ B(r) - m(r) dr.

R3

Tr (H(v,B)l) = Tr (Hol") +/

R3

For I € My, we can define the spin-polarized electronic densities: for a, 8 € {1, 1}?,

p?ﬁ(r) =N Z / F(ra,rzaz,...,rNaN;r,B,rzaz,...,rNaN) d3r2...d3rN.
az..aye{t, N1 RN
We introduce the matrix of spin-polarized electronic densities
o) M
flr) = (p”Er; pwgr;)

With those notation,

o the usual electronic density is p := p'T 4 p*

@ the spin density is m = tre2(o - Rr).
We can then recast the above equation under the form

Tr(H(v,B)l) = Tr(HoF)—|—/

R3

vV — ,UBBZ _,LLBBX + i/vLBBy
tres (—uBBx —ipsBy v+ 1ugB; (r) Re(r)
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SDET

Similarly to standard DFT, we write:

E(v.B):= min Tr(H(v.B)) = min {F(R) + /trcz [UR]}
with
F(R):= re./\/li:'\]lfr%RTr (For')
and

IN(Mp) = {Rr, re MN} set of representable spin-polarized electronic densities.

Problems
o We still do not know the functional F (approximations LSDA, GGA, ...)

@ Can we have a characterization of the sets Jn(Mny) 7 N-representability problem
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N-REPRESENTABILITY OF MIXED STATES

We only have the answer for mixed states:

Theorem (DG)

InN(Mp) = In :{R € Max2 (LI(R3)) , R is hermitian positive a.e.,

/3 tre2(R) = N, VR € Maxa (H'(R?)) }

@ The Vi is in the hermitian matrix sense

@ Extension of the standard result:

Theorem (Harriman '81, Lieb '83)

INZ{pGLl(H@)» p=>0, /p=N7 x/ﬁGHl(R3)}-
R3

Remark: In particular, Jn is a convex set.
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Local Spin Density Approximation (LSDA)
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Back To LSDA

Recall that, in SDFT, we want to find:

En = min Tr (H(v.B)l) = min {F(R) + /trcz [UR] }
with
F(R) := re)z?r]CaRTr(Hor)'
Approximation of F?
For ' € My, introduce the 1-body density matrix

™ ™
’ Y Yy ’
yr,r ) = r,r
)= (1 1))
with, for o, 8 € {1,]}?,
’Y?B(I'JI) =N Z /3(N Y I'(ra,rzoc27. NGy, r/ﬁﬂ'zaz, .. .,I'NOéN) d3r2 .. .d3l'N‘
R3(N—

az...aye{t,}N-1

Remarks
o It holds Rr(r) = ~r(r,r).
o The set Ay := {7, € Mn} is (Coleman 1963)

Av={y e S(*(R*,CY), 0<y <1, Te(y) =N,
Tr(—A7) == Tr(—Ay"T) + Tr(-Ay*) < oo}
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KOHN-SHAM APPROXIMATION

Following Kohn and Sham (1965), we split F(R) in three parts:
F(R) = T*3(R) + J(R) + Ex(R).

o TXS(R) is the Kohn-Sham kinetic energy:
KS/py._ 1.
TR = weAI:?,fw—»R { 2Tr( Afy)}

@ J(R) is the Hartree energy:

J(R) : // ')p(r dr dr’

o E..(R) is the exchange correlation term: Eyc(R) := F(R) — TX5(R) — J(R).

How to choose Ex.(R) ?
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LocAL SPIN DENSITY APPROXIMATION

Local Spin Density Approximation (von Barth and Hedin 1972):
If for an unpolarized model, a local density approximation (LDA) functional is used

E"PA(p) = / g(p),

then the following ansatz can be used for a polarized model,
1 _
EalR) ~ ESPNR) = 5 ([ ey + [220)).
where p™ and p~ are the two eigenvalues of R.

Remarks
@ This ansatz is exact for the exchange energy.
@ Depends only on the eigenvalues = invariance under local spin-rotations.

@ We recover the unpolarized case: p* = p~ = p/2.

Is a well-posed? Do the eigenvalues of R have good properties?

David Gontier Magnetic DFT April 8, 2014 18 / 26



WELL-POSEDNESS OF SLDA

EEPNR) = 5 [ e(20) + gl207)

Lemma
If R is such that VR € H*(R?), then \/p™/— € H*(R®) — L*(R®) N L°(R?). J

In particular, if g is a good function for the unpolarized case, then g is also a good
function for the polarized case.
Examples

e Xa-functional: g(p) = —Cxp*/®

o Homogeneous Electron Gas: g(p) = g"=%(p).
° ...
Usually, g satisfies the following conditions:
g(0)=0
g <0

- 2 lg’(p)|
* J30< B <BT<Z, sup /=~ <o
( ) ﬂ — ﬂ 3 png+ pB— + p5+

3
Ji1<a< 5, I|msupg(p)
2 p—0Tt p
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FormuLAaTION OF SDFT

Finally, we recast the problem into 1-body density matrices:

eV = inf {3180+ [t [UR]+J(R>+§( [eey+ [ g(zp*))},

/trcz[UR]:/Vp—uB/B-m

Tr(—Ay) = Tr(—AY") 4+ Tr(—Avy*).

with

and

YEAN

Objects

spin-unpolarized

spin-polarized

Hilbert space

L*(R?,C)

L2(R3,C?)

1-boby density matrix

~(r,r") complex

~(r,*") hermitian 2 x 2 matrix

Density p(r) real R(r) hermitian 2 x 2 matrix
Condition for the density | p >0, /p€ H* R>0, VReH*
Magnetic contribution none —ps [ B-m (Zeeman term)
xc energy in the L(S)DA [ &(p) 1 g(2p")+g(207)
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SOME OTHER MODELS

Let
EXPA(y) 1= S Tr(-20) + [ trca [UR]+ J(R) + 5 ( [eCo+ [ g(zp*)) .

Collinear SDFT
Egolinear _ ing {5(,”’ N E AN, AT =AM = 0} )
Then, {p*,p"} ={p'", p**}, and
ot ph _ . o
/trcz[UR] = / fopB/sz(:, where (= 1 ot is the relative spin polarization.
Unpolarized DFT

Ell\llnpolarized —inf {5(,}/)’ = AN, ,YTJ, _ ,yiT _ 07 ,YTT — ,yii} .

/ tre2[UR] = / Vp.
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EXISTENCE OF MINIMIZERS

B = inf {3120+ [ (R SR + 5 ([ o2+ [s200) )

Question:
Does a minimizer exist? (not obvious, this a non-convex problem due to the g term).

For the unpolarized case (p* = p™7)

Theorem (Anantharaman, Canceés, 2009)

If the functional g satisfies the conditions (), and if the electronic potential has the form

Zk *
V(r)zfzm, ZkeN, ZZ[(:Z,

k<M keM

then, for N < Z, the problem E\™ olarized o dmits a minimizer.

For the polarized case

Theorem (DG)

Under the same conditions, and if B € L3/2%¢ 4 [ s a magnetic field that vanishes at

infinity, then, for N < Z, the problem ENS®* admits a minimizer.

David Gontier Magnetic DFT April 8, 2014 22 /26




IDEA OF THE PROOF
The proof relies on concentration-compacity techniques (Lions 1984).

For A € R", introduce
A\ = {’7 € S(Lz(R37C2))7 0<~<1, TI‘(’)/) = A, TT(_A’Y) < 00}7

the minimization problem for A

YEAN

EFPY = inf {(31(-20) + [ s [UR]+J(R)+§( e+ [ g(zm) .

and the problem at infinity for A

B = ing {Gm(-a0) + R+ 5 ([ a0+ [e200) )

YEAN

Lemma (Binding inequality) J

For all 0 < pn < ), it holds EXSPA < EgSPA  ELSPAe,

@ This lemma tells that electrons are not leaking away (/~ compactness)

@ Allows to prove the convergence of the minimizing sequences.
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THE FLIP TRANSFORM

Lemma
For all 0 < ji < ), it holds EXSPA < EiSPA 4 ELSDAe J

Proof (for the potential part):

Let v € A,, and v € Ax_,. Let v0 = v+~ € Ax. Then,
<0 sign?

o0 o0 (e o)
trez [Uvo] = trez [Uy] + trez [Uy™°] = trez [UA] + V™ — ugB - m™ .
In order to control the sign of the last term, we introduce the flip transform.

oo o Too L0 1,00
oo v v = _( -
If == <7$T70<> 7w,oo> , then ~y%(rr') = (_,YlT,oo A T1ho0 ) (r',n).

7% € Ax_,, and it holds p* = p>, m® = —m>,

Lemma J

Introducing 73 =~ 4+ € Ay, we get
trea [Uvo] + trez [U’yg} = 2trez [Uy] + 2V p™ < 2trez [UA].

Therefore, one of two real numbers trez [Uvo] or tre= [U'yg] is strictly less than trez [U~].
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EULER-LAGRANGE EQUATION

We also get the Euler-Lagrange equation.
Theorem
LSDA

If vo is a minimizer for Ej , then ~o satisfies the Euler-Lagrange equation

Yo =1(Hy <er)+6 with & C Ker(Hy —eF),

where F is the Fermi energy, and

1 _
Hvo=(—§A+P0*|'| 1) 1> 4+ U+

L &) (1 0) N 1 (pgT - Tpéi ifpgi n)
0 1 _
2 \/(pgT _ péi)z + 4|pgi|2 2p5 Po Po
L &) (1 0) B 1 (pET - Tpﬁ i¢2p$¢ ﬁ)
2 0 1 \/(pgr —pE2 4 apltE N 2P Po” — Po

It holds o css(H~o) = [0, +00[. Moreover, if 0 < A < Z, then

o H,, has infinitely many negative eigenvalues

@ every eigenvector corresponding to such an eigenvalue is exponentially decreasing.
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CONCLUSION

Conclusion

@ We extended the representability result in the non-collinear spin-polarized case.
@ We proved the existence of minimizers for SDFT within the LSDA.

Future work

@ Prove the existence of minimizers with other xc functionals (GGA,...).

@ Numerical questions.

Thank you for your attention
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