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Motivation

We consider a very big electronic system (N ≈ ∞), with Hamiltonian

HN := −1
2

N∑
i=1

∆i +
∑

1≤i<j≤N

1
|xi − xj |

+
N∑

i=1

V (xi )

acting on HN :=
N∧

i=1
H, with H = L2(R3).

We would like to understand the optical properties of such a system.

hν

System with N particles

Ekin

System with N − 1 particles

It holds hν + E 0
N = Ekin + E k

N−1, from which we deduce the gap E k
N−1 − E 0

N .
There is a dynamical response due to the loss of a particle.

It is interesting to consider a dynamical system with a variable number of particles

David Gontier GW April 26, 2014 2 / 26



Motivation

In the limit N →∞, we expect to recover the correct band gap of crystals.

(a) Band gaps for LDA and GW.
(b) Band structure of Si for LDA, and GW.

A GW calculation gives better results with respect to band gaps.2

The GW method is based on Green’s functions.

2M. van Schilfgaarde, T. Kotani and S. Faleev, Phys. Rev. Let. 96 (2006)
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Outline

Definition of the Green’s functions
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Second quantization

We work with fermions, in spin-unpolarized systems.

The 1-particle Hilbert space is H = L2(R3).

The N-particle fermionic Hilbert space is HN =
∧N

i=1 L
2(R3).

The fermionic Fock space is F = C⊕H⊕H2 ⊕ . . .
The Hamiltonian can be written in second quantization with

H =

∫
R3

h(x)Ψ†(x)Ψ(x)dx +

∫∫
R3×R3

v(x, y)Ψ†(x)Ψ†(y)Ψ(y)Ψ(x)dxdy,

where we separate the 1-body part of the Hamiltonian h(x) ≈ −1
2

∆ + V (x), and the

2-body part v(x, y) = |x− y|−1.
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Green’s functions: definition

We define the particle Green’s function (here, Θ is the heavyside function):

Gp(x, t, x′, t′) = −iΘ(t − t′)〈Ψ0
N |Ψ(x)e−i(t−t′)(HN+1−E0

N )Ψ†(x′)|Ψ0
N〉.

Interpretation:

start from the ground state

create a particle at x ′

let the system evolves with its extra particle between t′ and t (t − t′ > 0)

annihilate a particle at x

compare the new state with the ground state

"Describes the amplitude that a particle added at (x, t) will be released at (x′, t′)".

We also define the hole Green’s function

Gh(x, t, x′, t′) = iΘ(t′ − t)〈Ψ0
N |Ψ†(x′)ei(t−t′)(HN−1−E0

N )Ψ(x)|Ψ0
N〉.

"Describes the amplitude that a hole added at (x′, t′) will be released at (x, t)".
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The time-ordered Green’s function

We finally define the time-ordered Green’s function

G(x, t, x′, t′) = −i〈Ψ0
N |T

{
ΨH(x, t)Ψ†H(x′, t′)

}
|Ψ0

N〉

= Gp(x, t, x′, t′) + Gh(x, t, x′, t′),

where T is the fermionic time-ordering operator.
Note that G contains all the information of Gp and Gh.
Finally, note that Gp, Gh and G only depends on τ := t − t′.

The time-ordered Green’s function has some interesting properties. We can recover:

the 1-body density matrix from G :

−iG(x, x′; 0−) = γ0
N(x, x′) :=

∫
R3(N−1)

Ψ0
N(x, x2, . . . xN)Ψ0

N(x′, x2, . . . xN)dx2 . . .dxN .

the electronic density ρ0
N(x) = γ0

N(x, x) = −iG(x, x, 0−).

the ground-state energy (Galitskii-Migdal formula3).

some information about the optical properties of the system, like E k
N−1 − E 0

N .

3V. M. Galitskii and A. B. Migdal, Sov. Phys.-JETP 7, 96 (1958).
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The time-Fourier transform

Lemma
τ 7→ G(τ) is in L∞(S(H)), hence in the Schwartz class S ′(S(H)).

Its time-Fourier transform exists (in the tempered-distributional sense), with

Ĝ(ω) = A+

(
1

ω − (HN+1 − E 0
N)

)
A∗+ + A†−

(
1

ω − (E 0
N − HN−1)

)
A−

If E 0
N−2 < E 0

N , the analytic continuation of G into the physical Riemann sheet is

G̃p(z) := A+

(
1

z − (HN+1 − E 0
N)

)
A∗+ + A†−

(
1

z − (E 0
N − HN−1)

)
A−

for z ∈ C \ σ(HN+1 − E 0
N).

It holds
Ĝ(ω) = lim

η→0+
G̃(ω + iη) for ω > 0,

and
Ĝ(ω) = lim

η→0+
G̃(ω − iη) for ω < 0.

Here, A†+ : H → HN+1 and A− : H → HN−1 are the creation/annihilator operators.
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The time-ordered Green’s function

If E 0
N − E 0

N−2 < 0, the physical Riemann sheet for G is connected.

σess(E 0
N − HN−1)

region of interest
σess(HN+1 − E 0

N)

region of interest

Ĝ(ω) = lim
η→0+

G̃(ω + iη) for ω > 0,

and
Ĝ(ω) = lim

η→0+
G̃(ω − iη) for ω < 0.

David Gontier GW April 26, 2014 9 / 26



The dynamical Hamiltonian

Similarly to G̃0(z) = (z − H0)−1 for a non-interacting Hamiltonian, we would like to
define the (1-particle) dynamical Hamiltonian as

H̃(z) := z −
(
G̃(z)

)−1
.

Lemma

For all z ∈ C \ R, G̃(z) is an invertible operator from L2(R3) to some dense set
D(z) ⊂ H2(R3). In particular, H̃(z) is a well-defined operator with domain D(z).

Question: Do we have D(z) = H2(R3)?

Then, we look for solutions of H̃(z)ũ(z) = Ẽ(z)ũ(z), with Ẽ(z) ∈ C the quasi-energy.

The real part of Ẽ(z) is the energy of the quasi-particle ũ(z)

The imaginary part of Ẽ(z) is the lifetime of the quasi-particle ũ(z)

There is no non-real solution on the physical Riemann sheet.

Non real solutions can only be on the second Riemann sheet.
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Outline

Question: How to calculate the time-ordered Green’s function?

The GW approximation.
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Equation of motion

From the Schrödinger equation HΨ = i∂tΨ, and the anti-commutation rules, we get an
exact equation of motion for G :

(i∂t1 − h(1))G(12)−
∫

d3v(13)G (2)(13++23+) = δ(12),

where 1 = (x1, t1), 2 = (x2, t2) ..., v(13) = |x1 − x3|−1δt1t3 , d3 = dx3dt3, ...

Remarks:

We need to 2-body time-ordered Green’s function G (2):

G (2)(x, t, x′, t′, y, s, y′, s ′) := −i〈Ψ0
N |T

{
ΨH(x, t)ΨH(x′, t′)Ψ†H(y, s)Ψ†H(y′, s ′)

}
|Ψ0

N〉.

The equation of motion for G (2) uses G (3), and so on...

In order to have a closed equation for G , we make an approximation.
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The self-energy operator

After some manipulations, the equation of motion can be recast in the time-Fourier
domain into

(ω − H0)Ĝ(ω)− Σ̂(ω)Ĝ(ω) = 1H

where

H0 =
N∑

i=1

(
−1
2

∆i + V (xi ) +
(
ρ0

N ? | · |−1) (xi )

)
is the 1-body Hartree Hamiltonian.

We introduced the self-energy operator Σ which depends on G (2).

Finally, by introducing
Ĝ0(ω) = (ω − H0)−1

the (time-Fourier transform of the) non-interacting Green’s function, we get

Ĝ(ω)−1 = Ĝ0(ω)−1 − Σ̂(ω).

Remarks:

In this equation, Σ is seen as a correction to the non-interacting GF.

The GW approximation consists into approximating the self-energy Σ.
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After some manipulations

The Hedin’s equations: 4

G(12) = G0(12) +

∫
d34G0(13)Σ(34)G(42) (Dyson equation)

Σ(12) = i
∫

d34G(13)W (14)Γ(423) (Self-energy)

Γ(123) = δ(12)δ(13) +

∫
d4567

∂Σ(12)

∂G(45)
G(46)G(57)Γ(673) (Vertex function)

W (12) =

∫
d3ε−1(13)v(32) (Screening)

ε(12) = δ(12)−
∫

d3v(13)P(32) (Dielectric)

P(12) = −i
∫

d34G(13)G(41)Γ(342) (Irreducible polarizability)

Remarks:

Formulae based on Feynman diagram considerations (perturbation theory).

The idea of Hedin is to develop the perturbation with respect to W, rather than V.

4L. Hedin, Phys. Rev. 139, 3A (1965).
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The GW approximation

The GW approximation consists into setting

∂Σ(12)

∂G(45)
= 0, or equivalently Γ(123) = δ(12)δ(13) (GW approximation),

so that Σ(12) = i
∫

d34G(13)W (14)Γ(423) simplifies into ΣGW(12) = iG(12)W (12+).

Remarks:

We multiply the kernels of the operators, and not the operators!

It is unclear a priori whether Σ(12) is the kernel of some operators...

If we replace W by v , we would get

ΣGv (x, x′) = iG(x, x′, 0−)v(x, x′) = −γ
0
N(x, x′)
|x− x′| ,

which is the Fock exchange term. We recover in this case the Hartree-Fock model.

The self-energy can be seen as a "dynamically screened exchange operator".

Question: Is ΣGW (x, t, x′, t′) the kernel of a well-defined operator for all t, t′ ∈ R2?
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Definition of the GW self-energy

Lemma

For all τ := t − t′, the operator ΣGW(τ) is a well defined operator on H, which is
uniformly bounded in τ .

Idea of the proof
It holds, for f , g ∈ H×H,

〈f |ΣGW(τ)|g〉 =

∫∫
R3×R3

f (x)ΣGW(x, x′, τ))g(x′)dxdx

= i
∫∫

R3×R3
f (x)G(x, x′, τ)g(x′)W ∗(x′, x, τ)dxdx′

= Tr
(
f G(τ)gW ∗(τ)

)
.

Here, f and g are seen as multiplicative operators.

In some sense,
√

W (τ)f ∈ S2, with ‖
√

W (τ)f ‖S2 ≤ C‖f ‖L2 . Hence

〈f |ΣGW(τ)|g〉 ≤ ‖
√
W f G(τ)g

√
W (τ)‖S1 ≤ ‖G(τ)‖S(H)‖

√
W (τ)f ‖S2‖

√
W (τ)g‖S2

≤ C‖G(τ)‖S(H)‖f ‖H‖g‖H.
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The one-shot GW, and self-consistent GW

In practice

ΣGW(12) = iG(12)W (12+) and ĜGW(ω)−1 := Ĝ0(ω)−1 − Σ̂GW(ω).

Problem: We need to know G to compute ΣGW (and W ).

Idea 1: One-shot GW, or G0W0 approximation:
Set

ΣGW,00(12) = iG0(12)W0(12+) and ĜGW,00(ω)−1 := Ĝ0(ω)−1 − Σ̂GW,00(ω).

Idea 2: Self-consistent GW:
Repeat on k:

ΣGW
k+1 (12) = iGk(12)Wk(12+) and Ĝk+1(ω)−1 := Ĝ0(ω)−1 − Σ̂GW

k+1 (ω)

until convergence.

Questions:

What does "convergence" mean?

Does the self-consistent loop converge?
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Outline

The periodic case.
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Crystal model.

It is not obvious in what sense some thermodynamic limit must be made for G .

However, the thermodynamic limit for the Hartree model (i.e. G0) has a meaning.5

IDEA: study the Green’s function given by the G0W0 approximation:

From G0, calculate W0, and Σ00(1, 2) = iG0(12)W0(12).

Define the time-ordered Green’s function with

G̃GW,00(z)−1 := G̃0(z)−1 − Σ̃00(z).

We will therefore consider the (non-interacting) Hamiltonian defined by (from the Bloch
transformation)

H0 :=

∫ ⊕
q∈Γ∗

Hqdq where Hq := (−i∇+ q)2 + Vper + ρ0 ? | · |−1 is acting on L2
per(Γ).

We will write in the sequel

Hq =
∞∑

n=1

εnq|unq〉〈unq| with unq ∈ L2
per(Γ).

5I. Catto, C. Le Bris and P.L. Lions, Ann. I. H. Poincaré 19, 2 (2002)
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Semi-conductor

We suppose that the crystal is a semi-conductor with gap 2g .
We set the Fermi level εF = 0, and suppose that

∀q ∈ Γ∗ εN,q ≤ −g and εN+1,q ≥ g .

σess(H)
2g

εF = 0

We can work at q fixed, for every operator commutes with translation. For instance,

G̃0(q, z) =
N∑

n=1

|unq〉〈unq|
z − εnq − iη

+
∞∑

m=N+1

|umq〉〈umq|
z − εmq + iη

.

Remark:
Here, η > 0 allows to force the region of interest (shift poles in the correct direction).
Indeed, we are only working with z = ω ∈ R in the sequel.

σ(Hq)
2g

η
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The plasmon-pole approximation

To calculate W0, we use the Hedin’s equation

Ŵ0(q, ω) = v +
√

v(q)P̂0(q, ω)
√

v(q).

Usually, P̂0(q, ω) is very expensive to calculate.
It is approximated via a Plasmon-Pole interpolation:

P̂PP
0 (q, ω) =

∑
p∈N

|up(q)〉〈up(q)|
ω2 − (ωp(q)− iη)2

2Ω

η

In this last expression, up(q) is not necessarily an orthonormal basis, and ωp(q) > 0.

It holds P̂0(q,−ω) = P̂0(q, ω), and there exists a gap 2Ω >> 2g .

There exists several Plasmon-Pole approximations.

We worked with the one by Engel and Farid6 (good mathematical properties).

6G. Engel and B. Farid, Phys. Rev. B 47, 23 (1993)
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Opening of the gap

Lemma
In the periodic case, with the Engel and Farid plasmon-pole, for all ω ∈]−Ω− g ,Ω + g [,
Σ̂00(q, ω) is a well-defined symmetric operator. It is in the Schatten class Sp(L2

per(Γ)),
for all p > 3.

This theorem in valid in the limit η → 0.

The small gap g has been opened by Ω >> g .
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Correction of the eigenvalues: first method

Finally, we want to find the (real) solutions of

ĜGW,00
−1

(q, ω)u = 0 or
(
Hq + Σ̂00(q, ω)

)
u = ωu.

Perturbative approach: look for solutions ω = Enq ≈ εnq

Solve Enq = εnq + 〈unq|Σ̂00(q,Enq)|unq〉.

Σ̂00(q,Enq) ≈ Σ̂00(q, εnq) + (Enq − εnq)
∂Σ̂00

∂ω
(q, εnq).

Hence,

Enq = εnq +
〈unq|Σ̂00(q, εnq)|unq〉

1−

〈
unq

∣∣∣∂Σ̂00

∂ω
(q, εnq)

∣∣∣unq

〉

Lemma

For all ω ∈]− Ω− g ,Ω + g [,
∂Σ̂00

∂ω
(q, ω) is a non-positive symmetric operator.

Remark: Because of the opening of the gap, this lemma is valid for a wide range of εnq.
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Conclusions and perspectives

Conclusions:

We gave a mathematical meaning to the operators in GW.

In particular, we proved that the self-energy is a well-defined operator in both finite
systems and crystals (within the plasmon-pole approximation).

We proved the well-posedness of the resulting numerical models.

Perspectives

Understand the resonances (= quasi-energies on the second Riemann sheet).

Is the following non-linear eigenvalue problem well-posed?

det
(
Hq + Σ̂00(q, ω)− ω

)
= 0.

Investigate on the self-consistent GW method (convergence,...)
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The physical Riemann sheet

G̃p(z) := A+

(
1

z − (HN+1 − E 0
N)

)
A†+ for z ∈ C \ σ(HN+1 − E 0

N)

The eigenvalues of HN+1 − E 0
N are poles of G̃p.

The essential spectrum of HN+1 − E 0
N is a branch cut of G̃p.

The essential spectrum of HN+1 − E 0
N is [0,+∞[ due to the HVZ theorem.

σess(HN+1 − E 0
N)

Physical Riemann sheet

region of interest

σess(HN+1 − E 0
N)

region of interest
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The hole Green’s function

We can perform a similar work for the hole Green’s function:

G̃h(z) := A†−

(
1

z − (E 0
N − HN−1)

)
A− for z ∈ C \ σ(HN+1 − E 0

N)

The essential spectrum of E 0
N −HN−1 is ]−∞,E 0

N −E 0
N−2] due to the HVZ theorem.

σess(HN+1 − E 0
N)

Physical Riemann sheet

region of interest

σess(HN+1 − E 0
N)

region of interest
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