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Motivation

What is quantum chemistry?

When working at very small scales (molecules), the world is «quantic»

Chemistry is about calculating ground state energy of molecules

Therefore, we need quantum models to predict chemical properties of systems.

Example : geometry of the water molecule

Some numbers

30% of the worldwide CPU time.

The papers in the topic are quoted approximatively 6 times a day.
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Outline

A simple introduction to quantum mechanics
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Quantum made simple

Let us consider N identical particles of mass m = 1, in a potential V , and interacting
with W .
The system is entirely described by

The positions of the particles xi

The moments of the particles pi (recall that mvi = pi , where vi is the speed).

The total energy of the system is

E(x1, . . . , xN ; p1, . . . pN) =
N∑

i=1

1
2
p2

i︸ ︷︷ ︸
kinetic energy

+
N∑

i=1

V (xi )︸ ︷︷ ︸
external potential energy

+
∑

1≤i<j≤N

W (xi , xj )︸ ︷︷ ︸
interaction energy

.

Problem:
With only 1-particle (an electron), and a Coulomb interaction between the electron and a

hydrogen nucleus at the origin V (x) ≈ −1|x| , this energy can be arbitrary negative.

With this model, an hydrogen atom is an infinite reservoir of energy!
We need to go to the quantum world to study the ground state of molecules.
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Quantum made simple

Suppose that there is a source of uncertainties in the model.

Px(x1, . . . , xN) probability that the first particle is in x1, the second in x2, ...

Pp(p1, . . . pN) probability that the first particle has momenta p1, ...

It must hold Px ≥ 0, Pp ≥ 0, and∫
R3N

Pp(p1, . . . , pN)dp1 . . .dpN =

∫
R3N

Px(x1, . . . , xN)dx1 . . .dxN = 1.

The average total energy is

E(Px ,Pp) =

∫
R3N

(
N∑

i=1

1
2
p2

i

)
Pp(p1, . . . , pN)dp1 . . .dpN

+

∫
R3N

 N∑
i=1

V (xi ) +
∑

1≤i,j≤N

W (xi , xj )

Px(x1, . . . , xN)dx1 . . .dxN .

Without other constraints on Pp and Px , the energy can still be arbitrary negative
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Quantum made simple

Postulate (first postulate of Quantum Mechanics)

There exists a wave-function Ψ : R3N → C such that

|Ψ(x1, . . . xN)|2 = Px(x1, . . . , xN) is the probability that the particles are in x1, x2, ...

|Ψ̂(p1, . . . , p2)|2 = Pp(x1, . . . , xN) is the probability that the momenta are p1, p2, ...

Here, Ψ̂ is the normalized Fourier transform of Ψ:

Ψ̂(p1, . . . , pN) =
1

(2π)3/2

∫
R3N

Ψ(x1, . . . xN)e−i(p1·x1+...+pN ·xN )dx1 . . .dxN .

From the equality
∫

Px = 1, we deduce that

‖Ψ‖2 :=

∫
R3N
|Ψ(x1, . . . , xN)|2dx1 . . .dxN = 1,

which automatically ensures that ‖Ψ̂‖ = 1. The total energy is

E(Ψ) =

∫
R3N

(
N∑

i=1

1
2
p2

i

)
|Ψ̂(p1, . . . , pN)|2dp1 . . .dpN

+

∫
R3N

 N∑
i=1

V (xi ) +
∑

1≤i,j≤N

W (xi , xj )

 |Ψ(x1, . . . , xN)|2dx1 . . .dxN .
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Quantum made simple

Lemma
For all good choices of V and W (e.g. Coulomb potential), it holds

I := inf {E(Ψ), ‖Ψ‖ = 1} > −∞

I is called the ground state energy of the system, the ground state is the minimizer.

Figure: Electronic cloud ( = |Ψ|2) of the ground state of the Hydrogen atom.

David Gontier Quantum Chemistry June 04, 2014 7 / 15



The special case of electrons

Because the particles are indistinguishable, it must hold, for any permutation p ∈ SN ,

Px(xp(1), . . . , xp(N)) = Px(x1, . . . , xN) hence |Ψ(xp(1), . . . , xp(N))|2 = |Ψ(x1, . . . , xN)|2.
Fact. There are only two possibilities:

Either Ψ(xp(1), . . . , xp(N)) = Ψ(x1, . . . , xN) for all p ∈ SN =⇒ Bosons
Either Ψ(xp(1), . . . , xp(N)) = ε(p)Ψ(x1, . . . , xN) for all p ∈ SN =⇒ Fermions

We are working with electrons, which are fermions. We introduce the fermionic space
N∧

i=1

L2(R3) =
{

Ψ ∈ L2(R3N), Ψ(xp(1), . . . , xp(N)) = ε(p)Ψ(x1, . . . , xN)
}

The electronic problem to solve is

I = inf

{
E(Ψ), Ψ ∈

N∧
i=1

L2(R3), ‖Ψ‖ = 1

}

with

E(Ψ) =

∫
R3N

Ψ(~x)

 N∑
i=1

−1
2

∆i +
N∑

i=1

V (xi ) +
∑

1≤i<j≤N

W (xi − xj )

Ψ(~x)d~x.
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Outline

How to find the ground state energy with a computer?
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The curse of dimensionality

This model is extremely accurate!

Example: ionization of Helium. Calc. 5 945 262 288 Mhz, Exp. 5 945 204 356 Mhz

Problem:
We have a minimization problem for Ψ ∈ L2(R3N).
10 degrees of freedom per direction =⇒ 103N degrees of freedom in total.

Ok for small system (Helium)

Impossible for large systems. ex: Water molecule (N=10), Uranium (N= 92),...

«Curse of dimensionality»

It is necessary to make approximations!
Chemical accuracy:

energy of a C atom: ≈ 100 Ha

energy of a H atom: ≈ 0.5 Ha

energy of a covalent bond: ≈ 0.15 Ha

We need precision up to 4-digits to predict the dissociation of the methane CH4.
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The Hartree-Fock model

Recall that we want

I = inf

{
E(Ψ), Ψ ∈

N∧
i=1

L2(R3), ‖Ψ‖ = 1

}

Idea: minimize on a smaller setM⊂
{

Ψ ∈
∧N

i=1 L2(R3), ‖Ψ‖ = 1
}

=⇒ IM.
Facts

It obviously holds I ≤ IM
IfM is large enough, IM is a good approximation of I .

The energy E can have much simpler expression onM for a correct choice ofM.

The Hartree-Fock model
Choose

M =

{
Ψ(x1, . . . , xN) = (N!)−1/2 det (φk(xl ))1≤k,l≤N with

∫
φkφl = δkl

}
.
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The Hartree-Fock model

M =

{
Ψ(x1, . . . , xN) = (N!)−1/2 det (φk(xl ))1≤k,l≤N with

∫
φkφl = δkl

}
.

Any element ofM is characterized by the N functions φk ∈ L2(R3).
In particular, 10 degrees of freedom =⇒ 3N × 10 degrees of freedom in total.

Introducing

γ(x, y) =
N∑

i=1

φi (x)φi (y) and ρ(x) = γ(x, x) =
N∑

i=1

φi (x)φi (x),

it holds

E(Ψ) =
N∑

i=1

∫
|∇φi |2 +

∫
V ρ+

1
2

∫∫
W (x, y)

(
ρ(x)ρ(y)− |γ(x, y)|2

)
dxdy.

We have a simple characterization ofM, computationally tractable.

On this set, the energy can be easily computed.

But,...
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The mathematical study

E(Ψ) =
N∑

i=1

∫
|∇φi |2 +

∫
V ρ+

1
2

∫∫
W (x, y)

(
ρ(x)ρ(y)− |γ(x, y)|2

)
dxdy.

The new problem is non linear and non convex!
Does a minimizer exists onM? (YES)
Is there an efficient algorithm to find such a minimizer? (YES)
Does such a minimizer similar properties than the real ground state? (usually NO)
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Outline

Concluding remarks
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My thesis subject

As we saw with the Hartree-Fock approximation, the usual scheme is

The full problem is impossible to solve due to the curse of dimensionality

We make some kind of approximation (hopefully better than Hartree-Fock)

We obtain a new minimization problem on a different set, with a different expression.

Then, the mathematical questions raised are

Can we characterize the new set of minimization?

Can we prove the existence of minimizer on this set?

Can we design algorithms to find such a minimizer?

Can we prove the efficiency of the new model?

In my thesis, I consider those types of questions when we include a magnetic field.
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