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Nuclear configuration {Rk}1≤k≤N :

vext(r) :=
M∑

k=1

−zk
|r − Rk |

.

Electronic problem with N-electrons

HNΨ :=

−1
2

N∑
i=1

∆ri +
∑

1≤i<j≤N

1
|ri − rj |

+
N∑

i=1

vext(ri )

Ψ(r1, . . . , rN) = EΨ(r1, . . . rN).

|Ψ(r1, . . . rN)|2 is the probability density of observing electron 1 at r1, electron 2 at r2, ...

Pauli principle for fermions: ∀p ∈ SN , Ψ(rp(1), . . . rp(N)) = ε(p)Ψ(r1, . . . rN).

State space

Ψ ∈ HN :=
N∧
H1, H1 = L2(R3,C) and ‖Ψ‖L2(R3N ) = 1.
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Zhislin’s theorem
G.M. Zhislin. Trudy Moskov. Mat. Obsc., 9, 1960.

If N ≤ Z :=
M∑

k=1
zk , then σ(HN) is as follows:

R
ΣN

E 0
N E 1

N E 2
N · · · σess

eigenvalues embedded in σess

Moreover, if N ≥ 2, ΣN = E 0
N−1 < 0 (HVZ theorem).

Assumptions

E 0
N is a simple eigenvalue of HN , HNΨ0

N = E 0
NΨ0

N , ‖Ψ0
N‖L2 = 1

Stability of the N-particle system: 2E 0
N < E 0

N+1 + E 0
N−1
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We would like to compute the electronic excitation energies of such a system:
=⇒ quantities of the form

E 0
N − E k

N+1 (gain of an electron) and E 0
N − E k

N−1 (loss of an electron).

Inverse photoemission spectroscopy (IPES)
hν

System with N particles

Ekin

System with N − 1 particles

ΣNE 0
N

ΣN−1E 0
N−1 E 1

N−1

(HVZ theorem)

electronic excitation
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Computation of the excitation energies E 0
N − E k

N+1 or E 0
N − E k

N−1

Density functional theory (DFT) inadequate: only deals with ground state properties
Quantum Monte Carlo methods: idem
Wavefunction methods: scales from N6

b (CISD) to Nb! (full CI)
Time-dependent DFT (TDDFT): does not work well for extended systems
Green’s function method: in this talk, GW.

Electronic excitations energies → band gap of perfect crystals as N →∞

Figure: Band gaps for LDA and GW.

M. van Schilfgaarde, T. Kotani and S. Faleev, Phys. Rev. Let. 96 (2006)
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Definition of the Particle Green’s function in the time domain
Fock space

F :=
+∞⊕
N=0

HN , H0 = C, H1 = L2(R3,C), HN =
N∧
H1.

Annihilation and creation operators

a ∈ B(H1,B(F)), a† ∈ B(H1,B(F)),

∀φ ∈ H1, a(φ) : HN → HN−1, a†(φ) : HN → HN+1, a†(φ) = (a(φ))∗,

∀ΨN ∈ HN , (a(φ)ΨN)(r1, · · · , rN−1) =
√
N
∫
R3
φ(r) ΨN(r, r1, · · · , rN−1) dr.

One-body particle Green’s function (in the time domain)

∀τ ∈ R, ∀(f , g) ∈ H1×H1, 〈g |Gp(τ)|f 〉 = −iΘ(τ)
〈

ΨN
0

∣∣∣a(g)e−iτ(HN+1−E0
N )a†(f )

∣∣∣ΨN
0

〉
.

Annihilation and creation operators (bis)

A∗+ ∈ B(H1,HN+1) : f 7→ a†(f )|Ψ0
N〉, A+ = (A∗+)

∗ ∈ B(HN+1,H1)

One-body particle Green’s function (in the time domain) (bis)

∀τ ∈ R, Gp(τ) = −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+
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Definition of the Particle Green’s function in the frequency domain

∀τ ∈ R, Gp(τ) = −iΘ(τ)A+e−iτ(HN+1−E0
N )A∗+

Normalization convention for the time-Fourier transform

∀f ∈ L1(Rτ ,X ), X Banach space, [FT f ] (ω) = f̂ (ω) =

∫ +∞

−∞
f (τ) e iωτ dτ.

Fourier representation of the one-body particle Green’s function

Ĝp(ω) = (FTGp) (ω), Ĝp ∈ H−1(Rω,B(H1)).

Key point

The support of the distribution Im
(
Ĝp

)
is contained in the (particle) electronic

excitation set Sp := σ(HN+1 − E 0
N).

Particle electronic excited state energies can be recovered from Ĝp

Ĝp is highly irregular

(ω 7→ Im
(
Ĝp(ω)

)
is an observable)
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Definition of the Particle Green’s function in the complex frequency domain

Remark

There exists an analytical continuation G̃p of Ĝp on U = {z ∈ C, Im (z) > 0}. This
continuation can also be extended to C \ Sp.

∀z ∈ C \ Sp, G̃p(z) = A+

(
1

z − (HN+1 − E 0
N)

)
A∗+.

0 σess(HN+1 − E 0
N)E 0

N+1 − E 0
N

ω 7→ Ĝp(ω)

analytic continuation
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Definition of the one-body Hole Green’s function

Annihilation and creation operators (ter)

A− ∈ B(H1,HN−1) : f 7→ a(f )|Ψ0
N〉, A∗− ∈ B(HN−1,H1)

In the time domain

∀τ ∈ R, Gh(τ) = iΘ(−τ)A∗−eiτ(HN−1−E0
N )A−

Properties
From the hole or the total Green’s function, we can recover the following quantities:

One-body electronic ground-state density matrix: γ0
N = −iGh(0−) = A∗−A−

γ0
N(r, r′) = N

∫
R3(N−1)

Ψ0
N(r, r2, · · · , rN) Ψ0

N(r′, r2, · · · , rN) dr2 · · · drN ,

Electronic ground state density

ρ0
N(r) = N

∫
R3(N−1)

|Ψ0
N(r, r2, · · · , rN)|2 dr2 · · · drN

Ground state energy (Galiskii-Migdal formula)
V.M. Galitskii and A.B. Midgal. Sov. Phys. JETP, 139, 1958.

E 0
N =

1
2
TrH1

[(
d
dτ
− i
(
−1
2

∆ + vext

))
Gh(τ)

∣∣∣
τ=0−

]
Hole electronic excited state energies
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The hole Green’s function in the frequency domain

Ĝh(ω) = (FtGh) (ω), Ĝh ∈ H−1(Rω,B(H1))

Key point

The support of the distribution Im
(
Ĝh

)
is contained in the (hole) electronic excitation

set Sh := σ(E 0
N − H0

N−1).

In the complex frequency domain

∀z ∈ C \ Sh, G̃h(z) = A∗−

(
1

z − (E 0
N − HN−1)

)
A−

0

E 0
N − E 0

N−1ω 7→ Ĝh(ω)

analytic continuation
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Definition of the total Green’s function

Chemical potential µ

E 0
N − E 0

N−1 < µ < E 0
N+1 − E 0

N .

One-body total Green’s function in the complex frequency domain

∀z ∈ C \ (Sh ∪ Sp) , G̃(z) = G̃h(z) + G̃p(z).

σ(E 0
N − HN−1)

σ(HN+1 − E 0
N)

E 0
N − E 0

N−1

E 0
N+1 − E 0

N

µ+ iR
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Green’s function for non-interacting systems

System of non-interacting electrons subjected to an effective potential V

H0,N =
N∑

i=1

(
−1
2

∆ri + V (ri )
)

on HN , h1 = −1
2

∆ + V on H1.

Assumptions
h1 has at least N negative eigenvalues ε1 ≤ ε2 ≤ · · · ≤ εN
Stability condition: It holds εN < εN+1

Chemical potential of the non-interacting system µ0

εN < µ0 < εN+1.

Ground state of the non-interacting system

Φ0
N = φ1 ∧ · · · ∧ φN , γ0

0,N = 1(−∞,µ0)(h1) =
N∑

i=1

|φi 〉〈φi |.

Green’s function of the non-interaction system

G̃0,h(z) = γ0
0,N(z − h1)−1, G̃0,p(z) = (1− γ0

0,N)(z − h1)−1, G̃0(z) = (z − h1)−1.
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Dynamical Hamiltonian and self-energy

Dynamical Hamiltonian
Non-interacting system: G̃0(z) = (z − h1)−1

Interacting system: G̃(z) = (z − H̃(z))−1, H̃(z): dynamical Hamiltonian

Eigenvalues = quasi-energies

Eigenfunctions = quasi-particles

Lemma

For all z ∈ C \ (Sh ∪ Sp), H̃(z) = z − G(z)−1 is a well-defined closed operator on H1,
with dense domain D̃(z) such that D̃(z) ⊂ H2(R3).

Assumption

The chemical potential of the interacting system and of the non-interacting system
can be chosen equal:

µ = µ0.

Self-energy

∀z ∈ U∪L∪ (µ− a, µ+b), Σ̃(z) = H̃(z)−h1 = G̃0(z)−1− G̃(z)−1 (Dyson equation)
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Dyson equation on the imaginary axis µ+ iR

∀ω ∈ Rω, Σ̃(µ+ iω) = G̃0(µ+ iω)−1 − G̃(µ+ iω)−1

Road map

Construct a good non-interacting model for G̃0(µ+ iω)
Hartree Hamiltonian (in the original paper)
Kohn-Sham Hamiltonian (DFT)

Use an approximation of the self-energy Σ̃ ≈ Σ̃GW on the axis µ+ iR.

Define G̃GW(µ+ iω) from the Dyson equation with Σ̃GW(µ+ iω)

∀ω ∈ Rω, G̃(µ+iω) =
(
G̃0(µ+ iω)−1 − Σ̃(µ+ iω)

)−1
=
(
µ+ iω − h1 − Σ̃(µ+ iω)

)−1
.
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Choice of
(

Σ̃GW, G̃GW
)
: The Hedin’s equations ( L. Hedin. Phys. Rev., 139, 1965.)

Kernel of a space-time operator A

A(12) = A(r1, t1; r2, t2) = [A(t1 − t2)] (r1, r2)

The Hedin’s equations
Dyson equation

G(12) = G0(12) +

∫
d(34)G0(13)Σ(34)G(42)

Self-energy

Σ(12) = i
∫

d(34)G(13)W (41+)Γ(32; 4)

Screened interaction

W (12) = vc(12) +

∫
d(34)vc(13)P(34)W (42)

Irreducible polarization

P(12) = −i
∫

d(34)G(13)G(41+)Γ(34; 2)

Vertex function

Γ(12; 3) = δ(12)δ(13) +

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(67; 3)
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The GW equations
Find

(
ΣGW,GGW) such that

Dyson equation

GGW(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW(42)

Self-energy
ΣGW(12) = iGGW(12)WGW(21+)

Screened interaction

WGW(12) = vc(12) +

∫
d(34)vc(13)PGW(34)WGW(42)

Irreducible polarization

PGW(12) = −iGGW(12)GGW(21)

Flow chart of the self-consistent GW scheme

G0 G k=0
G k=0 = G0

Initialization
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The GW equations
Find

(
ΣGW,GGW) such that

Dyson equation

GGW(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW(42)

Self-energy
ΣGW(12) = iGGW(12)WGW(21+)

Screened interaction

WGW(12) = vc(12) +

∫
d(34)vc(13)PGW(34)WGW(42)

Irreducible polarization

PGW(12) = −iGGW(12)GGW(21)

Flow chart of the self-consistent GW scheme

G0 G k

Pk

W k

Σk

Iteration k, step 1
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The GW equations
Find

(
ΣGW,GGW) such that

Dyson equation

GGW(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW(42)

Self-energy
ΣGW(12) = iGGW(12)WGW(21+)

Screened interaction

WGW(12) = vc(12) +

∫
d(34)vc(13)PGW(34)WGW(42)

Irreducible polarization

PGW(12) = −iGGW(12)GGW(21)

Flow chart of the self-consistent GW scheme

G0 G k+1

Σk

Iteration k, step 2

Dyson equation
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The GW0 equations:

Fix W k = W 0

Find
(

ΣGW0
,GGW0

)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW0

(42)

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21+)

Flow chart of the self-consistent GW0 scheme

G0 G k=0 W 0

P0

G k=0 = G0

Initialization
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The GW0 equations:

Fix W k = W 0

Find
(

ΣGW0
,GGW0

)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW0

(42)

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21+)

Flow chart of the self-consistent GW0 scheme

G0 G k W 0

Σk

Iteration k, step 1
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The GW0 equations:

Fix W k = W 0

Find
(

ΣGW0
,GGW0

)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW0

(42)

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21+)

Flow chart of the self-consistent GW0 scheme

G0 G k+1

Σk

Iteration k, step 2

Dyson equation
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The GW0 equations:

Fix W k = W 0

Find
(

ΣGW0
,GGW0

)
such that

Dyson equation

GGW0
(12) = G0(12) +

∫
d(34)G0(13)Σ(34)GGW0

(42)

Self-energy
ΣGW0

(12) = iGGW0
(12)W 0(21+)

Next part of the talk

Explain the operator W and W 0

Explain the “multiplication” of type A(12)B(21)

Transform the GW0 equations on the time axis Rτ into formally equivalent GW0

equations on the imaginary frequency axis µ+ iRω
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The dynamically screened operator W

The Coulomb operator
In the vacuum, a time-dependent charge δρ(r, t) creates a potential

δV (r′, t) =

∫
R3

1
|r − r′|δρ(r, t)dr, or δV = δ0(t)vc (δρ)

vc(r, r′) =
1

|r − r′| Coulomb operator

The dynamically screened operator
In a molecule, a time-dependent charge δρ(r, t) creates a potential

δV (r′, t) =

∫
R3

∫ t

−∞
W (rt, r′t′)δρ(r, t′)drdt′

= δ0(t)vc (δρ) +

∫
R3

∫ t

−∞
Wc(rt, r′t′)δρ(r, t′)drdt′

Screening effect

+ =
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The dynamically screened operator W 0

Calculated from the Hartree Hamiltonian:

W 0(τ) = δ0(τ)vc + W 0
c (τ).

GW0 approximation of the self-energy

Σapp(12) = iGapp(12)W 0(21+)

Σapp(r, r′; τ) = iδ0(τ)Gapp
h (r, r′; 0−)vc(r, r′) + iGapp(r, r′; τ)W 0

c (r′, r;−τ)

= −
γapp

N (r, r′)
|r − r′| δ0(τ)︸ ︷︷ ︸
Fock term

+ iGapp(r, r′; τ)W 0
c (r′, r;−τ).

Kernel-product (infinite dimensional Hadamard product)
For A ∈ B(H1) and B ∈ B(H1),

C = A� B with C(r, r′) = A(r, r′)B(r′, r).

In practice

Σapp(τ) = Kxδ0(τ) + iGapp(τ)�W 0
c (−τ), with Kx(r, r′) := −

γ0
0,N(r, r′)
|r − r′| .
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Analytical continuation method
Equation

∀τ ∈ Rτ , Σapp(τ) := Kxδ0(τ) + iGapp(τ)�W 0
c (−τ)

is formally equivalent to

Σ̃app(µ0 + iω) = Kx −
1
2π

∫ +∞

−∞
G̃app

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′

The GW0 equations in the imaginary frequency axis
Find GGW0

∈ L∞(Rω,B(H1)) solution to the system

(GW0)


Σ̃GW0(µ0 + iω) = Kx −

1
2π

∫ +∞

−∞
G̃GW0(µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0(µ0 + iω)

)]−1

with

Kx(r, r′) = −
γ0

0,N(r, r′)
|r − r′| .
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(GW0)


Σ̃GW0(µ0 + iω) = Kx −

1
2π

∫ +∞

−∞
G̃GW0(µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0(µ0 + iω) =

[
µ0 + iω −

(
h1 + Σ̃GW0(µ0 + iω)

)]−1

Lemma

For all G̃app ∈ L∞(Rω,B(H1)) and all ω ∈ Rω, the operator

Σ̃app
c (µ0 + iω) = − 1

2π

∫ +∞

−∞
G̃app

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′

is a well-defined bounded operator on H1.

Problem
For G̃app(µ0 + i·) close to G̃0(µ0 + i·) in L∞(Rω,B(H1)), is the operator

µ0 + iω −
(
h1 + Σ̃app(µ0 + iω)

)
invertible?
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The GW0 approximation in a perturbative regime

(GW0
λ)


Σ̃GW0

λ(µ0 + iω) = Kx −
1
2π

∫ +∞

−∞
G̃GW0

λ

(
µ0 + i(ω + ω′)

)
� W̃ 0

c (iω′) dω′,

G̃GW0
λ(µ0 + iω) =

[
µ0 + iω −

(
h1 + λΣ̃GW0

λ(µ0 + iω)

)]−1

Theorem (DG, Cancès, Stoltz)

There exists λ∗ > 0 such that, for all 0 ≤ λ ≤ λ∗, there exists a unique solution G̃GW0
λ

to the problem (GW0
λ) which is close to G̃0.

Moreover, the self-consistent procedure starting from G̃0 converges geometrically fast

toward G̃GW0
λ in L∞(Rω,B(H1))
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Conclusion
Current results

The fundamental objects (G ,G0,Σ,W0) involved in GW0 formalism are
mathematically well-defined

Some of their properties have been rigorously proved

The GW0 equations are well-posed in a perturbative regime

Work in progress

Analysis of the fully self-consistent GW method for periodic crystals

How to recover Im ĜGW0
p and Im ĜGW0

h from ω 7→ G̃GW0(µ+ iω)
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Infinite dimensional Hadamard product
Hadamard product for matrices
If A = (aij )1≤i,j≤N ∈MN×N(C) and B = (bij )1≤i,j≤N ∈MN×N(C),

C := A� B = (cij )1≤i,j≤N with cij = aijbji

Hadamard product for operators, the formal definition
A = A(r, r′) ∈ B(H1) and B = B(r, r′) ∈ B(H1)

C = A� B with C(r, r′) = A(r, r′)B(r′, r).

Formally, for f , g ∈ H1,

〈f |C |g〉 =

∫∫
R3×R3

f (r)C(r, r′)g(r′)drdr′ =

∫∫
R3×R3

f (r)A(r, r′)g(r′)B(r′, r)drdr′

= TrH1

(
AgBf

)
.

Definition
The kernel-product of A ∈ B(H1) and B ∈ B(H1) is the operator A� B defined by the
quadratic form

(f , g) 7→ 〈f |A� B|g〉 := TrH1

(
AgBf

)
.
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