A mathematical study of the GW⁰ method for computing electronic excited states of molecules

Éric Cancès, David Gontier, Gabriel Stoltz

Université Paris EST, CERMICS, École des Ponts ParisTech and INRIA Department of Mathematics, ETH Zürich

GDR DynQua, Grenoble February 2nd, 2016 Goal: compute the electronic excitation energies of a finite electronic system (molecule).

Nuclear configuration (Born-Oppenheimer approximation): $\{\mathbf{R}_k\}_{1 \le k \le N}$:

$$\mathbf{v}_{ ext{ext}}(\mathbf{r}) := \sum_{k=1}^{M} rac{-z_k}{|\mathbf{r} - \mathbf{R}_k|}.$$

Electronic problem with *N*-electrons

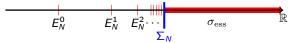
$$H_N\Psi:=\left(-\frac{1}{2}\sum_{i=1}^N\Delta_{\mathbf{r}_i}+\sum_{1\leq i< j\leq N}\frac{1}{|\mathbf{r}_i-\mathbf{r}_j|}+\sum_{i=1}^N\mathbf{v}_{\mathrm{ext}}(\mathbf{r}_i)\right)\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)=E\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N).$$

 $|\Psi(\textbf{r}_1,\ldots\textbf{r}_N)|^2$ is the probability density of observing electron 1 at $\textbf{r}_1,$ electron 2 at $\textbf{r}_2,$...

Pauli principle for fermions: $\forall p \in \mathfrak{S}_N, \ \Psi(\mathbf{r}_{\rho(1)}, \dots \mathbf{r}_{\rho(N)}) = \epsilon(p)\Psi(\mathbf{r}_1, \dots \mathbf{r}_N).$ State space

$$\Psi\in\mathcal{H}_N:=\bigwedge^N\mathcal{H}_1,\quad\mathcal{H}_1=L^2(\mathbb{R}^3,\mathbb{C}).$$

Zhislin's theorem (G.M. Zhislin. Trudy Moskov. Mat. Obsc., 9, 1960) If $N \le Z := \sum_{k=1}^{M} z_k$, then $\sigma(H_N)$ is as follows:



Ground state: $\Psi^0_N \in \mathcal{H}_N$ such that $\left\|\Psi^0_N\right\| = 1$ and $H_N \Psi^0_N = E^0_N \Psi^0_N$.

Problem: $\mathcal{H}_N \subset L^2(\mathbb{R}^{3N})$ is a huge space. (Curse of dimensionality)

$$H_2$$
 (N = 2) H_2O (N = 10) $C_8H_{10}N_4O_2$ (N = 102)

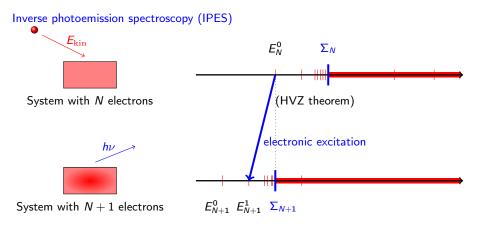
 \implies Several approximations were proposed in the last decades.

- Density functional theory (DFT): for ground state properties only
- Quantum Monte Carlo methods: idem
- Wavefunction methods: scales from N_b^6 (CISD) to $N_b!$ (full CI)
- Time-dependent DFT (TDDFT): does not work well for extended systems
- Green's function method: in this talk, GW.

The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the electronic excitation energies of a system \implies quantities of the form

 $E_N^0 - E_{N+1}^k$ (gain of an electron)

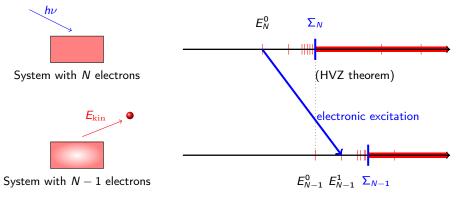


The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the electronic excitation energies of a system \implies quantities of the form

 $E_N^0 - E_{N+1}^k$ (gain of an electron) and $E_N^0 - E_{N-1}^k$ (loss of an electron).

Photoemission spectroscopy (PES)



Definition of the Particle Green's function in the time domain Fock space

$$\mathbb{F} := \bigoplus_{N=0}^{+\infty} \mathcal{H}_N, \qquad \mathcal{H}_0 = \mathbb{C}, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C}), \qquad \mathcal{H}_N = \bigwedge^N \mathcal{H}_1$$

Annihilation and creation operators

$$\begin{aligned} \mathbf{a} \in \mathcal{B}(\mathcal{H}_{1}, \mathcal{B}(\mathbb{F})), \qquad \mathbf{a}^{\dagger} \in \mathcal{B}(\mathcal{H}_{1}, \mathcal{B}(\mathbb{F})), \\ \forall \phi \in \mathcal{H}_{1}, \qquad \mathbf{a}(\phi) : \mathcal{H}_{N} \to \mathcal{H}_{N-1}, \qquad \mathbf{a}^{\dagger}(\phi) : \mathcal{H}_{N} \to \mathcal{H}_{N+1}, \qquad \mathbf{a}^{\dagger}(\phi) = (\mathbf{a}(\phi))^{*}, \\ \forall \Psi \in \mathcal{H}_{N}, \qquad (\mathbf{a}(\phi)\Psi)(\mathbf{r}_{1}, \dots, \mathbf{r}_{N-1}) = \sqrt{N} \int_{\mathbb{R}^{3}} \overline{\phi(\mathbf{r})} \, \Psi(\mathbf{r}, \mathbf{r}_{1}, \dots, \mathbf{r}_{N-1}) \, d\mathbf{r}. \end{aligned}$$

One-body particle Green's function (in the time domain)

$$\forall \tau \in \mathbb{R}, \ \forall f, g \in \mathcal{H}_{1}, \ \left\langle g | \mathcal{G}_{\mathrm{P}}(\tau) | f \right\rangle = -\mathrm{i}\Theta(\tau) \left\langle \Psi_{N}^{0} \left| \mathsf{a}(g) e^{-i\tau(\mathcal{H}_{N+1} - \mathcal{E}_{N}^{0})} \mathsf{a}^{\dagger}(f) \right| \Psi_{N}^{0} \right\rangle.$$

Annihilation and creation operators (bis)

$$A^*_+\in \mathcal{B}(\mathcal{H}_1,\mathcal{H}_{N+1}):f\mapsto a^{\dagger}(f)|\Psi^0_N
angle, \quad A_+=(A^*_+)^*\in \mathcal{B}(\mathcal{H}_{N+1},\mathcal{H}_1).$$

One-body particle Green's function (in the time domain) (bis)

$$\forall \tau \in \mathbb{R}, \quad \mathcal{G}_{\mathrm{p}}(\tau) = -\mathrm{i}\Theta(\tau)\mathcal{A}_{+}\mathrm{e}^{-\mathrm{i}\tau(\mathcal{H}_{N+1}-\mathcal{E}_{N}^{\mathbf{0}})}\mathcal{A}_{+}^{*}.$$

David Gontier

...

Definition of the Particle Green's function in the frequency domain

$$\forall \tau \in \mathbb{R}, \quad \mathcal{G}_{\mathrm{p}}(\tau) = -\mathrm{i}\Theta(\tau)\mathcal{A}_{+}\mathrm{e}^{-\mathrm{i}\tau(\mathcal{H}_{N+1}-\mathcal{E}_{N}^{\mathbf{0}})}\mathcal{A}_{+}^{*}.$$

Normalization convention for the time-Fourier transform

$$\forall f \in L^1(\mathbb{R}_\tau, X), \quad X \text{ Banach space}, \quad [\mathcal{F}_T f](\omega) = \widehat{f}(\omega) = \int_{-\infty}^{+\infty} f(\tau) e^{\mathrm{i}\omega\tau} \, \mathrm{d}\tau.$$

Fourier representation of the one-body particle Green's function

$$\widehat{\mathcal{G}_{\mathrm{p}}}(\omega) = (\mathcal{F}_{\mathcal{T}}\mathcal{G}_{\mathrm{p}})\,(\omega), \quad \widehat{\mathcal{G}_{\mathrm{p}}} \in \mathcal{H}^{-1}(\mathbb{R}_{\omega},\mathcal{B}(\mathcal{H}_{1})).$$

Key point

The support of the distribution $Im\left(\widehat{G_{p}}\right)$ is contained in the particle electronic excitation set $S_{p} := \sigma(H_{N+1} - E_{N}^{0})$.

- Particle electronic excited energies can be recovered from \widehat{G}_{p} ,
- $\widehat{G_p}$ is highly irregular.

Laplace transform of the Green's function For $z \in \mathbb{U} = \{z \in \mathbb{C}, \text{Im } (z) > 0\}$, define

$$\widetilde{\mathcal{G}_{\mathrm{p}}}(z) := \int_{0}^{\infty} \mathcal{G}_{\mathrm{p}}(au) \mathrm{e}^{\mathrm{i}z au} \mathrm{d} au.$$

Remark

- $\widetilde{G_p}$ is an analytical continuation of $\widehat{G_p}$ on \mathbb{U} (Titchmarsh's theory),
- This continuation can be extended to $\mathbb{C} \setminus S_p$.

Definition of the one-body hole Green's function

Annihilation and creation operators (ter)

$$A_{-} \in \mathcal{B}(\mathcal{H}_{1}, \mathcal{H}_{N-1}) : f \mapsto a(\overline{f}) | \Psi_{N}^{0} \rangle, \quad A_{-}^{*} \in \mathcal{B}(\mathcal{H}_{N-1}, \mathcal{H}_{1}).$$

In the time domain

$$\forall \tau \in \mathbb{R}, \quad {\mathcal{G}}_{\rm h}(\tau) = {\rm i} \Theta(-\tau) {\mathcal{A}}_-^* {\rm e}^{{\rm i} \tau ({\mathcal{H}}_{{\mathcal{N}}-1}-{\mathcal{E}}_{{\mathcal{N}}}^0)} {\mathcal{A}}_-.$$

Properties

From the hole Green's function, we can recover the following quantities:

• One-body electronic ground-state density matrix: $\gamma_N^0 = -iG_h(0^-) = A_-^*A_-$

$$\gamma_{N}^{0}(\mathbf{r},\mathbf{r}') = N \int_{\mathbb{R}^{3(N-1)}} \Psi_{N}^{0}(\mathbf{r},\mathbf{r}_{2},\cdots,\mathbf{r}_{N}) \Psi_{N}^{0}(\mathbf{r}',\mathbf{r}_{2},\cdots,\mathbf{r}_{N}) \, \mathrm{d}\mathbf{r}_{2}\cdots\mathrm{d}\mathbf{r}_{N},$$

• Electronic ground state density

$$\rho_N^0(\mathbf{r}) = N \int_{\mathbb{R}^{3(N-1)}} |\Psi_N^0(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2 \, \mathrm{d}\mathbf{r}_2 \cdots \mathrm{d}\mathbf{r}_N,$$

• Ground state energy (Galiskii-Migdal formula)

V.M. Galitskii and A.B. Midgal. Sov. Phys. JETP, 139, 1958.

$$E_N^0 = \frac{1}{2} \text{Tr}_{\mathcal{H}_1} \left[\left(\frac{d}{d\tau} - i \left(-\frac{1}{2} \Delta + v_{\text{ext}} \right) \right) \, G_h(\tau) \Big|_{\tau=0^-} \right].$$

David Gontier

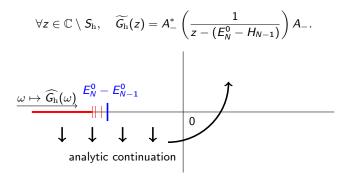
The hole Green's function in the frequency domain

$$\widehat{\mathcal{G}_{\mathrm{h}}}(\omega) = (\mathcal{F}_{\mathcal{T}}\mathcal{G}_{\mathrm{h}})(\omega), \quad \widehat{\mathcal{G}_{\mathrm{h}}} \in H^{-1}(\mathbb{R}_{\omega}, \mathcal{B}(\mathcal{H}_{1})).$$

Key point

The support of the distribution $Im\left(\widehat{G_h}\right)$ is contained in the hole electronic excitation set $S_h := \sigma(E_N^0 - H_{N-1}^0)$.

In the complex frequency domain



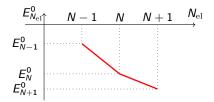
Definition of the total Green's function

Assumption: Stability condition

$$2E_N^0 < E_{N+1}^0 + E_{N-1}^0.$$

Chemical potential $\boldsymbol{\mu}$

$$E_{N}^{0} - E_{N-1}^{0} < \mu < E_{N+1}^{0} - E_{N}^{0}.$$



One-body total Green's function in the complex frequency domain

Green's function for non-interacting systems

System of non-interacting electrons subjected to an effective potential V

$$H_{0,N} = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{\mathbf{r}_i} + V(\mathbf{r}_i) \right) \text{ on } \mathcal{H}_N, \qquad h_1 = -\frac{1}{2} \Delta + V \text{ on } \mathcal{H}_1.$$

Assumptions

- h_1 has at least N negative eigenvalues $\varepsilon_1 \leq \varepsilon_2 \leq \cdots \leq \varepsilon_N$,
- Stability condition: it holds $\varepsilon_N < \varepsilon_{N+1}$.

Chemical potential of the non-interacting system μ_0

$$\varepsilon_N < \mu_0 < \varepsilon_{N+1}.$$

Ground state of the non-interacting system

$$\Phi_N^{\mathbf{0}} = \phi_1 \wedge \cdots \wedge \phi_N, \qquad \gamma_{\mathbf{0},N}^{\mathbf{0}} = \mathbb{1}_{(-\infty,\mu_{\mathbf{0}})}(h_1) = \sum_{i=1}^N |\phi_i\rangle\langle\phi_i|.$$

Green's function of the non-interaction system

$$\widetilde{G_{0,h}}(z) = \gamma_{0,N}^0(z-h_1)^{-1}, \quad \widetilde{G_{0,P}}(z) = (1-\gamma_{0,N}^0)(z-h_1)^{-1}, \quad \boxed{\widetilde{G_0}(z) = (z-h_1)^{-1}}.$$

Dynamical Hamiltonian

Non-interacting system: $\widetilde{G}_0(z) = (z - h_1)^{-1}$. Interacting system: $\widetilde{G}(z) = (z - \widetilde{H}(z))^{-1}$, $\widetilde{H}(z)$: dynamical Hamiltonian.

- Eigenvalues = quasi-energies,
- Eigenfunctions = quasi-particles.

Lemma

For all $z \in \mathbb{C} \setminus (S_h \cup S_p)$, $\widetilde{H}(z) = z - G(z)^{-1}$ is a well-defined closed operator on \mathcal{H}_1 , with dense domain $\widetilde{D}(z)$ such that $\widetilde{D}(z) \subset H^2(\mathbb{R}^3)$.

Assumption

• The chemical potential of the interacting system and of the non-interacting system can be chosen equal:

$$\mu = \mu_0.$$

Self-energy

$$\forall z \in \mathbb{U} \cup \mathbb{L} \cup (\mu - a, \mu + b), \quad \widetilde{\Sigma}(z) = \widetilde{H}(z) - h_1 = \widetilde{G_0}(z)^{-1} - \widetilde{G}(z)^{-1} \quad (\text{Dyson equation}).$$

$$\widetilde{H}(z) = h_1 + \widetilde{\Sigma}(z).$$

Dyson equation on the imaginary axis $\mu + i\mathbb{R}$

$$\forall \omega \in \mathbb{R}_{\omega}, \quad \widetilde{\Sigma}(\mu + \mathrm{i}\omega) = \widetilde{G_0}(\mu + \mathrm{i}\omega)^{-1} - \widetilde{G}(\mu + \mathrm{i}\omega)^{-1}$$

Road map

- Construct a good non-interacting model for $\widetilde{{\sf G}_0}(\mu+{
 m i}\omega)$
 - Hartree Hamiltonian (in the original paper)
 - Kohn-Sham Hamiltonian (DFT)
- Use an approximation of the self-energy $\widetilde{\Sigma} \approx \widetilde{\Sigma^{GW}}$ on the axis $\mu + i\mathbb{R}$.
- Define $\widetilde{G^{\rm GW}}(\mu+{\rm i}\omega)$ from the Dyson equation with $\widetilde{\Sigma^{\rm GW}}(\mu+{\rm i}\omega)$

$$\widetilde{G^{\rm GW}}(\mu + \mathrm{i}\omega) = \left(\widetilde{G_0}(\mu + \mathrm{i}\omega)^{-1} - \widetilde{\Sigma^{\rm GW}}(\mu + \mathrm{i}\omega)\right)^{-1} = \left(\mu + \mathrm{i}\omega - h_1 - \widetilde{\Sigma^{\rm GW}}(\mu + \mathrm{i}\omega)\right)^{-1}.$$

Choice of $(\widetilde{\Sigma^{GW}}, \widetilde{G^{GW}})$? The Hedin's equations (L. Hedin. Phys. Rev., 139, 1965.)

Kernel of a space-time operator A

$$A(12) = A(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = [A(t_1 - t_2)](\mathbf{r}_1, \mathbf{r}_2).$$

The Hedin's equations

• Dyson equation

$$G(12) = G_0(12) + \int d(34)G_0(13)\Sigma(34)G(42),$$

Self-energy

$$\Sigma(12) = i \int d(34) G(13) W(41) \Gamma(32;4),$$

Screened interaction

$$W(12) = v_{c}(12) + \int d(34)v_{c}(13)P(34)W(42),$$

Irreducible polarization

$$P(12) = -i \int d(34) G(13) G(41) \Gamma(34; 2),$$

Vertex function

$$\Gamma(12;3) = \delta(12)\delta(13) + \int d(4567) \frac{\delta \Sigma(12)}{\delta G(45)} G(46) G(75) \Gamma(67;3).$$

- The GW⁰ equations: Find $\left(\Sigma^{GW^{0}}, G^{GW^{0}}\right)$ such that
 - Dyson equation

$$G^{\mathrm{GW}^{\mathbf{0}}}(12) = G_{\mathbf{0}}(12) + \int d(34)G_{\mathbf{0}}(13)\Sigma^{\mathrm{GW}^{\mathbf{0}}}(34)G^{\mathrm{GW}^{\mathbf{0}}}(42),$$

$$\boldsymbol{\Sigma}^{\mathrm{GW}^{\boldsymbol{0}}}(12) = \mathrm{i}\,\boldsymbol{\mathcal{G}}^{\mathrm{GW}^{\boldsymbol{0}}}(12)\,\boldsymbol{\mathcal{W}}^{\boldsymbol{0}}(21).$$

 ${\cal W}^0$ is the $({\rm GW}^0$ approximation of the) dynamically screened operator. Flow chart of the self-consistent ${\rm GW}^0$ scheme

$$G_0 \xrightarrow{G^{k=0} = G_0} G^{k=0} \xrightarrow{W^0} W^0$$
Initialization

- The GW^{0} equations: Find $\left(\Sigma^{\mathrm{GW}^{0}}, G^{\mathrm{GW}^{0}}\right)$ such that
 - Dyson equation

$$G^{\mathrm{GW}^{\mathbf{0}}}(12) = G_{\mathbf{0}}(12) + \int d(34)G_{\mathbf{0}}(13)\Sigma^{\mathrm{GW}^{\mathbf{0}}}(34)G^{\mathrm{GW}^{\mathbf{0}}}(42),$$

$$\boldsymbol{\Sigma}^{\mathrm{GW}^{\boldsymbol{0}}}(12) = \mathrm{i}\,\boldsymbol{G}^{\mathrm{GW}^{\boldsymbol{0}}}(12)\boldsymbol{W}^{\boldsymbol{0}}(21).$$

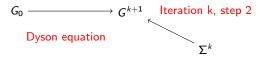
 ${\cal W}^0$ is the $({\rm GW}^0$ approximation of the) dynamically screened operator. Flow chart of the self-consistent ${\rm GW}^0$ scheme

- The GW^{0} equations: Find $\left(\Sigma^{\mathrm{GW}^{0}}, G^{\mathrm{GW}^{0}}\right)$ such that
 - Dyson equation

$$G^{\mathrm{GW}^{\mathbf{0}}}(12) = G_{\mathbf{0}}(12) + \int d(34)G_{\mathbf{0}}(13)\Sigma^{\mathrm{GW}^{\mathbf{0}}}(34)G^{\mathrm{GW}^{\mathbf{0}}}(42),$$

$$\boldsymbol{\Sigma}^{\mathrm{GW}^{\boldsymbol{0}}}(12) = \mathrm{i}\,\boldsymbol{\mathcal{G}}^{\mathrm{GW}^{\boldsymbol{0}}}(12)\,\boldsymbol{\mathcal{W}}^{\boldsymbol{0}}(21).$$

 ${\cal W}^0$ is the $({\rm GW}^0$ approximation of the) dynamically screened operator. Flow chart of the self-consistent ${\rm GW}^0$ scheme



- The ${\rm GW}^0$ equations: Find $\left(\Sigma^{\rm GW^0}, {\cal G}^{\rm GW^0}\right)$ such that
 - Dyson equation

$$G^{\mathrm{GW}^{\mathbf{0}}}(12) = G_{\mathbf{0}}(12) + \int d(34)G_{\mathbf{0}}(13)\Sigma^{\mathrm{GW}^{\mathbf{0}}}(34)G^{\mathrm{GW}^{\mathbf{0}}}(42),$$

$$\Sigma^{\mathrm{GW}^{\mathbf{0}}}(12) = \mathrm{i} \mathcal{G}^{\mathrm{GW}^{\mathbf{0}}}(12) \mathcal{W}^{\mathbf{0}}(21).$$

 W^0 is the (GW⁰ approximation of the) dynamically screened operator.

Next step: give a sense to these equations

- Define the multiplication A(12)B(21),
- Study the operator W^0 ,
- Transform the GW⁰ equations on the time axis \mathbb{R}_{τ} into formally equivalent GW⁰ equations on the imaginary frequency axis $\mu + i\mathbb{R}_{\omega}$.

The kernel product (infinite dimensional Hadamard product) How to define an operator C such that $C(\mathbf{r}, \mathbf{r}') = A(\mathbf{r}, \mathbf{r}')B(\mathbf{r}', \mathbf{r})$?

Associated quadratic form

$$\begin{aligned} \forall f, g \in \mathcal{H}_{1}, \quad \langle f | C | g \rangle_{\mathcal{H}_{1}} &= \iint_{\mathbb{R}^{2}} \overline{f}(\mathbf{r}) C(\mathbf{r}, \mathbf{r}') g(\mathbf{r}') \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}' \\ &= \iint_{\mathbb{R}^{2}} A(\mathbf{r}, \mathbf{r}') g(\mathbf{r}') B(\mathbf{r}', \mathbf{r}) \overline{f}(\mathbf{r}) \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}' = \mathrm{Tr}_{\mathcal{H}_{1}} \left(A g B \overline{f} \right). \end{aligned}$$

Definition

The kernel-product of A and B is the operator $A \odot B$, defined by the quadratic form

$$\forall f,g \in \mathcal{H}_1, \quad \langle f | A \odot B | g \rangle = \operatorname{Tr}_{\mathcal{H}_1} \left(AgB\overline{f} \right).$$

Lemma

If $A \in \mathcal{B}(\mathcal{H}_1)$ and B is such that,

$$\forall f, g \in \mathcal{H}_1, \quad gB\overline{f} \in \mathfrak{S}_1(\mathcal{H}_1) \quad \text{with} \quad \left\|gB\overline{f}\right\|_{\mathfrak{S}_r} \lesssim \|f\|_{\mathcal{H}_1} \|g\|_{\mathcal{H}_1},$$

then $A \odot B$ is a well-defined bounded operator on \mathcal{H}_1 .

The dynamically screened operator W

The Coulomb operator

In the vacuum, a time-dependent charge $\delta \rho(\mathbf{r}, t)$ creates a potential

$$\delta V(\mathbf{r}',t) = \int_{\mathbb{R}^3} \frac{1}{|\mathbf{r}-\mathbf{r}'|} \delta \rho(\mathbf{r},t) \mathrm{d}\mathbf{r}, \quad \text{or} \quad \delta V = \delta_0(t) v_c(\delta \rho).$$

$$v_c(\textbf{r},\textbf{r}') = \frac{1}{|\textbf{r}-\textbf{r}'|} \quad \text{Coulomb operator}.$$

The dynamically screened operator

In a molecule, a time-dependent charge $\delta \rho(\mathbf{r}, t)$ creates a potential

$$\begin{split} \delta V(\mathbf{r}',t) &= \int_{\mathbb{R}^3} \int_{-\infty}^t W(\mathbf{r}t,\mathbf{r}'t') \delta \rho(\mathbf{r},t') \mathrm{d}\mathbf{r} \mathrm{d}t' \\ &= \delta_0(t) v_c \left(\delta\rho\right) + \int_{\mathbb{R}^3} \int_{-\infty}^t W_c(\mathbf{r}t,\mathbf{r}'t') \delta \rho(\mathbf{r},t') \mathrm{d}\mathbf{r} \mathrm{d}t' \end{split}$$

Screening effect

The dynamically screened operator W^0

Calculated from the Hartree Hamiltonian:

$$W^{\mathsf{0}}(\tau) = \delta_{\mathsf{0}}(\tau) v_{c} + W^{\mathsf{0}}_{c}(\tau).$$

 $\mathrm{GW}^{\mathbf{0}}$ approximation of the self-energy

$$\Sigma^{\rm app}(12) = iG^{\rm app}(12)W^{0}(21).$$

$$\begin{split} \Sigma^{\mathrm{app}}(\mathbf{r},\mathbf{r}';\tau) &= \mathrm{i}\delta_0(\tau)G_{\mathrm{h}}^{\mathrm{app}}(\mathbf{r},\mathbf{r}';0^-)v_c(\mathbf{r},\mathbf{r}') + \mathrm{i}G^{\mathrm{app}}(\mathbf{r},\mathbf{r}';\tau)W_c^0(\mathbf{r}',\mathbf{r};-\tau) \\ &= \underbrace{-\frac{\gamma_N^{\mathrm{app}}(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\delta_0(\tau)}_{\mathrm{Fock \ term}} + \mathrm{i}G^{\mathrm{app}}(\mathbf{r},\mathbf{r}';\tau)W_c^0(\mathbf{r}',\mathbf{r};-\tau). \end{split}$$

In practice

$$\Sigma^{\mathrm{app}}(\tau) = K_{x} \delta_{0}(\tau) + \mathrm{i} \mathcal{G}^{\mathrm{app}}(\tau) \odot W^{0}_{c}(-\tau), \quad \text{with} \quad K_{x}(\mathbf{r},\mathbf{r}') := -\frac{\gamma^{0}_{0,N}(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}.$$

Analytical continuation method Equation

$$\forall \tau \in \mathbb{R}_{\tau}, \quad \boldsymbol{\Sigma}^{\mathrm{app}}(\tau) := \boldsymbol{K}_{x} \delta_{0}(\tau) + \mathrm{i} \boldsymbol{G}^{\mathrm{app}}(\tau) \odot \boldsymbol{W}_{c}^{0}(-\tau)$$

is formally equivalent to

$$\widetilde{\Sigma^{\mathrm{app}}}(\mu_{0} + \mathrm{i}\omega) = K_{x} - \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{G^{\mathrm{app}}}(\mu_{0} + \mathrm{i}(\omega + \omega')) \odot \widetilde{W^{0}_{c}}(\mathrm{i}\omega') \,\mathrm{d}\omega'.$$

The GW^{0} equations in the imaginary frequency axis Find $G^{\mathrm{GW}^{0}} \in L^{\infty}(\mathbb{R}_{\omega}, \mathcal{B}(\mathcal{H}_{1}))$ solution to the system

$$(\mathrm{GW}^{\mathbf{0}}) \quad \begin{cases} \widetilde{\Sigma^{\mathrm{GW}^{\mathbf{0}}}}(\mu_{0} + \mathrm{i}\omega) = \mathcal{K}_{x} - \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{G^{\mathrm{GW}^{\mathbf{0}}}}(\mu_{0} + \mathrm{i}(\omega + \omega')) \odot \widetilde{\mathcal{W}_{c}^{\mathbf{0}}}(\mathrm{i}\omega') \,\mathrm{d}\omega', \\ \\ \widetilde{\mathcal{G}^{\mathrm{GW}^{\mathbf{0}}}}(\mu_{0} + \mathrm{i}\omega) = \left[\mu_{0} + \mathrm{i}\omega - \left(h_{1} + \widetilde{\Sigma^{\mathrm{GW}^{\mathbf{0}}}}(\mu_{0} + \mathrm{i}\omega) \right) \right]^{-1}, \end{cases}$$

with

$$\mathcal{K}_{\mathsf{x}}(\mathbf{r},\mathbf{r}') = -rac{\gamma_{\mathsf{0},\mathsf{N}}^{\mathsf{0}}(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}.$$

$$(\mathrm{GW}^{0}) \quad \begin{cases} \widetilde{\Sigma^{\mathrm{GW}^{0}}}(\mu_{0} + \mathrm{i}\omega) = \mathcal{K}_{x} - \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{\mathcal{G}^{\mathrm{GW}^{0}}}(\mu_{0} + \mathrm{i}(\omega + \omega')) \odot \widetilde{\mathcal{W}_{c}^{0}}(\mathrm{i}\omega') \,\mathrm{d}\omega', \\ \\ \widetilde{\mathcal{G}^{\mathrm{GW}^{0}}}(\mu_{0} + \mathrm{i}\omega) = \left[\mu_{0} + \mathrm{i}\omega - \left(h_{1} + \widetilde{\Sigma^{\mathrm{GW}^{0}}}(\mu_{0} + \mathrm{i}\omega) \right) \right]^{-1} \end{cases}$$

Lemma

For all $\widetilde{G^{\mathrm{app}}}(\mu_0 + \mathrm{i} \cdot) \in L^2(\mathbb{R}_\omega, \mathcal{B}(\mathcal{H}_1))$ and all $\omega \in \mathbb{R}_\omega$, the operator

$$\widetilde{\Sigma_{c}^{\mathrm{app}}}(\mu_{0} + \mathrm{i}\omega) = -\frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{G^{\mathrm{app}}}(\mu_{0} + \mathrm{i}(\omega + \omega')) \odot \widetilde{W_{c}^{0}}(\mathrm{i}\omega') \,\mathrm{d}\omega'$$

is a well-defined bounded operator on \mathcal{H}_1 .

Problem

For $\widetilde{G^{\mathrm{app}}}(\mu_0 + \mathrm{i} \cdot)$ close to $\widetilde{G_0}(\mu_0 + \mathrm{i} \cdot)$ in $L^{\infty}(\mathbb{R}_{\omega}, \mathcal{B}(\mathcal{H}_1))$, is the operator

$$\mu_{0} + i\omega - \left(h_{1} + \widetilde{\Sigma^{app}}(\mu_{0} + i\omega)\right)$$

invertible?

The GW⁰ approximation in a perturbative regime

$$(\mathrm{GW}^{0}_{\lambda}) \quad \begin{cases} \widetilde{\Sigma^{\mathrm{GW}^{0}_{\lambda}}}(\mu_{0} + \mathrm{i}\omega) = \mathcal{K}_{x} - \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{G^{\mathrm{GW}^{0}_{\lambda}}}(\mu_{0} + \mathrm{i}(\omega + \omega')) \odot \widetilde{\mathcal{W}^{0}_{c}}(\mathrm{i}\omega') \,\mathrm{d}\omega', \\ \widetilde{\mathcal{G}^{\mathrm{GW}^{0}_{\lambda}}}(\mu_{0} + \mathrm{i}\omega) = \left[\mu_{0} + \mathrm{i}\omega - \left(h_{1} + \lambda \widetilde{\Sigma^{\mathrm{GW}^{0}_{\lambda}}}(\mu_{0} + \mathrm{i}\omega)\right) \right]^{-1}. \end{cases}$$

Theorem (Éric Cancès, DG, Gabriel Stoltz)

- There exists $\lambda_* > 0$ such that, for all $0 \le \lambda \le \lambda_*$, there exists a unique solution $\widetilde{G^{GW^0_{\lambda}}}$ to the problem (GW^0_{\lambda}) which is close to $\widetilde{G_0}$.
- Moreover, the self-consistent procedure starting from $\widetilde{G_0}$ converges toward $\widetilde{G^{\mathrm{GW}^0_{\lambda}}}$ in $L^2(\mathbb{R}_{\omega}, \mathcal{B}(\mathcal{H}_1))$.

Current results

- The fundamental objects (G, G_0, Σ, W_0) involved in GW^0 formalism are mathematically well-defined.
- Some of their properties have been rigorously proved.
- The GW⁰ equations are well-posed in a perturbative regime.

Future work

- Perform the same work for periodic systems. with Éric Cancès and Gabriel Stoltz
- Study the speed of convergence with respect to numerical parameters.
- Understand the Bethe-Salpeter equations.

Reference

• Éric Cancès, DG and Gabriel Stoltz, A mathematical analysis of the GW0 method for computing electronic excited energies of molecules (arXiv 1506.01737).