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We want to understand the propagation of sound in bubbly water.

Experiment Results
The function |u® /u™|(w):
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There exists a resonant angular frequency wpy.
Noticed for the first time by M. Minnaert (1933 : On musical air-bubbles and the sound of running water).

3
wp = 2Py U (Minnaert resonance).
p R

@ py, is the density of air (inside the bubble), and p the density of water,

@ vy, is the speed of sound in the air.

@ Ris the radius of the bubble.
Example
For a bubble of radius 0.5 mm, this gives wy; = 42000 Hz (audible), and a wavelength (in water)
Ay =0.22m.
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Goal of this talk: understand the previous formula, and extend it.

Our model

Air bubble: domain  C R? with 9 of class C2,
pb (resp. p) the density of air (resp. water),
vp, (resp. v) the speed of sound in the air (resp. water),

u(x) the pressure at x € R3,

p~tu(x) ~ velocity flow at x € R3.

Let w be the angular frequency of the incident wave u™ and introduce
kp = k(w) := Y oand k=2 (wave numbers)
v v
Wave equation (d’Alembert equations) in frequency domain.

EA + k2§ u=0 in R3\Q,

A+ kg u=0 in Q,
Uy = U— on 09, (continuity of the pressure)
1 0u 1 du

= 2= |_ on 09, (continuity of the velocity flow)
ut =y — ul® satisfies the Sommerfeld radiation condition.
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Regime?
We are looking for a resonance mode whose wavelength is much bigger than the size of the bubble:

\ Limit 1: w — 0 <= k (and ky) — 0.

The only solution of the limit equation (k = k; = 0), with u® = 0, is u = 0. We need something else!

Order of magnitude: p, = 1.225 kg.m 3 and p = 1000 kg.m~3, hence § := ) < 1 (contrast).
p

Limit 2: § — 0.

Limit equation (with u™™ = 0)

Au=0 in R3\Q,
Au=0 in Q,
Ut =u— on O0f,
B—UL = on 09,
u satisfies the Sommerfeld radiation condition.

The inside and outside problems are decoupled:
@ 1) Solve the internal (Neumann) problem (u|q = 1),
@ 2) Solve the external (Dirichlet) problem.

There exists a non-trivial solution = resonant mode.

Goal: Track this mode for small £ and small o.
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Layer potentials and Fredholm theory




(3d) Green’s function for Helmholtz: solution to (A + k2)G* = &.

—1 elklx—yl

GFxy) = GFx—y) = — .
am Jx—y]

Single layer potential
Yo € C®(8Q), Vx € R3, :S:E[\I/](x) = / G*(x — y)U(y)do(y).
JoQ

Dirichlet-to-Neumann operator

k
YU € C°(9Q), Vx € 89, KF*[¥](x) := /{m 8@%(){ —y)¥(y)do(y).

Hilbert spaces

L?:=L%0Q), H~Y?.=H"Y?0Q), HY?:.= HY?@D).

Proposition (The operators are well-defined)

: ok =i/
i) The operators S* are bounded from H='/2 to H (R3).
ii) The operators S* := Sk |69 are bounded H=1/2 to H'/2.

iii) The operators K*>* are compact (hence bounded) from H=1/2 to H—1/2,
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Proposition (Second properties)

Letvp € H1/2, andu = :gvlc[w € H} (R3). Then
i) (A+k2u=0inQandinR3\ Q (+ Sommerfeld radiation conditions);
ii) w is the (unique) solution to the Dirichlet problem (A + k?)u = 0 and u|sq = SF[];

iii) jump formula:

« . 1
duul, = (IC'“’ + 5) [4].

The scattering problem can be encoded at the boundary of the bubble.

Ansazt N
u + Sk[yY]  on R3\Q,
g';lj[z/;b] on Q.
Initial problem Problem with operators
A+ k2) u=0 in R3\Q, Skb _gk by i
A-i-k%)u:O in Q, (]Ckbﬂ‘fl _5 1 ICk’* ) . ( ) = ul" .
Uy =u— on 09, 2 (s + ) ¥ 5% |+
5%|+ = %L on ON. A(w,0)

Definition (Resonant mode)

We say that the pair (w, §) is a resonant mode if A(w, &) is non invertible.
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The unperturbed operator A(0, 0).

A(0,0) := (IC*S_ A 78) C V2 o g2 L g2 o g2
2

Resonant mode?

S[wb - w] =0,

(=6 = e

Lemma (Classical results)

i) The operator S : H=1/2 — H1/2 s a bounded invertible operator with bounded inverse.
ii) The operator KC* is compact on H— /2 and o(K*) C (—1/2,1/2]. Moreover,

1
Ker (IC* — 5) = Vect{ e }, where ¢ =S '[lgq] € H /2.

Remark: ue := §[¢e] satisfies Aue = 0, and ue|gq = 1, hence §[¢e] =1inQ.

Ker A(0,0) = Vect { (ze) } .

Conclusion
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Interlude: Complex analysis

If f(2) is analytic with f(A\) = 0and f(z) # Oforall z € B(\,r) \ {\}, then

: P04, - | _ L Se
i o £(2) dz = f{zerosof fin B(A\,r)} =1, and 2 Do 72 2dz = A

Theorem (Rouché’s Theorem)

Let f be as before. Then, for all g analytic such that | %| < 1on%(\,r), it holds that f + g has a unique
zero gy g in B(A,r), and

1 (f+9)(2)
Mo = i ;ég(m Fta "

1@ > 1g@1
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Complex analysis: operator version

If A(z) : H1 — Ha is an analytic map of Fredholm operators (of index 0) such that
@ Forallz € B(A\,r)\ {\}, dimKerA(z) = dimKerA*(z) = 0;
o dimKerA(X\) =1, (hence dimKerA*(z) =1),

then

1 ?g 1, 1 56 1,
1=—Tr A'(z)dz and A= —Tr A'(2)zdz
2 [ c(xr) A(2) (2) } 2ir 4 { ¢ () A(2) (z)

Remarks
o If A:Hi — Ho,then A=1 A’ : H1 — H1. The notion of trace exists.
o The operators A~! and A’ may not commute. However, Tryy, (A71A") = Try, (A’A71).

Theorem (Operator version of Rouché: Gohberg-Sigal theorem')

For all operator-valued analytic map B(z) : H1 — Ha such that ||A’IBH@(H1) < lon%é(\r), then
the operator A + B is Fredholm of index 0, and there exists a unique point A\ a4 g € B(X,r) such that

dimKer(A + B)(Aa4+p) =1 (= 0 otherwise).

Moreover,

1 1
A = —T ——  (A+ B) d
At = - Te, [;ﬁ%(k,r) A B (e

u. Gohberg, E.I. Sigal, Sbornik: Mathematics 13.4 (1971).
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In our case
@ We see the contrast ¢ as the complex variable (z), and w as the perturbation parameter.
o Forallw, A(w, -) is analytic in 4.
@ Forw =0, A(0,0) is non invertible.

The operators A(0, §)

a0 = () D)ol ey

2
Invertible?
Sy — 41 =0, v
400 (2)=6) = { - s+ o = - L1

It holds that % is an isolated eigenvalue of KC*.

We deduce that there exists * > 0 such that

V6 €T, || <6, 5#0, KerA(0,6) = {(g)}

A(0, 9) is non invertible only for § = 0 in B(0, 6*).
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Fredholm? We need the adjoint of K* : H—1/2 — H~1/2,

Problem: The inner product of H—1/2 is not explicit.

Lemma (classical, new definition of Hilbert spaces)

i) Letyy € H='/2 and setu := S[¥]. We have

W, —SW) gr-1/2 g1s2 =/ _ Ve
’ QU(R3\Q)
i) The space H~ := H—'/2 is a Hilbert space (equivalent to H~'/2) when endowed with the norm

||¢H3.¢— = (¥, —S[¢]>H—1/27H1/2-
iii) The space H := H'/? is a Hilbert space (equivalent to H1/2) when endowed with the norm
H¢”'2H+ = <_571[¢]7¢>H*1/2,H1/2'

iv) The operator S is unitary from H™ to H™T. In particular, S* = S~1.
v) (Calderén’s identity) The operator KC* is compact self-adjoint on H ™.

Fact

KerA(O, O)* = {<£ )} and Ker.A(O,é ;é 0)* — {0}
We can apply Gohberg-Sigal theorem!

We consider w # 0 as a perturbation of the w = 0 case.
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Green'’s function (bis)

1 ik|x| 1 ik 2
G*(x) : 756‘)(' = 747T|X‘ (1 + ik|x| + @ +- ) = GO(x) + kG1(x) + k2Ga(x) + - - -

Single-layer potential (bis)

SFy)(x) = /D (G° +kG1+---) (x = y)d(y)da(y) = S (x) + kS1[](x) + - --
Dirichlet-to-Neumann (bis)
KF* = K* + kK 4+ k2K 4 - -

The operator A,
Ay = A(w,~) = Ay +wA; +w2A2 + .-

Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

For w small enough, there exists a unique 6., € B(0, §) such that A(w, d.,) is non invertible. Moreover, the
map w — d, is analytic, and

1 1 8As
0w = —Tryy—— 0)ddd
2ir M [yg%(o,s) A (6) 08 ®) }

Q i|©
= 2| | w? + % Wl + O(w?).
vy Cap, dmrvgv

Remark: The result holds for all shapes of bubbles.
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0w = % w? % w4+ O(w?).
b P b
Capacity
Capg, = 0el2 = MoalZs = (~5 [oal Ton)% 1o s (> 0).

For the sphere Sg of radius R, CapSR =47 R.

Inverse formula: 6 — wg

1/2 2 9
ws = C?’Tﬂlvb Vi (;z)—‘rﬁ 5+ 0(5%/2).

o_The function «; for 5 between 0 (left) and 0.01 (right)

Leading order

-500

For a sphere, ws = wps. We recover Minnaert’s result.

~1000

Second order:
Purely imaginary = Dissipative term = Radiative damping.
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Remarks

@ The resonance is very close to the real-line, even in physical situations.
@ We obtain a resonance phenomenon, and a damping effect, from ab initio principles.
@ It corresponds to the so-called breathing mode.
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The point scatterer approximation




What happens to a (fix) pressure wave (fix w) with a small bubble Q¢ = cQase — 0?
How much is the resonant mode excited?
Initial problem
EA + kQ; u=0 in R3\Qe,

A+ k% u=0 in QFf
Uy = U_ on 0QF,
o _ 0
5677;|+_677:_|— on 0Q°,
u® =u —u" satisfies Sommerfeld.
Regime?
[Limitl:e 0] [Limit2:6 —0.]

Idea: We know that e;; =~ V3. Fix > 0,and

‘ Limit: € — 0 and § = pe?. ‘

Minnaert resonance

|2Ik7

KM =

Cap, ’
Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

If0 € D, then the solution u® := ule, § = ue?] satisfies
Cay in k 2y
e (0) | GF(x) + Oule”) if p# pm,
uf(x) = ul?(x) + ©
_47T in k .
e (0))G"(x) +O(e) if p=pm-
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Loosely speaking, u® = u — u!" satisfies

Cap,

u® (%) & u™(0)gs (W)GF(x — 0), with gs(w) =

2 .Capw
(1— WT) — i
wir TV

The function gs(w) for w between 0 and 2wy .

Example For a bubble of radius 0.5 mm, we get

0.5 T T T T T T T T
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Remarks

@ The imaginary part in the denominator of g5 is the radiative damping.

(response function).

@ The poles of gs are in the lower half complex plane: from Titchmarsh’s theorem, gs is a causal

response function.

@ Monopole point scatterer: We only use the value u"(0), and not Vu™(0) (dipole scatterer).

@ We recover the expression found in [1] for gs.

M. Devaud, Th. Hocquet, J.-C. Bacri, and V. Leroy. Eur. J. Phys., 29(6):1263, 2008.
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The periodic case:

the periodic Minnaert resonance




Experiment?

water
steel
1
0.5
0
—0.5
-1
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element number element number

2y, Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, J.H. Page, Phys. Rev. B 91, 020301(R) (2015).
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We now set bubbles on a (d — 1) dimensional lattice R, on top of a Dirichlet surface.

Bubbles domain

]

In this talk

@ two-dimensional: R = aZ.
o U™ (z,y) := uge **¥ with k > 0 fixed (= incoming plane-wave orthogonal to the plane).

Q= | e(Q+R).
RER

2
IRZ

The problem is R-periodic in the x direction!

Scattering problem

(A+K2)U==0 on Ri\ﬁ,
(A+k§)U€:O on °f,
Uely =U°|- on 0QF,
U |- =60, U¢|+ on 00Q°F,
Us :=U¢ - U™ satisfies the outgoing radiation condition,
Us=0 on 6R3_, boundary conditions

Us(z + <R, y) = Uz, y).

Minnaert
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Regime?

[Limit1:c »0.] [Limit2:6 — 0.

Limit problem (after rescaling u(x) := U(X/¢)).

Au=0 on Rf_ \ Q,
Au=0 on €,

uly =ul— on 09,
Opul— =0 on 09,
+ boundary conditions.

Again, two decoupled problems: there exists a non trivial solution (with u|q = 1).

Similar to the single bubble case (existence + tracking of the resonance).
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Periodic Green’s function? Solution to (A + kz)GéC (%) = >z 01(%).

Fork =0 Wy 1
Y e —
GO x) = GO T, = = — ——_ellze ”y‘
u( ) u( ) % QZ: 2al
le2z g
o First part: 1d Green’s function => propagative mode,

o Second part: Exponentially decreasing away from the plane (y — 0o0) = evanescent modes.

For small k, k # 0

e—iklyl 1 oz 573
GFx)=GF(z,y) = — — E.—— A 1
§(®) =Gy(z,y) = —— 57, 2alVE R

Periodic-Dirichlet Green’s function
GE(xx) = Gh(z,y;2',0) = Gi(z -2’y —¢) — Gf (e — 2,y + /).
Remarks
@ «mirror image» to enforce Dirichlet conditions.
o G% (x;x') is not translation invariant (G¥ (x;x') # G% (x — x')).
° G’g (x) has a % singularity as k — 0 (problematic for our limit & — 0).

@ The Dirichlet condition removes this % singularity.
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Layer potentials
As before: S¥, S¥ Kk and ¢ 1 = [S1] 7! (Laq).

Periodic capacity

Capg,R = <1897 -S4t (ILaQ)> =- -/an e+ (x')do(x').

Periodic Minnaert resonance

€2

1/2
Cap+ v2
ot (R Vi

Remarks:

1/2
Cap,v?
o Similar expression: we had wy; = <|p§§;|b> V6.

@ The periodic capacity depends on the lattice.
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Meta-surfaces and

high-contrast homogenisation




How much is the resonant mode excited when we send a (fix) incoming wave U™"?
Following the one bubble case, we expect a «meta-surface approximation» of the form:
Usy)=  U%(y=0) 9s,+(w) Gh(y;y =0)
N—— —— N— ————

Solution without bubbles Response function Green’s function between plane and y

Problem
Without bubbles, the solution is

Uz, y) = U™ (z,y) — UM (x, —y) = upe F¥ — ugel®¥ = —2iug sin(ky).
In particular, U%(z, y = 0) = 0: the monopole mode is not excited at first order.

Solution
Need next order: dipole approximation (U%(x,y =~ 0) ~ —2iugky).

Monopole approximation Dipole approximation
Internal problem Internal problem
1¢ solutionto Alg = 0and 9,1 = 0. y solution to Ay = 0 and O,y = vy.
External problem cumonop solution to External problem Qdip solution to
Aomonep =0 on RE\Q, Aogy, =0 on RI\Q,
Omonop|+ = 1ag on 99, agipl+ = yaq on 0Q,
+ Boundary conditions. + Boundary conditions.
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Monopole and dipole solutions (bis)

Gmonop = S5 ($e.+) =8y (15417 (L)), and aup =St (15417 (wan) ) -

Asymptotics of the Green’s function (y — oo)

!
Y

G (x;x') = —= + evanescent modes.
a

Asymptotics (y — 00)

. Yy
Qmonop (5 Y) = Xmonop + evanescent modes,  with  agg,, == —/ e+ (x)do(x'),
agip(z,y) = aé’i‘; + evanescent modes.

Regime? We expect § ~ 2. Fix y > 0, and

Limit: £ — 0 and 6 = pe?. ‘

Resonance
|2k7
A= S
Capé,R
Norm? Strip Sq := R X (a, c0) and

1 llyw1,00 s, == sup £ (X)+ sup [Vf] (X).
XeSa XeSa
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Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

1) If pu # g, thenUS := Ule, § = pe?] satisfies uniformly in W12 (S. 1)
X
Us(X) =U°(X) + ¢ (Ul(x) + Ust (x, ;)) + 0, (e?),

where U®(X) = —2iug sin(kY") is the solution without bubbles, and where

U (X) o=— (2~ k) ikY [ SI L ) ith K — O‘roncr)mopa
1 = (2iugk)e Oip — T ar Omonop | > Wi = Capt
I QR
. oo K o
UBL(X7 X) = (QIU()k‘) (adip(x) - O‘dip) - 1_ AM (O‘morwp(x) - O‘monop) .
M

Remarks
@ Uniform bounds in S¢ 1, (boundary limit terms Ugr.).
o UsL(X, x) is exponentially decreasing as y — oo.
@ The dipole and monopole terms are of same order of magnitude.
°

Only the monopole part is resonant (singularity p — pas).
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Theorem (bis)

2) If u = pps, thenUS := Ule, § = ppre?] satisfies uniformly in W1>°(S. 1)
X
Us(X) = U°(X) + (Ul(X) + UnL (x, ;)) + O(e),

where U1 (X) := 2ugel®Y and where

o)
‘monop

UsL(X, x) := (2uo) <am°n°P(x) — 1> is exponentially decreasing asy — co.

Interpretation
The meta-screen behaves like an acoustic plane with reflection coefficient

iwn
2
1-— L) — iwn*
(

@ We recover the radiative damping (n*).

o If w K wpy orw > wyy, then R(w) &~ —1 (Dirichlet plane) ~ no bubble case.

o If w = wyy, then R(wps) = 1 (Neumann plane).

o Considering other source of damping (e.g. viscous), and assuming n* = 27, we have

(()‘xonop)2 a

Rlw)~—-1-2
@) vCap;gR

with n=n":=

Remarks:

R(wpr) =0 (absorption plane).

David Gontier Minnaert resonance



Conclusions

Regime € — 0 and § — 0 such that § = €2 (high-contrast limit?).

°

@ Tracking of the resonance through Gohberg-Sigal theory.

@ Point scatterer approximation and meta-surfaces from the study of layer potentials.
°

Resonance phenomenon as the limit of well-posed and easy-to-study problems.
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