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We want to understand the propagation of sound in bubbly water.

Experiment

uin(ω)

us

Results
The function |us/uin|(ω):

There exists a resonant angular frequency ωM .
Noticed for the first time by M. Minnaert (1933 : On musical air-bubbles and the sound of running water).

ωM =

√
3ρb

ρ

vb

R
(Minnaert resonance).

ρb is the density of air (inside the bubble), and ρ the density of water,
vb is the speed of sound in the air.
R is the radius of the bubble.

Example
For a bubble of radius 0.5 mm, this gives ωM = 42000 Hz (audible), and a wavelength (in water)
λM = 0.22 m.
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Goal of this talk: understand the previous formula, and extend it.

Our model

uin(ω)

us

Air bubble: domain Ω ⊂ R3 with ∂Ω of class C2,

ρb (resp. ρ) the density of air (resp. water),

vb (resp. v) the speed of sound in the air (resp. water),

u(x) the pressure at x ∈ R3,

ρ−1u(x) ∼ velocity flow at x ∈ R3.

Let ω be the angular frequency of the incident wave uin and introduce

kb = k(ω) :=
ω

vb
and k :=

ω

v
. (wave numbers)

Wave equation (d’Alembert equations) in frequency domain.

(
∆+ k2

)
u = 0 in R3\Ω,(

∆+ k2b
)
u = 0 in Ω,

u+ = u− on ∂Ω, (continuity of the pressure)
1
ρ

∂u
∂ν

∣∣
+

= 1
ρb

∂u
∂ν

∣∣
− on ∂Ω, (continuity of the velocity flow)

us := u− uin satisfies the Sommerfeld radiation condition.
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Regime?
We are looking for a resonance mode whose wavelength is much bigger than the size of the bubble:

Limit 1: ω → 0 ⇐⇒ k (and kb) → 0.

The only solution of the limit equation (k = kb = 0), with uin ≡ 0, is u ≡ 0. We need something else!

Order of magnitude: ρb = 1.225 kg.m−3 and ρ = 1000 kg.m−3, hence δ :=
ρb

ρ
≪ 1 (contrast).

Limit 2: δ → 0.

Limit equation (with uin ≡ 0)
∆u = 0 in R3\Ω,
∆u = 0 in Ω,
u+ = u− on ∂Ω,
∂u
∂ν

∣∣
− = 0 on ∂Ω,

u satisfies the Sommerfeld radiation condition.

The inside and outside problems are decoupled:

1) Solve the internal (Neumann) problem (u|Ω = 1),

2) Solve the external (Dirichlet) problem.

There exists a non-trivial solution =⇒ resonant mode.

Goal: Track this mode for small k and small δ.
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Layer potentials and Fredholm theory
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(3d) Green’s function for Helmholtz: solution to (∆ + k2)Gk = δ0.

Gk(x, y) := Gk(x− y) :=
−1

4π

eik|x−y|

|x− y|
.

Single layer potential

∀Ψ ∈ C∞(∂Ω), ∀x ∈ R3, S̃k[Ψ](x) :=
ˆ
∂Ω

Gk(x− y)Ψ(y)dσ(y).

Dirichlet-to-Neumann operator

∀Ψ ∈ C∞(∂Ω), ∀x ∈ ∂Ω, Kk,∗[Ψ](x) :=
ˆ
∂Ω

∂Gk

∂νx
(x− y)Ψ(y)dσ(y).

Hilbert spaces

L2 := L2(∂Ω), H−1/2 := H−1/2(∂Ω), H1/2 := H1/2(∂D).

Proposition (The operators are well-defined)

i) The operators S̃k are bounded fromH−1/2 toH1
loc(R

3).

ii) The operators Sk := S̃k
∣∣
∂Ω

are boundedH−1/2 toH1/2.

iii) The operators Kk,∗ are compact (hence bounded) fromH−1/2 toH−1/2.
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Proposition (Second properties)

Let ψ ∈ H−1/2, and u = S̃k[ψ] ∈ H1
loc(R

3). Then

i) (∆ + k2)u = 0 in Ω and in R3 \ Ω (+ Sommerfeld radiation conditions);

ii) u is the (unique) solution to the Dirichlet problem (∆ + k2)u = 0 and u|∂Ω = Sk[ψ];

iii) jump formula:

∂νu
∣∣
± =

(
Kk,∗ ±

1

2

)
[ψ].

The scattering problem can be encoded at the boundary of the bubble.

Ansazt

u =

uin + S̃k[ψ] on R3\Ω,

S̃kb [ψb] on Ω.

Initial problem
(
∆+ k2

)
u = 0 in R3\Ω,(

∆+ k2b
)
u = 0 in Ω,

u+ = u− on ∂Ω,

δ ∂u
∂ν

∣∣
+

= ∂u
∂ν

∣∣
− on ∂Ω.

⇐⇒

Problem with operators(
Skb −Sk

Kkb,∗ − 1
2

−δ
(
1
2
+Kk,∗))︸ ︷︷ ︸

A(ω,δ)

.

(
ψb

ψ

)
=

(
uin|+
δ ∂uin

∂ν
|+

)
.

Definition (Resonant mode)

We say that the pair (ω, δ) is a resonant mode if A(ω, δ) is non invertible.
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The unperturbed operator A(0, 0).

A(0, 0) :=

(
S −S

K∗ − 1
2

0

)
: H−1/2 ×H−1/2 → H1/2 ×H−1/2.

Resonant mode?

A(0, 0)

(
ψb

ψ

)
=

(
0
0

)
⇐⇒


S[ψb − ψ] = 0,(

K∗ −
1

2

)
[ψb] = 0.

Lemma (Classical results)

i) The operator S : H−1/2 → H1/2 is a bounded invertible operator with bounded inverse.

ii) The operator K∗ is compact onH−1/2 and σ(K∗) ⊂ (−1/2, 1/2]. Moreover,

Ker
(
K∗ −

1

2

)
= Vect{ϕe }, where ϕe := S−1[1∂Ω] ∈ H−1/2.

Remark: ue := S̃[ϕe] satisfies ∆ue = 0, and ue|∂Ω = 1, hence S̃[ϕe] = 1 in Ω.

Conclusion

KerA(0, 0) = Vect
{(

ϕe
ϕe

)}
.
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Interlude: Complex analysis

If f(z) is analytic with f(λ) = 0 and f(z) ̸= 0 for all z ∈ B(λ, r) \ {λ}, then

1

2iπ

˛
C(λ,r)

f ′(z)

f(z)
dz = ♯ {zeros of f in B(λ, r)} = 1, and

1

2iπ

˛
C(λ,r)

f ′(z)

f(z)
zdz = λ.

Theorem (Rouché’s Theorem)

Let f be as before. Then, for all g analytic such that | g
f
| < 1 on C (λ, r), it holds that f + g has a unique

zero λf+g in B(λ, r), and

λf+g =
1

2iπ

˛
C(λ,r)

(f + g)′(z)

(f + g)(z)
zdz.
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Complex analysis: operator version

If A(z) : H1 → H2 is an analytic map of Fredholm operators (of index 0) such that
For all z ∈ B(λ, r) \ {λ}, dimKerA(z) = dimKerA∗(z) = 0;
dimKerA(λ) = 1, (hence dimKerA∗(z) = 1),

then

1 =
1

2iπ
TrH1

[˛
C(λ,r)

1

A(z)
A′(z)dz

]
and λ =

1

2iπ
TrH1

[˛
C(λ,r)

1

A(z)
A′(z)zdz

]
.

Remarks
If A : H1 → H2, then A−1A′ : H1 → H1. The notion of trace exists.
The operators A−1 and A′ may not commute. However, TrH1

(A−1A′) = TrH2
(A′A−1).

Theorem (Operator version of Rouché: Gohberg-Sigal theorem1)

For all operator-valued analytic map B(z) : H1 → H2 such that ∥A−1B∥B(H1) < 1 on C (λ, r), then
the operator A+B is Fredholm of index 0, and there exists a unique point λA+B ∈ B(λ, r) such that

dimKer(A+B)(λA+B) = 1 (= 0 otherwise).

Moreover,

λA+B =
1

2iπ
TrH1

[˛
C(λ,r)

1

(A+B)(z)
(A+B)′(z)zdz

]
.

1U. Gohberg, E.I. Sigal, Sbornik: Mathematics 13.4 (1971).
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In our case

We see the contrast δ as the complex variable (z), and ω as the perturbation parameter.

For all ω, A(ω, ·) is analytic in δ.

For ω = 0, A(0, 0) is non invertible.

The operators A(0, δ)

A(0, δ) :=

(
S −S

K∗ − 1
2

0

)
+ δ

(
0 0
0 −

(
K∗ + 1

2

)) .
Invertible?

A(0, δ)

(
ψb

ψ

)
=

(
0
0

)
⇐⇒


S[ψb − ψ] = 0,(

K∗ −
1

2

)
[ψb] = δ

(
K∗ +

1

2

)
[ψ]

⇐⇒


ψ = ψb,

K∗[ψ] =
1

2

(
1 + δ

1− δ

)
ψ.

It holds that 1
2

is an isolated eigenvalue of K∗.

We deduce that there exists δ∗ > 0 such that

∀δ ∈ C, |δ| ≤ δ∗, δ ̸= 0, Ker A(0, δ) =

{(
0
0

)}
.

Key point

A(0, δ) is non invertible only for δ = 0 in B(0, δ∗).

David Gontier Minnaert resonance 11 / 29



Fredholm? We need the adjoint of K∗ : H−1/2 → H−1/2.

Problem: The inner product ofH−1/2 is not explicit.

Lemma (classical, new definition of Hilbert spaces)

i) Let ψ ∈ H−1/2 and set u := S̃[Ψ]. We have

⟨ψ,−S[ψ]⟩H−1/2,H1/2 =

ˆ
Ω∪(R3\Ω)

|∇u|2.

ii) The space H− := H−1/2 is a Hilbert space (equivalent toH−1/2) when endowed with the norm

∥ψ∥2H− := ⟨ψ,−S[ψ]⟩H−1/2,H1/2 .

iii) The space H+ := H1/2 is a Hilbert space (equivalent toH1/2) when endowed with the norm

∥ϕ∥2H+ := ⟨−S−1[ϕ], ϕ⟩H−1/2,H1/2 .

iv) The operator S is unitary fromH− to H+. In particular, S∗ = S−1.

v) (Calderón’s identity) The operator K∗ is compact self-adjoint on H−.

Fact

KerA(0, 0)∗ =

{(
0
ϕe

)}
and KerA(0, δ ̸= 0)∗ = {0}.

We can apply Gohberg-Sigal theorem!
We consider ω ̸= 0 as a perturbation of the ω = 0 case.
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Green’s function (bis)

Gk(x) : −
1

4π

eik|x|

|x|
= −

1

4π|x|

(
1 + ik|x|+

(ik|x|)2

2
+ · · ·

)
= G0(x) + kG1(x) + k2G2(x) + · · ·

Single-layer potential (bis)

Sk[ψ](x) =
ˆ
D

(
G0 + kG1 + · · ·

)
(x− y)ψ(y)dσ(y) = S[ψ](x) + kS1[ψ](x) + · · ·

Dirichlet-to-Neumann (bis)
Kk,∗ = K∗ + kK1 + k2K2 + · · ·

The operator Aω

Aω := A(ω, ·) = A0 + ωA1 + ω2A2 + · · ·

Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

For ω small enough, there exists a unique δω ∈ B(0, δ) such that A(ω, δω) is non invertible. Moreover, the
map ω → δω is analytic, and

δω =
1

2iπ
TrH−−

[˛
C(0,δ)

1

Aω(δ)

∂Aω

∂δ
(δ)δdδ

]

=

(
|Ω|

v2bCapΩ

)
ω2 +

(
i|Ω|

4πv2bv

)
ω3 +O(ω4).

Remark: The result holds for all shapes of bubbles.
David Gontier Minnaert resonance 13 / 29



δω =

(
|Ω|

v2bCapΩ

)
ω2 +

(
i|Ω|

4πv2bv

)
ω3 +O(ω4).

Capacity

Cap
Ω

:= ∥ϕe∥2H− = ∥1∂Ω∥2H+ = ⟨−S−1 [1∂Ω] ,1∂Ω⟩2H−1/2,H1/2 (> 0).

For the sphere SR of radius R, Cap
SR

= 4πR.

Inverse formula: δ → ωδ

ωδ =

(
Cap

Ω
v2b

|Ω|

)1/2 √
δ − i

(
Cap2

Ω
v2b

8πv|Ω|

)
δ +O(δ3/2).

Leading order
For a sphere, ωδ = ωM . We recover Minnaert’s result.

Second order:
Purely imaginary =⇒ Dissipative term ≡ Radiative damping.

Remarks
The resonance is very close to the real-line, even in physical situations.
We obtain a resonance phenomenon, and a damping effect, from ab initio principles.
It corresponds to the so-called breathing mode.
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The point scatterer approximation
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What happens to a (fix) pressure wave (fix ω) with a small bubble Ωε = εΩ as ε→ 0?
How much is the resonant mode excited?

Initial problem 

(
∆+ k2

)
u = 0 in R3\Ωε,(

∆+ k2b
)
u = 0 in Ωε,

u+ = u− on ∂Ωε,

δ ∂u
∂ν

∣∣
+

= ∂u
∂ν

∣∣
− on ∂Ωε,

us = u− uin satisfies Sommerfeld.
Regime?

Limit 1: ε→ 0 Limit 2: δ → 0.

Idea: We know that εM ≈
√
δ. Fix µ > 0, and

Limit: ε→ 0 and δ = µε2.

Minnaert resonance

µM :=
|Ω|k2b
Cap

Ω

.

Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

If 0 ∈ D, then the solution uε := u[ε, δ = µε2] satisfies

uε(x) = uin(x) +


ε

(
Cap

Ω

1− µM
µ

uin(0)

)
Gk(x) +Oµ(ε

2) if µ ̸= µM ,(
i
4π

k
uin(0)

)
Gk(x) +O(ε) if µ = µM .
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Loosely speaking, us = u− uin satisfies

us(x) ≈ uin(0)gs(ω)Gk(x− 0), with gs(ω) :=
Cap

Ω(
1− ω2

ω2
M

)
− i CapΩω

4πv

(response function).

Example For a bubble of radius 0.5 mm, we get

The function gs(ω) for ω between 0 and 2ωM .

Remarks

The imaginary part in the denominator of gs is the radiative damping.

The poles of gs are in the lower half complex plane: from Titchmarsh’s theorem, gs is a causal
response function.

Monopole point scatterer: We only use the value uin(0), and not ∇uin(0) (dipole scatterer).

We recover the expression found in [1] for gs.

1M. Devaud, Th. Hocquet, J.-C. Bacri, and V. Leroy. Eur. J. Phys., 29(6):1263, 2008.
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The periodic case:
the periodicMinnaert resonance
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Experiment2

2V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, J.H. Page, Phys. Rev. B 91, 020301(R) (2015).
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We now set bubbles on a (d− 1) dimensional lattice R, on top of a Dirichlet surface.

Bubbles domain
Ωε :=

∪
R∈R

ε (Ω + R) .

x

y

∂R2
+

· · · · · ·
Ωεεa

εd

In this talk
two-dimensional: R = aZ.
U in(x, y) := u0e−iky with k > 0 fixed (=⇒ incoming plane-wave orthogonal to the plane).

The problem is R-periodic in the x direction!

Scattering problem

(
∆+ k2

)
Uε = 0 on Rd

+ \ Ωε,(
∆+ k2b

)
Uε = 0 on Ωε,

Uε|+ = Uε|− on ∂Ωε,
∂νUε|− = δ∂νUε|+ on ∂Ωε,
Us := Uε − U in satisfies the outgoing radiation condition,
Uε = 0 on ∂R2

+,
Uε(x+ εR, y) = U(x, y).

 boundary conditions
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Regime?

Limit 1: ε→ 0. Limit 2: δ → 0.

Limit problem (after rescaling u(x) := U(X/ε)).
∆u = 0 on Rd

+ \ Ω,
∆u = 0 on Ω,
u|+ = u|− on ∂Ω,
∂νu|− = 0 on ∂Ω,
+ boundary conditions.

Again, two decoupled problems: there exists a non trivial solution (with u|Ω = 1).

Similar to the single bubble case (existence + tracking of the resonance).

David Gontier Minnaert resonance 21 / 29



Periodic Green’s function? Solution to (∆ + k2)Gk
♯ (x) =

∑
l∈Z δl(x).

For k = 0

G0
♯ (x) = G0

♯ (x, y) =
|y|
2a

−
∑

l∈ 2π
a

Z∗

1

2al
eilxe−|ly|.

First part: 1d Green’s function =⇒ propagative mode,

Second part: Exponentially decreasing away from the plane (y → ∞) =⇒ evanescent modes.

For small k, k ̸= 0

Gk
♯ (x) = Gk

♯ (x, y) =
e−ik|y|

2ika
−

∑
l∈ 2π

a
Z∗

1

2al
√
l2 − k2

e2iπ
x
a e−

√
l2−k2|y|.

Periodic-Dirichlet Green’s function

Gk
+(x; x′) = Gk

+(x, y;x′, y′) = Gk
♯ (x− x′, y − y′)−Gk

♯ (x− x′, y + y′).

Remarks

«mirror image» to enforce Dirichlet conditions.

Gk
+(x; x′) is not translation invariant (Gk

+(x; x′) ̸= Gk
+(x− x′)).

Gk
♯ (x) has a 1

k
singularity as k → 0 (problematic for our limit k → 0).

The Dirichlet condition removes this 1
k

singularity.
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Layer potentials

As before: S̃k
+, Sk

+, Kk
+, and ϕe,+ := [S+]−1 (1∂Ω).

Periodic capacity

Cap+
Ω,R :=

⟨
1∂Ω, [−S+]−1 (1∂Ω)

⟩
= −

ˆ
∂Ω

ϕe,+(x′)dσ(x′).

Periodic Minnaert resonance

ω+
M :=

(
Cap+

Ω,Rv
2
b

|Ω|

)1/2 √
δ.

Remarks:

Similar expression: we had ωM =

(
Cap

Ω
v2b

|Ω|

)1/2 √
δ.

The periodic capacity depends on the lattice.
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Meta-surfaces and
high-contrast homogenisation
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How much is the resonant mode excited when we send a (fix) incoming wave U in?

Following the one bubble case, we expect a «meta-surface approximation» of the form:

Us(y) = U0(y = 0)︸ ︷︷ ︸
Solution without bubbles

gs,+(ω)︸ ︷︷ ︸
Response function

Gk
+(y; y′ = 0)︸ ︷︷ ︸

Green’s function between plane and y

.

Problem
Without bubbles, the solution is

U0(x, y) = U in(x, y)− U in(x,−y) = u0e−iky − u0eiky = −2iu0 sin(ky).

In particular, U0(x, y = 0) = 0: the monopole mode is not excited at first order.

Solution
Need next order: dipole approximation (U0(x, y ≈ 0) ≈ −2iu0ky).

Monopole approximation

Internal problem
1Ω solution to ∆1Ω = 0 and ∂ν1Ω = 0.

External problem αmonop solution to ∆αmonop = 0 on Rd
+ \ Ω,

αmonop|+ = 1∂Ω on ∂Ω,
+ Boundary conditions.

Dipole approximation

Internal problem
y solution to ∆y = 0 and ∂νy = νy .

External problem αdip solution to ∆αdip = 0 on Rd
+ \ Ω,

αdip|+ = y∂Ω on ∂Ω,
+ Boundary conditions.
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Monopole and dipole solutions (bis)

αmonop = S̃+ (ϕe,+) = S̃+

(
[S+]−1 (1∂Ω)

)
, and αdip = S̃+

(
[S+]−1 (y∂Ω)

)
.

Asymptotics of the Green’s function (y → ∞)

G0
+(x; x′) = −

y′

a
+ evanescent modes.

Asymptotics (y → ∞)

αmonop(x, y) = α∞
monop + evanescent modes, with α∞

monop := −
ˆ
∂Ω

y′

a
ϕe,+(x′)dσ(x′),

αdip(x, y) = α∞
dip + evanescent modes.

Regime? We expect δ ≈ ε2. Fix µ > 0, and

Limit: ε→ 0 and δ = µε2.

Resonance

µM :=
|Ω|k2b
Cap+

Ω,R
.

Norm? Strip Sa := R× (a,∞) and

∥f∥W1,∞(Sa) := sup
X∈Sa

|f | (X) + sup
X∈Sa

|∇f | (X).
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Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

1) If µ ̸= µM , then Uε := U [ε, δ = µε2] satisfies uniformly inW 1,∞(SεL)

Uε(X) = U0(X) + ε

(
U1(X) + UBL

(
X,

X
ε

))
+Oµ(ε

2),

where U0(X) = −2iu0 sin(kY ) is the solution without bubbles, and where

U1(X) := (2iu0k)eikY
(
α∞
dip −

K

1− µM
µ

α∞
monop

)
, with K :=

α∞
monopa

Cap+
Ω,R

.

UBL(X, x) := (2iu0k)
(
(αdip(x)− α∞

dip)−
K

1− µM
µ

(αmonop(x)− α∞
monop)

)
.

Remarks

Uniform bounds in SεL (boundary limit terms UBL).

UBL(X, x) is exponentially decreasing as y → ∞.

The dipole and monopole terms are of same order of magnitude.

Only the monopole part is resonant (singularity µ→ µM ).
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Theorem (bis)

2) If µ = µM , then Uε := U [ε, δ = µMε2] satisfies uniformly inW 1,∞(SεL)

Uε(X) = U0(X) +
(
U1(X) + UBL

(
X,

X
ε

))
+O(ε),

where U1(X) := 2u0eikY and where

UBL(X, x) := (2u0)

(
αmonop

α∞
monop

(x)− 1

)
is exponentially decreasing as y → ∞.

Interpretation
The meta-screen behaves like an acoustic plane with reflection coefficient

R(ω) ≈ −1− 2

 iωη

1−
(

ω

ω+
M

)2

− iωη∗

 with η = η∗ :=
(α+

monop)
2a

vCap+
Ω,R

.

Remarks:
We recover the radiative damping (η∗).
If ω ≪ ωM or ω ≫ ωM , then R(ω) ≈ −1 (Dirichlet plane) ∼ no bubble case.
If ω = ωM , then R(ωM ) = 1 (Neumann plane).
Considering other source of damping (e.g. viscous), and assuming η∗ = 2η, we have

R(ωM ) = 0 (absorption plane).
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Conclusions

Regime ε→ 0 and δ → 0 such that δ ≈ ε2 (high-contrast limit3).

Tracking of the resonance through Gohberg-Sigal theory.

Point scatterer approximation and meta-surfaces from the study of layer potentials.

Resonance phenomenon as the limit of well-posed and easy-to-study problems.
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