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Goals:
Define and compute numerically the energy per cell of a crystal.

Define and compute numerically the energy of a local defect inside a crystal.

What is a crystal?

A periodic arrangement of (fixed) nuclei on a lattice.
Modeled by a periodic density charge µper, or by a periodic potential Vper.

An arrangement of moving electrons around these nuclei.

What is the energy (per cell) of the electrons?

Remarks

The number of electrons is infinite.

There is no Schrödinger-like equations a priori.
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The thermodynamic limit
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Fact: There exist good models for finite systems.

Thermodynamic limit: See the infinite periodic crystal as the limit of finite systems.

L = 1 L = 2 L = 3 · · · L = ∞

Roadmap:

Choose a model for finite systems (Schrödinger equation, Hartree(-Fock), DFT,…).

For each L ∈ N∗, calculate the ground state energy EL for the charge density µL.

Take the limit L→ ∞.

Questions:

Does the sequence L−3EL (energy per cell) converge as L→ ∞?

If yes, can we characterise the limit?
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The thermodynamic limit for different models

Model Existence of the limit Characterisation of the limit

Schrödinger1,2 yes no
non-interacting Schrödinger yes yes

DFT no (yes ?)
reduced-HF (rHF) 3 yes yes
Hartree-Fock (HF) 3 maybe (yes ?)

Remarks
The main difficulty for the Existence/Characterisation is to prove that the final solution is periodic.
This is the case for the rHF/non-interacting model: the model is convex.
Otherwise, symmetry breaking may happen (periodic problem, non periodic minimiser).

Speed of convergence?
We expect a very slow speed of convergence: the edge effects only vanish at the limit.

Idea
If the final solution is periodic, perform a periodic thermodynamic limit.

1C. Fefferman, Commun. Math. Phys. 98 (1985), no. 3.
2X. Blanc, C. Le Bris, and P.-L. Lions, Comm. Part. Diff. Eq. 28 (2003).
3I. Catto, C. Le Bris, and P.-L. Lions, Ann. Inst. H. Poincaré (C) 18 (2001), no. 6.
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Thenon-interacting (linear) case
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Notations for the crystal

Lattice: R = aZ3. Unit cell: Γ = [−a/2, a/2)3.
Reciprocal lattice: R∗ = (2π/a)Z3. Reciprocal unit cell: Γ∗ = [−π/a, π/a)3.

Supercell: ΓL := LΓ.

The Hamiltonian we wish to study

(mean field) potential: Vper ∈ L2
per(Γ).

Non-interacting Hamiltonian:

Hper = −
1

2
∆ + Vper, acting on L2(R3).

Number of electrons per cell: N ∈ N∗.

Questions

How to define the energy per cell?

How to compute it?

Idea: Perform a periodic thermodynamic limit.
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The supercell model

Full model Supercell model

≈

L

Laplacian with periodic boundary conditions: −∆L.

Supercell Hamiltonian

HL := −
1

2
∆L + Vper acting on L2

per(ΓL).

Number of electrons =NL3.

Roadmap

Compute the total energy EL of the supercell.

Define the energy per cell as the limit of L−3EL when L→ ∞.
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1-body Hamiltonian

h1 := −
1

2
∆L + Vper self-adjoint operator acting on H1 = L2(ΓL).

Fact: h1 is compact resolvent (=⇒ discrete spectrum).

ε1 ≤ . . . ≤ εN the smallest eigenvalues.

u1, . . . , uN ∈ H1 the corresponding normalised eigenvectors.

N -body non-interacting Hamiltonian

HN :=
N∑
i=1

h1(xi) acting on the fermionic space
N∧

H1.

Ground state energy ofHN

E0
N = ε1 + . . .+ εN = ⟨u1, h1u1⟩+ . . .+ ⟨uN , h1uN ⟩

= TrH1
[h1 (|u1⟩⟨u1|+ . . .+ |uN ⟩⟨uN |)] (cyclicity of the trace)

= inf
{
TrH1

[h1γ] , γ is a projector of rankN
}

(min-max principle)

= inf
{
TrH1

[h1γ] , γ ∈ PN

}
(min of linear function on convex set),

where PN is the convex hull of the set of projectors of rankN :

PN :=
{
γ ∈ S(H1), 0 ≤ γ ≤ 1, TrH1

(γ) = N
}
.

The minimiser is γN := 1 (HN ≤ εN ), and satisfies TrH1
(γN ) = N .
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In our case
Supercell minimiser

γL := 1
(
HL < εLF

)
where εLF is chosen so that

1

L3
TrL2

per(ΓL)

[
γL
]
= N.

Supercell energy per unit cell

IL :=
1

L3
EL =

1

L3
TrL2

per(ΓL)

[
HLγL

]
.

In the thermodynamic limit, we expect

Exact minimiser

γper of the form γper := 1 (Hper < εF ) where εF is chosen so that Tr (γ) = N.

Exact energy per cell
Iper = Tr [Hperγper] .

Trace per cell

Tr ‘‘ := ” lim
L→∞

1

L3
TrL2

per(ΓL).

Questions
Does the sequence L−3EL converge to Iper as L→ ∞?
What is the speed of convergence?

Lemma

In the insulating case, there exists C ∈ R+ and α > 0 such that, for all L ∈ N∗,∣∣∣IL − Iper
∣∣∣ ≤ Ce−αL.
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TheBloch-Floquet transform
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L2
per([0, L]) = Vect

{ ...
...

... . . .
...

e2iπ0x, e2iπ(
1
L )x, e2iπ(

2
L )x, . . . , e2iπ

(
L−1
L

)
x
,

e2iπ(
L
L )x, e2iπ

(
L+1
L

)
x
, e2iπ

(
L+2
L

)
x
, . . . , e2iπ

(
2L−1

L

)
x
,

...
...

... . . .
...

}
= L2

0 ⊕ L2
2π
L

⊕ L2
4π
L

⊕ · · · ⊕ L2
2π(L−1)

L

.

Fibers

L2
q = Vect

{
eik·xeiq·x,k ∈ R∗} =

{
ψ ∈ L2

loc(R
3), ∀R ∈ R, ψ(·+ R) = eiq·Rψ(·)

}
.

L2
q does not depend on L, q ∈ Γ∗.

3D case
L2
per(ΓL) =

⊕
Q∈ΛL

L2
Q.

Γ∗

ΛL
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Supercell set of translations : RL := R∩ ΓL.

(Supercell) Bloch-Floquet transform for functions

f ∈ L2(ΓL) =
⊕

Q∈ΛL

fQ with fQ ∈ L2
Q.

(Supercell) Bloch fibers

fQ(x) :=
∑

R∈RL

eiQ·Rf(x− R) =
∑

R∈RL

eiQ·RτRf(x).

Bloch-Floquet for operators

Lemma

Let AL : L2
per(ΓL) → L2

per(ΓL) be such that τRAL = ALτR for all R ∈ R. Then, the operator AL is
block-diagonal with respect to the L2

Q decomposition.

Proof

[
ALf

]
Q
(x) =

∑
R∈RL

eiQ·RτR
(
ALf

)
(x) =

∑
R∈RL

eiQ·RAL(τRf)(x)

= AL

 ∑
R∈RL

eiQ·RτRf

 (x) = AL
(
fQ
)
(x).
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In other words, writing ÃL
Q : L2

Q → L2
Q, we have

AL =


ÃL

Q0
0 · · · 0

0 ÃL
Q1

0 0

...
...

...
...

0 . . . 0 ÃL
Q
L3

 (Bloch transform = block-decomposition).

Covariance

L2
q = Sq

(
L2
per(Γ)

)
with Sq[f ](x) = eiq·xf(x) and (Sq)

−1 = S−q.

“Twisted” Bloch transform

AL
Q := S−QÃL

QSQ, : L2
per(Γ) → L2

per(Γ).

Basic properties

Spectrum

σ(AL) =
∪

Q∈ΛL

σ
(
ÃL

Q

)
=

∪
Q∈ΛL

σ
(
AL

Q

)
.

Trace per cell

Tr
L
(AL) :=

1

Ld
TrL2

per(ΓL)(A
L) =

1

Ld

∑
Q∈ΛL

TrL2
per(Γ)(Ã

L
Q ) =

1

Ld

∑
Q∈ΛL

TrL2
per(Γ)(A

L
Q ).
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Example: The periodic Hamiltonian

HL = −
1

2
∆L + Vper acting on L2

per(ΓL).

Bloch transform

Hq := HL
q =

1

2

∣∣−i∇1 + q
∣∣2 + Vper = −

1

2
∆1 − q · (i∇1) +

q2

2
+ Vper acting on L2

per(Γ).

Supercell thermodynamic limit (L→ ∞)

Γ∗

ΛL=4

Γ∗

ΛL=8

· · ·

Λ∞ = Γ∗

HL =
⊕

Q∈ΛL

HL
Q −−−−→

L→∞
Hper =

ˆ ⊕

Γ∗
Hqdq.

Trace per unit volume

Tr
L
(A) =

1

L3

∑
Q∈ΛL

AQ −−−−→
L→∞

Tr (A) :=
 
Γ∗
Aqdq.

Supercell model ⇐⇒ Regular sampling of Γ∗.
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Remark: The operatorHq (acting on L2
per(Γ)) is compact resolvent:

Hq =

∞∑
n=1

εnq|unq⟩⟨unq|, ε1,q ≤ ε2,q ≤ · · · , ⟨unq, umq⟩L2
per(Γ) = δnm.

Band diagram of the silicon q ∈ Γ∗

εnq (eV)

εF

N

Fermi energy: εF ∈ R s.t.
∞∑

n=1

 
Γ∗

1(εnq ≤ εF ) dq = N.

Insulating system: The system is insulating if there exists a gap g > 0 such that

∀q ∈ Γ∗, εN,q +
g

2
≤ εF ≤ εN+1,q −

g

2
.
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Full Hamiltonian
One-body density

γper = 1(Hper ≤ εF ) =

ˆ ⊕

Γ∗
1(Hq ≤ εF )︸ ︷︷ ︸

γq

dq.

Energy per unit cell (update)

Iper = Tr (Hperγper) =

 
Γ∗

TrL2
per(Γ) (Hqγq) dq =

 
Γ∗

(
N∑

n=1

εnq

)
dq

Supercell model
Supercell one-body density

γL = 1(HL ≤ εF ) =
⊕

Q∈ΛL

γQ.

Supercell energy per unit cell (update)

IL = Tr
(
HLγL

)
=

1

L3

∑
Q∈ΛL

TrL2
per(Γ)

(
HQγQ

)
=

1

L3

∑
Q∈ΛL

(
N∑

n=1

εnQ

)
.

Error for the energy

IL − Iper =
1

L3

∑
Q∈ΛL

(
N∑

n=1

εnQ

)
−
 
Γ∗

(
N∑

n=1

εnq

)
dq.

This is the difference between a Riemann sum and an integral.
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Tools in complex analysis
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Integrand

K(q) :=
N∑

n=1

εnq.

Properties

The functionK is R∗-periodic.

The functions q 7→ εnq are not smooth in general (conic
singularities).

However, the sum of the eigenvalues is smooth.
Band diagram of graphene.

Lemma (4,5,6)
If the system is an insulator, then the (R∗-periodic) functionK admits an analytic extension on some
complex strip SA := R3 + i[−A,A]3 with A > 0.

Link to the fact that |γper(x, y)| ≤ Ce−α|x−y|.

4W. Kohn, Phys. Rev. 115 (1959).
5J. Des Cloizeaux, Phys. Rev. 135 (1964).
6C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Phys. Rev. Lett. 98 (2007).
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Elements of the proof

Cauchy residual formula

γq = 1(Hq ≤ εF ) =
1

2iπ

˛
C

dλ
λ−Hq

. εF

σ(H)

C

Analytic continuation

Hq = −
1

2
∆1 − q · (i∇1) +

q2

2
+ Vper =⇒ Hz = −

1

2
∆1 − z · (i∇1) +

zT z
2

+ Vper

Lemma
There exists A > 0 such that

∀z ∈ SA, γz :=
1

2iπ

˛
C

dλ
λ−Hz

is well-defined. Moreover, the map z 7→ γz is analytic on SA.

Integrand

K(q) :=
N∑

n=1

εnq = TrL2
per(Γ) (Hqγq) =⇒ K(z) := TrL2

per(Γ) (Hzγz) .

K(z) is R∗-periodic and analytic on SA.
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Lemma (classical)

If f : SA → C is analytic on SA for some A > 0 and satisfies f(z+ k) = f(z) for all k ∈ R∗, then there
exists C ∈ R+ and α > 0 such that

∀L ∈ N∗,

∣∣∣∣∣∣ 1

L3

∑
Q∈ΛL

f(Q)−
 
Γ∗
f(q)dq

∣∣∣∣∣∣ ≤ Ce−αL.

Conclusion

Lemma (DG, Salma Lahbabi)

In the insulating case, there exists C ∈ R+ and α > 0 such that, for all L ∈ N∗,∣∣L−3EL − Iper
∣∣ ≤ Ce−αL. (Convergence of the energy per cell)∥∥∥ργper − ργL

∥∥∥
L∞

per
≤ Ce−αL. (Convergence of the electronic density)
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Numerical illustration

(Linear model for silicium taken in M.L. Cohen and T.K. Bergstresser, Phys. Rev. 141 (1966).

Speed of convergence for the silicium (linear model) .
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Thenon-linear case
(reducedHartree-Fock case)
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How to define an “interacting” model?

Take an effective model (DFT, HF, …), and perform a (periodic) thermodynamic limit.

Problem: symmetry breaking

Lemma (current work with Mathieu Lewin and Faizan Nazar)
Let

Iα(L) :=
1

L3
inf
{
TrL2(ΓL)(−∆γ) +

ˆ
ΓL

Vperργ +DL(ργ , ργ)− α

ˆ
ΓL

ρ
4/3
γ , γ ∈ P(ΓL)

}
,

then, for α > αc, it holds that Iα(2) < Iα(1).

Idea
Enforce the 1-periodicity (for instance using convexity) =⇒ reduced Hartree-Fock (rHF).

Recall the non-interacting case

Non-interacting energy as a minimisation problem

Iper = Tr (Hperγper) = inf
{
Tr (Hperγ), γ ∈ Pper,Tr (γ) = N

}
.

Set of one-body density matrices

Pper =
{
γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, ∀R ∈ R, τRγ = γτR

}
.

Set of supercell one-body density matrices

Pper =
{
γ ∈ S(L2

per(ΓL)), 0 ≤ γ ≤ 1, ∀R ∈ R, τRγ = γτR
}
.
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Charge density: µper

reduced Hartree-Fock
IrHFper = inf

{
IrHF
per (γ), γ ∈ Pper,Tr (γ) = N

}
.

with (µper is the charge density)

IrHF
per (γ) :=

1

2
Tr (−∆γ) +

1

2
D1(ργ − µper, ργ − µper).

Periodic Green’s function

−∆G1 = 4π
∑
R∈R

(
δR − |Γ|−1

)
so that G1(x) =

4π

|Γ|
∑

k∈R∗\{0}

eik·x

|k|2
.

Periodic Coulomb potential

∀f, g ∈ L2
per(Γ), D1(f, g) :=

¨
(Γ)2

f(x)G1(x− y)g(y) dxdy.

Lemma ( Catto, Le Bris, Lions and Cancès, Deleurence, Lewin )

The problem IrHFper admits a unique minimizer γper. This minimizer satisfies the Euler-Lagrange equations
γper = 1(Hper ≤ εF )
Hper = − 1

2
∆+ Vper acting on L2(R3)

Vper = (ργper − µper) ∗Γ G1.
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Supercell energy (rHF)

ErHF
L = inf

{
E rHF(γL), γL ∈ PL,TrL2

per(ΓL)

(
γL
)
= NL3

}
,

with

E rHF(γL) :=
1

2
TrL2

per(ΓL)

(
−∆LγL

)
+

1

2
DL(ργL − µper, ργL − µper).

Supercell Green’s function

−∆GL = 4π
∑

R∈LR

(
δR − |ΓL|−1

)
so that GL(x) =

4π

|ΓL|
∑

k∈L−1R∗\{0}

eik·x

|k|2
=

1

L
G1

( x
L

)
.

Supercell Coulomb potential

∀f, g ∈ L2
per(ΓL), DL(f, g) :=

¨
(ΓL)2

f(x)GL(x− y)g(y) dxdy.

Lemma

The problem ErHF
L admits a unique minimizer γL. This minimizer satisfies the Euler-Lagrange equations

γL = 1(HL ≤ εLF )
HL = − 1

2
∆L + V L acting on L2

per(ΓL)

V L = (ργL − µper) ∗ΓL
GL.
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Question: What is the speed of convergence of
∣∣∣L−3ErHF

L − IrHFper

∣∣∣?
Remark. Non-linear setting: The potential V depends on L:

Hper = −
1

2
∆ + Vper and HL = −

1

2
∆L + V L.

Idea: Construct good test functions for the minimization problems.

Problem: γper ∈ Pper and γL ∈ PL cannot be compared.

By convexity of the problems w.r.t. the density ρ, we deduce that

ργper and ργL are R-periodic.

Vper and V L are R-periodic.

=⇒ Construct test functions from ργper and ργL , and use the results for the linear case.
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Lemma (DG, Salma Lahbabi)

There exists C ∈ R+ and α > 0 such that, for all L ≥ Lgap,∣∣∣L−3ErHF
L − IrHFper

∣∣∣ ≤ Ce−αL. (Convergence of the energy per unit cell)∥∥∥ργper − ργL

∥∥∥
L∞

per
≤ Ce−αL. (Convergence of the electronic density)

Rates of convergence for the reduced Hartree-Fock model.
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Crystalswith local defects
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General picture

Perfect crystal

Hper = −
1

2
∆ + Vper acting on L2

per(Γ).

Local defect (charge)

ν ∈ L2(R3) with compact support in Γ.

Crystal with local defect

Hν := −
1

2
∆ + Vper +

ˆ
R3

ν(y)
| · −y|

dy.
Local defects

How to define the energy of the defect?

The energy per cell is no longer a meaningful quantity.

The energy of the crystal (with and without defect) is infinite.

Idea: Perform a supercell thermodynamic limit.
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Supercell thermodynamic limit
Supercell local defect

ν → νL ∈ L2
per(ΓL) such that νL = ν on ΓL.

Local defect Supercell defect

The defect interacts with its periodic images!
Roadmap

For all L ≥ N∗, the supercell energy of the crystal with and without defect is finite.

Define the supercell energy of the defect as

JL
ν = EL

ν − EL.

Does JL
ν have limit as L→ ∞? Yes in rHF7: Jν .

Can we characterize the limit? Yes, as a minimization problem.

What is the speed of convergence of JL
ν → Jν?

7E. Cancès, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)
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Lemma (DG, Salma Lahbabi)

There exists η > 0, L∗ ∈ N, C ∈ R+, and α > 0 such that, for all ν ∈ L2
per(Γ) with compact support in Γ

and satisfying ∥ν∥L2 < η, and for all L ≥ L∗, it holds that∣∣∣∣Jν − JL
ν −

1

L

mq2

2ϵ

∣∣∣∣ ≤ C

(
∥ν∥3L2 +

∥ν∥2L2

L3
+ ∥ν∥L2 e−αL

)
,

where q =
´
R3 ν is the net charge of the defect, m is the Madelung constant of the crystal, defined by

m := lim
x→0

G1(x)−
1

|x|
,

and ϵ is the macroscopic dielectric constant of the crystal.

Comments

Recover the term predicted by Leslie and Gillan8, and by Makov and Payne9.

Slow convergence in the defect case (interaction of the defect with its images).

The term
1

L

mq2

2ϵ
can be computed with low computational time.

=⇒ We can improve the numerical convergence by substracting by hand this term.

8M. Leslie and M.J. Gillan. J. Phys. C 18 (1985).
9G. Makov and M.C. Payne. Phys. Rev. B, 51 (1995).
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Conclusion

Convergence of supercell models ⇐⇒ Convergence of Riemann sums.

Exponential rate of convergence for perfect crystals.
Slow rate of convergence for crystal with local defects.

Identification of the L−1 term allows to speed the rate of convergence.

Work in progress (see Antoine Levitt’s talk)

Speed of convergence in the metallic case.
(with E. Cancès, V. Ehrlacher, A. Levitt and D. Lombardi)
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