Supercell method for the computation of energies of crystals

David Gontier

CEREMADE, Université Paris-Dauphine

Warwick EPSRC Symposium: Density Functional Theory and Beyond: Analysis and Computation

Warwick, July 5, 2017

Joint work with Salma Lahbabi

DAUPHINE | CEREMADE

UNIVERSITE PARIS UMR CNRS 7534

David Gontier Simulation of crystals



Goals:
@ Define and compute numerically the energy per cell of a crystal.

@ Define and compute numerically the energy of a local defect inside a crystal.

What is a crystal?

@ A periodic arrangement of (fixed) nuclei on a lattice.
Modeled by a periodic density charge piper, or by a periodic potential Vper.

@ An arrangement of moving electrons around these nuclei.

What is the energy (per cell) of the electrons?

Remarks
@ The number of electrons is infinite.

@ There is no Schrodinger-like equations a priori.
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The thermodynamic limit




Fact: There exist good models for finite systems.

Thermodynamic limit: See the infinite periodic crystal as the limit of finite systems.

L P 2 m
° p vt
[* £ a
Roadmap:

@ Choose a model for finite systems (Schrédinger equation, Hartree(-Fock), DFT,...).
@ Foreach L € N*, calculate the ground state energy E, for the charge density ..
@ Take the limit L — oo.

Questions:
@ Does the sequence L2 Ey, (energy per cell) converge as L — 0o?

@ If yes, can we characterise the limit?
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The thermodynamic limit for different models

Model

Existence of the limit

Characterisation of the limit

Schrodinger!>2

yes no

non-interacting Schrodinger yes yes
DFT no (yes ?)

reduced-HF (rHF) 3 yes yes
Hartree-Fock (HF) 3 maybe (yes ?)

Remarks

The main difficulty for the Existence/Characterisation is to prove that the final solution is periodic.
This is the case for the rHF/non-interacting model: the model is convex.
Otherwise, symmetry breaking may happen (periodic problem, non periodic minimiser).

Speed of convergence?

We expect a very slow speed of convergence: the edge effects only vanish at the limit.

Idea

If the final solution is periodic, perform a periodic thermodynamic limit.

1C. Fefferman, Commun. Math. Phys. 98 (1985), no. 3.
2X. Blanc, C. Le Bris, and P.-L. Lions, Comm. Part. Diff. Eq. 28 (2003).
3]. Catto, C. Le Bris, and P.-L. Lions, Ann. Inst. H. Poincaré (C) 18 (2001), no. 6.
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The non-interacting (linear) case




Notations for the crystal

Lattice: R = aZ3. Unitcell: T' = [~a/2,a/2)3.
Reciprocal lattice: R* = (27 /a) Z3. Reciprocal unit cell: T* = [~7/a, 7/a)3.

Supercell: Tz, := LI".

The Hamiltonian we wish to study
(mean field) potential: Vjer € Lge,(F).

Non-interacting Hamiltonian:
1 : 23
Hper = _iA + Vper, actingon L*(R®).
Number of electrons per cell: N € N*.

Questions
@ How to define the energy per cell?

@ How to compute it?

Idea: Perform a periodic thermodynamic limit.
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The supercell model

Full model Supercell model

R

Laplacian with periodic boundary conditions: —AL.
Supercell Hamiltonian
1
HL .= —QAL + Vper acting on Lger(FL).
Number of electrons = N L3.

Roadmap
o Compute the total energy E™ of the supercell.
@ Define the energy per cell as the limit of L=3 EL when L — oc.
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1-body Hamiltonian
1., . . 2
hy = —§A + Vper  self-adjoint operator actingon  Hi = L*(I').
Fact: h1 is compact resolvent (=> discrete spectrum).

0 g1 < ... < ep the smallest eigenvalues.
@ ui,...,un € Hi the corresponding normalised eigenvectors.

N-body non-interacting Hamiltonian

N N
HYN .= Z hi(x;) acting on the fermionic space /\ Hi.
i=1

Ground state energy of Hy

ES =c14...+env = (ur,hiur) + ...+ (un, hiuy)
= Tryy, [h1 (Jur){ui| + ... + [un)(un])] (cyclicity of the trace)
= inf {Try, [h17], 7 is a projector of rank N} (min-max principle)

= inf{TrH1 [h1A], v € PN} (min of linear function on convex set),
where Py is the convex hull of the set of projectors of rank N:
Pn={y€S(H1), 0< v <1, Try, (v) = N}.

The minimiser is vy := 1 (Hx < en), and satisfies Try;, (7n) = N.
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L In our case
Supercell minimiser

~Ei=1 (HL < asz) where £% is chosen so that %Trl‘ger<rb) [’YL] =N.
Supercell energy per unit cell
It .= %EL = %TrLgc,(FL) [HL'yL] .
In the thermodynamic limit, we expect
Exact minimiser
Yper of the form  ~per := 1 (Hper < €p) where e is chosen so that  Tr (7) = N.

Exact energy per cell
Tper = Tt [Hperyper] -
Trace per cell
Tr“:=" LIme %TrLgﬂ(FL)'
Questions
@ Does the sequence L3 E, converge to Iper as L — 00?
@ What is the speed of convergence?

In the insulating case, there exists C € Rt and o > 0 such that, for all L € N*,

|17 = Bee| < CemoL.
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The Bloch-Floquet transform




Lger([oﬂ LD = VeCt{

£2im0x Q2im(1)x 2im(F)x eQiﬂ(Lgl)x
i e (LR o L42 ren_1
e217r(%)x7 eZITr(T)x, L'J‘(‘T)x, o 62”((714 )x7
= L2 & LA, & L%, @ @ Ly
L L =7
Fibers
L?l = Vect {eik-xeiq-x’k = 'R*} — {w c le()c(R3)7 YRER, ¥(-+R) = eiq'Rw(-)}.
L¢21 does not dependon L, q € I'*.
F*
3D case

Lger(FL) = @ La

QeAL AL
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Supercell set of translations: Ry, :(=RNTIT'p.
(Supercell) Bloch-Floquet transform for functions
feL*)= P fo with fqeLj.
QeAL
(Supercell) Bloch fibers
fox):= Y Rfx-R)= Y Rmf(x)
ReER, RER,

Bloch-Floquet for operators

Let AT : LZH(FL) — Lper(FL) be such that TR AL = AL7g for allR € R. Then, the operator A” is
block-diagonal with respect to the La decomposition.

Proof

[A5f] 0= 32 e@Rm (AFf) ) = 3 eORak(m)(x)

RER, RER,

= AL Z eiQ‘RTRf (X) — AL (fQ) (X)

RER ],
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In other words, writing Aé : La — La, we have
AQO AO 0
0 Ag 0 0
Al = . . . . (Bloch transform = block-decomposition).
0 . 0

Covariance
12 = Sq (L2,0)  with Sy[flx) = 1%f(x) and (S9) " = S_q.
“Twisted” Bloch transform

Aé’ = S,QAé’SQ, : Lger(r) - Lger(r)‘

Basic properties

@ Spectrum

o(AL) = U O’(%)Z U U(Aé‘).

QeAL QeAL
@ Trace per cell
L 1 L 1 AL 1 L
Tr, (AY) = ﬁTngeer)(A )= Td > Trz () (Ag) = Td > Trp2 (1) (AQ)-
QEAL Q€EAL
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Example: The periodic Hamiltonian
1
HL = _EAL + Vper acting on Lger(FL)-
Bloch transform
L_1 .1 2 1 ol q’ - 2
Hy=Hy = o[V} 4 q|" + Vor = =0 AL —q (V1) + 5 + Voo actingon LE(T).

Supercell thermodynamic limit (L — oo)

r* T* Aoo —T*

AL*LI AL:8

5}
e Ay L
L—oo T*
QeAL

Trace per unit volume

1
Tr, (4) = ﬁg, Ag = Te(d) = f. Agda,
L

Supercell model <> Regular sampling of I'*.
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Remark: The operator Hyq (acting on Lger(F)) is compact resolvent:

oo
Hq = Z EnqlUng){Ungl, €1q<Le24< -0, <“nq:“mq>Lger(F) = bnm-
n=1

Engq (€V)

25

\

Band diagram of the silicon qel™
X W G U X

=5

ﬁ
@

Fermi energy: ep € Rs.t.

> ][F 1(enq < er) dg = N.
n=1

Insulating system: The system is insulating if there exists a gap g > 0 such that

Vq e, EN,q"Fg <erp<eNt1q— %
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Full Hamiltonian
One-body density

@
Yper = L(Hper <ep) = / 1(Hq <er) dq.
T N, e’
q

Energy per unit cell (update)

Iper = T_r(Hper’Yper) = 7? TrL2 (D) (Hq’Yq dq = % <Z Enq>

Supercell model
Supercell one-body density

L=1(H" <er)= P 0o
QeA L

Supercell energy per unit cell (update)
N
L L. L
e (1) = 5 3 T o (o) = 5 3 ().
QeAL QeA;, \n=1

Error for the energy

IE — Lo = L3 > (Z enQ> fr (ﬁ::ml) dq.

QeAr, \n=1

This is the difference between a Riemann sum and an integral.
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Tools in complex analysis




Integrand
N
K(q) := Z €ngq-
n=1

Properties
@ The function K is R*-periodic.

@ The functions q — £nq are not smooth in general (conic
singularities).

Band diagram of graphene.
o However, the sum of the eigenvalues is smooth. & grap

If the system is an insulator, then the (R* -periodic) function K admits an analytic extension on some
complex strip S5 := R3 +i[— A, A]® with A > 0.

Link to the fact that |yper(x,y)| < Ce—alx—yl,

4W. Kohn, Phys. Rev. 115 (1959).
5J. Des Cloizeaux, Phys. Rev. 135 (1964).
oc. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Phys. Rev. Lett. 98 (2007).
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Elements of the proof

Cauchy residual formula €
LHg <ep) = — ¢ —2 ‘ s
= ep — . '
M= 1= 2ir Jo A — Hq cF
Analytic continuation
1.4 1. — 27z
Hq:fiA (1V)+ +Vi,er = szfiA fz-(1V)+7+Vber

There exists A > 0 such that

V2 € Sa, ’yz:_Zm%/\ H,
z

is well-defined. Moreover, the map z — -y, is analytic on S 4.

Integrand

N
K(q) =) enq= Trpz ry (Hava) = K(2) = Trpe (r) (Hea) -

n=1

o K(z) is R*-periodic and analytic on S 4.
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Lemma (classical)

If f : Sa — Cis analyticon S 4 for some A > 0 and satisfies f(z + k) = f(z) forallk € R*, then there
exists C € RT and o > 0 such that

Conclusion

Lemma (DG, Salma Lahbabi)

In the insulating case, there exists C € Rt and o > 0 such that, for all L € N*,

|L_3EL = Iper| < Ce L. (Convergence of the energy per cell)

< Ce L, (Convergence of the electronic density)
oo
per

o =252,
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Numerical illustration

(Linear model for silicium taken in M.L. Cohen and T.K. Bergstresser, Phys. Rev. 141 (1966).

log(error)
o
o

I
—
w

T

=20+

log(E-E)
y =-0.78 X + 0.38

log(lp—py|.)
y = -0.15 X + 0.00

=25
0
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The non-linear case

(reduced Hartree-Fock case)




How to define an “interacting” model?
Take an effective model (DFT, HF, ...), and perform a (periodic) thermodynamic limit.

Problem: symmetry breaking

Lemma (current work with Mathieu Lewin and Faizan Nazar)

1 .
1%(L) i:mlnf{TrL2(FL)(—A7)+ /F Voerpy + DL (py, p7) — / >, vemm},
L

Tr

then, for oc > o, it holds that 1¢(2) < I*(1).

Idea
Enforce the 1-periodicity (for instance using convexity) = reduced Hartree-Fock (rHF).

Recall the non-interacting case
Non-interacting energy as a minimisation problem
Tper = Tr (HperYper) = inf {Tr (Hpery), v € Pper, Tr (v) = N} .
Set of one-body density matrices
Pper = {7 € S(L*(R®)), 0< v <1, VRER, TRY = VTR } -
Set of supercell one-body density matrices

Prer = {7 € S(L2,(TL)), 0< < 1, VRER, Ry = WR} .
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Charge density: piper

reduced Hartree-Fock
= 1nf{I;§rF L7 € Poer, Tr (7) = N} .

with (per is the charge density)

1 1
I;}:r}’( )= §T_r(—A'y) + §D1(P’Y — Hper; Py — Hper)-
Periodic Green’s function
4 ik-x
—AG1 =4n Z (or — \F|71) sothat Gi(x) = ?ﬂ— ek—Q.
RER | ‘keR*\{o} [k

Periodic Coulomb potential

910 € Ll Dit0) = | 6061 (x = y)a(y) axdy

Lemma ( Catto, Le Bris, Lions and Canceés, Deleurence, Lewin )

The problem I;?f admits a unique minimizer ~per. This minimizer satisfies the Euler-Lagrange equations

Yper = ]I(Hper < 5F)
Hper = —32A+Vier actingon L2(R3)
‘/i’er = (p'Yper - /J‘Per) *r Gl‘
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Supercell energy (rHF)
EFF = inf {£MF (y1), /¥ € P Tepa 1, (vF) = NLP},

with 1 1
HF /L L_L
E (") = 5TrL§er(FL) <—A y ) + §DL(P~,L — Hper, Py L — Hper)-

Supercell Green’s function

47 elkx 1 X
— = — -1 - — _— = —
AGL =47 3 (Sr—ITz|™") sothat Gr(x) ] 3 E LG1(L).
RELR keL—1R*\{0}

Supercell Coulomb potential

¥f,g € L%(T), Di(f,9) //( FGL(x — y)g(y) dxdy.

The problem E'F'F admits a unique minimizer v*. This minimizer satisfies the Euler-Lagrange equations

¥ = 1(HL <)
HE = —%AL + VL acting on Lper(FL)
VL = (p,r — pper) ¥r, GL.
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Question: What is the speed of convergence of L’?’EE{{F — I;}jf ?

Remark. Non-linear setting: The potential V' depends on L:

1 1
Hper:_5A+‘/i)er and HL:—EAL—FVL.

Idea: Construct good test functions for the minimization problems.
Problem: yper € Pper and ~L € PL cannot be compared.

By convexity of the problems w.r.t. the density p, we deduce that
® Pryper and p 1 are R-periodic.

@ Vper and VL are R-periodic.

= Construct test functions from p,, and p, 1., and use the results for the linear case.
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Lemma (DG, Salma Lahbabi)

There exists C € Rt and a > 0 such that, for all L > L8,

‘L—3E2HF _ HF

|| £ Ce=L. (Convergence of the energy per unit cell)

—alL . q
Hp,yper — pyL HLOO < Ce . (Convergence of the electronic density)
per

v ]
=
2
g -6 |
-7 ]
_gl| — log(error energy) |
— y=-011x+-5.32
—9l| --- log(Linfty) 4
-~ y=-006x+-118
-10

10 15 20 25 30 35 40
kpts per direction

Rates of convergence for the reduced Hartree-Fock model.
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Crystals with local defects




General picture

Perfect crystal
1 . 2
Hper = _iA + Vper acting on Lper(F).
Local defect (charge)

v e L3(R®) with compact support in T.

Crystal with local defect

Hl/ :_*A"Fvi)er'i‘/ _y‘
Local defects

How to define the energy of the defect?

@ The energy per cell is no longer a meaningful quantity.
@ The energy of the crystal (with and without defect) is infinite.

@ Idea: Perform a supercell thermodynamic limit.
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Supercell thermodynamic limit
Supercell local defect

v—vp € Lier(l"L) suchthat vy =v on I'p.

Local defect Supercell defect

The defect interacts with its periodic images!
Roadmap

@ Forall L > N*, the supercell energy of the crystal with and without defect is finite.

@ Define the supercell energy of the defect as
JE =EL — EL.

@ Does J,L have limit as L — 00? Yes in rHF’: 7,,.
@ Can we characterize the limit? Yes, as a minimization problem.

@ What is the speed of convergence of 7L — 7,2

7E. Cancés, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)
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Lemma (DG, Salma Lahbabi)

There existsn) > 0, L* € N, C € RT, and o« > 0 such that, for allv € Lper(F) with compact support in I’
and satisfying ||v|| 2 < m, and for all L > L*, it holds that

1 mg? vl
% _ZII_ (||VL2+ L + vl pze 2t ),

where ¢ = fRS v is the net charge of the defect, m is the Madelung constant of the crystal, defined by

m:= lim G1(x) — !

x—0 m’

and e is the macroscopic dielectric constant of the crystal.

Comments
@ Recover the term predicted by Leslie and Gillan®, and by Makov and Payne®.

@ Slow convergence in the defect case (interaction of the defect with its images).

1 mqg?
o The term — 4 can be computed with low computational time.

€
=> We can improve the numerical convergence by substracting by hand this term.

8M. Leslie and M.J. Gillan. J. Phys. C 18 (1985).
G. Makov and M.C. Payne. Phys. Rev. B, 51 (1995).
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Conclusion

@ Convergence of supercell models <=- Convergence of Riemann sums.
@ Exponential rate of convergence for perfect crystals.
@ Slow rate of convergence for crystal with local defects.

o Identification of the L~ ! term allows to speed the rate of convergence.

Work in progress (see Antoine Levitt’s talk)

@ Speed of convergence in the metallic case.
(with E. Cances, V. Ehrlacher, A. Levitt and D. Lombardi)
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