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Goal: compute numerically the energy per cell of a crystal.

=⇒ Predict the structure of a crystal.

=⇒ Compute the energy of a defect inside a crystal.

What is a crystal?

A periodic arrangement of (fixed) nuclei on a lattice.
Modeled by a periodic density charge µper ∈ L2

per(R3).

An arrangement of moving electrons around these nuclei.

What is the energy (per cell) of the electrons?
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Fact: There exist good models for finite systems.

Thermodynamic limit: See the infinite periodic crystal as the limit of finite systems.

L = 1 L = 2 L = 3 · · · L =∞

Roadmap:

Choose a model for finite systems (Schrödinger equation, Hartree(-Fock), DFT,...).

For each L ∈ N∗, calculate the ground state energy EL for the charge density µL.

Take the limit L→∞.

Questions:

Does the sequence L−3EL (energy per cell) converge as L→∞?

If yes, can we characterize the limit?
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Lattice: R = aZ3. Unit cell: Γ = [−a/2, a/2)3.
Reciprocal lattice: R∗ = (2π/a)Z3. Reciprocal unit cell: Γ∗ = [−π/a, π/a)3.

Supercell: ΓL := LΓ

Nuclear charge of the finite system:

µfiniteL (x) := µper(x) · 1(x ∈ ΓL).

Potential generated by the nuclei:

V finite
L (x) =

ˆ
R3

µfiniteL (x)

|x− y| dy.

Number of electrons per cell of the crystal:ˆ
Γ

µper = N. (from neutrality of the system)

Hamiltonian (NL := NL3):

Hfinite
L =

NL∑
k=1

(
−1
2

∆k + V finite
L (xk)

)
+

1
2

∑
1≤l<k≤NL

1
|xk − xl |

.

acting on the fermionic space
NL∧

L2(R3) =
{

Ψ ∈ L2(R3NL), ∀p ∈ SNL , Ψ(xp(1), · · · , xp(NL)) = ε(p)Ψ(x1, · · · , xNL)︸ ︷︷ ︸
Pauli principle

}
.
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Full Schrödinger model

Efinite,Schr.
L := inf

{〈
Ψ
∣∣∣Hfinite

L

∣∣∣Ψ〉 , Ψ ∈
NL∧

L2(R3), ‖Ψ‖L2(R3NL ) = 1

}
.

Very difficult to compute (curse of dimensionality).
The limit L−3EL exists, but the limit cannot be characterized.1,2

Idea: Restrict the minimization problem to the set of Slater determinants

SNL :=

{
det
[
(φi (xj))1≤i,j≤NL

]
, φ1, . . . , φNL ∈ H1(R3),

ˆ
R3
φiφj = δij

}
⊂

NL∧
L2(R3).

One-body density matrix

γ =

NL∑
i=1

|φi 〉〈φi | or γ(x, y) =

NL∑
i=1

φi (x)φi (y).

Electronic density

ρ(x) = ργ(x) = γ(x, x) =

NL∑
i=1

|φi |2 (x).

The Hartree-Fock model

Efinite,HF
L := inf

{〈
Ψ
∣∣∣Hfinite

L

∣∣∣Ψ〉 , Ψ ∈ SNL , ‖Ψ‖L2(R3NL ) = 1
}
.

1C. Fefferman, Commun. Math. Phys. 98 (1985), no. 3.
2X. Blanc, C. Le Bris, and P.-L. Lions, Comm. Part. Diff. Eq. 28 (2003).
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The Hartree-Fock model (bis)

Efinite,HF
L = inf

γ∈PNL

{
Tr
((
−1
2

∆ + V finite
L

)
γ

)
+

1
2

¨
(R3)2

ργ(x)ργ(y)−|γ(x, y)|2

|x− y| dxdy,

}
,

where3

PNL :=
{
γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = NL, Tr(−∆γ) <∞

}
.

Lemma ( I. Catto, C. Le Bris, and P.-L. Lions, Ann. Inst. H. Poincaré (C) 18 (2001), no. 6.)

Existence: The sequence L−3Efinite,rHF
L has a limit I rHFper as L→∞.

Characterization: It holds that

I rHFper = inf
{
1
2
Tr (−∆γ) +

1
2
D1(ργ − µper, ργ − µper), γ ∈ Pper,

ˆ
Γ

ργ = N

}
.

where Tr denotes the trace per cell, and D1(·, ·) is the periodic Coulomb quadratic
form (see later).

Question: How to compute I rHFper efficiently numerically?

3A. Coleman, Rev. Mod. Phys. 35 (1963), no. 3.
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The reduced Hartree-Fock (rHF) model

Efinite,rHF
L = inf

γ∈PNL

{
Tr
(

(−1
2

∆ + V finite
L )γ

)
+

1
2

¨
(R3)2

ργ(x)ργ(y)

|x− y| dxdy,

}
,

where3

PNL :=
{
γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = NL, Tr(−∆γ) <∞

}
.

Lemma ( I. Catto, C. Le Bris, and P.-L. Lions, Ann. Inst. H. Poincaré (C) 18 (2001), no. 6.)

Existence: The sequence L−3Efinite,rHF
L has a limit I rHFper as L→∞.

Characterization: It holds that

I rHFper = inf
{
1
2
Tr (−∆γ) +

1
2
D1(ργ − µper, ργ − µper), γ ∈ Pper,

ˆ
Γ

ργ = N

}
.

where Tr denotes the trace per cell, and D1(·, ·) is the periodic Coulomb quadratic
form (see later).

Question: How to compute I rHFper efficiently numerically?

3A. Coleman, Rev. Mod. Phys. 35 (1963), no. 3.
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Outline

The linear case
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Interlude: finite systems

1-body Hamiltonians

h1 = −1
2

∆ + V self-adjoint operator acting on H1 = L2(R3).

ε1 ≤ . . . ≤ εN the smallest eigenvalues (we assume that they exist),
u1, . . . , uN ∈ H1 the corresponding normalized eigenvectors.

N-body non-interacting Hamiltonians

HN :=
N∑
i=1

h1(ri ) acting on the fermionic space
N∧
H1.

Ground state energy of HN

E 0
N = ε1 + . . .+ εN = 〈u1, h1u1〉+ . . .+ 〈uN , h1uN〉

= TrH1 [h1 (|u1〉〈u1|+ . . .+ |uN〉〈uN |)] (cyclicity of the trace)

= inf {TrH1 [h1γ] , γ is a projector of rank N} (min-max principle)

= inf {TrH1 [h1γ] , γ ∈ PN} (min of linear function on convex set),

where PN is the convex hull of the set of projectors of rank N:

PN := {γ ∈ S(H1), 0 ≤ γ ≤ 1, TrH1(γ) = N, TrH1(−∆γ) <∞} .

E 0
N can be defined as a minimisation problem over the set PN (∼ a set of operators).
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Periodic Hamiltonian Consider Vper a real-valued R-periodic function, and set

Hper = −1
2

∆ + Vper acting on L2(R3).

Energy per cell (N electrons per cell)

Iper = inf {Tr (Hperγ) , γ ∈ Pper, Tr (γ) = N} .

Trace per cell

Tr (A) := lim
L→∞

1
L3 Tr (1ΓLA1ΓL) .

Set of one-body density matrices

Pper =
{
γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, ∀R ∈ R, τRγ = γτR, Tr (γ) + Tr (−∆γ) <∞

}
.

Lemma
In the insulating case, the unique minimizer for Iper is γper = 1(Hper ≤ εF ), for some
εF ∈ R (Fermi energy).

Problem: The set Pper is numerically difficult to represent!
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The supercell model

Full model Supercell model

≈

L

Laplacian with periodic boundary conditions: −∆L.

Supercell Hamiltonian

HL := −1
2

∆L + Vper acting on L2
per(ΓL).

Supercell energy

EL := inf
{

TrL2
per(ΓL)

(
HLγL

)
, γL ∈ PL, TrL2

per(ΓL)

(
γL
)

= N
}
.

Set of supercell one-body density matrices

PL =
{
γL ∈ S(L2

per(ΓL)), 0 ≤ γL ≤ 1, τRγL = γLτR, Tr(γL) + Tr(−∆LγL) <∞
}
.
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Iper = inf {Tr (Hperγ) , γ ∈ Pper, Tr (γ) = N} what we want

EL := inf
{

TrL2
per(ΓL)

(
HLγL

)
, γL ∈ PL, TrL2

per(ΓL)

(
γL
)

= N
}

what we can compute

Questions

Does the sequence L−3EL converges to Iper as L→∞? Yes4

What is the speed of convergence?

Lemma

In the insulating case, there exists C ∈ R+ and α > 0 such that, for all L ∈ N∗,∣∣L−3EL − Iper
∣∣ ≤ Ce−αL. (Convergence of the energy per cell)

Validate a posteriori the sampling method proposed by Monkhorst and Pack5.

Proof: discrete Bloch transform, complex analysis, convergence of Riemann sums.

4E. Cancès, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)
5H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13 (1976), no. 12.
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Step 1: (discrete) Bloch transform

L2
per([0, L]) = Vect

{ ...
...

... . . .
...

e2iπ0x, e2iπ( 1
L )x, e2iπ( 2

L )x, . . . , e2iπ( L−1
L ),

e2iπ( L
L )x, e2iπ( L+1

L )x, e2iπ( L+2
L )x, . . . , e2iπ( 2L−1

L )x,
...

...
... . . .

...
}

= L2
0 ⊕ L2

2π
L
⊕ L2

4π
L
⊕ · · · ⊕ L2

2π(L−1)
L

.

Fibers

L2
q = Vect

{
eik·xeiq·x, k ∈ R∗

}
=
{
ψ ∈ L2

loc(R3), ∀R ∈ R, ψ(·+ R) = eiq·Rψ(·)
}
.

L2
q does not depend on L, q ∈ Γ∗.

3D case
L2
per(ΓL) =

1
L3

⊕
Q∈ΛL

L2
Q.

Γ∗

ΛL

Covariant property

L2
q = Sq

(
L2
per(Γ)

)
with Sq[f ](x) = eiq·xf (x) and (Sq)−1 = S−q.
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Discrete Bloch transform for operators
If AL is a self-adjoint operator on L2

per(ΓL) such that for all R in R, it holds τRAL = ALτR,

AL =


ÃL

Q0
0 · · · 0

0 ÃL
Q1

0 0
...

...
...

...
0 . . . 0 ÃL

QL3

 (Bloch transform = block-decomposition).

Block-elements
ÃL

q := PL2
q
ALPL2

q
, ÃL

q : L2
q → L2

q.

Covariant block-elements

AL
q := S−qÃL

qSq, AL
q : L2

per(Γ)→ L2
per(Γ). AL =

1
L3

⊕
Q∈ΛL

AL
Q.

Basic properties
Spectrum

σ(AL) =
⋃

Q∈ΛL

σ
(
ÃL

Q

)
=
⋃

Q∈ΛL

σ
(
AL

Q

)
.

Trace per cell

Tr L(AL) :=
1
L3 TrL2

per(ΓL)(A
L) =

1
L3

∑
Q∈ΛL

TrL2
per(Γ)(Ã

L
Q) =

1
L3

∑
Q∈ΛL

TrL2
per(Γ)(A

L
Q).
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Example: The periodic Hamiltonian

HL = −1
2

∆L + Vper acting on L2
per(ΓL).

Bloch transform(s)
“Same operator” acting on different spaces:

H̃L
q = −1

2
∆1 + Vper acting on L2

q.

Different operators acting on the same space:

HL
q =

1
2
∣∣−i∇1 + q

∣∣2 + Vper = −1
2

∆1 − q · (i∇1) +
q2

2
+ Vper acting on L2

per(Γ).

Supercell thermodynamic limit (L→∞)

Γ∗

ΛL=4

Γ∗

ΛL=8

· · ·

Λ∞ = Γ∗

HL =
1
L3

⊕
Q∈ΛL

HL
Q −−−→

L→∞
Hper =

 ⊕
Γ∗

Hqdq.

Supercell model ⇐⇒ Sampling of Γ∗.
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Spectrum
σ(Hper) =

⋃
q∈Γ∗

σ(Hq)

Remark: The operator Hq (acting on L2
per(Γ)) is compact resolvent:

Hq =
∞∑
n=1

εn,q|un,q〉〈un,q|, ε1,q ≤ ε2,q ≤ · · · , 〈un,q, um,q〉L2
per(Γ) = δnm.

Band diagram of the silicon q ∈ Γ∗

εn,q (eV)

εF

N

Fermi energy: εF ∈ R s.t.

∞∑
n=1

 
Γ∗
1(εn,q ≤ εF ) dq = N.

Insulating system
(gap g > 0)

εN,q+
g

2
≤ εF ≤ εN+1,q−

g

2
.
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Full Hamiltonian
Energy per unit cell (update)

Iper = inf {Tr (Hperγ) , γ ∈ Pper, Tr (ργ) = N} =

 
Γ∗

(
N∑

n=1

εn,q

)
dq.

Corresponding one-body density (minimizer)

γper = 1(Hper ≤ εF ) =

 ⊕
Γ∗

1(Hq ≤ εF )︸ ︷︷ ︸
γq

dq.

Supercell model
Energy per unit cell

1
L3 EL = inf

{
Tr L

(
HLγL

)
, γL ∈ PL, Tr L

(
γL
)

= N
}

=
1
L3

∑
Q∈ΛL

(
N∑

n=1

εn,Q

)
.

Corresponding one-body density (minimizer)

γL = 1(HL ≤ εF ) =
1
L3

⊕
Q∈ΛL

γQ.

Error for the energy

1
L3 EL − Iper =

1
L3

∑
Q∈ΛL

(
N∑

n=1

εn,Q

)
−
 

Γ∗

(
N∑

n=1

εn,q

)
dq.

This is the difference between a Riemann sum and an integral.
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Step 2: Complex analysis

Integrand

K(q) :=
N∑

n=1

εn,q.

Properties

The function K is R∗-periodic.
The functions q 7→ εn,q are not smooth in general
(conic singularities).

However, the sum of the eigenvalues is smooth.
Band diagram of graphene.

Lemma (6,7,8)

If the system is an insulator, then the (R∗-periodic) function K admits an analytic
extension on some complex strip SA := R3 + i[−A,A]3 with A > 0.

Link with Wannier functions (see talk by Antoine Levitt)

Also link to the fact that |γper(x, y)| ≤ Ce−α|x−y|.

8W. Kohn, Phys. Rev. 115 (1959).
8J. Des Cloizeaux, Phys. Rev. 135 (1964).
8C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Phys. Rev. Lett. 98 (2007).
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Elements of the proof
Cauchy residual formula

γq = 1(Hq ≤ εF ) =
1
2iπ

˛
C

dλ
λ− Hq

. εF

σ(H)

C

Analytic continuation

Hq = −1
2

∆1 − q · (i∇1) +
q2

2
+ Vper =⇒ Hz = −1

2
∆1 − z · (i∇1) +

zT z
2

+ Vper

Lemma
There exists A > 0 such that

∀z ∈ SA, γz :=
1
2iπ

˛
C

dλ
λ− Hz

is well-defined. Moreover, the map z 7→ γz is analytic on SA.

Integrand

K(q) :=
N∑

n=1

εn,q = TrL2
per(Γ) (Hqγq) =⇒ K(z) := TrL2

per(Γ) (Hzγz) .

K(z) is R∗-periodic and analytic on SA.

David Gontier Simulation of crystals 18 / 30



Step 3: Convergence of Riemann sum

Lemma (classical)

If f : SA → C is analytic on SA for some A > 0 and satisfies f (z + k) = f (z) for all
k ∈ R∗, then there exists C ∈ R+ and α > 0 such that

∀L ∈ N∗,

∣∣∣∣∣∣ 1L3

∑
Q∈ΛL

f (Q)−
 

Γ∗
f (q)dq

∣∣∣∣∣∣ ≤ Ce−αL.

Conclusion

Lemma (DG, Salma Lahbabi)

In the insulating case, there exists C ∈ R+ and α > 0 such that, for all L ∈ N∗,∣∣L−3EL − Iper
∣∣ ≤ Ce−αL. (Convergence of the energy per cell)∥∥ργper − ργL
∥∥
L∞per
≤ Ce−αL. (Convergence of the electronic density)

Note that we cannot compare the minimizers

γper ∈ Pper ⊂ S(L2(R3)) and γL ∈ PL ⊂ S(L2
per(ΓL)).
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Numerical illustration

(Linear model for silicium taken in M.L. Cohen and T.K. Bergstresser, Phys. Rev. 141 (1966).

Speed of convergence for the silicium (linear model) .
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Outline

The non-linear case (reduced Hartree-Fock case)
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How to transpose the results in the non-linear case?
Energy per cell (rHF)

I rHFper = inf
{
IrHFper (γ), γ ∈ Pper,Tr (γ) = N

}
.

with
IrHFper (γ) :=

1
2
Tr (−∆γ) +

1
2
D1(ργ − µper, ργ − µper).

Periodic Green’s function

−∆G1 = 4π
∑
R∈R

(
δR − |Γ|−1) so that G1(x) =

4π
|Γ|

∑
k∈R∗\{0}

eik·x

|k|2 .

Periodic Coulomb potential

∀f , g ∈ L2
per(Γ), D1(f , g) :=

¨
(Γ)2

f (x)G1(x− y)g(y) dxdy.

Lemma ( Catto, Le Bris, Lions and Cancès, Deleurence, Lewin )

The problem I rHFper admits a unique minimizer γper. This minimizer satisfies the
Euler-Lagrange equations

γper = 1(Hper ≤ εF )
Hper = − 1

2 ∆ + Vper acting on L2(R3)
Vper = (ργper − µper) ∗Γ G1.
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Supercell energy (rHF)

E rHF
L = inf

{
ErHF(γL), γL ∈ PL,TrL2

per(ΓL)

(
γL
)

= NL3
}
,

with
ErHF(γL) :=

1
2
TrL2

per(ΓL)

(
−∆LγL

)
+

1
2
DL(ργL − µper, ργL − µper).

Supercell Green’s function

−∆GL = 4π
∑

R∈LR

(
δR − |ΓL|−1) so that GL(x) =

4π
|ΓL|

∑
k∈L−1R∗\{0}

eik·x

|k|2 =
1
L
G1

( x
L

)
.

Supercell Coulomb potential

∀f , g ∈ L2
per(ΓL), DL(f , g) :=

¨
(ΓL)2

f (x)GL(x− y)g(y) dxdy.

Lemma

The problem E rHF
L admits a unique minimizer γL. This minimizer satisfies the

Euler-Lagrange equations
γL = 1(HL ≤ εLF )
HL = − 1

2 ∆L + V L acting on L2
per(ΓL)

V L = (ργL − µper) ∗ΓL GL.
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Question: What is the speed of convergence of
∣∣L−3E rHF

L − I rHFper
∣∣?

Remark. Non-linear setting: The potential V depends on L:

Hper = −1
2

∆ + Vper and HL = −1
2

∆L + V L.

Idea: Construct good test functions for the minimization problems.

Problem: γper ∈ Pper and γL ∈ PL are difficult to compare.

By convexity of the problems w.r.t. the density ρ, we deduce that

ργper and ργL are R-periodic.
Vper and V L are R-periodic.

=⇒ Construct test functions from ργper and ργL , and use the results for the linear case.
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Lemma (DG, Salma Lahbabi)

There exists C ∈ R+ and α > 0 such that, for all L ≥ Lgap,∣∣∣L−3E rHF
L − I rHFper

∣∣∣ ≤ Ce−αL. (Convergence of the energy per unit cell)∥∥ργper − ργL
∥∥
L∞per
≤ Ce−αL. (Convergence of the electronic density)

Proof

Rates of convergence for the reduced Hartree-Fock model.
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Crystals with local defects
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General picture
Perfect crystal

Hper = −1
2

∆ + Vper acting on L2
per(Γ).

Local defect (charge)

ν ∈ L2(R3) with compact support in Γ.

Crystal with local defect

Hν := −1
2

∆ + Vper +

ˆ
R3

ν(y)

| · −y|dy.
Local defects

How to define the energy of the defect?

The energy per cell is no longer a meaningful quantity.

The energy of the crystal (with and without defect) is infinite.

Idea: Perform a supercell thermodynamic limit.
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Supercell thermodynamic limit
Supercell local defect

ν → νL ∈ L2
per(ΓL) such that νL = ν on ΓL.

Local defect Supercell defect

The defect interacts with its periodic images!
Roadmap

For all L ≥ N∗, the supercell energy of the crystal with and without defect is finite.

Define the supercell energy of the defect as

J L
ν = E L

ν − E L.

Does J L
ν has limit as L→∞? Yes in rHF9: Jν .

Can we characterize the limit? Yes, as a minimization problem.

What is the speed of convergence of J L
ν → Jν?

9E. Cancès, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)
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Lemma (DG, Salma Lahbabi)

There exists η > 0, L∗ ∈ N, C ∈ R+, and α > 0 such that, for all ν ∈ L2
per(Γ) with

compact support in Γ and satisfying ‖ν‖L2 < η, and for all L ≥ L∗, it holds that∣∣∣∣Jν − J L
ν −

1
L

mq2

2ε

∣∣∣∣ ≤ C

(
‖ν‖3L2 +

‖ν‖2L2

L3 + ‖ν‖L2 e−αL
)
,

where q =
´
R3 ν is the net charge of the defect, m is the Madelung constant of the

crystal, defined by

m := lim
x→0

G1(x)− 1
|x| ,

and ε is the macroscopic dielectric constant of the crystal.

Proof

Comments

Recover the term predicted by Leslie and Gillan10, and by Makov and Payne11.

Slow convergence in the defect case (interaction of the defect with its images).

The term
1
L

mq2

2ε
can be computed with low computational time.

=⇒ We can improve the numerical convergence by substracting by hand this term.
10M. Leslie and M.J. Gillan. J. Phys. C 18 (1985).
11G. Makov and M.C. Payne. Phys. Rev. B, 51 (1995).

David Gontier Simulation of crystals 29 / 30



Conclusion

Convergence of supercell models ⇐⇒ Convergence of Riemann sums.

Exponential rate of convergence for perfect crystals.
Slow rate of convergence for crystal with local defects.

Identification of the L−1 term allows to speed the rate of convergence.

Future work

Speed of convergence in the metallic case.
(with E. Cancès, V. Ehrlacher, A. Levitt and D. Lombardi)
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Construct a test function for ErHFL .

Test function: Recall that γper = 1
(
− 1

2 ∆ + Vper ≤ εF
)
.

Choose γ̃L := 1

(
−1
2

∆L + Vper ≤ εF
)

∈ PL.

Then,

L−3E rHF
L − I rHFper = L−3ErHFL (γL)− I rHFper ≤ L−3ErHFL

(
γ̃L
)
− IrHFper (γper).

Lemma

There exists C ∈ R+ and α > 0 such that, for all L ≥ Lgap,∣∣∣L−3ErHFL

(
γ̃L
)
− IrHFper (γper)

∣∣∣ ≤ Ce−αL.

Proof: Use the convergence theory for the linear model and the equality

L−3ErHFL

(
γ̃L
)
− IrHFper (γper) =

1
2

[
Tr L

(
−∆Lγ̃L

)
− Tr (−∆γper)

]
+

1
2
D1

(
ρ
γ̃L
− ργper , ργ̃L + ργper − 2µper

)
.

We obtain
L−3E rHF

L − I rHFper ≤ Ce−αL.
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Other equality? Construct a test function for IrHFper . Recall that γL = 1
(
HL ≤ εLF

)
.

Lemma (Stability of the gap)

Assume that the operator Hper has a gap of size g > 0 around εF , then there exists
Lgap ∈ N∗ such that, for all L ≥ Lgap,

the Fermi energy for HL can be chosen equal to the Fermi level for Hper: εLF = εF .

the operator HL has a gap of size at least g/2 > 0 around εF .

Test function

Choose γ̃L = 1

(
−1
2

∆ + V L ≤ εF
)

∈ Pper.

Then,

I rHFper − L−3E rHF
L = IrHFper (γper)− L−3E rHF

L ≤ IrHFper (γ̃L)− L−3ErHFL (γL).

Lemma

There exists C ∈ R+ and α > 0 such that, for all L ≥ Lgap,∣∣∣IrHFper (γ̃L)− L−3ErHFL (γL)
∣∣∣ ≤ Ce−αL.

=⇒ Ce−αL ≤ L−3E rHF
L − I rHFper .

Back to theorem
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Proof of the defect case
Supercell rHF model (with new notation)

Ẽ L
µ = inf

{
ErHFµ (γL), γL ∈ PL,

ˆ
ΓL

ργL =

ˆ
ΓL

µ

}
,

with µ ∈ L2
per(ΓL) and

ErHFµ (γL) :=
1
2
TrL2

per(ΓL)

(
−∆LγL

)
+

1
2
DL(ργL − µ, ργL − µ).

Problem:
If µ = µper + ν with q :=

´
R3 ν 6= 0, then the number of electrons is NL3 + q.

This leads to some physical confusion in the definition of Ẽ L
µper+ν − Ẽ L

µper .
Grand canonical ensemble

E L
µ := inf

{
ErHFµ (γL)− εFTrL2

per(ΓL)(γ
L), γL ∈ PL

}
+ εFNL

3.

Lemma (E. Cancès, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008))

If µ = µper leads to an insulating system, then Ẽ L
µper = E L

µper .

Supercell energy of the defect

J L
ν := E L

µper+ν − E L
µper .

David Gontier Simulation of crystals 33 / 30



Supercell energy of the defect (bis): For ‖ν‖L2 small enough,

J L
ν = TrL2

per(ΓL)

(∣∣∣HL − εF
∣∣∣ (QL

ν

)2
)

+
1
2
DL

(
ρQL

ν
− ν, ρQL

ν
− ν
)
−
ˆ

ΓL

V L
perν,

where

V L
per :=

(
µper − ργL

)
∗Γ G1 and HL = −1

2
∆L + V L

per are defect independent,

and QL
ν is solution to the self-consistent equation

QL
ν = 1(HL + V L

ν ≤ εF )− 1(HL ≤ εF )

V L
ν =

(
ρQL

ν
− ν
)
∗ΓL GL.

We can take the thermodynamic limit L→∞

Coulomb energy

D(f , g) =

¨
(R3)2

f (x)g(y)

|x− y| dxdy, D(·, ·) “ = ” lim
L→∞

DL(·, ·).
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Energy of the defect rHF: For ‖ν‖L2 small enough,

Jν = TrL2(R3))

(
|Hper − εF | (Qν)2)+

1
2
D (ρQν − ν, ρQν − ν)−

ˆ
R3

Vperν.

where

Vper := (µper − ργ) ∗Γ G1 and H = −1
2

∆ + Vper are defect independent,

and where Qν is solution to the self-consistent equation
Qν = 1(Hper + Vν ≤ εF )− 1(H ≤ εF )

Vν = (ρQν − ν) ∗ | · |−1.

Questions

Does the sequence J L
ν converges to Jν? Yes12.

What is the speed of convergence of J L
ν to Jν?

12E. Cancès, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)
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Idea of the proof

Step 1: Identify the linear and quadratic contributions of ν in J L
ν and Jν .

Cauchy residual formula

Qν := 1(Hper + Vν ≤ εF )− 1(Hper ≤ εF ) =
1
2iπ

˛
C

(
1

λ− Hper − Vν
− 1
λ− Hper

)
dλ

=
1
2iπ

˛
C

(
1

λ− Hper
Vν

1
λ− Hper

)
dλ︸ ︷︷ ︸

Q1,ν

+
1
2iπ

˛
C

(
1

λ− Hper − Vν

[
Vν

1
λ− Hper

]2
)

dλ︸ ︷︷ ︸
Q̃2,ν

.

Decomposition
Jν = J1,ν + J2,ν + O

(
‖ν‖3L2

)
Linear contribution

J1,ν = −
ˆ
R3

Vperν.

Quadratic contribution

J2,ν = TrL2(R3)

(
|Hper − εF | (Q1,ν)2)+

1
2
D
(
ρQ1,ν − ν, ρQ1,ν − ν

)
.
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Step 2: Convergence of the linear contribution

δlin :=

ˆ
ΓL

V L
perν −

ˆ
R3

Vperν.

Since ν is compactly supported,

δlin =

ˆ
Γ

ν
(
V L
per − Vper

)
=

ˆ
Γ

ν
(
ργper − ργL

)
∗Γ G1.

From the convergence theory for the perfect case (convergence of the density), we obtain∣∣∣δlin∣∣∣ ≤ C ‖ν‖L2 e−αL.
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Step 3: Convergence of the quadratic term

After some manipulations

J2,ν = −1
2
〈
(1 + L)−1√vc(ν),

√
vc(ν)

〉
L2(R3)

Definitions of the operators
L = −

√
vcχ
√
vc .

Irreducible polarizability operator

χ : V 7→ ρ

[
1
2iπ

˛
C

(
1

λ− Hper
V

1
λ− Hper

)
dλ
]
, so that ρQ1,ν = χ (Vν) .

Coulomb operator

vc : ν 7→ vc(ν)(x) :=

ˆ
R3

ν(y)

|x− y|dy or v̂c(ν)(k) =
4π
|k|2 ν̂(k).

Similarly,
√̂
vc(ν)(k) =

√
4π
|k| ν̂(k).

Lemma

The operator L is a bounded non-negative self-adjoint operator on L2(R3).

=⇒ The operator (1 + L)−1 is well-defined.
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Bloch decomposition of the operators

Fourier basis of L2
per(Γ)

∀k ∈ R∗, ek :=
1
|Γ|1/2

eik·x.

Bloch decomposition of
√
vc

√
vc =

 ⊕
Γ∗

(
√
vc)q dq with ∀q ∈ Γ∗ \ {0}, (

√
vc)q =

√
4π
∑

k∈R∗

|ek〉〈ek|
|q + k| .

There is a 1
|q| singularity for (

√
vc)q acting on the constant functions as q→ 0.

Bloch decomposition of χ

χ =

 ⊕
Γ∗
χqdq, with χq : Vq ∈ L2

per(Γ) 7→ ρ

[
1
2iπ

˛
C

 
Γ∗

(
1

λ− Hq′
Vq

1
λ− Hq′−q

)
dλ
]
.

Bloch decomposition of (1 + L)−1

(1 + L)−1 =

 ⊕
Γ∗

(1 + Lq)−1dq with Lq = −(
√
vc)qχq(

√
vc)q.
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Quadratic term as an integral

J2,ν =

 
Γ∗

Fν(q) with Fν(q) := −1
2

〈
(1 + Lq)−1 (

√
vc)q (νq), (

√
vc)q (νq)

〉
L2
per(Γ)

.

Supercell quadratic term as a Riemann sum

J L
2,ν ≈

1
L3

∑
Q∈ΛL

Fν(Q) in the sense

∣∣∣∣∣∣J L
2,ν −

1
L3

∑
Q∈ΛL

Fν(Q)

∣∣∣∣∣∣ ≤ C ‖ν‖2L2 e−αL.

The problem boils down to comparing a Riemann sum and an integral.

The function q 7→ Fν(q) is R∗-periodic.
The function q 7→ Fν(q) has singularities as q→R∗.
=⇒ slow speed of convergence.
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Periodic cut-off function

Ψ(q) =
∑

k∈R∗
ψ(q− k), where ψ ∈ C∞(R3),

{
ψ(q) = 1 if |q| < r/2
ψ(q) = 0 if |q| > r .

ψ Ψ

Decomposition to isolate the singularity

Fν = F1,ν + F2,ν with F1,ν = (1−Ψ)Fν and F2,ν = ΨFν .

Convergence of the smooth part

Lemma
The function F1,ν is C∞ and R-periodic. As a result, for any p ∈ N∗, there exists
Cp ∈ R+ s.t. ∣∣∣∣∣∣

 
Γ∗

F1,ν(q)dq− 1
L3

∑
Q∈ΛL

F1,ν(Q)

∣∣∣∣∣∣ ≤ Cp
‖ν‖2L2

Lp
.
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Convergence of the singularity (Idea of the proof –> study on constant functions)

Singularity of the Coulomb operator

〈e0, (
√
vc)q e0〉L2

per(Γ) =

√
4π
|q| .

Singularity for χ

〈e0, χqe0〉L2
per(Γ) =

1
|Γ|

1
2iπ

˛
C

 
Γ∗

TrL2
per(Γ)

(
1

λ− Hq′

1
λ− Hq′−q

)
dq′dλ.

Spectral decomposition

Hq =
∞∑
n=1

εn,q|un,q〉〈un,q|, ε1,q ≤ ε2,q ≤ · · · , 〈un,q, um,q〉L2
per(Γ) = δnm.

Together with Cauchy residual formula (recall that εN,q < εF < εN+1,q)

〈e0, χqe0〉L2
per(Γ) =

−2
|Γ|

∑
1≤n≤N<m

 
Γ∗

|〈um,q′−q, un,q′〉|2

|εm,q′−q − εn,q′ |
.

Evaluation of the numerator

〈um,q′−q, un,q′〉 =
q · 〈um,q′−q, (−i∇1)un,q′〉

εn,q′ − εm,q′−q + |q|2
2 − q · q′

.
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Altogether,

〈e0,Lqe0〉L2
per(Γ) = −

〈
e0, (
√
vc)q χq (

√
vc)q e0

〉
L2
per(Γ)

=
qTM1(q)q
|q|2 ,

where M1(q) is a 3× 3 matrix defined by

M1(q) :=
8π
|Γ|

∑
n≤N<m

 
Γ∗

〈un,q′ |(−i∇1)um,q′−q〉〈um,q′−q|(−i∇1,T )un,q′〉(
εm,q′−q − εn,q′ − |q|

2

2 + q · q′
)2
|εm,q′−q − εn,q′ |

dq′.

Lemma
There exists r > 0 such that the map q 7→ M1(q) is analytic on {q ∈ Γ∗, |q| < r}.

Non trivial: the maps q 7→ un,q and q 7→ εn,q are not smooth!
Proof: undo the Cauchy integrations, and write M1(q) with Hq′−q and Hq′ only.

Remark: The map q 7→ 〈e0,Lqe0〉L2
per(Γ) is not smooth.

Similarly, with the Schur complement, there exists r(q) and M(q) analytic such that

〈e0, (1 + Lq)−1 e0〉L2
per(Γ) =

|q|2r(q)

qTM(q)q
.

Macroscopic dielectric 3× 3 matrix: M := M(0) (with the choice r(0) = 1).
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End of the proof

Altogether,

 
Γ∗

F2,ν(q)dq− 1
L3

∑
Q∈ΛL

F2,ν(Q) ≈ 4πq2

|Γ|

 
Γ∗

Ψ(q)

qTMq
− 1

L3

∑
Q∈ΛL\{0}

Ψ(Q)

QTMQ

 .

Lemma (Convergence of Riemann sum for singular functions)

There exists C ∈ R+ such that

∀L ∈ N∗,

∣∣∣∣∣∣
 

Γ∗

Ψ(q)

qTMq
− 1

L3

∑
Q∈ΛL\{0}

Ψ(Q)

QTMQ
− a

L

∣∣∣∣∣∣ ≤ C

L3 ,

where

a =
∑

k∈R∗

 
Γ∗

(
1

(k + q)TM(k + q)
− 1(k 6= 0)

kTMk

)
dq.

The proof of this last Lemma is surprisingly tedious, and contains some miraculous
cancellations that we do not understand yet.

Back to theorem
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