Supercell method for the computation of energies of crystals

David Gontier

CEREMADE, Université Paris-Dauphine

Young Researchers Workshop on Mathematical Methods in Quantum Chemistry

January 12, 2017

Joint work with Salma Lahbabi

David Gontier Simulation of crystals 1/ 30



Goal: compute numerically the energy per cell of a crystal.

= Predict the structure of a crystal.
— Compute the energy of a defect inside a crystal.

What is a crystal?

@ A periodic arrangement of (fixed) nuclei on a lattice.
Modeled by a periodic density charge pper € L2, (R?).

@ An arrangement of moving electrons around these nuclei.

What is the energy (per cell) of the electrons?
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Fact: There exist good models for finite systems.

Thermodynamic limit: See the infinite periodic crystal as the limit of finite systems.

Roadmap:
@ Choose a model for finite systems (Schrddinger equation, Hartree(-Fock), DFT,...).
o For each L € N*, calculate the ground state energy E; for the charge density ;.
o Take the limit L — oo.
Questions:
@ Does the sequence L™3E; (energy per cell) converge as L — co?

o If yes, can we characterize the limit?
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Lattice: R = aZ3. Unit cell: T = [~a/2,a/2)3.
Reciprocal lattice: R* = (27/a) Z3. Reciprocal unit cell: T* = [~7/a,7/a)3.

Supercell: ' := LT

Nuclear charge of the finite system:
i (%) = prper(x) - L(x € T1).
Potential generated by the nuclei:
ﬁnlte
ni X
Vﬁ te( ) — / ( ) y
g Xyl

Number of electrons per cell of the crystal:

/Mper =N. (from neutrality of the system)
.

Hamiltonian (N, := NL3):

N
nite 1 nite 1 1
Hfinit :§:<—§Ak+VLﬁ t(><k))+§ 2 i = x|

k=1 1<I<k<N,

acting on the fermionic space

N
A LR = {‘V € L*(R*™), Vp € Sny, Wxpwy, » Xp(w) = ()W (xa, - ) }

Pauli principle
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Full Schrédinger model

Ny
Efinite.Sehr. . i {<w|H{in“e \u>, Ve \LE), [V zgom, = 1}.

o Very difficult to compute (curse of dimensionality).
o The limit L™3E; exists, but the limit cannot be characterized.®*2

Idea: Restrict the minimization problem to the set of Slater determinants

N
Sn, = {det (6 acijan, |+ 610 0m € HAR), / iy = 50.} c AL®).

One-body density matrix

N, N
Y=Y 1o (dil or A(xy) =D di(x)¢i(y)
i=1 i=1
Electronic density
p(x) = py(x) = 7(x,x) Z\ébl (x)-
The Hartree-Fock model
Efimite HE . jnf {<w)H{in“e \u>, Ve Sy, [[V]l2esny = 1}.

1C. Fefferman, Commun. Math. Phys. 98 (1985), no. 3.
2X. Blanc, C. Le Bris, and P.-L. Lions, Comm. Part. Diff. Eq. 28 (2003).
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The Hartree-Fock model (bis)

. i 2
ELﬁth’HF = inf {Tr —EA + vfinite ) 5 // x)pa, y)—ly(xy) dxdy, ,,
YEPN, 2 (R3)2 [x =yl

where3

P, = {7 € S(L}(R*), 0 <~y <1, Tr(y) = N, Tr(—Ay) < oo} .

3A. Coleman, Rev. Mod. Phys. 35 (1963), no. 3.
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The reduced Hartree-Fock (rHF) model

E{initc,rHF — inf {Tr (_7A + Vjfinite), // P )dxdy, ,
vEPN, R3)? |X - y|

where3

P, = {7 € S(L3(R*), 0 <y <1, Tr(y) = N, Tr(—Ay) < oo} .

Lemma ( I. Catto, C. Le Bris, and P.-L. Lions, Ann. Inst. H. Poincaré (C) 18 (2001), no. 6.)

. F
o Existence: The sequence L—3E™ ™ has 5 limit IFEF as L — oco.

o Characterization: It holds that
I;?rF 'nf{ Tr (—Ay) + 5 Dl( — Hpers Py — Pper); ¥ € Pperv/P’Y = N} :
r

where Tr denotes the trace per cell, and D1 (-, ) is the periodic Coulomb quadratic
form (see later).

Question: How to compute I;ETF efficiently numerically?

3A. Coleman, Rev. Mod. Phys. 35 (1963), no. 3.
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OUTLINE

The linear case
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Interlude: finite systems

1-body Hamiltonians

h = —%A + V  self-adjoint operator acting on  H; = L*(R?).

o g1 < ... < ep the smallest eigenvalues (we assume that they exist),
@ u1,...,uy € Hi the corresponding normalized eigenvectors.

N-body non-interacting Hamiltonians

N N
Hy = Z hi(r;) acting on the fermionic space /\7—[1.
i=1

Ground state energy of Hy

E/?/:El—‘r...-i-EN: <U1,h1U1>+...+<UN,h1UN>
= Tryy [h (Jun){ua] + - .- + Jun)(un])] (cyclicity of the trace)

= inf {Try, [Mm7], 7 is a projector of rank N} (min-max principle)

= inf {Try, [M7], v € Pn} (min of linear function on convex set),

where Py is the convex hull of the set of projectors of rank N:

Pni={y€S(H1), 0<v <1, Trag(v) = N, Truy(—Ay) < oo}

Ef can be defined as a minimisation problem over the set Py (~ a set of operators).
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Periodic Hamiltonian Consider V,e, a real-valued R-periodic function, and set
Hper = —%A + Vper actingon  L*(R?).

Energy per cell (N electrons per cell)

’ Ioer = inf{Tr (Hpery), 7 € Pper, Tr(v) = N}. ‘

Trace per cell

E(A) = ||m (]lrLA]lrL).

F
Set of one-body density matrices

Pper = {7 € S(L2(R?)), 0< vy <1, VRER, 7Ry =177, Tr(7) + Tr(—Ay) < oo}.

Lemma

In the insulating case, the unique minimizer for lper is Yper = L(Hper < €F), for some
er € R (Fermi energy).

Problem: The set Ppe: is numerically difficult to represent!
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The supercell model

Full model Supercell model

Q

Laplacian with periodic boundary conditions: —A’.
Supercell Hamiltonian
1 .
H: = _EAL + Vper actingon  L2..(Ty).

Supercell energy

E. :=inf {rﬂ"%cr(n) (HL7L> s ’yL € PL, TTH%“(FL) (fyL) = N}.

Set of supercell one-body density matrices

Pt = {VL € S(L2(T1)), 0 <" <1, ' =7, Tr(y") + Tr(—A%Y) < OO}~
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‘ Iper = inf {Tr (Hpery), ¥ € Pper, Tr(v) = N} ‘ what we want

E, == inf {TrLf)er(rL) (HL’YL) 7 ’YL € P, TrLIz;er(rL) (’YL) = N} what we can compute

Questions

@ Does the sequence L™3E; converges to lyer as L — co? Yes*

@ What is the speed of convergence?

Lemma

In the insulating case, there exists C € R and o > 0 such that, for all L € N*,

|L_3EL — ber| < Ce k. (Convergence of the energy per cell)

@ Validate a posteriori the sampling method proposed by Monkhorst and Pack®.

@ Proof: discrete Bloch transform, complex analysis, convergence of Riemann sums.

4E. Cances, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)
5H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13 (1976), no. 12.
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Step 1: (discrete) Bloch transform

L2e:([0,L]) = Vect{

Fibers

12 = Vect {eik'xei‘”, ke 72*} - {¢ €12, (R?), YVRER, (- +R) =

Lf‘ does

3D case
Loer(TL) =

Covariant property

not depend on L,

3@Lé.

Qen,

qel™.

= Sq (L2..(T)) with Sq[f](x) = €'¥*f(x) and

David Gontier
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Discrete Bloch transform for operators
If AL is a self-adjoint operator on Lf)er(rL) such that for all R in R, it holds 7R AL = Al7g,

Aé?o i R 0
L oo oA o
A = ) ) ) ) (Bloch transform = block-decomposition).
0 ... 0

Block-elements N .
AL = PLEALPL;‘;, AL L2 — L2

Covariant block-elements

~ 1
A= S_qASe, Ag:i L) = Lul(D): | A" = 75 @D Ag.
Qen,

Basic properties
@ Spectrum

o(AY) = U o (;\\é) = U o (A{j) .
QeA, Qen,
@ Trace per cell

L 1 L 1 L
Te (A) = 53Tz, on(A) = 5 D Triz,n(Ag) = L3 > Triz,n(Aq)
Qe Qe
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Example: The periodic Hamiltonian
1
H = —EAL + Vper actingon  L2.,.(F0).
Bloch transform(s)

@ "Same operator” acting on different spaces:
-~ 1 .
Hs = —§A1 + Vper acting on L7
o Different operators acting on the same space:
1 : 2
EAl - q ‘ (lvl) + % + Vper

Supercell thermodynamic limit (L — o)

Hé = % ‘*1V1+q‘2+ Vper = -

acting on  L2..(T).

Noo =TT

r* r=
AVE Ni=g
M= L HEY —— | Hper = ®Hd
5Dt o |Hu= . a
Qe

Supercell model <= Sampling of I'*.
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Spectrum
U(Hper) - U O(HQ)
qer*
Remark: The operator Hq (acting on L2.,(I')) is compact resolvent:

oo
Hq = Zan,qwn,qx“n,q‘? €1, <2< -1, <Un,q> Um,q)Lger(r) = 6nm-
n=1
Ena (&V)

25

o Fermi energy: er € R s.t.

Z][ 1(enq <er)dq=N.
n=1 *

Insulating system
(gap g > 0)

/>_ 5N,q+% <er < 5N+1,q_%~

Band diagram of thq silicon | q € ']
L G X w G u X

151

EF?,
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Full Hamiltonian
Energy per unit cell (update)

N
fer = i0f {15 (Hher) 7 € Prers T () = N} = (Z ) dq
r n=1

Corresponding one-body density (minimizer)

52
Yoer = L(Hper < £F) = ][ 1(Hq < eF) da.
r* _/_/
Supercell model a
Energy per unit cell

e {1, (). ot P e (1) =) = 5 5 (Soene)

QeA, \n=1
Corresponding one-body density (minimizer)

1
V=1 <) = 5 D e

QeA
Error for the energy &

N
L6 w—pz(zaQ f(zﬁgm
QeA; \n=1 ™ \n=1

This is the difference between a Riemann sum and an integral.

David Gontier Simulation of crystals 16 / 30



Step 2: Complex analysis

Integrand

N
K(q) :== Z Enyg-
n=1

Properties
@ The function K is R*-periodic.

@ The functions q — &, q are not smooth in general

(conic singularities). Band diagram of graphene.

o However, the sum of the eigenvalues is smooth.

Lemma (:7:8)

If the system is an insulator, then the (R*-periodic) function K admits an analytic
extension on some complex strip Sa := R® +i[—A, A® with A > 0.

@ Link with Wannier functions (see talk by Antoine Levitt)
o Also link to the fact that |yper(x,y)| < Ce™ @I,

8W. Kohn, Phys. Rev. 115 (1959).
8). Des Cloizeaux, Phys. Rev. 135 (1964).
8C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Phys. Rev. Lett. 98 (2007).
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Elements of the proof
Cauchy residual formula

1 dA
Ya = 1(Hq §5F):E7§g

Analytic continuation
1 ) 2
Hq = —-A'—q- (IVI) + 1 + Vper
2 2
Lemma
There exists A > 0 such that

Vz € Sq,

X— Hq

Ve =

EF

-
— H,= —%Al —z-(iv1)+%+ Voer

Lg
2im Jo A\ — H;

is well-defined. Moreover, the map z — =, is analytic on Sa.

Integrand

per

N
K(a) := Zgn,q =Trz ) (Heva) =  K(z2):= Triz (Hz7z) -
n=1

@ K(z) is R*-periodic and analytic on Sa.
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Step 3: Convergence of Riemann sum

Lemma (classical)

If f : Sa — C is analytic on Sa for some A > 0 and satisfies f(z + k) = f(z) for all
k € R*, then there exists C € R" and o > 0 such that

* 1 —al
VLEN', |5 > f(Q)—]{* f(q)dq| < Ce "

Qen,

Conclusion

Lemma (DG, Salma Lahbabi)

In the insulating case, there exists C € R* and a > 0 such that, for all L € N*,

’LfaEL — Iper’ < Ce ok (Convergence of the energy per cell)

| Prper — Pt ”Lf’f’cr < Ce L (Convergence of the electronic density)

Note that we cannot compare the minimizers

Yper € Pper C S(LX(R?)) and ' € Pt C S(L2r(TL)).
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Numerical illustration

(Linear model for silicium taken in M.L. Cohen and T.K. Bergstresser, Phys. Rev. 141 (1966).

30

0 — . .
-5 i
-10} )
5
5]
=)
o
-15} |
— log(E-E;)
-20H — y=-0.78 x + 0.38 1
- log(le—pp )
-- y=-0.15x + 0.00
,25 1 L i L i
0 5 10 15 20 25
L

Speed of convergence for the silicium (linear model) .
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OUTLINE

The non-linear case (reduced Hartree-Fock case)
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How to transpose the results in the non-linear case?
Energy per cell (rHF)

BT = inf {Z3 (7), 7 € Poer, Tr(7) = N}
with 1 1
Tper (7) = 5T (=A%) + 5 D1(py = fiper; py — fiper).
Periodic Green's function
1 47 elkx
fAG1:47rZ (6r —|F|™") so that Gl(x):m Z e
RER keR*\{0}

Periodic Coulomb potential

V. g € L2 (), Di(f,g) = //( ()G~ Y)gly) ey

Lemma ( Catto, Le Bris, Lions and Canceés, Deleurence, Lewin )

The problem I;IQ{TF admits a unique minimizer ~per. This minimizer satisfies the

Euler-Lagrange equations

Yper - IL(Hper < EF)
Hper = —1A+4 Viyer actingon L*(R?)
Voer = (Pyper — Hper) *r G1.
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Supercell energy (rHF)
E[" = inf {‘9rHF(7L), v e P T, ) (VL) = NL3}’
with 1 1
ngF(’YL) — ETrLgcr(l'L) (—AL’YL) + 5DL(pr — Mper; PyL — ,u/per)‘

Supercell Green's function
_ - _Ar 1o (X
AG =47 3 (r=IMl™) sothat Gp)=1or > o= G (1)
RELR keL=1R*\{0}

Supercell Coulomb potential

V.8 € (), Du(r8) = ] FGL0x-)gly) anay.

Lemma

The problem E/PY admits a unique minimizer ~*. This minimizer satisfies the
Euler-Lagrange equations

A= A(HM<ef)
H- = —IA"+ V"t actingon L2 (L)
vt = (P4t — pper) *r, GL.
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Question: What is the speed of convergence of ’L_3EEHF — IZ8F |2

Remark. Non-linear setting: The potential V depends on L:
1

Hper = =50+ Vper  and H- = %AL + V*E

Idea: Construct good test functions for the minimization problems.

Problem: ~yper € Pper and ’yL € Pt are difficult to compare.

By convexity of the problems w.r.t. the density p, we deduce that
® Py, and p.. are R-periodic.

@ Vper and VEoare ‘R-periodic.

== Construct test functions from p.,.. and p.., and use the results for the linear case.

David Gontier Simulation of crystals 24 / 30



Lemma (DG, Salma Lahbabi)

There exists C € R™ and o > 0 such that, for all L > L8P,

< Ce (Convergence of the energy per unit cell)

—3 ~rHF rHF
‘L B

|| ovper — Pt ”L?,‘ér < Ce™*t.  (Convergence of the electronic density)

@
g 6 |
-7 ]
8l — log(error energy) 1
— y=-011x+-5.32
—9l| --- log(Linfty) 4
-~ y=-0.06x+-1.18
~10 n n n . . .
5 10 15 20 25 30 35 40

kpts per direction
Rates of convergence for the reduced Hartree-Fock model.
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Crystals with local defects
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General picture
Perfect crystal

1A + Voer acting on L2, (I).

Her:_
P 2

Local defect (charge)

vE L2(R3) with compact support in .

Crystal with local defect

1 v(y)
Hl,::—fA—i-Ver—i-/ dy.
25T T L T =Y

Local defects

How to define the energy of the defect?

@ The energy per cell is no longer a meaningful quantity.
@ The energy of the crystal (with and without defect) is infinite.

o Idea: Perform a supercell thermodynamic limit.
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Supercell thermodynamic limit
Supercell local defect

vy €L

Local defect

2
per

(TL) such that

V=V

on

P

P

a

g

P

g

a

a

Supercell defect

The defect interacts with its periodic images!

Roadmap

@ For all L > N*, the supercell energy of the crystal with and without defect is finite.

o Define the supercell energy of the defect as

Jt=E- - E*.

o Does J! has limit as L — co? Yes in rHF®: 7,,.

o Can we characterize the limit? Yes, as a minimization problem.

@ What is the speed of convergence of JE— 7.7

9E. Cances, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)
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Lemma (DG, Salma Lahbabi)

There exists 1 > 0, L* € N, C € R", and o > 0 such that, for all v € Lf,er(l') with
compact support in T and satisfying ||v||,2= <, and for all L > L*, it holds that

1 mg? v|? —a
go—gt_1me| ¢ (nuﬁz e e )

L 2e L3

where q = [,; v is the net charge of the defect, m is the Madelung constant of the

crystal, defined by

m:= lim Gi(x) — 1

x—0 |X|’

and ¢ is the macroscopic dielectric constant of the crystal.

Comments

@ Recover the term predicted by Leslie and Gillan'®, and by Makov and Payne'!.

@ Slow convergence in the defect case (interaction of the defect with its images).

1 mg? . . .
@ The term Zz—q can be computed with low computational time.
€

= We can improve the numerical convergence by substracting by hand this term.

19M. Leslie and M.J. Gillan. J. Phys. C 18 (1985).
11G. Makov and M.C. Payne. Phys. Rev. B, 51 (1995).
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Conclusion

@ Convergence of supercell models <= Convergence of Riemann sums.

@ Exponential rate of convergence for perfect crystals.
@ Slow rate of convergence for crystal with local defects.
o Identification of the L~ term allows to speed the rate of convergence.

Future work

@ Speed of convergence in the metallic case.
(with E. Cances, V. Ehrlacher, A. Levitt and D. Lombardi)

References

o DG, S. Lahbabi, Convergence rates of supercell calculations in the reduced
Hartree-Fock model (M2AN, 50,5 (2016), arXiv 1507.00316).

o DG, S. Lahbabi, Supercell calculations in the reduced Hartree-Fock model for
crystals with local defects (Appl. Math. Res. Express, (2016), arXiv 1512.08636).

Thank you for your attention.
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Construct a test function for £1F.
Test function: Recall that yper = 1 (—3A + Vier < &F).
L. 1. L
Choose ~t:= _EA + Voer < €F ceP.
Then,

L3EMF _ I;ng — - 3ngF( ) — I;qurF < L3 (’y ) I;I;F(,yper).

Lemma
There exists C € R™ and o > 0 such that, for all L > L8P,

’L_3S{HF (;Z) _I;}eIrF('Yper) < Ce_aL~

Proof: Use the convergence theory for the linear model and the equality
1 —
L72E™ (4F) = T (yper) =5 [T, (—A%F) = T (- Aper)]

1
501 (P = Prgers P+ Prger = 2btper)
We obtain

L_3EZHF erF < Ce—aL

per
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Other equality? Construct a test function for Z}5" . Recall that 4% =1 (H" < ef).

Lemma (Stability of the gap)

Assume that the operator Hyper has a gap of size g > 0 around eF, then there exists
L%*P ¢ N* such that, for all L > [5%P,

o the Fermi energy for H" can be chosen equal to the Fermi level for Hper: €f = €F.

o the operator H* has a gap of size at least g /2 > 0 around eF.

Test function
Choose . =1 (f%A +Vvt< 5F> € Pper-
Then,
JIHE =3 priE IrHF(,ypcr) e i I;Ie-IrF(;ﬁ) _ L—3ngF(,yL).

per per

Lemma
There exists C € R™ and o > 0 such that, for all L > [P,

IEEYF(’%) _ L738EHF(7L)‘ S CefaL'

—al -3 HF HF
:>’Cea < [EME phE
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Proof of the defect case
Supercell rHF model (with new notation)

EL = inf {5LHF(7L), Ve PL,/ P :/ u}7
I I
with € L2..(T.) and

£ 1 1
g () = 5Tz (—ALWL) +5Du(pye = sy = ).

Problem:

o If 4= piper + v with g := [o; v # 0, then the number of electrons is NL3 + g.

P

@ This leads to some physical confusion in the definition of Eﬁpeﬁu —Ef ..

Grand canonical ensemble
EL = inf {5;“(#) —erTriz_r)(0"), 7" € PL} +erNL3.

Lemma (E. Cancés, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008))

If i = pper leads to an insulating system, then EL =~ = Eﬁper.

Supercell energy of the defect

L. L L
‘71’ T Eﬂper+V - Ell«per'

David Gontier Simulation of crystals
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Supercell energy of the defect (bis): For ||v||;z2 small enough,

Jr=Tr H" — N4 1p - ) - Vi
v = L2..(rL) er| | Qu + 2 L\ PQL V,PqL v perV
r

L
where

1 .
Vi = (tper — poi) #r G1 and H: = fEAL + V&, are defect independent,
and QL is solution to the self-consistent equation
Q. =1(H" + Vi <er)—1(H" <eF)
VVL = (leLl — l/) *rL GLA
We can take the thermodynamic limit L — oo

Coulomb energy

oir.e) //Rs)z [x — g(Y) dxdy, D(,-)"=" lim Di(-,-).

L—oo
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Energy of the defect rHF: For ||v||;2 small enough,

1
To = Trizes)) (|Hper — €| (Q)) + ED(PQV —V,pQ, — V) — /3 Vperv.
R

where
1
Vper := (per — py) *r G1 and H = _EA + Vper are defect independent,

and where @, is solution to the self-consistent equation

QV :l(Hper"_VugaF)_l(HSEF)

Vo =(pa, —v)*|-|7"

Questions
o Does the sequence J- converges to J,? Yes'2.

@ What is the speed of convergence of J} to J,?

12E Cances, A. Deleurence, and M. Lewin, Commun. Math. Phys. 281 (2008)

David Gontier Simulation of crystals

35 / 30



Idea of the proof

Step 1: Identify the linear and quadratic contributions of v in 7} and 7, .

Cauchy residual formula

1 1 1
= 1 (Hper + Vo < — 1 (Hper < = — —
Qu = WHer Vo < 2) = 1 (Hper < ) 2m,<g<,\—Hper—v,, Py per>d’\
1 1 1 1 1 1 2
- v, dA 4+ —— V, dA
2ir <g<)\—Hper A—Hper> * 2in " (A—Hper—vy { )\—Hper] >
Qv 6;”

Decomposition

\.71/ - jl,l/ + j2,u + ) (”V”:Zz)

Jl,l/ - - VperV-
R3

Linear contribution

Quadratic contribution

1
T2 = TrL2(R3) (‘Hper - 5F| (Ql,l/)2) + ED (pOl,u — VP01, — V) .
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Step 2: Convergence of the linear contribution

lin | _ L
1) .—/ Vperl/—/ Vierl.
r R3

Since v is compactly supported,

51111 - /V (foer - Vper) = /V (p’Yper - pr) *r Gl'
r r

From the convergence theory for the perfect case (convergence of the density), we obtain

’(Slin S C”V”Lz e—aL.
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Step 3: Convergence of the quadratic term

After some manipulations

o = =2 (14 £ VAE() V)

Definitions of the operators
L= —y/Vexy/Ve.

Irreducible polarizability operator

1 1 1
X'VHP{ﬂygg(A—Hperv)\—Hper)d)\}’ so that pq,, = x (V).

Coulomb operator

Vet v ve(v)(x) ::/ Y0) 4y or v(n)(K) = %D(k).

3 [x =yl
Similarly,
e 47
Vve(v)(k) = K v(k).
Lemma
The operator L is a bounded non-negative self-adjoint operator on L*(R?). J

= The operator (14 £)7* is well-defined.
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Bloch decomposition of the operators

Fourier basis of L2, ()

* L 1 ik-x
vk € R 5 € = We .
Bloch decomposition of \/vc

|ex) (e
la+k|’

5}
V= (gda with Yae '\ {0}, (Vi) = Var 3
r kER*
There is a ﬁ singularity for (\M)q acting on the constant functions as q — 0.

Bloch decomposition of x

® 1 1 1
— ; . 2
X = ]{* Xqdd, with xq: Vg € Lyer(T) —p [2177 %g][* ()\ ~Hy Vq)\ — q/_q) d/\} .

Bloch decomposition of (14 £)™*

40 = f(1+cq)*1dq With Lq = —(V7)axa(vo)e.
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Quadratic term as an integral

Fow=F Fla) with Fufa) = 5 ((1+ L) (ViR)y (). (Vg (), -

per

Supercell quadratic term as a Riemann sum

1 . 1 »
Tz & e Z F,(Q) inthesense |75, — E Z F.(Q)] < CllyfPae k.

QeN, Qen,

@ The problem boils down to comparing a Riemann sum and an integral.
o The function q — F,(q) is R*-periodic.

@ The function q — F,(q) has singularities as ¢ — R™.
= slow speed of convergence.
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Periodic cut-off function

_ o0 (13 Y(@)=1 if |q| <r/2
\U(q)fkezﬂ*w(qfk), where ¢ € C™(R?), {w(q)zo i lal>

B S AN A

Decomposition to isolate the singularity

F, = F17y + Fz,,, with Fl,u = (1 — \U) F, and Fz,y =VF,.
Convergence of the smooth part

Lemma

The function Fy, is C*° and R-periodic. As a result, for any p € N*, there exists
G eR" st

][ F1..(q)dq — E S FRLQ)<G IIVIILZ.
.

Qe
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Convergence of the singularity (Idea of the proof —> study on constant functions)

Singularity of the Coulomb operator

(oo (Vi) )0 = T

er( |‘

Singularity for x

{e0, Xae0)iz,. ) = \r|2m7§][* ()\ Hy X — Hq,q)dqu

Spectral decomposition
= E E"7Q|UH7CI><U"7CI‘7 €1, < €2,q < ; <Un,q7 um,q)Lger(I’) = 6nm-

Together with Cauchy residual formula (recall that enq < eF < eny1,q)

-2 (U o/ —qs Un.q' )|
(o0, Xa®0)12,,) = 1] D ][ Wing —a: tra]
T 1<n<N<m? T |em.a’—a = Enal
Evaluation of the numerator
q - (Umq' —q; (_ivl)“n,q’>
5 .
€na’ ~Ema'—q T % -a-q

(Um,q'—q; Una’) =
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Altogether,

(o0, Lacabiz ) = — (o0, (Vidly o (Vidyo) = S0,

EN () al?

where M1(q) is a 3 X 3 matrix defined by

. (Un,q | _ivl)“m,q’—qx“m,q’—q‘(_ivl’T)“n,q’> /
P ][ aa-

3
|2
n<N<m 5 ma’'—q ~ Eng’ — 2 +q-9) [ema—q — Enal

Lemma
There exists r > 0 such that the map q — M1(q) is analyticon {q € ", |q| < r}. J

@ Non trivial: the maps q > unq and q — €54 are not smooth!
@ Proof: undo the Cauchy integrations, and write M1(q) with Hy_q and Hy only.

Remark: The map q — (eo,ﬁqe(])LIzw(r) is not smooth.
Similarly, with the Schur complement, there exists r(q) and M(q) analytic such that

o= laPr(@
B ™ qTM(a)a

Macroscopic dielectric 3 x 3 matrix: M := M(0) (with the choice r(0) = 1).
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End of the proof

Altogether,

4rq” V@ 1
. Fstea- 5 2 re@~ 5 | f i 5, 2

Qe

Lemma (Convergence of Riemann sum for singular functions)

There exists C € R" such that

V(q a C
VL e N, f f = > T = £ =
. Mq e \{O}Q I\/IQ L~ L
where ) 1(k £ 0)
0= 2, 7€ ((k+q)TM(k+q) kMK >dq'

keR*

@ The proof of this last Lemma is surprisingly tedious, and contains some miraculous

cancellations that we do not understand yet.
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