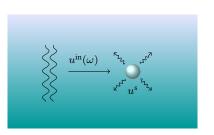
Minnaert resonance in bubbly media

David Gontier

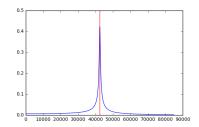
January 16, 2018 Matinée du Ceremade

Joint work with Habib Ammari, Brian Fitzpatrick, Hyundae Lee, Hai Zhang.

We want to understand the propagation of sound in bubbly water.



Experiment



 $\frac{\text{Results}}{\text{The function } |u^s/u^{\text{in}}|(\omega)}$

There exists a resonant angular frequency ω_M .

Noticed for the first time by M. Minnaert (1933 : On musical air-bubbles and the sound of running water).

$$\omega_M = \sqrt{rac{3
ho_b}{
ho}} rac{v_b}{R}$$
 (Minnaert resonance).

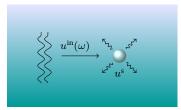
- ρ_b is the density of air (inside the bubble), and ρ the density of water,
- v_b is the speed of sound in the air.
- *R* is the radius of the bubble.

Example

For a bubble of radius 0.5 mm, this gives $\omega_M=42000$ Hz (audible), and a wavelength (in water) $\lambda_M=0.22$ m.

Goal of this talk: understand the previous formula, and extend it.

Our model



- Air bubble: domain $\Omega \subset \mathbb{R}^3$ with $\partial \Omega$ of class C^2 ,
- ρ_b (resp. ρ) the density of air (resp. water),
- v_b (resp. v) the speed of sound in the air (resp. water),
- $u(\mathbf{x})$ the pressure at $\mathbf{x} \in \mathbb{R}^3$,
- $\rho^{-1}u(\mathbf{x}) \sim \text{velocity flow at } \mathbf{x} \in \mathbb{R}^3.$

Let ω be the angular frequency of the incident wave u^{in} and introduce

$$k_b = k(\omega) := \frac{\omega}{v_b}$$
 and $k := \frac{\omega}{v}$. (wave numbers)

Wave equation (d'Alembert equations) in frequency domain.

$$\begin{array}{ll} \left(\Delta+k^2\right)u=0 & \text{ in } \mathbb{R}^3\backslash\overline{\Omega}, \\ \left(\Delta+k_b^2\right)u=0 & \text{ in } \Omega, \\ u_+=u_- & \text{ on } \partial\Omega, \\ \frac{1}{\rho}\frac{\partial u}{\partial \nu}\Big|_+=\frac{1}{\rho_b}\frac{\partial u}{\partial \nu}\Big|_- & \text{ on } \partial\Omega, \\ u^s:=u-u^{\text{ in }} & \text{ satisfies the Sommerfeld radiation condition.} \end{array}$$

Regime?

We are looking for a resonance mode whose wavelength is much bigger than the size of the bubble:

$$\operatorname{Limit} 1: \omega \to 0 \Longleftrightarrow k \text{ (and } k_b) \to 0.$$

The only solution of the limit equation $(k = k_b = 0)$, with $u^{in} \equiv 0$, is $u \equiv 0$. We need something else!

Order of magnitude: $\rho_b = 1.225 \text{ kg.m}^{-3}$ and $\rho = 1000 \text{ kg.m}^{-3}$, hence $\delta := \frac{\rho_b}{\rho} \ll 1 \text{ (contrast)}$.

 $\operatorname{\mathsf{Limit}} 2: \delta \to 0.$

Limit equation (with $u^{in} \equiv 0$)

$$\begin{cases} \begin{array}{lll} \Delta u = 0 & \text{in } \mathbb{R}^3 \backslash \overline{\Omega}, \\ \Delta u = 0 & \text{in } \Omega, \\ u_+ = u_- & \text{on } \partial\Omega, \\ \frac{\partial u}{\partial \nu} \big|_{-} = 0 & \text{on } \partial\Omega, \\ u & \text{satisfies the Sommerfeld radiation condition.} \end{array} \end{cases}$$

The inside and outside problems are decoupled:

- 1) Solve the internal (Neumann) problem $(u|_{\Omega} = 1)$,
- 2) Solve the external (Dirichlet) problem.

There exists a non-trivial solution \implies resonant mode.

<u>Goal</u>: Track this mode for small k and small δ .

Tracking the resonance

Idea: The scattering problem can be encoded at the boundary of the bubble.

Ansazt

$$u = \begin{cases} u^{\text{in}} + \widetilde{\mathcal{S}^{k}}[\psi] & \text{on } \mathbb{R}^{3} \backslash \overline{\Omega}, \\ \widetilde{\mathcal{S}^{k_{b}}}[\psi_{b}] & \text{on } \Omega, \end{cases} \text{ where } \widetilde{\mathcal{S}^{k}} \text{ is the single layer potential.}$$

The initial problem is equivalent to a problem of the form

$$\mathcal{A}(\omega,\delta) \begin{pmatrix} \psi_b \\ \psi \end{pmatrix} = \begin{pmatrix} u^{\mathrm{in}}|_+ \\ \delta \frac{\partial u^{\mathrm{in}}}{\partial \nu}|_+ \end{pmatrix},$$

where $\mathcal{A}(\omega, \delta)$ is a bounded operator from $H^{-1/2}(\partial \Omega) \times H^{-1/2}(\partial \Omega)$ to $H^{1/2}(\partial \Omega) \times H^{-1/2}(\partial \Omega)$.

Definition (Resonant mode)

We say that the pair (ω, δ) is a resonant mode if $\mathcal{A}(\omega, \delta)$ is non invertible.

Lemma (Properties of A (from classical layer potential theory))

The operator-valued map $\mathcal{A}(\omega, \delta)$ satisfies:

- i) for all $\omega, \delta \in \mathbb{R}$, \mathcal{A} is a bounded Fredholm operator of index 0.
- ii) for all $\omega \in \mathbb{R}$, the map $\delta \mapsto \mathcal{A}(\omega, \delta)$ is linear (hence analytic).
- iii) for all $\omega \in \mathbb{R}$, the map $\omega \mapsto \mathcal{A}(\omega, \delta)$ is analytic.
- iv) A(0,0) is non invertible. (the pair (0,0) is a resonant mode).
- v) for all δ in a complex neighbourhood of 0, $\mathcal{A}(0, \delta)$ is non invertible iff $\delta = 0$.

Interlude: Complex analysis

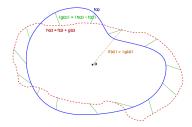
If f(z) is analytic with $f(\lambda) = 0$ and $f(z) \neq 0$ for all $z \in \mathcal{B}(\lambda, r) \setminus \{\lambda\}$, then

$$\frac{1}{2\mathrm{i}\pi}\oint_{\mathscr{C}(\lambda,r)}\frac{f'(z)}{f(z)}\mathrm{d}z = \sharp\left\{\mathrm{zeros}\ \mathrm{of}\ f\ \mathrm{in}\ \mathcal{B}(\lambda,r)\right\} = 1, \quad \mathrm{and} \quad \frac{1}{2\mathrm{i}\pi}\oint_{\mathscr{C}(\lambda,r)}\frac{f'(z)}{f(z)}z\mathrm{d}z = \lambda.$$

Theorem (Rouché's Theorem)

Let f be as before. Then, for all g analytic such that $|\frac{g}{f}| < 1$ on $\mathscr{C}(\lambda, r)$, it holds that f + g has a unique zero λ_{f+g} in $\mathcal{B}(\lambda, r)$, and

$$\lambda_{f+g} = \frac{1}{2\mathrm{i}\pi} \oint_{\mathscr{C}(\lambda,r)} \frac{(f+g)'(z)}{(f+g)(z)} z \mathrm{d}z.$$



Complex analysis: operator version ((*f = detA))

If $A(z) : \mathcal{H}_1 \to \mathcal{H}_2$ is an analytic map of Fredholm operators (of index 0) such that

- For all $z \in \mathcal{B}(\lambda, r) \setminus \{\lambda\}$, dim Ker $A(z) = \dim \text{Ker}A^*(z) = 0$;
- dim Ker $A(\lambda) = 1$, (hence dim Ker $A^*(z) = 1$),

then

$$1 = \frac{1}{2\mathrm{i}\pi} \mathrm{Tr}_{\mathcal{H}_1} \left[\oint_{\mathscr{C}(\lambda,r)} \frac{1}{A(z)} A'(z) \mathrm{d}z \right] \quad \text{and} \quad \lambda = \frac{1}{2\mathrm{i}\pi} \mathrm{Tr}_{\mathcal{H}_1} \left[\oint_{\mathscr{C}(\lambda,r)} \frac{1}{A(z)} A'(z) z \mathrm{d}z \right]$$

Remarks

- If $A : \mathcal{H}_1 \to \mathcal{H}_2$, then $A^{-1}A' : \mathcal{H}_1 \to \mathcal{H}_1$. The notion of trace exists.
- The operators A^{-1} and A' may not commute. However, $\operatorname{Tr}_{\mathcal{H}_1}(A^{-1}A') = \operatorname{Tr}_{\mathcal{H}_2}(A'A^{-1})$.

Theorem (Operator version of Rouché: Gohberg-Sigal theorem)

For all operator-valued analytic map B(z): $\mathcal{H}_1 \to \mathcal{H}_2$ such that $||A^{-1}B||_{\mathscr{B}(\mathcal{H}_1)} < 1$ on $\mathscr{C}(\lambda, r)$, then the operator A + B is Fredholm of index 0, and there exists a unique point $\lambda_{A+B} \in \mathcal{B}(\lambda, r)$ such that

dim Ker
$$(A + B)(\lambda_{A+B}) = 1$$
 (= 0 otherwise).

Moreover,

$$\lambda_{A+B} = \frac{1}{2\mathrm{i}\pi} \mathrm{Tr}_{\mathcal{H}_1} \left[\oint_{\mathscr{C}(\lambda,r)} \frac{1}{(A+B)(z)} (A+B)'(z) z \mathrm{d}z \right].$$

¹U. Gohberg, E.I. Sigal, Sbornik: Mathematics 13.4 (1971).

We write

$$\mathcal{A}_{\omega} := \mathcal{A}(\omega, \cdot) = \mathcal{A}_0 + \omega \mathcal{A}_1 + \omega^2 \mathcal{A}_2 + \cdots$$

We apply Gohberg-Sigal theorem with $A = A_0, B \sim \omega A_1 + \omega^2 A_2 + \cdots$ and $\delta \sim z$.

Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

For ω small enough, there exists a unique complex number δ_{ω} near 0 such that $\mathcal{A}(\omega, \delta_{\omega})$ is non invertible. Moreover, the map $\omega \to \delta_{\omega}$ is analytic, and

$$\begin{split} \delta_{\omega} &= \frac{1}{2\mathrm{i}\pi} \mathrm{Tr}_{\mathcal{H}^{--}} \left[\oint_{\mathscr{C}(0,\delta)} \frac{1}{\mathcal{A}_{\omega}(\delta)} \frac{\partial \mathcal{A}_{\omega}}{\partial \delta}(\delta) \delta \mathrm{d}\delta \right] \\ &= \left(\frac{|\Omega|}{v_b^2 \mathrm{Cap}_{\Omega}} \right) \omega^2 + \left(\frac{\mathrm{i}|\Omega|}{4\pi v_b^2 v} \right) \omega^3 + O(\omega^4). \end{split}$$

Here, $\operatorname{Cap}_{\Omega}$ is the capacity of the set Ω . If $\Omega = S_R$ is the sphere of radius R, $\operatorname{Cap}_{S_R} = 4\pi R$.

Remark: The result holds for all shapes of bubbles.

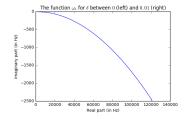
Inverse formula: $\delta \rightarrow \omega_{\delta}$

$$\omega_{\delta} = \left(\frac{\mathrm{Cap}_{\Omega}v_{b}^{2}}{|\Omega|}\right)^{1/2}\sqrt{\delta} - \mathrm{i}\left(\frac{\mathrm{Cap}_{\Omega}^{2}v_{b}^{2}}{8\pi v |\Omega|}\right)\delta + O(\delta^{3/2}).$$

Leading order For a sphere, $\omega_{\delta} = \omega_M$. We recover Minnaert's result.

Second order:

Purely imaginary \implies Dissipative term \equiv Radiative damping.



Remarks

- The resonance is very close to the real-line, even in physical situations.
- We obtain a resonance phenomenon, and a damping effect, from ab initio principles.
- It corresponds to the so-called breathing mode.

The point scatterer approximation

What happens to a (fix) pressure wave (fix ω) with a small bubble $\Omega^{\varepsilon} = \varepsilon \Omega$ as $\varepsilon \to 0$? How much is the resonant mode excited?

Initial problem

$$\begin{array}{lll} & \left(\Delta+k^2\right)u=0 & \text{in} \quad \mathbb{R}^3\backslash\overline{\Omega^\varepsilon},\\ & \left(\Delta+k^2_b\right)u=0 & \text{in} \quad \Omega^\varepsilon,\\ & u_+=u_- & \text{on} \quad \partial\Omega^\varepsilon,\\ & \delta\frac{\partial u}{\partial\nu}\big|_+=\frac{\partial u}{\partial\nu}\big|_- & \text{on} \quad \partial\Omega^\varepsilon,\\ & u^s=u-u^{\text{in}} & \text{satisfies Sommerfeld.} \end{array}$$

Regime?

$$\mathsf{Limit} \ 1: \varepsilon \to 0$$

Limit 2:
$$\delta \rightarrow 0$$
.

Idea: We know that $\varepsilon_M \approx \sqrt{\delta}$. Fix $\mu > 0$, and

$$\text{Limit: } \varepsilon \to 0 \text{ and } \delta = \mu \varepsilon^2.$$

Minnaert resonance

$$\mu_M := \frac{|\Omega|k_b^2}{\operatorname{Cap}_\Omega}$$

Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

If $\mathbf{0} \in D$, then the solution $u^{\varepsilon} := u[\varepsilon, \delta = \mu \varepsilon^2]$ satisfies

$$u^{\varepsilon}(\mathbf{x}) = u^{\mathrm{in}}(\mathbf{x}) + \begin{cases} \varepsilon \left(\frac{\mathrm{Cap}_{\Omega}}{1 - \frac{\mu_M}{\mu}} u^{\mathrm{in}}(\mathbf{0}) \right) G^k(\mathbf{x}) + O_{\mu}(\varepsilon^2) & \text{if } \mu \neq \mu_M, \\ \left(\mathrm{i}\frac{4\pi}{k} u^{\mathrm{in}}(\mathbf{0}) \right) G^k(\mathbf{x}) + O(\varepsilon) & \text{if } \mu = \mu_M. \end{cases}$$

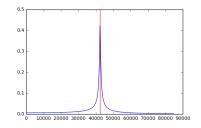
David Gontier

Loosely speaking, $u^s = u - u^{\text{in}}$ satisfies

$$u^{s}(\mathbf{x}) \approx u^{\mathrm{in}}(\mathbf{0})g_{s}(\omega)G^{k}(\mathbf{x}-\mathbf{0}), \quad \text{with} \quad g_{s}(\omega) := \frac{\mathrm{Cap}_{\Omega}}{\left(1-\frac{\omega^{2}}{\omega_{M}^{2}}\right)-\mathrm{i}\frac{\mathrm{Cap}_{\Omega}\omega}{4\pi v}} \quad (\text{response function}).$$

Example For a bubble of radius 0.5 mm, we get

The function $g_s(\omega)$ for ω between 0 and $2\omega_M$.



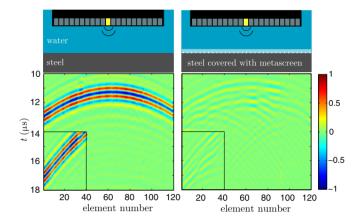
Remarks

- The imaginary part in the denominator of gs is the radiative damping.
- The poles of g_s are in the lower half complex plane: from Titchmarsh's theorem, g_s is a causal response function.
- We recover the expression found in [1] for g_s.

¹M. Devaud, Th. Hocquet, J.-C. Bacri, and V. Leroy. Eur. J. Phys., 29(6):1263, 2008.

The periodic case: the periodic Minnaert resonance

Experiment²

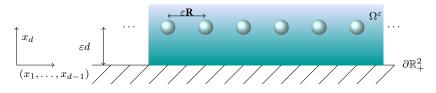


²V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, J.H. Page, Phys. Rev. B 91, 020301(R) (2015).

We now set bubbles on a (d-1) dimensional lattice \mathcal{R} , on top of a Dirichlet surface.

Bubbles domain

$$\Omega^{\varepsilon} := \bigcup_{\mathbf{R} \in \mathcal{R}} \varepsilon \left(\Omega + \mathbf{R} \right).$$



Incoming wave

$$U^{\mathrm{in}}(x,y):=u_0\mathrm{e}^{-\mathrm{i}ky}$$
 (orthogonal to the plane).

Scattering problem

$$\left\{\begin{array}{ll} \left(\Delta+k^2\right)U^\varepsilon=0 & \text{ on } \mathbb{R}^d_+\setminus\overline{\Omega^\varepsilon},\\ \left(\Delta+k^2_b\right)U^\varepsilon=0 & \text{ on } \Omega^\varepsilon,\\ U^\varepsilon|_+=U^\varepsilon|_- & \text{ on } \partial\Omega^\varepsilon,\\ \partial_\nu U^\varepsilon|_-=\delta\partial_\nu U^\varepsilon|_+ & \text{ on } \partial\Omega^\varepsilon,\\ U^s:=U^\varepsilon-U^{\text{in}} & \text{ satisfies the outgoing radiation condition,}\\ U^\varepsilon=0 & \text{ on } \partial\mathbb{R}^2_+, \ (\text{Dirichlet})\\ U^\varepsilon(\mathbf{x}+\varepsilon\mathcal{R})=U(\mathbf{x}).\end{array}\right\} \text{ boundary conditions}$$

Regime?

$$\text{Limit 1: } \varepsilon \to 0.$$
 Limit 2: $\delta \to 0.$

Limit problem (after rescaling $u(\mathbf{x}) := U(\mathbf{X}/\varepsilon)$).

$$\begin{cases} \Delta u = 0 \quad \text{on} \quad \mathbb{R}^{d}_{+} \setminus \overline{\Omega}, \\ \Delta u = 0 \quad \text{on} \quad \Omega, \\ u|_{+} = u|_{-} \quad \text{on} \quad \partial\Omega, \\ \partial_{\nu} u|_{-} = 0 \quad \text{on} \quad \partial\Omega, \\ + \quad \text{boundary conditions.} \end{cases}$$

Again, two decoupled problems: there exists a non trivial solution (with $u|_{\Omega} = 1$).

Similar to the single bubble case (existence + tracking of the resonance).

Periodic Minnaert resonance

$$\omega_M^+ := \left(\frac{\mathrm{Cap}_{\Omega,\mathcal{R}}^+ v_b^2}{|\Omega|}\right)^{1/2} \sqrt{\delta}.$$

Remark: The periodic capacity depends on the lattice.

How much is the resonant mode excited when we send a (fix) incoming wave U^{in} ?

Result

The meta-screen behaves like an acoustic plane with reflection coefficient

$$R(\omega) \approx -1 - 2\left(\frac{\mathrm{i}\omega\eta}{1 - \left(\frac{\omega}{\omega_M^+}\right)^2 - \mathrm{i}\omega\eta^*}\right) \quad \text{with} \quad \eta = \eta^* := \frac{(\alpha_{\mathrm{monop}}^+)^2 a}{v \mathrm{Cap}_{\Omega,\mathcal{R}}^+}.$$

Remarks:

- If $\omega \ll \omega_M^+$ or $\omega \gg \omega_M^+$, then $R(\omega) \approx -1$ (Dirichlet plane) \sim no bubble case.
- If $\omega = \omega_M^+$, then $R(\omega_M^+) = 1$ (Neumann plane).
- Considering other source of damping (*e.g.* viscous), and assuming $\eta^* = 2\eta$, we have

 $R(\omega_M^+) = 0$ (absorption plane).

Conclusions

- Regime $\varepsilon \to 0$ and $\delta \to 0$ such that $\delta \approx \varepsilon^2$ (high-contrast limit³).
- Tracking of the resonance through Gohberg-Sigal theory.
- Point scatterer approximation and meta-surfaces from the study of layer potentials.
- Resonance phenomenon as the limit of well-posed and easy-to-study problems.

Bibliography

- H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee, H. Zhang, arXiv:1603.03982 (single bubble).
- H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee, H. Zhang, SIAM J. Appl. Math., 77 (2017) (meta-surface).
- H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee, H. Zhang, Proc. R. Soc. A 473 (2017) (numerics).

Thank you for your attention.

³cf. also works by G. Bouchitté and D. Felbacq