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We want to understand the propagation of sound in bubbly water.

Experiment Results
The function |u® /ul|(w):
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There exists a resonant angular frequency wpy.
Noticed for the first time by M. Minnaert (1933 : On musical air-bubbles and the sound of running water).

3y v
R

wy = (Minnaert resonance).
@ py is the density of air (inside the bubble), and p the density of water,
@ vy, is the speed of sound in the air.
@ R is the radius of the bubble.

Example

For a bubble of radius 0.5 mm, this gives wys = 42000 Hz (audible), and a wavelength (in water)
Ay = 0.22m.
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Goal of this talk: understand the previous formula, and extend it.

Our model

Air bubble: domain Q C R3 with 99 of class C?,

pb (resp. p) the density of air (resp. water),

vp, (resp. v) the speed of sound in the air (resp. water),
u(x) the pressure at x € R3,

p~u(x) ~ velocity flow at x € R3.

Let w be the angular frequency of the incident wave u™ and introduce
ky = k(w) := Yoand k=2 (wave numbers)
v v

Wave equation (d’Alembert equations) in frequency domain.

A+Ek)u=0 in R3\Q,
A+ kg u=20 in Q,
Up = U_ on 09, (continuity of the pressure)
%a—z |+ = Pib % | ~on 09, (continuity of the velocity flow)

satisfies the Sommerfeld radiation condition.
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Regime?
We are looking for a resonance mode whose wavelength is much bigger than the size of the bubble:

\ Limit 1: w — 0 <= k (and kp) — 0.

The only solution of the limit equation (k = k; = 0), with »!® = 0, is u = 0. We need something else!

Order of magnitude: p, = 1.225 kg.m™3 and p = 1000 kg.m 3, hence § := P« (contrast).
p

Limit 2: § — 0.

Limit equation (with '™ = 0)

Au=0 in R3\Q,
Au=0

= in €,
Ut =u— on 0N,
%L = on 09,
u satisfies the Sommerfeld radiation condition.

The inside and outside problems are decoupled:
@ 1) Solve the internal (Neumann) problem (u|q = 1),

@ 2) Solve the external (Dirichlet) problem.

There exists a non-trivial solution => resonant mode.

Goal: Track this mode for small £ and small o.
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Tracking the resonance




Idea: The scattering problem can be encoded at the boundary of the bubble.

Ansazt N
u + SE[p]  on R3\Q, —
u = . where  S¥ is the single layer potential.
Skofihp]  on €,

The initial problem is equivalent to a problem of the form

Ao (1) = <6gg*l“++> ’

where A(w, §) is a bounded operator from H~1/2(8Q) x H~1/2(8Q) to H/2(8Q) x H~1/2(8Q).

Definition (Resonant mode)

We say that the pair (w, §) is a resonant mode if A(w, §) is non invertible.

Lemma (Properties of A (from classical layer potential theory))

The operator-valued map A(w, ) satisfies:
i) forallw,§ € R, A is a bounded Fredholm operator of index 0.
i) forallw € R, the map 6 — A(w, d) is linear (hence analytic).
i) forallw € R, the map w — A(w, d) is analytic.
iv) \A(0, 0) is non invertible. (the pair (0,0) is a resonant mode).
v) forall § in a complex neighbourhood of 0, A(0, 8) is non invertible iff 6 = 0.
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Interlude: Complex analysis

If f(z) is analytic with f(A) = 0 and f(z) # Oforall z € B(A,r) \ {\}, then

1 £y - | . L FE) s
gir Peonm F2) dz = t {zeros of fin B(\,7)} =1, and 2 P T zdz = A

Theorem (Rouché’s Theorem)

Let f be as before. Then, for all g analytic such that |%\ < 1onG(\,r), it holds that f + g has a unique
zero Ay g in B(\, 1), and
1 /

(+9)'C) .

A = — .
97 9 Foorm (fF+9)(2)

1@ > 1g@1
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Complex analysis: operator version («f = detA»)

If A(z) : H1 — Ha is an analytic map of Fredholm operators (of index 0) such that
@ Forallz € B(A\,r)\ {\}, dimKerA(z)= dimKerA*(z) = 0;
o dimKerA(A) =1, (hence dimKerA*(z) = 1),

then

1 1 1 1
1=_——T Al(z)d d A= _——T ?g A d
2im i |:‘¢‘€()\,r) A(Z) (Z) i an 2im ! |: € (\,r) A(Z) (Z)Z ?

Remarks
o If A:Hqi — Ho, then A=A’ : 11 — H1. The notion of trace exists.
o The operators A~! and A’ may not commute. However, Try, (A71A’) = Tryy, (A’A71).

Theorem (Operator version of Rouché: Gohberg-Sigal theorem')

For all operator-valued analytic map B(z) : H1 — H2 such that ||Ale||@<H1) < lon%(\r), then
the operator A + B is Fredholm of index 0, and there exists a unique point Ao+ g € B(X,r) such that

dimKer(A + B)(Aa4+p) =1 (= 0 otherwise).

Moreover,

1 1
Aiip= —T L A+ BY(2)xd
a+p = 5 Tryy {%(g@ﬁ) (A+B)(z)( ) (2)zdz

"U. Gohberg, E.I. Sigal, Sbornik: Mathematics 13.4 (1971).
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We write

Aw = Aw, ) = Ao+ wA; + w?Ag + - -
We apply Gohberg-Sigal theorem with A = Ag, B ~ wA;1 + w2 Az + -+ and § ~ 2.

Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

For w small enough, there exists a unique complex number 0., near 0 such that A(w, d.,) is non invertible.
Moreover, the map w — ., is analytic, and

1 1 8Aw
—Try,—— §)6dd
2ir Tt |:¢<g(o ) Aw(9) ( ) :|

Q i|©2
) )

Here, Cap, is the capacity of the set 2. If @ = S is the sphere of radius R, Capg, = 47R.

0w

Remark: The result holds for all shapes of bubbles.
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Inverse formula: § — wg
1/2
Capﬂfug /

C 2 ,,2
W N apaYh, 5+ 0(6%/2).

“o = 870lQ

The function w; for § between 0 (left) and 0.01 (right)

Leading order o

For a sphere, ws = wps. We recover Minnaert’s result.
~1000

Second order:

Purely imaginary => Dissipative term = Radiative damping.
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Remarks
@ The resonance is very close to the real-line, even in physical situations.

@ We obtain a resonance phenomenon, and a damping effect, from ab initio principles.

@ |t corresponds to the so-called breathing mode.




The point scatterer approximation




What happens to a (fix) pressure wave (fix w) with a small bubble Q¢ = cQ ase — 0?
How much is the resonant mode excited?
Initial problem
gA + k2; u=0 in R3\Qe,

A+ k? u=0 in QFf
Uy = U_ on 00Q°F,
9 9
S “|+ 67: _on 09QF°,
u® =u — u® satisfies Sommerfeld.
Regime?
[Limitl:e 0] [Limit2:6 —0.]

Idea: We know that s & V/3. Fix o > 0, and

‘ Limit: ¢ — 0 and § = pe2. ‘

Minnaert resonance
k3

KN = CapQ'

Theorem (H. Ammari, DG, B. Fitzpatrick, H. Lee, H. Zhang)

If0 € D, then the solution u® := ule,§ = pe?] satisfies

. <1C_ap9 m(°)> Gk(x) + Ou(‘fz) if w# pa,
u®(x) = u"(x) + 2

(i‘%uﬂ*(o)) GHx)+0() if p= .
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Loosely speaking, u® = u — u'™ satisfies

Capg,

u®(x) = u(0)gs (w)GF(x — 0), with gs(w) := .
( _ wT) 7iCZPQW
w3, U

The function gs(w) for w between 0 and 2w .

Example For a bubble of radius 0.5 mm, we get
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Remarks

@ The imaginary part in the denominator of g; is the radiative damping.

(response function).

@ The poles of gs are in the lower half complex plane: from Titchmarsh’s theorem, g is a causal

response function.

@ We recover the expression found in [1] for gs.

M. Devaud, Th. Hocquet, J.-C. Bacri, and V. Leroy. Eur. J. Phys., 29(6):1263, 2008.
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The periodic case:

the periodic Minnaert resonance




Experiment?
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2y, Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, J.H. Page, Phys. Rev. B 91, 020301(R) (2015).
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We now set bubbles on a (d — 1) dimensional lattice R, on top of a Dirichlet surface.

Bubbles domain
Q= [ e(Q+R).
RER

—<£R

T4
ed
8R§r

(®1,...,T4—1)

Incoming wave )
iky (orthogonal to the plane).

U(z,y) := uge™

Scattering problem

(A+ k%) U= =0 on R%\QF,
(A + kg) Us=0 on QFf
Us|y =U¢|- on 09Q°,
O,Us|— =60, U%|+ on 00°,
Us:=Us-Un satisfies the outgoing radiation condition,
Us=0 on GRE_, (Dirichlet) boundary conditions

Us(x+eR) =U(x).
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Regime?

[Limit1:c »0.] [Limit2:6 — 0.

Limit problem (after rescaling u(x) := U(X/¢)).
Au=0 on Rff_ \ Q,
Au=0 on €,
uly =ul- on 09,
Opu|l— =0 on 09,
+ boundary conditions.
Again, two decoupled problems: there exists a non trivial solution (with u|g = 1).

Similar to the single bubble case (existence + tracking of the resonance).

Periodic Minnaert resonance

9\ 1/2
Cap7L v2
+ . QR"b \/5
Wyt <Q| .

Remark: The periodic capacity depends on the lattice.
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How much is the resonant mode excited when we send a (fix) incoming wave U™"?

Result
The meta-screen behaves like an acoustic plane with reflection coefficient

(ajn_onop ) 2a

vCapg R ’

iwn

2
N —i *
() o

° Ifw < wAJr/I orw > wAJr/I, then R(w) =~ —1 (Dirichlet plane) ~ no bubble case.

Rw)~-1-2 with n=n":=

Remarks:

o Ifw= wL, then R(wAJr/I) = 1 (Neumann plane).

@ Considering other source of damping (e.g. viscous), and assuming n* = 27, we have

R(w]'&) =0 (absorption plane).
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Conclusions

@ Regime ¢ — 0 and § — 0 such that § &~ 2 (high-contrast limit?).
@ Tracking of the resonance through Gohberg-Sigal theory.
@ Point scatterer approximation and meta-surfaces from the study of layer potentials.

@ Resonance phenomenon as the limit of well-posed and easy-to-study problems.
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Thank you for your attention.
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