Numerical methods for Brillouin zone integration

David Gontier

CEREMADE, Université Paris-Dauphine

Oberwolfach March 19, 2018

Joint work with É. Cancès, V. Ehrlacher, A. Levitt, D. Lombardi

Goal:

• Define and compute numerically the energy per cell of a crystal.

Crystal? modelled by a periodic, non-interacting Hamiltonian.

Lattice: $\mathcal{R} = a\mathbb{Z}^d$. Reciprocal lattice: $\mathcal{R}^* = (2\pi/a)\mathbb{Z}^d$. Unit cell: $\Gamma = [-a/2, a/2)^d$. Reciprocal unit cell: $\Gamma^* = [-\pi/a, \pi/a)^d$. (Brillouin zone)

(mean field) potential: $V_{\text{per}} \in L^2_{\text{per}}(\Gamma)$.

Non-interacting Hamiltonian:

$$H_{\mathrm{per}} = -rac{1}{2}\Delta + V_{\mathrm{per}}, \quad \mathrm{acting} \ \mathrm{on} \quad L^2(\mathbb{R}^d).$$

Number of electrons per cell: $N \in \mathbb{N}^*$.

Energy (per cell) of the electrons?

Bloch's transform

Studying $H_{per} \iff$ studying the family of operators $(H_k)_{k \in \Gamma^*}$, where

$$H_{\mathbf{k}} := \frac{1}{2}(-\mathrm{i}\nabla_{\mathrm{per}} + \mathbf{k})^2 + V_{\mathrm{per}}, \quad \mathrm{acting \ on} \quad L^2_{\mathrm{per}}(\Gamma).$$

Remark: The operators $H_{\mathbf{k}}$ are compact resolvent:

$$H_{\mathbf{k}} = \sum_{n=1}^{\infty} \varepsilon_{n\mathbf{k}} |u_{n\mathbf{k}}\rangle \langle u_{n\mathbf{k}}|, \quad \varepsilon_{1\mathbf{k}} \le \varepsilon_{2\mathbf{k}} \le \cdots, \quad \langle u_{n\mathbf{k}}, u_{m\mathbf{k}}\rangle_{L^2_{\mathrm{per}}(\Gamma)} = \delta_{nm}.$$

Integrated density of states (IDoS) (we denote by $f_{\Gamma^*} := \frac{1}{|\Gamma^*|} \int_{\Gamma^*}$)

$$\mathcal{N}(\varepsilon) := \int_{\Gamma^*} \left(\sum_{n>0} \mathbb{1}(\varepsilon_{n\mathbf{k}} \le \varepsilon) \right) \, \mathrm{d}\mathbf{k}.$$

Fermi energy:

$$\varepsilon_F \in \mathbb{R}$$
 such that $\mathcal{N}(\varepsilon_F) = N$.

Energy per unit cell

$$E := \int_{\Gamma^*} \left(\sum_{n>0} \varepsilon_{n\mathbf{k}} \mathbb{1}(\varepsilon_{n\mathbf{k}} \le \varepsilon_F) \right) d\mathbf{k}.$$

How to perform numerically the Brillouin zone integration f_{Γ^*} ?

Here, we assume that we can perfectly compute the eigenvalues $\varepsilon_{n\mathbf{k}}$.

David Gontier

Band diagram of silicon (insulator)

Band diagram of aluminium (metal)

The insulating case

In the insulating case, $1(\varepsilon_{n\mathbf{k}} < \varepsilon_F) = 1$ if $n \leq N$, and 0 else, hence the energy simplifies into

$$E = \oint_{\Gamma^*} \left(\sum_{n=1}^N \varepsilon_{n\mathbf{k}} \right) d\mathbf{k}.$$

Lemma

The integrand $\mathbf{k} \mapsto \sum_{n=1}^{N} \varepsilon_{n\mathbf{k}}$ is analytic and \mathcal{R}^* -periodic. In particular, there exists $C \in \mathbb{R}^+$ and $\alpha > 0$ such that, for all $L \in \mathbb{N}$,

$$\left| \int_{\Gamma^*} \left(\sum_{n=1}^N \varepsilon_{n\mathbf{k}} \right) d\mathbf{k} - \sum_{\mathbf{K} \in \Lambda_L} \left(\sum_{n=1}^N \varepsilon_{n\mathbf{K}} \right) \right| \le C e^{-\alpha L} \quad \text{(Exponential rate of convergence)}.$$

We can approximate the integral with a Riemann sum.

Metallic systems

Problems

- First, we need to compute the Fermi level (extra source of error);
- The integrand is no longer smooth.

Two widely used methods

- Interpolation methods;
- Smearing methods.

The metallic case. 1/ Interpolation methods

Idea: Approximate $\mathbf{k} \mapsto \varepsilon_{n\mathbf{k}}$ with a simpler function.

A family of linear interpolation operators $(\Pi^{L,q})_{L\in\mathbb{N}}$ is of order (q+1) if

$$\forall f \text{ smooth}, \quad \|f - \Pi^{L,q}f\|_{\infty} \leq \frac{C}{L^{q+1}} \|f^{(q+1)}\|_{\infty}.$$

Example: the *linear tetrahedron method* (q = 1).

division of Γ^* in simplexes (for d = 2).

Approximated eigenvalues

$$\varepsilon_{n\mathbf{k}}^{L,q} := \Pi^{L,q} \left(\varepsilon_{n\mathbf{k}} \right).$$

Approximated integrated density of states

$$\mathcal{N}^{L,q}(\varepsilon) := \oint_{\Gamma^*} \left(\sum_{n>0} \mathbbm{1}(\varepsilon_{n\mathbf{k}}^{L,q} \leq \varepsilon) \right) \, \mathrm{d}\mathbf{k}.$$

Approximated Fermi energy

$$\varepsilon_F^{L,q} \in \mathbb{R}$$
 such that $\mathcal{N}^{L,q}(\varepsilon_F^{L,q}) = N.$

Approximated energy per unit cell

$$E^{L,p,q} := \int_{\Gamma^*} \left(\sum_{n>0} \varepsilon_{n\mathbf{k}}^{L,p} \mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \le \varepsilon_F) \right) d\mathbf{k}.$$

- $q \Longrightarrow$ the domain of integration (here still a union of simplexes).
- $p \Longrightarrow$ degree of the polynomial to integrate on this domain.

In practice, $p \ge q$. (we can integrate quadratic functions (p=2) on simplexes (q=1)).

Assumptions:

- No band-crossings at the Fermi level;
- No flat bands at the Fermi level ($\nabla_{\mathbf{k}} \varepsilon_{n\mathbf{k}} \neq \mathbf{0}$).
- \implies The function $\mathcal{N}(\varepsilon)$ is smooth near the Fermi level.

Lemma (Cancès, Ehrlacher, G., Levitt, Lombardi)

Let $(\Pi^{L,q})_{L\in\mathbb{N}}$ and $(\Pi^{L,p})_{L\in\mathbb{N}}$ be linear interpolation operators of order (q+1) and (p+1) respectively. Then, under the previous assumptions, there exists $\delta > 0$ and $C \in \mathbb{R}^+$ such that, for all $L \in \mathbb{N}$,

$$\max_{\varepsilon \in (\varepsilon_F - \delta, \varepsilon_F + \delta)} \left| \mathcal{N}(\varepsilon) - \mathcal{N}^{L,q}(\varepsilon) \right| \le \frac{C}{L^{q+1}}, \qquad \left| \varepsilon_F - \varepsilon_F^{L,q} \right| \le \frac{C}{L^{q+1}},$$

and

$$\left|E-E^{L,p,q}\right| \leq C\left(\frac{1}{L^{p+1}} + \frac{1}{L^{2q+2}}\right).$$

Remarks:

- The $L^{-(p+1)}$ comes from the *bulk error*, while the $L^{-(2q+2)}$ comes from the *surface error*.
- For tetrahedron methods (q = 1), we can choose p = 3 (low computational cost, but better precision for the energy). This leads to $O(L^{-4})$ rate of convergence.
- The last result only works for the energy.

Results (toy model, not coming from a Schrödinger operator)

The metallic case. 2/ Smearing methods

Idea: Replace the discontinuous function $f(x) := \mathbb{1}(x < 0)$ by a smooth function f^{σ} .

Smearing functions

$$f^{\sigma}(x) := f^{1}(x/\sigma)$$
 where $(f - f^{1})$ decays exponentially

Definition f^1 is of order $p \in \mathbb{N}$ if

$$\int_{\mathbb{R}} (f - f^1)(x) P(x) dx = 0 \quad \text{for all polynomials } P \text{ of degree} \le p,$$

Example: Fermi-Dirac (of order 1)

$$f^{\sigma}(x) := \frac{1}{1 + \mathrm{e}^{x/\sigma}}.$$

David Gontier

Smeared integrated density of states

$$\mathcal{N}^{\sigma}(\varepsilon) := \oint_{\Gamma^*} \left(\sum_{n>0} f^{\sigma}(\varepsilon_{n\mathbf{k}} - \varepsilon) \right) \, \mathrm{d}\mathbf{k}.$$

Smeared Fermi level

$$\varepsilon_F^{\sigma} \in \mathbb{R}$$
 such that $\mathcal{N}^{\sigma}(\varepsilon_F^{\sigma}) = N$

Smeared energy per unit cell

$$E^{\sigma} := \int_{\Gamma^*} \left(\sum_{n>0} \varepsilon_{n\mathbf{k}} f^{\sigma}(\varepsilon_{n\mathbf{k}} - \varepsilon_F^{\sigma}) \right) d\mathbf{k}.$$

Lemma (Cancès, Ehrlacher, G., Levitt, Lombardi)

Let f^1 be a smearing function of order $p \in \mathbb{N}$. Under the previous assumptions, there exists $\delta > 0$ and $C \in \mathbb{N}^+$ such that, for all $\sigma > 0$,

$$\max_{\varepsilon \in (\varepsilon_F - \delta, \varepsilon_F + \delta)} |\mathcal{N}(\varepsilon) - \mathcal{N}^{\sigma}(\varepsilon)| \le C\sigma^{p+1}, \quad |\varepsilon_F - \varepsilon_F^{\sigma}| \le C\sigma^{p+1}, \quad \text{and} \quad |E - E^{\sigma}| \le C\sigma^{p+1},$$

Idea of the proof

- near the Fermi level, \mathcal{N} is smooth \implies perform Taylor expansion;
- far from the Fermi level, $(f f^{\sigma})(\cdot \varepsilon_F)$ decays exponentially.

Remark: We still need to find a numerical method to approximate $\mathcal{N}^{\sigma}, \varepsilon_F^{\sigma}$ and E^{σ} . Recall that,

$$\mathcal{N}^{\sigma}(\varepsilon) := \int_{\Gamma^*} \left(\sum_{n>0} f^{\sigma}(\varepsilon_{n\mathbf{k}} - \varepsilon) \right) \, \mathrm{d}\mathbf{k}.$$

Lemma (for the Fermi-Dirac function)

For all ε in a neighbourhood of ε_F , and all $\sigma > 0$, the integrand $\mathbf{k} \mapsto \sum_{n>0} f^{\sigma}(\varepsilon_{n\mathbf{k}} - \varepsilon)$ is \mathcal{R}^* -periodic and analytic in a complex strip of width $(cst \cdot \sigma)$. In particular, there exists $C \in \mathbb{R}^+$ and $\alpha > 0$, such that

$$\left| \oint_{\Gamma^*} \left(\sum_{n>0} f^{\sigma}(\varepsilon_{n\mathbf{k}} - \varepsilon) \right) \, \mathrm{d}\mathbf{k} - \sum_{\mathbf{K} \in \Lambda_L} \left(\sum_{n>0} f^{\sigma}(\varepsilon_{n\mathbf{K}} - \varepsilon) \right) \right| \le C \sigma^{-(d+1)} \mathrm{e}^{-\alpha \sigma L}.$$

Again, we can approximate the integral with a Riemann sum.

Idea of the proof

$$\sum_{n>0} f^{\sigma}(\varepsilon_{n\mathbf{k}} - \varepsilon) = \operatorname{Tr}\left(\oint_{\mathscr{C}} \frac{f^{\sigma}(z)}{z - H_{\mathbf{k}}} \mathrm{d}z\right).$$

Conclusion

Insulators with Riemann sum

$$\left| E - E^L \right| \le C \mathrm{e}^{-\alpha L}.$$

Metals with interpolation methods of order p and q,

$$\left| E - E^{L,p,q} \right| \le C \left(\frac{1}{L^{p+1}} + \frac{1}{L^{2q+2}} \right).$$

Metals with smearing methods of order p

$$\left|E - E^{\sigma,L}\right| \le |E - E^{\sigma}| + \left|E^{\sigma} - E^{\sigma,L}\right| \le C\left(\sigma^{p+1} + \sigma^{-(d+1)}e^{-\alpha\sigma L}\right).$$

Choosing $\sigma \approx \sigma_L := L^{-1^+}$,

$$\left| E - E^{\sigma_L, L} \right| \le \frac{C}{L^{(p+1)^-}}.$$

• É. Cancès, V. Ehrlacher, D. Gontier, A. Levitt, D. Lombardi. *Numerical quadrature in the Brillouin zone for periodic Schrödinger operators.* (in preparation, but should be on arXiv very soon).