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Goal:

Define and compute numerically the energy per cell of a crystal.

Crystal? modelled by a periodic, non-interacting Hamiltonian.

Lattice: R = aZd. Unit cell: Γ = [−a/2, a/2)d.
Reciprocal lattice: R∗ = (2π/a)Zd. Reciprocal unit cell: Γ∗ = [−π/a, π/a)d. (Brillouin zone)

(mean field) potential: Vper ∈ L2
per(Γ).

Non-interacting Hamiltonian:

Hper = −
1

2
∆ + Vper, acting on L2(Rd).

Number of electrons per cell: N ∈ N∗.
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Energy (per cell) of the electrons?

Bloch’s transform
Studying Hper ⇐⇒ studying the family of operators (Hk)k∈Γ∗ , where

Hk :=
1

2
(−i∇per + k)2 + Vper, acting on L2

per(Γ).

Remark: The operators Hk are compact resolvent:

Hk =
∞∑

n=1

εnk|unk〉〈unk|, ε1k ≤ ε2k ≤ · · · , 〈unk, umk〉L2
per(Γ) = δnm.

Integrated density of states (IDoS) (we denote by
ffl
Γ∗ := 1

|Γ∗|
´
Γ∗ )

N (ε) :=

 
Γ∗

(∑
n>0

1(εnk ≤ ε)

)
dk.

Fermi energy:
εF ∈ R such that N (εF ) = N.

Energy per unit cell

E :=

 
Γ∗

(∑
n>0

εnk1(εnk ≤ εF )

)
dk.

How to perform numerically the Brillouin zone integration
ffl
Γ∗?

Here, we assume that we can perfectly compute the eigenvalues εnk.
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Band diagram of silicon (insulator)

IDoS N (ε)

N−1({N}) = [ε−F , ε+F ] is an interval.

Band diagram of aluminium (metal)

IDoS N (ε)

N−1({N}) = {εF } is unique.
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The insulating case

In the insulating case, 1(εnk < εF ) = 1 if n ≤ N , and 0 else, hence the energy simplifies into

E =

 
Γ∗

(
N∑

n=1

εnk

)
dk.

Lemma

The integrand k 7→
∑N

n=1 εnk is analytic andR∗-periodic. In particular, there exists C ∈ R+ and α > 0
such that, for all L ∈ N,∣∣∣∣∣∣

 
Γ∗

(
N∑

n=1

εnk

)
dk−

∑
K∈ΛL

(
N∑

n=1

εnK

)∣∣∣∣∣∣ ≤ Ce−αL (Exponential rate of convergence).

We can approximate the integral with a Riemann sum.

Γ∗ Γ∗

ΛL=8

Proof k 7→ H(k) is analytic (quadratic), and

N∑
n=1

εnk = Tr

(˛
C

Hk

z −Hk
dz

)
.

εF

σ(H)

C
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Metallic systems

Problems

First, we need to compute the Fermi level (extra source of error);

The integrand is no longer smooth.

Two widely used methods

Interpolation methods;

Smearing methods.
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The metallic case. 1/ Interpolation methods

Idea: Approximate k 7→ εnk with a simpler function.

A family of linear interpolation operators
(
ΠL,q

)
L∈N is of order (q + 1) if

∀f smooth, ‖f −ΠL,qf‖∞ ≤
C

Lq+1
‖f (q+1)‖∞.

Example: the linear tetrahedron method (q = 1).

division of Γ∗ in simplexes (for d = 2).

Γ∗
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Approximated eigenvalues
εL,q
nk := ΠL,q (εnk) .

Approximated integrated density of states

NL,q(ε) :=

 
Γ∗

(∑
n>0

1(εL,q
nk ≤ ε)

)
dk.

Approximated Fermi energy

εL,q
F ∈ R such that NL,q(εL,q

F ) = N.
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Approximated energy per unit cell

EL,p,q :=

 
Γ∗

(∑
n>0

εL,p
nk 1(ε

L,q
nk ≤ εF )

)
dk.

Γ∗

q =⇒ the domain of integration (here still a union of simplexes).

p =⇒ degree of the polynomial to integrate on this domain.

In practice, p ≥ q. (we can integrate quadratic functions (p=2) on simplexes (q=1)).
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Assumptions:
No band-crossings at the Fermi level;

No flat bands at the Fermi level (∇kεnk 6= 0).

=⇒ The function N (ε) is smooth near the Fermi level.

Lemma (Cancès, Ehrlacher, G., Levitt, Lombardi)

Let
(
ΠL,q

)
L∈N and

(
ΠL,p

)
L∈N be linear interpolation operators of order (q+ 1) and (p+ 1) respectively.

Then, under the previous assumptions, there exists δ > 0 and C ∈ R+ such that, for all L ∈ N,

max
ε∈(εF−δ,εF+δ)

∣∣∣N (ε)−NL,q(ε)
∣∣∣ ≤ C

Lq+1
,

∣∣∣εF − εL,q
F

∣∣∣ ≤ C

Lq+1
,

and ∣∣∣E − EL,p,q
∣∣∣ ≤ C

(
1

Lp+1
+

1

L2q+2

)
.

Remarks:

The L−(p+1) comes from the bulk error, while the L−(2q+2) comes from the surface error.

For tetrahedron methods (q = 1), we can choose p = 3 (low computational cost, but better precision
for the energy). This leads to O(L−4) rate of convergence.

The last result only works for the energy.
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Results (toy model, not coming from a Schrödinger operator)
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The metallic case. 2/ Smearing methods

Idea: Replace the discontinuous function f(x) := 1(x < 0) by a smooth function fσ .

Smearing functions

fσ(x) := f1(x/σ) where (f − f1) decays exponentially

Definition f1 is of order p ∈ N ifˆ
R
(f − f1)(x)P (x)dx = 0 for all polynomials P of degree ≤ p,

Example: Fermi-Dirac (of order 1)

fσ(x) :=
1

1 + ex/σ
.
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Smeared integrated density of states

Nσ(ε) :=

 
Γ∗

(∑
n>0

fσ(εnk − ε)

)
dk.

Smeared Fermi level
εσF ∈ R such that Nσ(εσF ) = N.

Smeared energy per unit cell

Eσ :=

 
Γ∗

(∑
n>0

εnkf
σ(εnk − εσF )

)
dk.

Lemma (Cancès, Ehrlacher, G., Levitt, Lombardi)

Let f1 be a smearing function of order p ∈ N. Under the previous assumptions, there exists δ > 0 and
C ∈ N+ such that, for all σ > 0,

max
ε∈(εF−δ,εF+δ)

|N (ε)−Nσ(ε)| ≤ Cσp+1, |εF − εσF | ≤ Cσp+1, and |E − Eσ | ≤ Cσp+1,

Idea of the proof

near the Fermi level, N is smooth =⇒ perform Taylor expansion;

far from the Fermi level, (f − fσ)(· − εF ) decays exponentially.
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Remark: We still need to find a numerical method to approximate Nσ , εσF and Eσ .
Recall that,

Nσ(ε) :=

 
Γ∗

(∑
n>0

fσ(εnk − ε)

)
dk.

Lemma (for the Fermi-Dirac function)

For all ε in a neighbourhood of εF , and all σ > 0, the integrand k 7→
∑

n>0 f
σ(εnk − ε) isR∗-periodic

and analytic in a complex strip of width (cst · σ). In particular, there exists C ∈ R+ and α > 0, such that∣∣∣∣∣∣
 
Γ∗

(∑
n>0

fσ(εnk − ε)

)
dk−

∑
K∈ΛL

(∑
n>0

fσ(εnK − ε)

)∣∣∣∣∣∣ ≤ Cσ−(d+1)e−ασL.

Again, we can approximate the integral with a Riemann sum.

Idea of the proof∑
n>0

fσ(εnk−ε) = Tr

(˛
C

fσ(z)

z −Hk
dz

)
. R

iR

σ(H)

σ(Hz)

C
iσπ
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Conclusion

Insulators with Riemann sum ∣∣∣E − EL
∣∣∣ ≤ Ce−αL.

Metals with interpolation methods of order p and q,

∣∣∣E − EL,p,q
∣∣∣ ≤ C

(
1

Lp+1
+

1

L2q+2

)
.

Metals with smearing methods of order p∣∣∣E − Eσ,L
∣∣∣ ≤ |E − Eσ |+

∣∣∣Eσ − Eσ,L
∣∣∣ ≤ C

(
σp+1 + σ−(d+1)e−ασL

)
.

Choosing σ ≈ σL := L−1+ , ∣∣∣E − EσL,L
∣∣∣ ≤ C

L(p+1)−
.

• É. Cancès, V. Ehrlacher, D. Gontier, A. Levitt, D. Lombardi. Numerical quadrature in the Brillouin zone for
periodic Schrödinger operators. (in preparation, but should be on arXiv very soon).
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