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Wannier functions

Introduced by Wannier in 19371.

≡ localised basis for periodic Schrödinger operators.
Used for the study of crystals:

theory: modern theory of polarisation
practice: speed up calculations, construction of tight-binding models,…
visualisation: Wannier function ∼ location of electrons in crystals.

Figure: A localised Wannier function2 .

1G.H. Wannier, Phys. Rev. 52.3 (1937).
2from N. Marzari et al., Rev. Mod. Phys. 84 (2012).
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Statement of the problem (up to a Bloch transform -see later)
Let Td 3 k 7→ H(k) be a smooth family of compact resolvent operators acting on CM .
M ∈ N ∪ {∞} and Td is the d-dimensional torus.

H(k) =
M∑

n=1

εnk|unk〉〈unk|, ε1k ≤ ε2k ≤ · · · , (unk)n≤M orthonormal basis of CM
.

Band crossing locations: Kn :=
{
k ∈ Td, εnk = εn+1,k

}
.

Projection on theN lowest occupied states:

∀k ∈ Td \KN , PN (k) =
N∑

n=1

|unk〉〈unk|
(
=

˛
C

dz

z −H(k)

)
.

Example: ifKN = ∅, then PN (k) is smooth and periodic (Insulating case).

Wannier functions for insulators

Assume there existsN � M such thatKN = ∅. Can we find a smooth and periodic family ofN orthogonal
functions ( = frame)

Ψ(k) := (ψ1(k), · · · , ψN (k)) ∈ (CM
)
N

such that RanPN (k) = Span{Ψ(k)}.

Remark: For d ≥ 2, the functions k 7→ unk are not smooth in general (conical band crossings).
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Assume Wannier functions exist…

Reduced model: H̃(k) of sizeN ×N , with

[H̃(k)]i,j := 〈ψi(k), H(k)ψj(k)〉.

The matrix H̃(k) is smooth and periodic, of sizeN ×N withN � M , and its spectrum is exactly the lowest part of
the spectrum ofH(k).
=⇒ Can be used to speed numerical computations!

In the framework of condensed matter physics. Periodic Schrödinger operators

H := −∆ + Vper =

ˆ ⊕

Td
H(k)dk (Bloch transform).

whereH(k) := (−i∇ + k)2 + Vper is smooth in k and (quasi-)periodic.

Wannier functions
If Td 3 k 7→ ψn(k) := ψn(k, r) is smooth and periodic, then

wn(r) :=

ˆ
Td

e
ik·r

ψn(k, r)dk is a localised Wannier function.

David Gontier Localised Wannier functions 4 / 9



Assume Wannier functions exist…

Reduced model: H̃(k) of sizeN ×N , with

[H̃(k)]i,j := 〈ψi(k), H(k)ψj(k)〉.

The matrix H̃(k) is smooth and periodic, of sizeN ×N withN � M , and its spectrum is exactly the lowest part of
the spectrum ofH(k).
=⇒ Can be used to speed numerical computations!

In the framework of condensed matter physics. Periodic Schrödinger operators

H := −∆ + Vper =

ˆ ⊕

Td
H(k)dk (Bloch transform).

whereH(k) := (−i∇ + k)2 + Vper is smooth in k and (quasi-)periodic.

Wannier functions
If Td 3 k 7→ ψn(k) := ψn(k, r) is smooth and periodic, then

wn(r) :=

ˆ
Td

e
ik·r

ψn(k, r)dk is a localised Wannier function.

David Gontier Localised Wannier functions 4 / 9



Wannier functions for insulators

Assume PN (k) smooth and periodic. Can we find a smooth and periodic frame

Ψ(k) := (ψ1(k), · · · , ψN (k)) ∈ (CM )N

such that RanPN (k) = Span{Ψ(k)}.

Topological obstruction

k
k = 0 k = 1

Theorem ( G. Panati, Ann. Henri Poincaré, 8-5 (2007) )

For all d ≤ 3, if P (k) is time-reversal symmetric (TRS), i.e. P (−k) = KP (k)K , whereK is the complex
conjugation operator, then we can always construct a smooth periodic frame Ψ for P .

Works for periodic Schrödinger operators with real-valued potentials.
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Figure: 8 first eigenvalues of silicon.

2Courtesy of S. Siraj-Dine, with the Wannier90 software.
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Figure: reduced model: 4 first eigenvalues of silicon computed on a 4 × 4 × 4 grid ⊂ T3 .

2Courtesy of S. Siraj-Dine, with the Wannier90 software.
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What about metallic systems (no gap condition)? PN is only defined on Td \KN…

Wannier functions for metals

Can we find a smooth projector P (k) of rankN + 1 such that PN (k) ⊂ P (k) on Td \KN ?

Remark: IfKN+1 = ∅, then we can take P = PN+1.

Theorem ( H. Cornean, DG, A. Levitt, D. Monaco, arXiv 1712.07954 )
Assume d = 3, thatKN andKN+1 are unions of points and piecewise smooth curves, and that
KN ∩KN+1 = ∅. Then we can find a such a smooth projection P .

In addition, if PN is TRS, then we can choose P to be TRS as well

Remarks

These assumptions are met for most real-life systems.

In the TRS case, according to the previous theorem, we can build a smooth periodic frame Ψ for P , of
size (N + 1), and RanPN (k) ⊂ Span{Ψ(k)}.

=⇒ We obtain a reduced model H̃(k) of size (N + 1)× (N + 1), whoseN lowest eigenvalues of are
exactly theN lowest eigenvalues ofH(k).
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Flavour of the proof

T3

KN

KN+1

The set Ω is chosen such thatKN+1 ⊂ Ω,KN ⊂ T3 \ Ω, and Ω is diffeomorphic to the ball D3.

Choose P = PN+1 on T3 \ Ω

=⇒ Find a rank-1 projector p̃ ∈ Ω ∼ D3 with p̃ = PN+1 − PN on ∂Ω ∼ S2.
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Lemma

Let P (ω) be a smooth family of projectors defined on ω ∈ S2.
There exists a smooth extension of P on D3 if and only if the Chern number Ch(P, S2) vanishes, where

Ch(P, S2) :=
1

2iπ

ˆ
S2

Tr (P dP ∧ dP ) .

In our case, p̃ = PN+1 − P on ∂Ω, which implies

Ch(p̃, ∂Ω) = Ch(PN+1, ∂Ω)− Ch(PN , ∂Ω).

PN is smooth on Ω, hence Ch(PN , ∂Ω) = 0.

PN+1 is smooth on T3 \ Ω, hence Ch(PN+1, ∂Ω) = 0.

We conclude that3 Ch(p̃, ∂Ω) = 0, and that p̃ has a smooth extension on Ω.

Reference:
H. Cornean, DG, A. Levitt, D. Monaco, Localised Wannier functions in metallic systems, arXiv 1712.07954.

Thank you for your attention!

3Similar to Nielsen-Ninomiya theorem.
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