Localised Wannier functions in metallic systems

David Gontier

CEREMADE, Université Paris-Dauphine

ICMP July 24, 2018

Joint work with H. Cornean, A. Levitt, D. Monaco.

Wannier functions

- Introduced by Wannier in 1937¹.
- $\bullet \equiv$ localised basis for periodic Schrödinger operators.
- Used for the study of crystals:
	- theory: modern theory of polarisation
	- practice: speed up calculations, construction of tight-binding models,…
	- visualisation: Wannier function ∼ location of electrons in crystals.

Figure: A localised Wannier function².

¹G.H. Wannier, *Phys. Rev.* 52.3 (1937).

² from N. Marzari et al., Rev. Mod. Phys. 84 (2012).

Statement of the problem (up to a Bloch transform -see later)

Let $\mathbb{T}^d \ni \mathbf{k} \mapsto H(\mathbf{k})$ be a smooth family of compact resolvent operators acting on $\mathbb{C}^M.$ $M \in \mathbb{N} \cup \{\infty\}$ and \mathbb{T}^d is the d -dimensional torus.

$$
H(\mathbf{k}) = \sum_{n=1}^{M} \varepsilon_{n\mathbf{k}} |u_{n\mathbf{k}}\rangle\langle u_{n\mathbf{k}}|, \quad \varepsilon_{1\mathbf{k}} \leq \varepsilon_{2\mathbf{k}} \leq \cdots, \quad (u_{n\mathbf{k}})_{n\leq M} \quad \text{orthonormal basis of } \mathbb{C}^{M}.
$$

Band crossing locations: $\quad K_n := \left\{ \mathbf{k} \in \mathbb{T}^d, \ \varepsilon_{n\mathbf{k}} = \varepsilon_{n+1,\mathbf{k}} \right\}.$ Projection on the N lowest occupied states:

$$
\forall \mathbf{k} \in \mathbb{T}^d \setminus K_N, \quad P_N(\mathbf{k}) = \sum_{n=1}^N |u_{n\mathbf{k}}\rangle \langle u_{n\mathbf{k}}| \quad \left(= \oint_{\mathscr{C}} \frac{\mathrm{d}z}{z - H(\mathbf{k})} \right).
$$

Example: if $K_N = \emptyset$, then $P_N(\mathbf{k})$ is smooth and periodic (Insulating case).

Wannier functions for insulators

Assume there exists $N \ll M$ such that $K_N = \emptyset$. Can we find a smooth and periodic family of N orthogonal functions (= frame)

$$
\Psi(\mathbf{k}) := (\psi_1(\mathbf{k}), \cdots, \psi_N(\mathbf{k})) \in (\mathbb{C}^M)^N
$$

such that Ran $P_N(\mathbf{k}) = \text{Span} \{ \Psi(\mathbf{k}) \}.$

Remark: For $d \geq 2$, the functions $\mathbf{k} \mapsto u_{n\mathbf{k}}$ are not smooth in general (conical band crossings).

Assume Wannier functions exist…

Reduced model: $\tilde{H}(\mathbf{k})$ of size $N \times N$, with

$$
[\tilde{H}(\mathbf{k})]_{i,j} := \langle \psi_i(\mathbf{k}), H(\mathbf{k}) \psi_j(\mathbf{k}) \rangle.
$$

The matrix $\tilde{H}({\bf k})$ is smooth and periodic, of size $N\times N$ with $N\ll M,$ and its spectrum is exactly the lowest part of the spectrum of $H(\mathbf{k})$.

⇒ Can be used to speed numerical computations!

Assume Wannier functions exist…

Reduced model: $\tilde{H}(\mathbf{k})$ of size $N \times N$, with

$$
[\tilde{H}(\mathbf{k})]_{i,j} := \langle \psi_i(\mathbf{k}), H(\mathbf{k}) \psi_j(\mathbf{k}) \rangle.
$$

The matrix $\tilde{H}(\mathbf{k})$ is smooth and periodic, of size $N \times N$ with $N \ll M$, and its spectrum is exactly the lowest part of the spectrum of $H(\mathbf{k})$.

 \Rightarrow Can be used to speed numerical computations!

In the framework of condensed matter physics. Periodic Schrödinger operators

$$
H := -\Delta + V_{\text{per}} = \int_{\mathbb{T}^d}^{\oplus} H(\mathbf{k}) \mathrm{d}\mathbf{k} \quad \text{(Bloch transform)}.
$$

where $H(\mathbf{k}):=(-\mathrm{i}\nabla+\mathbf{k})^2+V_\mathrm{per}$ is smooth in $\mathbf k$ and (quasi-)periodic.

Wannier functions

If $\mathbb{T}^d\ni \mathbf{k}\mapsto \psi_n(\mathbf{k}):=\psi_n(\mathbf{k},\mathbf{r})$ is smooth and periodic, then

$$
w_n(\mathbf{r}) := \int_{\mathbb{T}^d} e^{i\mathbf{k}\cdot\mathbf{r}} \psi_n(\mathbf{k}, \mathbf{r}) \mathrm{d}\mathbf{k} \quad \text{is a localised Wannier function.}
$$

Wannier functions for insulators

Assume $P_N(\mathbf{k})$ smooth and periodic. Can we find a smooth and periodic frame

$$
\Psi(\mathbf{k}) := (\psi_1(\mathbf{k}), \cdots, \psi_N(\mathbf{k})) \in (\mathbb{C}^M)^N
$$

such that $\text{Ran } P_N(\mathbf{k}) = \text{Span } \{ \Psi(\mathbf{k}) \}.$

Topological obstruction

Theorem (G. Panati, Ann. Henri Poincaré, 8-5 (2007))

For all $d \leq 3$, if $P(\mathbf{k})$ is time-reversal symmetric (TRS), i.e. $P(-\mathbf{k}) = KP(\mathbf{k})K$, where K is the complex conjugation operator, then we can always construct a smooth periodic frame Ψ for P.

Works for periodic Schrödinger operators with real-valued potentials.

Figure: 8 first eigenvalues of silicon.

 2 Courtesy of S. Siraj-Dine, with the Wannier 90 software.

Figure: reduced model: 4 first eigenvalues of silicon computed on a $4\times 4\times 4$ grid $\subset \mathbb{T}^3.$

 2 Courtesy of S. Siraj-Dine, with the Wannier90 software.

What about metallic systems (no gap condition)? P_N is only defined on $\mathbb{T}^d\setminus K_N...$

Wannier functions for metals

Can we find a smooth projector $P({\bf k})$ of rank $N+1$ such that $P_N({\bf k})\subset P({\bf k})$ on $\mathbb{T}^d\setminus K_N?$

Remark: If $K_{N+1} = \emptyset$, then we can take $P = P_{N+1}$.

$Theorem (H. Conean, DG, A. Levitt, D. Monaco, arXiv 1712.07954)$

Assume $d = 3$, that K_N and K_{N+1} are unions of points and piecewise smooth curves, and that $K_N \cap K_{N+1} = \emptyset$. Then we can find a such a smooth projection P.

In addition, if P_N is TRS, then we can choose P to be TRS as well

Remarks

- These assumptions are met for most real-life systems.
- In the TRS case, according to the previous theorem, we can build a smooth periodic frame Ψ for P, of size $(N + 1)$, and Ran $P_N(\mathbf{k}) \subset \text{Span}\{\Psi(\mathbf{k})\}.$
- ⇒ We obtain a reduced model $\tilde{H}(\mathbf{k})$ of size $(N+1) \times (N+1)$, whose N lowest eigenvalues of are exactly the N lowest eigenvalues of $H(\mathbf{k})$.

The set Ω is chosen such that $K_{N+1}\subset \Omega,$ $K_N\subset \mathbb{T}^3\setminus \Omega,$ and Ω is diffeomorphic to the ball $\mathbb{D}_3.$

The set Ω is chosen such that $K_{N+1}\subset \Omega,$ $K_N\subset \mathbb{T}^3\setminus \Omega,$ and Ω is diffeomorphic to the ball $\mathbb{D}_3.$

Choose $P = P_{N+1}$ on $\mathbb{T}^3 \setminus \Omega$

The set Ω is chosen such that $K_{N+1}\subset \Omega,$ $K_N\subset \mathbb{T}^3\setminus \Omega,$ and Ω is diffeomorphic to the ball $\mathbb{D}_3.$

Choose $P = P_{N+1}$ on $\mathbb{T}^3 \setminus \Omega$, and choose $P = P_N + \tilde{p}$ on Ω .

The set Ω is chosen such that $K_{N+1}\subset \Omega,$ $K_N\subset \mathbb{T}^3\setminus \Omega,$ and Ω is diffeomorphic to the ball $\mathbb{D}_3.$ Choose $P = P_{N+1}$ on $\mathbb{T}^3 \setminus \Omega$, and choose $P = P_N + \tilde{p}$ on Ω .

 \implies Find a rank-1 projector $\tilde{p}\in\Omega\sim\mathbb{D}_3$ with $\tilde{p}=P_{N+1}-P_N$ on $\partial\Omega\sim\mathbb{S}^2.$

Let $P(\omega)$ be a smooth family of projectors defined on $\omega \in \mathbb{S}^2$. There exists a smooth extension of P on \mathbb{D}^3 if and only if the Chern number $Ch(P,\mathbb{S}^2)$ vanishes, where

$$
\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2i\pi} \int_{\mathbb{S}^2} \operatorname{Tr} (P \, dP \wedge dP).
$$

In our case, $\tilde{p} = P_{N+1} - P$ on $\partial\Omega$, which implies

$$
Ch(\tilde{p}, \partial \Omega) = Ch(P_{N+1}, \partial \Omega) - Ch(P_N, \partial \Omega).
$$

³ Similar to Nielsen-Ninomiya theorem.

Let $P(\omega)$ be a smooth family of projectors defined on $\omega \in \mathbb{S}^2$. There exists a smooth extension of P on \mathbb{D}^3 if and only if the Chern number $Ch(P,\mathbb{S}^2)$ vanishes, where

$$
\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2i\pi} \int_{\mathbb{S}^2} \operatorname{Tr} (P \, dP \wedge dP).
$$

In our case, $\tilde{p} = P_{N+1} - P$ on $\partial\Omega$, which implies

$$
Ch(\tilde{p}, \partial \Omega) = Ch(P_{N+1}, \partial \Omega) - Ch(P_N, \partial \Omega).
$$

• P_N is smooth on Ω , hence $\text{Ch}(P_N, \partial \Omega) = 0$.

³ Similar to Nielsen-Ninomiya theorem.

Let $P(\omega)$ be a smooth family of projectors defined on $\omega \in \mathbb{S}^2$. There exists a smooth extension of P on \mathbb{D}^3 if and only if the Chern number $Ch(P,\mathbb{S}^2)$ vanishes, where

$$
\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2i\pi} \int_{\mathbb{S}^2} \operatorname{Tr} (P \, dP \wedge dP).
$$

In our case, $\tilde{p} = P_{N+1} - P$ on $\partial\Omega$, which implies

$$
Ch(\tilde{p}, \partial \Omega) = Ch(P_{N+1}, \partial \Omega) - Ch(P_N, \partial \Omega).
$$

- P_N is smooth on Ω , hence $\text{Ch}(P_N, \partial \Omega) = 0$.
- P_{N+1} is smooth on $\mathbb{T}^3 \setminus \Omega$, hence $\mathrm{Ch}(P_{N+1},\partial \Omega) = 0$.

³ Similar to Nielsen-Ninomiya theorem.

Let $P(\omega)$ be a smooth family of projectors defined on $\omega \in \mathbb{S}^2$. There exists a smooth extension of P on \mathbb{D}^3 if and only if the Chern number $Ch(P,\mathbb{S}^2)$ vanishes, where

$$
\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2i\pi} \int_{\mathbb{S}^2} \operatorname{Tr} (P \, dP \wedge dP).
$$

In our case, $\tilde{p} = P_{N+1} - P$ on $\partial\Omega$, which implies

$$
Ch(\tilde{p}, \partial \Omega) = Ch(P_{N+1}, \partial \Omega) - Ch(P_N, \partial \Omega).
$$

- \bullet P_N is smooth on Ω , hence $\text{Ch}(P_N, \partial \Omega) = 0$.
- P_{N+1} is smooth on $\mathbb{T}^3 \setminus \Omega$, hence $\mathrm{Ch}(P_{N+1},\partial \Omega) = 0$.

We conclude that³ Ch(\tilde{p} , $\partial\Omega$) = 0, and that \tilde{p} has a smooth extension on Ω .

³ Similar to Nielsen-Ninomiya theorem.

Let $P(\omega)$ be a smooth family of projectors defined on $\omega \in \mathbb{S}^2$. There exists a smooth extension of P on \mathbb{D}^3 if and only if the Chern number $Ch(P,\mathbb{S}^2)$ vanishes, where

$$
\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2i\pi} \int_{\mathbb{S}^2} \operatorname{Tr} (P \, dP \wedge dP).
$$

In our case, $\tilde{p} = P_{N+1} - P$ on $\partial\Omega$, which implies

$$
Ch(\tilde{p}, \partial \Omega) = Ch(P_{N+1}, \partial \Omega) - Ch(P_N, \partial \Omega).
$$

- \bullet P_N is smooth on Ω , hence $\text{Ch}(P_N, \partial \Omega) = 0$.
- P_{N+1} is smooth on $\mathbb{T}^3 \setminus \Omega$, hence $\mathrm{Ch}(P_{N+1},\partial \Omega) = 0$.

We conclude that³ Ch(\tilde{p} , $\partial \Omega$) = 0, and that \tilde{p} has a smooth extension on Ω .

Reference:

H. Cornean, DG, A. Levitt, D. Monaco, Localised Wannier functions in metallic systems, arXiv 1712.07954.

Thank you for your attention!

³ Similar to Nielsen-Ninomiya theorem.