# Localised Wannier functions in metallic systems

### David Gontier

CEREMADE, Université Paris-Dauphine

ICMP July 24, 2018

Joint work with H. Cornean, A. Levitt, D. Monaco.



## Wannier functions

- Introduced by Wannier in 1937<sup>1</sup>.
- $\equiv$  localised basis for periodic Schrödinger operators.
- Used for the study of crystals:
  - theory: modern theory of polarisation
  - practice: speed up calculations, construction of tight-binding models,...
  - visualisation: Wannier function  $\sim$  location of electrons in crystals.



Figure: A localised Wannier function<sup>2</sup>.

<sup>1</sup>G.H. Wannier, Phys. Rev. 52.3 (1937).

<sup>&</sup>lt;sup>2</sup>from N. Marzari et al., Rev. Mod. Phys. 84 (2012).

#### Statement of the problem (up to a Bloch transform -see later)

Let  $\mathbb{T}^d \ni \mathbf{k} \mapsto H(\mathbf{k})$  be a smooth family of compact resolvent operators acting on  $\mathbb{C}^M$ .  $M \in \mathbb{N} \cup \{\infty\}$  and  $\mathbb{T}^d$  is the *d*-dimensional torus.

$$H(\mathbf{k}) = \sum_{n=1}^{M} \varepsilon_{n\mathbf{k}} |u_{n\mathbf{k}}\rangle \langle u_{n\mathbf{k}}|, \quad \varepsilon_{1\mathbf{k}} \le \varepsilon_{2\mathbf{k}} \le \cdots, \quad (u_{n\mathbf{k}})_{n \le M} \quad \text{orthonormal basis of } \mathbb{C}^{M}.$$

Band crossing locations:  $K_n := \left\{ \mathbf{k} \in \mathbb{T}^d, \ \varepsilon_{n\mathbf{k}} = \varepsilon_{n+1,\mathbf{k}} \right\}$ . Projection on the N lowest occupied states:

$$\forall \mathbf{k} \in \mathbb{T}^d \setminus K_N, \quad P_N(\mathbf{k}) = \sum_{n=1}^N |u_{n\mathbf{k}}\rangle \langle u_{n\mathbf{k}}| \quad \left(= \oint_{\mathscr{C}} \frac{\mathrm{d}z}{z - H(\mathbf{k})}\right).$$

Example: if  $K_N = \emptyset$ , then  $P_N(\mathbf{k})$  is smooth and periodic (Insulating case).

#### Wannier functions for insulators

Assume there exists  $N \ll M$  such that  $K_N = \emptyset$ . Can we find a smooth and periodic family of N orthogonal functions ( = frame)

$$\Psi(\mathbf{k}) := (\psi_1(\mathbf{k}), \cdots, \psi_N(\mathbf{k})) \in (\mathbb{C}^M)^N$$

such that  $\operatorname{Ran} P_N(\mathbf{k}) = \operatorname{Span}\{\Psi(\mathbf{k})\}.$ 

**Remark**: For  $d \ge 2$ , the functions  $\mathbf{k} \mapsto u_{n\mathbf{k}}$  are not smooth in general (conical band crossings).



### Assume Wannier functions exist...

Reduced model:  $\tilde{H}(\mathbf{k})$  of size  $N \times N$ , with

$$[\tilde{H}(\mathbf{k})]_{i,j} := \langle \psi_i(\mathbf{k}), H(\mathbf{k})\psi_j(\mathbf{k}) \rangle.$$

The matrix  $\tilde{H}(\mathbf{k})$  is smooth and periodic, of size  $N \times N$  with  $N \ll M$ , and its spectrum is exactly the lowest part of the spectrum of  $H(\mathbf{k})$ .

 $\implies$  Can be used to speed numerical computations!

### Assume Wannier functions exist...

Reduced model:  $\tilde{H}(\mathbf{k})$  of size  $N \times N$ , with

$$[\tilde{H}(\mathbf{k})]_{i,j} := \langle \psi_i(\mathbf{k}), H(\mathbf{k})\psi_j(\mathbf{k}) \rangle.$$

The matrix  $\tilde{H}(\mathbf{k})$  is smooth and periodic, of size  $N \times N$  with  $N \ll M$ , and its spectrum is exactly the lowest part of the spectrum of  $H(\mathbf{k})$ .

 $\implies$  Can be used to speed numerical computations!

In the framework of condensed matter physics. Periodic Schrödinger operators

$$H:=-\Delta+V_{
m per} \quad =\int_{\mathbb{T}^d}^{\oplus} H(\mathbf{k})\mathrm{d}\mathbf{k} \quad ({
m Bloch transform}).$$

where  $H({\bf k}):=(-{\rm i}\nabla+{\bf k})^2+V_{\rm per}$  is smooth in  ${\bf k}$  and (quasi-)periodic.

#### Wannier functions

If  $\mathbb{T}^d \ni \mathbf{k} \mapsto \psi_n(\mathbf{k}) := \psi_n(\mathbf{k},\mathbf{r})$  is smooth and periodic, then

$$w_n(\mathbf{r}):=\int_{\mathbb{T}^d}\,\mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}}\psi_n(\mathbf{k},\mathbf{r})\mathrm{d}\mathbf{k}\quad\text{is a localised Wannier function}$$

### Wannier functions for insulators

Assume  $P_N(\mathbf{k})$  smooth and periodic. Can we find a smooth and periodic frame

$$\Psi(\mathbf{k}) := (\psi_1(\mathbf{k}), \cdots, \psi_N(\mathbf{k})) \in (\mathbb{C}^M)^N$$

such that  $\operatorname{Ran} P_N(\mathbf{k}) = \operatorname{Span}\{\Psi(\mathbf{k})\}.$ 

**Topological obstruction** 



### Theorem ( G. Panati, Ann. Henri Poincaré, 8-5 (2007) )

For all  $d \leq 3$ , if  $P(\mathbf{k})$  is time-reversal symmetric (TRS), i.e.  $P(-\mathbf{k}) = KP(\mathbf{k})K$ , where K is the complex conjugation operator, then we can always construct a smooth periodic frame  $\Psi$  for P.

Works for periodic Schrödinger operators with real-valued potentials.



Figure: 8 first eigenvalues of silicon.

 $<sup>^2\</sup>mbox{Courtesy}$  of S. Siraj-Dine, with the Wannier90 software.



Figure: reduced model: 4 first eigenvalues of silicon computed on a  $4 \times 4 \times 4$  grid  $\subset \mathbb{T}^3$ .

<sup>&</sup>lt;sup>2</sup>Courtesy of S. Siraj-Dine, with the Wannier90 software.

What about metallic systems (no gap condition)?  $P_N$  is only defined on  $\mathbb{T}^d \setminus K_N$ ...

### Wannier functions for metals

Can we find a smooth projector  $P(\mathbf{k})$  of rank N + 1 such that  $P_N(\mathbf{k}) \subset P(\mathbf{k})$  on  $\mathbb{T}^d \setminus K_N$ ?

Remark: If  $K_{N+1} = \emptyset$ , then we can take  $P = P_{N+1}$ .

### Theorem ( H. Cornean, DG, A. Levitt, D. Monaco, arXiv 1712.07954 )

Assume d = 3, that  $K_N$  and  $K_{N+1}$  are unions of points and piecewise smooth curves, and that  $K_N \cap K_{N+1} = \emptyset$ . Then we can find a such a smooth projection P.

In addition, if  $P_N$  is TRS, then we can choose P to be TRS as well

### Remarks

- These assumptions are met for most real-life systems.
- In the TRS case, according to the previous theorem, we can build a smooth periodic frame  $\Psi$  for P, of size (N + 1), and  $\operatorname{Ran} P_N(\mathbf{k}) \subset \operatorname{Span}\{\Psi(\mathbf{k})\}$ .
- $\implies$  We obtain a reduced model  $\tilde{H}(\mathbf{k})$  of size  $(N + 1) \times (N + 1)$ , whose N lowest eigenvalues of are exactly the N lowest eigenvalues of  $H(\mathbf{k})$ .





• The set  $\Omega$  is chosen such that  $K_{N+1} \subset \Omega$ ,  $K_N \subset \mathbb{T}^3 \setminus \Omega$ , and  $\Omega$  is diffeomorphic to the ball  $\mathbb{D}_3$ .



• The set  $\Omega$  is chosen such that  $K_{N+1} \subset \Omega, K_N \subset \mathbb{T}^3 \setminus \Omega$ , and  $\Omega$  is diffeomorphic to the ball  $\mathbb{D}_3$ .

• Choose  $P = P_{N+1}$  on  $\mathbb{T}^3 \setminus \Omega$ 



• The set  $\Omega$  is chosen such that  $K_{N+1} \subset \Omega, K_N \subset \mathbb{T}^3 \setminus \Omega$ , and  $\Omega$  is diffeomorphic to the ball  $\mathbb{D}_3$ .

• Choose  $P = P_{N+1}$  on  $\mathbb{T}^3 \setminus \Omega$ , and choose  $P = P_N + \tilde{p}$  on  $\Omega$ .



• The set  $\Omega$  is chosen such that  $K_{N+1} \subset \Omega$ ,  $K_N \subset \mathbb{T}^3 \setminus \Omega$ , and  $\Omega$  is diffeomorphic to the ball  $\mathbb{D}_3$ .

• Choose  $P = P_{N+1}$  on  $\mathbb{T}^3 \setminus \Omega$ , and choose  $P = P_N + \tilde{p}$  on  $\Omega$ .

 $\implies$  Find a rank-1 projector  $\tilde{p} \in \Omega \sim \mathbb{D}_3$  with  $\tilde{p} = P_{N+1} - P_N$  on  $\partial \Omega \sim \mathbb{S}^2$ .

Let  $P(\omega)$  be a smooth family of projectors defined on  $\omega \in \mathbb{S}^2$ . There exists a smooth extension of P on  $\mathbb{D}^3$  if and only if the Chern number  $Ch(P, \mathbb{S}^2)$  vanishes, where

$$\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2\mathrm{i}\pi} \int_{\mathbb{S}^2} \operatorname{Tr}(P \,\mathrm{d}P \wedge \mathrm{d}P).$$

In our case,  $\tilde{p} = P_{N+1} - P$  on  $\partial \Omega$ , which implies

$$\operatorname{Ch}(\tilde{p}, \partial \Omega) = \operatorname{Ch}(P_{N+1}, \partial \Omega) - \operatorname{Ch}(P_N, \partial \Omega).$$

<sup>&</sup>lt;sup>3</sup>Similar to Nielsen-Ninomiya theorem.

Let  $P(\omega)$  be a smooth family of projectors defined on  $\omega \in \mathbb{S}^2$ . There exists a smooth extension of P on  $\mathbb{D}^3$  if and only if the Chern number  $Ch(P, \mathbb{S}^2)$  vanishes, where

$$\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2\mathrm{i}\pi} \int_{\mathbb{S}^2} \operatorname{Tr} \left( P \, \mathrm{d}P \wedge \mathrm{d}P \right).$$

In our case,  $\tilde{p} = P_{N+1} - P$  on  $\partial \Omega$ , which implies

$$\operatorname{Ch}(\tilde{p},\partial\Omega) = \operatorname{Ch}(P_{N+1},\partial\Omega) - \operatorname{Ch}(P_N,\partial\Omega).$$

•  $P_N$  is smooth on  $\Omega$ , hence  $Ch(P_N, \partial \Omega) = 0$ .

<sup>&</sup>lt;sup>3</sup>Similar to Nielsen-Ninomiya theorem.

Let  $P(\omega)$  be a smooth family of projectors defined on  $\omega \in \mathbb{S}^2$ . There exists a smooth extension of P on  $\mathbb{D}^3$  if and only if the Chern number  $Ch(P, \mathbb{S}^2)$  vanishes, where

$$\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2\mathrm{i}\pi} \int_{\mathbb{S}^2} \operatorname{Tr} \left( P \, \mathrm{d}P \wedge \mathrm{d}P \right).$$

In our case,  $\tilde{p} = P_{N+1} - P$  on  $\partial \Omega$ , which implies

$$\operatorname{Ch}(\tilde{p},\partial\Omega) = \operatorname{Ch}(P_{N+1},\partial\Omega) - \operatorname{Ch}(P_N,\partial\Omega).$$

- $P_N$  is smooth on  $\Omega$ , hence  $Ch(P_N, \partial \Omega) = 0$ .
- $P_{N+1}$  is smooth on  $\mathbb{T}^3 \setminus \Omega$ , hence  $\operatorname{Ch}(P_{N+1}, \partial \Omega) = 0$ .

<sup>&</sup>lt;sup>3</sup>Similar to Nielsen-Ninomiya theorem.

Let  $P(\omega)$  be a smooth family of projectors defined on  $\omega \in \mathbb{S}^2$ . There exists a smooth extension of P on  $\mathbb{D}^3$  if and only if the Chern number  $Ch(P, \mathbb{S}^2)$  vanishes, where

$$\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2\mathrm{i}\pi} \int_{\mathbb{S}^2} \operatorname{Tr} \left( P \, \mathrm{d}P \wedge \mathrm{d}P \right).$$

In our case,  $\tilde{p} = P_{N+1} - P$  on  $\partial \Omega$ , which implies

$$\operatorname{Ch}(\tilde{p},\partial\Omega) = \operatorname{Ch}(P_{N+1},\partial\Omega) - \operatorname{Ch}(P_N,\partial\Omega).$$

- $P_N$  is smooth on  $\Omega$ , hence  $Ch(P_N, \partial \Omega) = 0$ .
- $P_{N+1}$  is smooth on  $\mathbb{T}^3 \setminus \Omega$ , hence  $\operatorname{Ch}(P_{N+1}, \partial \Omega) = 0$ .

We conclude that  $\hat{P}(\tilde{p}, \partial \Omega) = 0$ , and that  $\tilde{p}$  has a smooth extension on  $\Omega$ .

<sup>&</sup>lt;sup>3</sup>Similar to Nielsen-Ninomiya theorem.

Let  $P(\omega)$  be a smooth family of projectors defined on  $\omega \in \mathbb{S}^2$ . There exists a smooth extension of P on  $\mathbb{D}^3$  if and only if the Chern number  $Ch(P, \mathbb{S}^2)$  vanishes, where

$$\operatorname{Ch}(P, \mathbb{S}^2) := \frac{1}{2\mathrm{i}\pi} \int_{\mathbb{S}^2} \operatorname{Tr} \left( P \, \mathrm{d}P \wedge \mathrm{d}P \right).$$

In our case,  $\tilde{p} = P_{N+1} - P$  on  $\partial \Omega$ , which implies

$$\operatorname{Ch}(\tilde{p},\partial\Omega) = \operatorname{Ch}(P_{N+1},\partial\Omega) - \operatorname{Ch}(P_N,\partial\Omega).$$

- $P_N$  is smooth on  $\Omega$ , hence  $Ch(P_N, \partial \Omega) = 0$ .
- $P_{N+1}$  is smooth on  $\mathbb{T}^3 \setminus \Omega$ , hence  $\operatorname{Ch}(P_{N+1}, \partial \Omega) = 0$ .

We conclude that  $^{3}$  Ch $(\tilde{p}, \partial \Omega) = 0$ , and that  $\tilde{p}$  has a smooth extension on  $\Omega$ .

#### **Reference:**

H. Cornean, DG, A. Levitt, D. Monaco, Localised Wannier functions in metallic systems, arXiv 1712.07954.

### Thank you for your attention!

<sup>&</sup>lt;sup>3</sup>Similar to Nielsen-Ninomiya theorem.