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1. Introduction

We draw N identical particles on Rd with some probabilistic rule, and we ask the following question:

What is the probability that there is a particle around x1, a particle around x2, ..., a particle around xk.

We disregard where the remaining (N − k) other particles are.
If the positions of the particles are drawn according to some probability measure with density

Px(x1, · · · ,xN ),

then, the (density of the) previous probability is, up to some normalisation factor, the k-correlation
function

ρ(k)(x1, . . . ,xk) :=
N !

(N − k)!

ˆ
(Rd)k

Px(x1, · · · ,xN )dxk+1 · · · dxN .

We choose this normalisation so that
´
ρ(k) = N !/(N − k)! = k!. For instance,

´
ρ(1) = N is the number

of particles in the system, and
´
ρ(1)1K is the mean number of particles in a subset K ⊂ Rd.

We assume here that the particle are identical. Mathematically speaking, this means that, for all
permutation σ ∈ SN ,

Px(xσ(1), . . . ,xσ(N)) = Px(x1, · · · ,xN ).

In particular, we have
ρ(k)(xσ(1), . . . ,xσ(k)) = ρk(x1, . . . ,xk).

The goal of these notes is to describe the correlation functions for systems of N non interacting
quantum particles. A conference on the topic will take place soon in Lille (https://dpp-fermions.
sciencesconf.org/).

2. The wave function and the Hamiltonian

In a physical system, we expect a system of N particles to lower their total energy. In these notes,
we focus on systems where the particles are non interacting, and at zero temperature. For classical
particles (6= quantum particles), the energy would be of the form

E(x1, · · · ,xN ,k1, · · · ,kN ) :=
N∑
i=1

(
1

2
k2
i + V (xi)

)
.

Here xi is the position of the i-th particle, and ki is its momentum. The first term correspond to the
kinetic energy, and the second term to the potential energy. Here, V is some given fixed external potential.

The problem with classical particles is that the minimum is attained for ki = 0 and xi ∈ argminV .
The corresponding point process is deterministic: all the N particles will lie in the minimum of V . This
model is not satisfactory: if minV = −∞ (as it is the case for the hydrogen atom V (x) = 1

|x|), the energy
is infinite.

A solution to avoid this infinity is the minimise the energy under some constraints. For instance, one
could minimise the mean energy of the particles, under some constraint on the probability measures.
We now minimise

〈E〉 :=
ˆ
(Rd)N

(
N∑
i=1

1

2
k2
i

)
Pk(k1, . . . ,kN )dk1 · · · dkN +

ˆ
(Rd)N

(
N∑
i=1

V (xi)

)
Px(x1, . . . ,xN )dx1 · · · dxN ,
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where Pk(k1, · · · ,kN ) is (the density of) the probability that the particle in x1 has momentum k1, the
particle in x2 has momentum k2, and so on. In quantum mechanics, we make the following postulate.

Definition 2.1 (Wave function). For quantum particles, there is function Ψ ∈ L2(RdN ), called the
wave-function such that

|Ψ(x1, · · · ,xN )|2 = Px(x1, . . . ,xN ), and |Ψ̂(k1, · · · ,kN )| = Pk(k1, . . . ,kN ),

where Ψ̂ is the normalised Fourier transform of Ψ:

Ψ̂ :=
1

(2π)d

ˆ
Rd

Ψ(x)e−ik·xdk.

Remark 2.2. The wave function Ψ is defined up to a global phase.

Using the Fourier identityˆ
Rd

k2
i |Ψ̂(k1, · · · ,kN )|2dk1 . . . dkN =

ˆ
Rd

|∇xiΨ|2(x1, · · · ,xN )|2dx1 . . . dxN = 〈Ψ,−∆xiΨ〉L2((Rd)N ),

we end up with a minimisation problem on the set of wave-functions Ψ, of the form

min
{
〈Ψ,HΨ〉L2((Rd)N ), Ψ ∈ L2((Rd)N ), ‖Ψ‖L2((Rd)N ) = 1

}
, with H =

N∑
i=1

−1

2
∆xi + V (xi).

The operator H is called the Hamiltonian.

3. Bosons and Fermions

From the fact that the particles are indistinguishable, we have (we denote by SN the symmetric per-
mutation group)

∀σ ∈ SN , |Ψ(xσ(1), · · · ,Ψ(xσ(N))| = |Ψ(x1, . . . ,xN )|.
It is natural to look at the following two cases.

Definition 3.1 (bosons and fermions). We say that the particles are bosons if Ψ is symmetric:

∀σ ∈ SN , Ψ(xσ(1), · · · ,Ψ(xσ(N)) = Ψ(x1, . . . ,xN ).

We say that the particles are fermions if Ψ is anti-symmetric

∀σ ∈ SN , Ψ(xσ(1), · · · ,Ψ(xσ(N)) = ε(σ)Ψ(x1, . . . ,xN ), (Pauli principle),

where ε(σ) is the signature of the permutation σ ∈ SN .

Remark 3.2. For a fermion, we have Ψ(x1, · · · ,xN ) = 0 whenever xi = xj with i 6= j. The physical
interpretation is that two fermions can never be at the same place. There is natural repulsion between
fermions (even though they do not interact via any potential).

Remark 3.3. There might be other choices in dimensions 1 and 2. In dimension d = 2, one could have
an arbitrary phase appearing. These (quasi-) particles are called anyons (”any” for any phase[Wil82]).
For d ≥ 3 however, only bosons and fermions can exist [LM77].

The spin-statistics theorem states that, in dimension d = 3, the nature (boson or fermion) of particles
is related to their spins (= intrinsic degree of freedom). Bosons correspond to particles with integer
spin, while fermions have half-integer spin. In practice, it turns out that all ”elementary” particles that
constitute matter (electrons, neutrons, protons, ...) are fermions. Instead, all particles that propagate
energy (or information) between electrons are bosons (photons, Higgs, ...).

Remark 3.4. At a different scale, a set of (indistiguishable) atoms can behave either as fermions or
bosons, depending on their internal structure. For instance 4He (2 electrons, 2 neutrons, 2 protons)
behave as a boson. This is the boson used in Bose-Einstein condensate experiments. It is the most
common form of Helium.
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In the sequel, we denote by L2
a((Rd)N ) the set of antisymmetric function

L2
a((Rd)N ) :=

{
Ψ ∈ L2((Rd)N ),Ψ(xσ(1), · · · ,xσ(N)) = ε(σ)Ψ(x1, . . . ,xN )

}
and by L2

a((Rd)N ) the set of symmetric function

L2
s((Rd)N ) :=

{
Ψ ∈ L2((Rd)N ),Ψ(xσ(1), · · · ,xσ(N)) = Ψ(x1, . . . ,xN )

}
In the sequel, we look for the minimum quantum energy

Es/a(N) := min
{
〈Ψ,HΨ〉L2((Rd)N ), Ψ ∈ L2

s/a((R
d)N ), ‖Ψ‖L2((Rd)N ) = 1

}
,

when the states are restricted to be fermions or bosons. The corresponding minimiser are called ground
states.

4. Bosonic case

We assume in this section that our particles are bosons. We are therefore looking for the minimal
eigenvalue of H, on the vectorial space of symmetric functions. We assume in the sequel that

h := −1

2
∆ + V

is compact resolvent and bounded from below (say V (x) = |x|2). Let λ1 < λ2 < · · · be its eigenvalues
(we assume for simplicity that they are all distinct), and let u1, u2, . . . be a corresponding orthonormal
basis of eigenvectors.

Lemma 4.1. The family of functions
(ui1 ⊗ ui2 ⊗ uiN )(x1, · · · ,xN ) := ui1(x1)ui2(x2) . . . uiN (xN ), (i1, · · · , iN ) ∈ (N∗)N

form an orthonormal basis of L2((Rd)N ). In addition, we have
〈(uj1 ⊗ uj2 ⊗ ujN ),H(ui1 ⊗ ui2 ⊗ uiN )〉 = (λi1 + · · ·+ λiN )δi1j1 · · · δiN jN .

From this Lemma and the fact that λ1 is the smallest eigenvalue (we assume that λ1 < λ2), we directly
see that the minimum energy is

Es(N) = Nλ1,

and that the corresponding minimiser (or ground state) is

Ψs := ⊗Nu1, or Ψs(x1, · · · ,xN ) = u1(x1) · · ·u1(xN ).

In particular, the probability Px becomes

Px(x1, · · · ,xN ) = |u1|2(x1) · · · |u1|2(xN ).

This is the case of independent particles: the probability to find a particle at x does not depend on the
position of the other particles. This probability is simply given by the first eigenvector of −∆+ V .

5. Fermionic case

We now look at the fermionic case. Let Πa : L2((Rd)N ) → L2
a((Rd)N ) be the projector on antisymmetric

functions:
(ΠaΨ) (x1, · · · ,xN ) =

1

N !

∑
σ∈SN

ε(σ)Ψ(xσ(1), · · · ,xσ(N)),

and let
ui1 ∧ ui2 ∧ · · · ∧ uiN := (

√
N !)Πa (ui1 ⊗ ui2 ⊗ · · · ⊗ uiN ) ,

where the normalisation is chosen so that ‖ui1 ∧ · · · ∧ uin‖L2 = 1 or 0 (see later). This is also

ui1 ∧ ui2 ∧ · · · ∧ uiN =
1√
N !

∑
σ∈SN

ε(σ)ui1(xσ(1)) · · ·uiN (xσ(N)) =
1√
N !

det (uik(xj))1≤k,j≤N .
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Such states are sometimes called Slater determinant. If there is ik = il with k 6= l, then the corresponding
state satisfies ui1 ∧ ui2 ∧ · · · ∧ uiN = 0. Actually,

L2
a((Rd)N ) = Vect {ui1 ∧ ui2 ∧ · · · ∧ uiN , 1 ≤ i1 < i2 < · · · < iN} .

We deduce that the minimum Ea(N) is

Ea(N) = λ1 + λ2 + · · ·+ λN ,

and that the corresponding minimiser is

Ψa = u1 ∧ u2 ∧ · · · ∧ uN , or Ψa(x1, · · · ,xN ) =
1√
N !

det (ui(xj))1≤k,j≤N .

In quantum chemistry/physics, the functions uk are called orbitals. Two different fermions must occupy
two different orbitals. The fermionic ground-state corresponds to the case where the first N orbitals are
occupied.

The corresponding density is

Px(x1, · · · ,xN ) =

(
1√
N !

det (ui(xj))1≤i,j≤N

)2

.

We now compute the correlation functions for a point process with such law Px. In order to do so, we
need an important tool.

5.1. The one-body density matrix. We define the one-body density matrix γ(x,y) : Rd × Rd → C
with

γ(x,y) := N

ˆ
(Rd)N−1

Ψa(x,x2, · · · )Ψa(y,x2, · · · )dx2 . . . dxN .

Notice that ρ(1)(x) = γ(x,x). It turns out that γ has a simple expression.

Lemma 5.1. We have

γ(x,y) =

N∑
i=1

ui(x)ui(y).

Proof. We compute

γ(x,y) =
N

N !

∑
σ∈SN

∑
σ′∈SN

ε(σ)ε(σ)uσ(1)(x)uσ′(1)(y)×(ˆ
Rd

uσ(2)(x2)uσ′(2)(x2)dx2

)
· · ·
(ˆ

Rd

uσ(2)(xN )uσ′(2)(xN )dxN

)
.

By orthonormality of the functions, each integral is 0 is σ(i) 6= σ′(i), and is 1 else. We deduce that the
only non-null terms are the ones for which σ(2) = σ′(2), σ(3) = σ′(3) and so on. This implies σ = σ′. We
therefore obtain

γ(x,y) =
1

(N − 1)!

∑
σ∈SN

uσ(1)(x)uσ′(1)(y) =

N∑
i=1

ui(x)ui(y).

�

We can see γ(x,y) as the kernel of an operator γ acting on the one-particle space L2(Rd). The corre-
sponding operator corresponds to the orthogonal projection on Vect{u1, · · · , uN}, that is the projection
on the occupied orbitals. In particular, γ is a self-adjoint rank-N projector. It satisfies 0 ≤ γ ≤ 1.
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5.2. Correlation functions and the determinantal point process. From the previous expression
for γ, we directly deduce that

ρ(1)(x) =
N∑
i=1

|ui|2(x).

Actually, we can generalise this formula, for all correlation functions. We now compute the k-correlation
function ρ(k)(x). The main result of these notes is the following.
Proposition 5.2. We have

ρ(k)(x1, · · · ,xk) = det (γ(xi,xj))1≤i,j≤k .

Remark 5.3. Loosely speaking, the matrix γ(xi,xj) is the Gram matrix of γ is the basis (δxi)1≤i≤k. Since
γ is a positive operator, so is the corresponding Gram matrix, and the determinant is indeed positive.
Proof. By definition, we have,

ρ(k)(x1, · · · ,xk) =
1

(N − k)!

∑
σ∈SN

∑
σ′∈SN

ε(σ)ε(σ)uσ(1)(x1)uσ′(1)(x1) · · ·uσ(k)(xk)uσ′(k)(xk)×(ˆ
Rd

uσ(k+1)(xk+1)uσ′(k+1)(xk+1)dxk+1

)
· · ·
(ˆ

Rd

uσ(N)(xN )uσ′(2)(xN )dxN

)
.

Again, the integrals vanish whenever there is σ(j) 6= σ′(j) with j ≥ k+1. The remaining terms correspond
to the cases where Iσ = Iσ′ as sets, where Iσ := {σ(1), · · · , σ(k)}. Labelling the sum with the image
I = Iσ = Iσ′ = {i1 < · · · < ik}, we can see σ, σ′ as k-permutation on the image I, and get

ρ(k)(x1, · · · ,xk) =
∑

1≤i1<i2<···<ik<N

∑
σ∈Sk

∑
σ′∈Sk

ε(σ)ε(σ′)uiσ(1)
(x1)uiσ′(1)(x1) · · ·uiσ(k)

(xk)uiσ′(k)(xk)

=
∑

1≤i1<i2<···<ik<N

∑
σ∈Sk

∑
σ′∈Sk

ε(σ)ε(σ′)ui1(xσ(1))ui1(xσ′(1)) · · ·uiN (xσ(N))uiN (xσ′(N)),

where we make the change of variable σ → σ−1 and σ′ → (σ′)−1. By setting σ′′ = σ′σ−1, this is also

ρ(k)(x1, · · · ,xk) =
∑

1≤i1<i2<···<ik<N

∑
σ∈Sk

 ∑
σ′′∈Sk

ε(σ′′) ui1(xσ(1))ui1(xσ′′σ(1)) · · ·uiN (xσ(N))uiN (xσ′′σ(N))


=

∑
1≤i1<i2<···<ik<N

∑
σ∈Sk

det
(
uil(xσ(j))

)
1≤l,j≤k

.

We now notice that ∑
1≤i1<i2<···<iK≤N

=
1

k!

∑
1≤i1≤N

∑
1≤i2≤N

· · ·
∑

1≤ik≤N

,

since the terms ik = il cancel. Plugging in the previous expression, we deduce that

ρ(k)(x1, · · · ,xk) =
1

k!

∑
σ∈Sk

∑
σ′′∈Sk

ε(σ′′)

 ∑
1≤i1≤N

ui1(xσ(1))ui1(xσ′′σ(1))

 · · ·

 ∑
1≤ik≤N

uik(xσ(1))uik(xσ′′σ(1))


=

1

k!

∑
σ∈Sk

∑
σ′∈Sk

ε(σ′′)γ(xσ(1),xσ′′σ(1)) · · · γ(xσ(N),xσ′′σ(N))

=
k!

k!

∑
σ′′∈Sk

ε(σ′′)γ(x1,xσ′′(1)) · · · γ(xN ,xσ′′(N))

= det (γ(xi,xj))1≤i,j≤k .

�

Definition 5.4. A point process where the correlation functions are of the form of Proposition 5.2 is
called a determinantal point process.
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6. One example: the fermionic gas

We now focus on the example of the fermionic gas. We want to describe a infinite number of free
fermions in Rd with mean density ρ of particles. The density ρ ∈ R+ is the only parameter in the
model. In order to handle infinite number of particles, we perform a thermodynamic limit: We consider
N fermions in a torus of size L, denoted by LTd. The density in this case is NL−d. At the end, we take
the limit N → ∞ and L → ∞ with NL−d → ρ.

6.1. The Fermi wavevector. In our model, there is no external potential, and only the kinetic energy.
The energy per unit volume of the system is

E(L, V ) :=
1

Ld
min

{〈
Ψ,

(
N∑
i=1

−∆xi

)
Ψ

〉
, Ψ ∈ L2

a((LTd)N )

}
.

In Fourier space, we see that the eigenvalues of −∆ acting on L2(LTd) are (p/L)2 with p ∈ 2πZd, and
the corresponding eigenvector is

uLp(x) :=
ei

p
L
·x

Ld/2
=: ek(x) with k :=

p

L
.

The ground-state is the fermionic product of the functions uLp, where the product runs for all p with small
enough module. Up to some boundary effect, we have

ΨL
a (x) :=

∧
k∈B(0,kF )

k∈ 2π
L

Zd

ek.

The radius kF is chosen so that the density of the system converges to ρ at the limit. Actually, since
|ek| = 1, the density of the system is

∀x ∈ LTd, ρL(x) =
∑

k∈B(0,kF )

k∈ 2π
L

Zd

|ek(x)|2 =
1

Ld

∑
k∈ 2π

L
Zd

1 (k ≤ kF ) ,

which is independent of x ∈ Rd (as expected). We recognise a Riemann sum. At the limit L → ∞, we
therefore obtain

ρL −−−−→
L→∞

1

(2π)d

ˆ
Rd

1(k ≤ kF )dk =
1

(2π)d
|Sd−1|

d
kdF .

So we choose

kF = 2π

(
d

|Sd−1|

)1/d

ρ1/d.

The number kF is called the Fermi wave-vector, or Fermi momentum.

6.2. Energy of the system. The energy per unit volume of the system is

E(L,N) =
1

Ld

∑
k∈B(0,kF )

k∈ 2π
L

Zd

k2
1

Ld

∑
k∈B(0,kF )

k∈ 2π
L

Zd

k2 −−−−→
L→∞

1

(2π)d

ˆ
Rd

k21(k ≤ kF )dk =
1

(2π)d
|Sd−1|
d+ 2

kd+2
F .

In terms of the density, we obtain that the mean-energy of the fermionic gas is

E(ρ) = 4π2

(
d

|Sd−1|

)2/d |Sd−1|
d+ 2

ρ
d+2
d =: Cρ

d+2
d .

Remark 6.1. The energy is not linear with the density! If we double the number of electrons (we multiply
the density by 2), then is energy is multiplied by a factor 2

d+2
d > 2. For bosonic system, the energy would

scale linearly with the density.
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Remark 6.2. By minimality of Ψa, we proved that, for all Ψ ∈ L2
a((LTd)N ) with ‖Ψ‖L2((LTd)N ) = 1, we

have
N∑
i=1

‖∇xiΨ‖2L2((LTd)N ) ≥ CTF

ˆ
(LTd)

ρ
d+2
d

Ψ (x) with ρΨ := N |Ψ|2.

This type of inequality is called Lieb-Thirring inequality: the kinetic energy must be greater than some
non linear functional of the density.

6.3. One-body density matrix. We now compute the one-body density matrix γ(x,y). We have

γL(x,y) =
∑

k∈B(0,kF )

k∈ 2π
L

Zd

ek(x)ek(y) =
1

Ld

∑
k∈B(0,kF )

k∈ 2π
L

Zd

eik·(x−y) −−−−→
L→∞

1

(2π)d

ˆ
Rd

eik·(x−y)1(k < kF )dk.

The corresponding operator γ is the projector (of infinite dimension) that cuts high-frequencies, in the
sense that

γ̂f(k) = f̂(k)1(k ≤ kF ).

In dimension d = 1, the limit is (when d = 1, we have kF = πρ)

γ(x, y) :=

ˆ kF

−kF

eik(x−y)dk =
sin(πρ(x− y))

π(x− y)
.

This is sometimes called the sine kernel, or the Dyson sine kernel. Of course, we recover the fact that
γ(x, x) = ρ(x) = ρ.

This kernel is believed to be universal. This means that for any point process with some kind of
repulsion, the local behaviour of the points in a suitable limit are described by the previous determinantal
process with the Dyson sine kernel (the density ρ is given by the local density of the process in this case).
We refer to the blog of Terence Tao for a discussion [Tao12]

From the previous discussion, we deduce that the correlations functions ρ(k) of the infinite one-
dimensional fermionic gas is described by a determinantal point process of kernel γ(x, y). For instance,
the two-points correlation function is

ρ(2)(x, y) = det

(
γ(x, x) γ(x, y)
γ(y, x) γ(y, y)

)
= ρ(x)ρ(y)− |γ(x, y)|2 = ρ2

(
1−

(
sin(πρ(x− y))

πρ(x− y)

)2
)
.
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