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Some historical remarks.

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)! :
“Le kilogramme, symbole kg, est ['unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la
constante de Planck, h, égale a 6,626 07015 x 10734 J.s”

Question: How do you measure h? How do you measure h with 10~9 accuracy?
Comments by von Klitzing?: ” The discovery of the QHE led to a new type of electrical resistor [...]. This
resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one

part in 1010.”

QHE = Quantum Hall Effect? (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).
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"https://www.bipm.org/fr/measurement-units/
2von Klitzing, Nature Physics 13, 2017
3K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.



https://www.bipm.org/fr/measurement-units/

Modern interpretation: The plateaus correspond to different topological phases of matter*, and the QHE is
a manifestation of bulk-edge correspondence:

“For some systems, one can associate an edge index I ¥ € Z, and a bulk index I € Z, and one has

(bulk-edge correspondence).
These indices are «topological», hence are stable with respect to temperature, noise, deformation, ...”

The Planck constant h is related to I, while the electrical resistor by von Klitzing measures It

The Rossby Waves (wind) might be a manifestation of bulk-edge correspondence (Tauber/Delplace/Venaille, J.
Fluid Mech. Vol 868 (2019). )
In this talk: not about QH/2d. Here, a simple 1d model where bulk-edge correspondence happens.

4D.J. Thouless, F.D.M. Haldane and J.M. Kosterlitz got Nobel prize in 2016 for the discovery of topological phases of matter

ODE for



Goal: (simple) introduction to bulk-edge correspondence.

Motivation
Let V : R — R be a 1-periodic smooth potential, and let Vi (z) := V(z — ). We consider

@ The periodic (bulk) operator
H(t) := -8, + V;.

@ The dislocated operator
H () = =07, + Vox + V(1 = )],

where x is a cut-off with x(z) = 1ifz < —L and x(z) = 0ifz > L.

Vox + V{1l —x)

Question: How does the spectrum of Hi (t) vary with ¢?
Remark: Everything is 1-periodic in ¢.
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Figure: Spectrum of Hi (t) fort € [0, 1].

Theorem (I\'orotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1.
In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

= edge states
We provide here a simple topological proof, which will prove bulk-edge correspondence in this case.

E. Korotyaev, Commun. Math. Phys., 213(2):471-489, 2000.

R. Hempel and M. Kohlmann., J. Math. Anal. Appl., 381(1):166-178, 2011.




Periodic operators
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Preliminaries.
Potential: Let V € C'1 (R, R) be any potential (not necessarily 1-periodic).

Hamiltonian: H := —02, + V as an operator on L2(R).

Associated ODE: —u"" +V(z)u=FEu, on R.

Vector space of solutions: Let Ly (E) denote the vectorial space of solutions of the ODE.
Since it is a second order ODE, dim Ly (E) = 2, and

—ct +Veg = Ecg {s’é+VsE:EsE

Lv(E) = Ran{ep, sp}, {cE(O) =1, ¢(0) =0 s5(0) =0, §/,(0) = 1

Lemma (definition?)

E € R is an eigenvalue of H iff Ly (E) N L? # 0.

Transfer matrix

e = (0 56

Forallz € R, we have det T (z) = 1

Indeed, det T is the Wronskian of the ODE. At z = 0, we have T (0) = Iz, and

(det Tg) = (cEsb - sEc'E)/ =cpsh — spch =cg(V — E)sg — sg(V — E)cg = 0.
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Case of periodic potentials.
We now assume that V' is 1-periodic.
If u(x) is solution to the ODE, then so is u(- + 1). In particular there are constants «, 3, 7, § such that

orequivalently Tg(z+1) = (g g) Te(x).

ce(z+1) = acg(z) + Bse(x)
sg(z+1) =~vcg(z) + dsg(x).

At = 0, we recognise Tg(xz = 1), so‘ Te(x+1)=Te(1)Te(z) ‘

So for any solution u € L, we have

(s ) = e (40).

= The behaviour of solutions at infinity is given by the singular values of T (1).

Recall that if A1 and A2 are the singular values of T (1), then Ay A2 = det Tg(1) = 1.
Also, A1 + Ao = TI‘(TE) cR.
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Two cases.
o if [A\1| > 1, then |[A2]| < 1. Then A1, A2 € Rand| |Tx(TE)| > 2|

There is one mode exponentially increasing at 400 and exponentially decreasing at —oo.
There is one mode exponentially increasing at —oo and exponentially decreasing at 4-oc.
The elements of £ g cannot be approximated in L2, which implies E ¢ o(H).

o if [A\1] = 1, the [A2| = 1. Then [A\1| = 1, A2 = A1 and | | T (TE)| < 2|

All solutions in L5 are bounded (quasi-periodic).
All solutions in £ can be approximated in L2, which implies E € 0ess(H).

The spectrum of H can be read from the (continuous) map E — Tr(Tg).

Example: for V(z) := 50 - cos(2wz) + 10 - cos(4mz),

o(H)

Tr(Te)

in ODE for dislocations
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Theorem (Spectrum of 1-dimensional periodic operators)

IfV is 1-periodic, the spectrum H := —92, + V (x) is purely essential (no eigenvalues).
It is composed of bands:
o(H) = oess(H) = U [E,,Ef]
n>1

Essential gap: The interval g,, := (E;LL, E, ) is called the n-th essential gap of the operator H.
Physical interpretation:

o If E € o(H), waves with energy E can travel through the medium (quasi-periodic solutions);
o If E ¢ o(H), waves cannot propagate: they are exponentially attenuated in the medium. In
scattering theory, we would say that the wave is totally reflected.
Example: If V = 0, then H = —92,. We have —u"' = Eu ifu = 0eiVE 4 Be—iVE,
e IfE > 0,VE € R, and we have travelling waves;
e If E < 0,VE € iR, and we have exponential waves.

@ The spectrum of —92, is [0, co).
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A basic remark
If —02,u + (V — E)u = 0 is a non null real-valued solution, then u(x) and u’(x) cannot vanish at the
same time (Cauchy-Lipschitz).

We can therefore define the discrete set Z[u] := u~1({0}), and the map

u/(z) — iu(z)

from R to S* == C,lz| =1}
(@) T i) rom R to {z € C, || 1

z > Olu,z] :=

—

-
S5

iR
R

Z[u] and O[u, x] only depends on Vect{u}: O[u, zo] = [v, zo] iff u = Av.

In the sequel, we fix ¢, consider a periodic family of solutions u; for H¢, and compute the
winding number of t — 0[u¢, xo].
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The Maslov® bulk index.

Translated Hamiltonian: We now fix V' € C? a 1-periodic potential, and we set:
Vi(z) :=V(z —t), Li(E):=Ly,(E), and H:=-8%, +Vi.

Translations: If 7¢ f(x) := f(x — t), we have Hy = 7 Ho7/", so Hy is unitary equivalent to Hg.
= o(H¢t) = o(H). In particular, the gaps g, are independent of t € R.

We fix E € gy, in a common open gap.
Splitting of Ly (E). Since E ¢ o (Hy), there is a natural splitting £¢(E) = L] (E) ® L] (E), where
L}(E) = Vect{modes exp. decreasing at £oo}, dim Eti (B)=1, Lf(E)nL;(E)={0}.

Remark: The map ¢ — E;t (E) is 1-periodic, so the map ¢ +— 6 [,C?: (E), a:] is also 1-periodic on S.

Winding number: We denote by M= the corresponding winding numbers. By continuity, they are
independent of E € gy, and of z € R.

M+ = M~. The common number is our bulk index (it is a Maslov index).

9+
Proof. Since L1 # L7, we have 9t+ # 0, ,s0 9% € S never touches 1, hence has null winding number.

t
This gives MT — M~ = 0.

5Maslov, Théorie des perturbations et méthodes asymptotiques. 1972
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M counts the flow of the discrete set Z; across any xg € R.

Proof. Fix xg € R.

Step 1. We can compute the winding number of 8¢ (z0) := 0[L; (z0)] by counting the number of times
it crosses the value 1 € S! (with orientation).

Step 2. We have 0;« (xg) = Liff u(t*,z0) = 0iff zg € Zy.
Let z(¢) € Z; be the branch of zeros of u(t, -) such that z(t*) = xo, that is u(¢, x(t)) = 0.
By the implicit theorem,

t*
x/(t*):—atu( ?xo).
Ogu(t*, o)
On the other hand, a computation shows that
. 8tu(t* ;130) .
O(t*, x0) = —21 ———"L = i’ (t*).
6 0) Ozu(t*, o) )

Att = t*, 0(t, zo) is locally turning positively iff 2’ (t*) is crossing xo from the left to the right!

David Gontier in ODE for dislocations



Bonus, in the dislocated case.

In the case Vi (z) := V (z — t), we have M = n in the n-th gap.

Proof.
Step 1. In this case, we have Z; := Zy + t. By periodicity, we have Z1 = Z9 + 1 = Zj.
If zo € Zo, then zg +1 € Zg. In particular, (E, ut=0|[z,,z+1]) is an eigenpair of the Dirichlet problem

(—8395 + V(Z‘)) u = Fu, on ($0,$0 —+ 1)
u(zo) = u(xo +1) = 0.

The flow M corresponds to the number of zeros of w in the interval [xg, 2o + 1).
Step 2 (deformation). For 0 < s < 1, we introduce (E(s), us) the Dirichlet eigenpair of

(_621 + SV(:C)) us; = Esus, on (wo,z0+ 1)
us(ro) = us(xo + 1) = 0.

which is a continuation of (E, u) at s = 1, and by M the number of zeros of us in the interval
[QC()7 xo + 1).

By continuity, F/(s) cannot cross the essential spectrum, so E(s) is always in the n-th gap.

By Cauchy-Lipschitz, two zeros cannot merge, so M is independent of s, and M = M_;.

At s = 0, we recover the usual Laplacian.

We deduce that E(s) is the branch of n-th eigenvalues, and that M = n.
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Edge index and edge modes
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The half-line Dirichlet Hamiltonian.

HuD (t) :=—8%, + V(x —t),| onRT with Dirichlet boundary conditions at & = 0.

Essential spectrum: We have UeSS(HﬁD (t)) = oess(Ho) independent of t. So gp, is well-defined.
Key remark: E is an eigenvalue of Hlﬁj(t) iff 0 € Z;'_ (E).

If E € gn is in the n-th gap, there are exactly n values0 < t1 < tg--- < tn < 1 such that E is an
eigenvalue oleﬁj (tr)-
The corresponding eigenfunctions (= edge modes) are exponentially localised near x = 0.

Corollary: spectral pollution

If one numerically studies the periodic Hamiltonian H(0) on a large box with Dirichlet boundary
conditions, spurious eigenvalues will appear.

On a box [t, L + t] with L large, there will be flows of spurious eigenvalues in all essential gaps,
corresponding to the localised edge modes near the boundaries ¢ and L + ¢.
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Figure: Spectrum of H?D(t) as a function of ¢ (the dotted lines represent resonances).

Theorem (Bulk-edge correspondence)

The branches of eigenvalues are decreasing function of t.
In particular, in the n-th gap, the decreasing spectral flow of H ﬁD () is Slu:, n ="
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Idea of the proof.
If <E(t), ﬂ(t)) is a branch of eigenpair for H(t) with ||t ||2 = 1. We have H(t)@(t) = E(t), and
E(t) = (u(t), H(t)u(t)). Differentiating in t gives (Hellman-Feynman argument)
E/(t) = (iie, O Heie) + (et Heie) + (i, Heyir)
= (@, (8:Va) @) + E(t) ((0eth, Gr) + (G, Optiz)) = / (CABICARES
0

=0 ||ut|2=0

On the other hand, if u(t) is a branch of functions in £;" (E) (E is fixed now), then
(=02, + Vi — B)uy = 0.
These functions do not satisfy Dirichlet in general! Differentiating in ¢ gives
(=02, + Vi — B)oyus + (8:Vi) ur = 0.

We multiply by u; and integrate on RT. We integrate by part and obtain (now we have boundary terms)
oo
/ (0t Vi) Jug|? = Bput (0)dut (0).
0

Of course, at the point ¢, we have u; = Uy. In the special case where V;(z) = V(z — t) so that
ut(z) = u(x — t), we obtain
E,(t) = —|8tut\2(0) < 0.

The proof relies on integration by parts.
In some sense, this is a form of bulk-edge correspondence.
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The case of dislocation.

| ) 1= =02, + x(2)Vo(a) + [1 = x(@)] Vi(a) =5 —02, + VE(0).

Here, x is a switch function: x(z) = 1ifx < —L and x(z) =0ifz > L.

Remarks: @ At t = 0, we recover Hg, which has purely essential spectrum.
e {1+ H(t)is 1-periodicin t.
Fact: @ Oegs (Hf( (t)) is independent of ¢, so the essential gaps gy, are well-defined.

The decreasing spectral flow of H,ﬁ< () is S;i(,n = n in the n-th gap gn,.
It is independent of the switch function x.

Idea of the proof.
Let [Zf’i (E) be the vectorial space of solutions which are square integrable at +oc.
Key remark: E is an eigenvalue for Hi (¢) iff E§’+(E) n ,Cg’i(E) # {0}, iff 0%+ (zg,t) = 0%~ (20, t).
Looking at & > L, we see that L§’+(E) ~ LT (E), so ME+ = M.
Looking at < L, we see that Lg’_ (E) ~ L (E), so M*~ = 0 (independent of t).
Gu’+($0, t)

We deduce that the winding is ———= is
0%~ (zo,1)

MEF — MET = MT —0=n.

Hence it crosses the value 1 € S! exactly n times (with orientation).
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Figure: Spectrum of Hf( (t) fort € [0, 1].

Remark: The spectral flow is independent of x, but the form of the eigenvalue branches depends on .
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Extensions
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The Dirac case.
The Dirac equation is an ODE with values in C2 (spins), of the form

(20 = (o ") ()2 ()

Lemma ( Fefferman/Lee-Thorp/Weinstein, AMS Vol. 247 (2017).)

If V' switches from Vper atx < —L to —Vper atx > L, then 0 is in the spectrum of the Dirac operator.
= «Topologically protected state».

Idea: embed the O eigenvalue in a spectral flow!
Replace the group of translations with the group of spin rotations: family of operators Di (t):
. # _ 0 1 _ sin(2wt)  cos(2mt)
Consider V¢ (t,z) = x(z)Vper () (1 0) + (1 — x(2))Vper () (Cos(27rt) — sin(2nt)

Remark: at t = 3, this is a transition from Vper to —Vper.

1
2
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Lemma (DG, 2020)

The decreasing spectral flow is 1 in each essential gap, and Di(% —t) = —Di(% + ).
In particular, 0 is an eigenvalue att = 1/2 (= previous result).

0.0 02 04 06 08 10
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Future work: the 2d case

o Study dislocations in 2d. Similar results, but in infinite dimensions.

@ Study dislocations + rotations in 2d.

Reference:
Edge states in Ordinary Differential Equations for dislocations, D.G., ). Math. Phys. 61, 2020 (arXiv 1908.01377).

Thank you for your attention!
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