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Lieb-Thirring inequality




Let v > O satisfy
v > 1 in dimension d =1,
¥>0 in dimension d = 2,
v>0 in dimension d = 3.

d
There exists (an optimal -smallest- constant) L., 4 > 0 so that, for all V € L7t 2 (R?)

Z An(=A+V)|7 < L%d/ V_ (x)'H'%dx. (Lieb-Thirring inequality)
n=1 R4

where Ay, is the n-th min-max eigenvalue of —A + V if exists, O otherwise (A, < 0), and where
V_ := max{0, —V}.
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Let v > O satisfy

v > % in dimension d =1,
v>0 in dimension d = 2,
¥>0 in dimension d = 3.

d
There exists (an optimal -smallest- constant) L., 4 > 0 so that, forall V' € Ltz (R%)

o o]
Z An(=A+ V)" < L,gq / V_ (x)7+%dm. (Lieb-Thirring inequality)
JRA

n=1

where A, is the n-th min-max eigenvalue of —A + V' if exists, 0 otherwise (A, < 0), and where
V_ :=max{0,-V}.

First remarks:
@ If v = 0 (CLR), bound the number of negative eigenvalues.
@ The right-hand side is extensive.

@ Invariant by translations, and by scaling V +— t2V/ (tx).

In this presentation, we study the «optimisers» of the Lieb-Thirring inequality.
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Two important regimes
The N-bound state case. We have L., 4 > L(Z\;), where L(AQ is the best constant in the inequality

Z|/\n A+V)W<L<V>/ V(274
n=1
Example (the N = 1 case). Lilll = sup max [{u, ( + V)u)|

d ueHL(RD) ’Y+2
ver ™2 ju ,=1 Joa V.

Switching the sup/max, and optimising first in V' gives the usual Gagliardo-Niremberg inequality

1/mpd GN Tt e d)p1+d d\’
vue HURY, KON [ul 70 0 < IVullpa g lull 5000 p=(v+5)-

d
The semi-classical case. Forall V € L7132 (Rd), in the limit & — 0,

1(|p|? + V()" dpdz = L vits
(P + V) Ldpdo = 135, [ V27,

(R)2

> h
S (A + V() ~ ——
= (2r

with

1
L3y = — 2 —1)7dp.
v,d (27r)d /]Rd(lp‘ )7dp

Facts: L., 4 = lim 1 LEYJ,\;) and L g4 > max{L(lel7 Lse }

Lieb-Thirring (first) conjecture: L,de; max{L,(Y 317 chd}

LT conjecture: The optimal scenario is either the one-bound state, or the semi-classical one = fluid phase.
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Known facts about Lieb-Thirring
o v L%d/Lffd is decreasing (Aizenmann-Lieb, 1978), and > 1.
For d < 8, there is a unique point vc(d) > Osothat Ly g = L%, iff v > ve(d).

@ vy LE,I,L/L—SyC,d is decreasing, and cross 1 at a unique point y1nsc(d) if d < 8.
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Figure: The curves LE{{;/L?{C@ as a function of v, for d = 2 (red) to d = 8 (brown).

d 1 2 3 4 5 6 7 d>8
Yinse(d) | =3/2 1.1654 0.8627 0.5973 0.3740 0.1970 0.0683  no crossing

@ v > 3/2is semi-classical: Lyg= Li‘jd for all v > % (Lieb-Thirring 1976 (d = 1), Laptev-Weidl 2000 (all d)).
@ v =1/2indimension1. L1 ; = L(ll)1 (Weidl, 1996).

2 bR
@ v < lis not semi-classical. Forally <1, L, 4 > Lfﬁd (Hellfer-Robert, 2010).
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Theorem (R.L. Frank, DG, M.Lewin, 2020)
For all

3/2 in dimension d =1
d 1 in dimension d = 2
¥ > max<0,2 -~ ¢ = L .
2 1/2 in dimension d =

0 in dimension d > 4,

we have Lffll > LEYIL. In particular, the one bound state scenario is not optimal.

If in addition, v > 1, we have L., 4 > L,(Y]L) for all N: the N -th bound state scenario is not optimal.

In dimension d = 2, for all v € (1, 1.1654], the «optimal» potential V' has an infinity of bound states,
but is not semi-classical ( = Crystallisation).
Current knowledge in low dimensions:

0 1/2 1 3/2

one-bound state

not semirclassical |_semi-classical
d=1 - 1 Y
Conjecture: ohe-bound state
Ye € (1.1654,3/2]
1 L semi-classical
d=2 ] Cclassi -~ v
not semi-classical not sc, not N
«crystallisation»
Ye €[1,3/2]
| | semi-classical
d= Y

not semi-classical notsc,not1 1
Conjecture: 7. =1
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Idea of the proof
Fact: There is an optimal potential V' for

Letp:= (v + g)’ and @ be the (unique) radial decreasing solution to (Gagliardo-Niremberg)

(1)
L%d'

—AQ—-Q* 1 =_Q, andset m:= / Q2. (*)
R4
Then V = —Q2(—1) is an optimiser for L,(Yl()i Actually,
M(—A+V)=-1, and V’Y+% = Q%, so LM = o
1 =—-1 Joa = = Jpa ) vl = Ton o

Idea: Consider the test potential

V() :=— (Q%(x) + Q% (:E))p_1 .| where Q+(z):=Q (x + gel) .

We add the densities, not the potentials! See [Gontier, Lewin, Nazar, 2020] for similar ideas in NLS.

We have _
@ o = A+ V)7 + Xa(-A+ V)|

e Jra Vpts

Remark: Q(z) ~ C|z|~ el forz large. The «interaction» between the two bubbles is
exponentially small. All quantities are expressed with

A:= A(R) := é /Rd Q% +Q%)" - QP -Q* >0, since p>1.

Key Remark: Evaluating around 0, we obtain that A(R) > cst - e PIEl . R=(d=1),
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Computation of the numerator
We can bound from below the numerator by looking at (—A + V') projected on Ran{Q+, @ }. We find

~ ~ 2 .
M (A + V) + DA+ D)1 22+ LA+ O 2F) .
m N——
=o(A) if p<2

Computation of the denominator
Sincep = (v + %)’, we get

vtE 2 2\p _ 2
Lt = [ @@ty 2] @vs2a

Estimate. This gives, if p < 2, i.e. if y > 2 — %, that

2> Ly M ) AtoA)].
i 2 T o + (7 Q% +o(A)
———

_r (1)
=Ly
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Computation of the numerator
We can bound from below the numerator by looking at (—A + V') projected on Ran{Q+, @ }. We find

~ ~ 2 .
M (A + V) + DA+ D)1 22+ LA+ O 2F) .
m N——
=o(A) if p<2

Computation of the denominator
Sincep = (v + %)’, we get

vtE 2 2\p _ 2
Lt = [ @@ty 2] @vs2a

Estimate. This gives, if p < 2, i.e. if y > 2 — %, that

(2) 1 m
L >——[1+|7v———|A4+04)]|.
v,d jmd Q2p < ( ‘[L{'i Q2p> ( )>
———
=
Pozhoev’s identities. [(*) X @ and [(*) X - VQ give

fRd |VQ|2 - fRd QQP = - fle Q2 =—-m, hich i li m Y >0
whnich implies Y= 5 - .
(% _ 1) f]Rd |VQ|2 _ % f]Rd Q2p — 7%m’ p ! f]:d QQp pm =
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Periodic Lieb-Thirring




Facts:
o If v > ~.(d), the «optimal» V is the semi-classical case V' = cst.
o If v > 1, the «optimal» V must have infinitely many bound states.
Idea: Study the periodic Lieb-Thirring inequality.

d
Let ~y be as before. Then, for all periodic V' € AN (RY), we have

loc

T (-a+V)7) < L%d][V_ﬁ%.

with the same best constant L q. In addition, V' = cst < 0 is an optimiser iff Ly .q = L’ ;.

Here, if £ is any periodic lattice of V, with cell I, then
Trace per unit volume:

1
Tr ((*A + V)l) = Lh_)moo T Tr 2 gay (LLr(—=A + V) lLr).

Integral per unit volume:
]l.V”% = lim —— [ vtE = i/ vt
- L—oo ‘LF‘ r |F| r
Conjecture: We have

o either thereis N € Nand Vi € L+ 2 (R?%) so that L., 4 = L(N) with optimal potential Viy;

@orl, > LE/ ) for all N € N, in which case there is periodic optimiser. This minimiser can be
constant (L = L*°) or not (crystallisation).
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The case v = 3/2 in dimension d = 1.

In the original article by Lieb-Thirring 1976, they proved

Y CO NP ¢ _3
Lgjzn = L3/2,1 - L3/2,1 = gc/z,l ~ 16

Idea of the proof. Consider the Korteweg-de-Vries equation in W = W (¢, ) defined by

W = 6Wa,W — 32, W, W(t=0,z)=V(z).

rrx )

Then,
@ the norm fR W2 is independent of ¢ (here, 2 = 3/2 + 1/2 = vy + %);

o the general KdV theory shows that the profile of W splits into non-interacting bubbles (= solitons) as
t — o0;
In addition, each soliton must be of the form
—2c2
Vi(z) i= ————.
1@ cosh?(cx)

@ the spectrum of —A + W (¢, -) is independent of ¢ (Lax’ theory).

Can we have a periodic superposition of solitons?
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Theorem (R.L. Frank, DG, M. Lewin)
Forall0 < k < 1, the potential

‘ Vi (z) 1= 2k?sn (z]k)? — 1 — k2

. with minimal period 2K (k),

is an optimiser for the periodic problem aty = 3/2 and d = 1. Here, sn(-|k) is the Jacobi elliptic function,
and K (-) is the complete elliptic integral of the first kind. In addition,
=2,

lim V} =-1 d lim V] = — .
lim Vi (2) and - Jim Vi) = s

This potential is sometime called the periodic Lamé potential, or the cnoidal wave.
It interpolates between the semi-classical constant and the NV = 1 soliton.
The operator —A + V}, has a single negative Bloch band, and a spectral gap of size k2.

o k =0.20 k = 0.50 k =0.90 k=095

el

-2

-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

Figure: The potential V}, for some values of k.
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How to distinguish these solutions?
Recall that the inequality is invariant by scaling V +— 2V (tz).

Let {/; be the 1-periodic version of V.

1
~2
Fact: the map (0,1) 5 k — / Vi~ is increasing from 72 to co.
0

d
Idea: Study the problem at I’Y+g = ][V;YJr 2 fixed. Let £ be a lattice with unit cell |T'| = 1, and set

1 4
Ly g,c(Z) := —— sup {f e1(—Aq+V)dg, V € Lg:ﬁ (F),fV'H'g = I’V"'% } .
z7t3 B.Z.
@ B.Z.is the Brillouin zone, q is the Bloch quasi-momentum, —Ag := | — iV + ¢|? acts on L2(T);

@ we only consider the first band (variant with K bands possible), so
foaea i< (a4 1))
B.Z.

with equality iff —A + V" has a single negative Bloch band.

Remark: In the v = 3/2 and d = 1 case,
@ For Z < 72, the constant potential V' = —Z has a single negative Bloch band, so V' = —Z is an
optimiser (there is no spectral gap: semi-classical/fluid case, metallic system);
o At Z = 72, the second Bloch band of V = —T touches 0;
@ ForZ > w2,V = —T is no longer an optimiser. But there is 0 < k < 1, so that V;; is an optimiser
(there is a spectral gap of size k?: solid phase, insulating system).
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Numerical results in dimension d = 1
We plot v — Ly,1(Z)/L5, for different values of Z.

16
=2 1.03
15 — | =4
e 02
- 1.
1.4 =8
— =10
— =12 1.01
13 i
— =16
1.00
1.2 1=18
1=20
11 tinse | 099
1.0 0.98
0.9
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1.35 1.40 1.45 1.50 1.55 1.60 1.65
gamma gamma

@ All curves cross at v = 3/2, as expected.
e If Z < 72, the corresponding curve hits 1 (semi-classical) for some v < 3/2.
@ If v < 3/2, the curves are increasing with Z. The potentials concentrate as Z — oo.

Lieb-Thirring conjecture in dimensiond = 1: L 1 = Lgl)l optimisers are not periodic.
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Numerical results in dimension d = 2
We fix v = 1.1654 > v1nsc(d = 2), and plot Z — L. 2 £(Z)/ L5, for different lattices.

gamma = 1.1654

1.000010
— unsc - - -
— L/Lsc, Triangular

— LiiLsc, Square
— LilLsc, Hexagonal

1.000005
4 - - A

1.000000

0.999995 /\ . . . y

0.999990

0.999985

0 12 24 36 48 60 72 84 96 108

@ The black curve represents the value Lg{;/LfﬁQ, which is less than 1 since v = 1.1654 > vy1nsc(2).
@ For Z = 30, the triangular lattice gives a better bound than the fluid phase: crystallisation.

@ We need very precise computations: precision to the order 10~7.

@ We believe that the previous exponentially small attraction scenario indeed happens.

Triangular Square Hexagonal L,(yl)2
Critical ~y 1.165417 1.165395 1.165390 1.165378

Table: Critical values of ~ for different lattices.
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