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Let γ ≥ 0 satisfy 
γ ≥ 1

2
in dimension d = 1,

γ > 0 in dimension d = 2,

γ ≥ 0 in dimension d = 3.

There exists (an optimal -smallest- constant) Lγ,d > 0 so that, for all V ∈ Lγ+ d
2 (Rd)

∞∑
n=1

|λn(−∆+ V )|γ ≤ Lγ,d

ˆ
Rd

V−(x)γ+
d
2 dx. (Lieb-Thirring inequality)

where λn is the n-th min-max eigenvalue of −∆+ V if exists, 0 otherwise (λn ≤ 0), and where
V− := max{0,−V }.
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n=1

|λn(−∆+ V )|γ ≤ Lγ,d

ˆ
Rd

V−(x)γ+
d
2 dx. (Lieb-Thirring inequality)

where λn is the n-th min-max eigenvalue of −∆+ V if exists, 0 otherwise (λn ≤ 0), and where
V− := max{0,−V }.

First remarks:
If γ = 0 (CLR), bound the number of negative eigenvalues.

The right-hand side is extensive.
Invariant by translations, and by scaling V 7→ t2V (tx).

In this presentation, we study the «optimisers» of the Lieb-Thirring inequality.
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Two important regimes
The N-bound state case. We have Lγ,d ≥ L

(N)
γ,d , where L(N)

γ,d is the best constant in the inequality

N∑
n=1

|λn(−∆+ V )|γ ≤ L
(N)
γ,d

ˆ
Rd

V−(x)γ+
d
2 .

Example (the N = 1 case). L
(1)
γ,d := sup

V ∈L
γ+ d

2

max
u∈H1(Rd)
‖u‖

L2=1

− |〈u, (−∆+ V )u〉|γ
´
Rd V

γ+ d
2

−

.

Switching the sup/max, and optimising first in V gives the usual Gagliardo-Niremberg inequality

∀u ∈ H1(Rd), KGN
p,d ‖u‖

2
d(p−1)

L2p(Rd)
≤ ‖∇u‖L2(Rd)‖u‖

(2−d)p+d
d(p−1)

L2(Rd)
, p =

(
γ +

d

2

)′
.

The semi-classical case. For all V ∈ Lγ+ d
2 (Rd), in the limit ~ → 0,

∞∑
n=1

|λn(−∆+ V (~·)|γ ≈
~d

(2π)d

¨
(Rd)2

1(|p|2 + V (x))γ−dpdx = Lsc
γ,d

ˆ
Rd

V
γ+ d

2
− ,

with

Lsc
γ,d :=

1

(2π)d

ˆ
Rd

(|p|2 − 1)γdp.

Facts: Lγ,d = lim ↑ L
(N)
γ,d and Lγ,d ≥ max{L(1)

γ,d, L
sc
γ,d}.

Lieb-Thirring (first) conjecture: Lγ,d
?
=max{L(1)

γ,d, L
sc
γ,d}.

LT conjecture: The optimal scenario is either the one-bound state, or the semi-classical one = fluid phase.
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Known facts about Lieb-Thirring
γ 7→ Lγ,d/L

sc
γ,d is decreasing (Aizenmann-Lieb, 1978), and ≥ 1.

For d ≤ 8, there is a unique point γc(d) > 0 so that Lγ,d = Lsc
γ,d iff γ ≥ γc(d).

γ 7→ L
(1)
γ,d/L

sc
γ,d is decreasing, and cross 1 at a unique point γ1∩sc(d) if d ≤ 8.
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Figure: The curves L(1)
γ,d/L

sc
γ,d as a function of γ, for d = 2 (red) to d = 8 (brown).

d 1 2 3 4 5 6 7 d ≥ 8
γ1∩sc(d) = 3/2 1.1654 0.8627 0.5973 0.3740 0.1970 0.0683 no crossing

γ ≥ 3/2 is semi-classical: Lγ,d = Lsc
γ,d for all γ ≥ 3

2
. (Lieb-Thirring 1976 (d = 1), Laptev-Weidl 2000 (all d)).

γ = 1/2 in dimension 1. L 1
2
,1 = L

(1)
1
2
,1

(Weidl, 1996).

γ < 1 is not semi-classical. For all γ < 1, Lγ,d > Lsc
γ,d (Hellfer-Robert, 2010).
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Theorem (R.L. Frank, DG, M.Lewin, 2020)
For all

γ > max

{
0, 2−

d

2

}
=


3/2 in dimension d = 1

1 in dimension d = 2

1/2 in dimension d = 3

0 in dimension d > 4,

we have L(2)
γ,d > L

(1)
γ,d. In particular, the one bound state scenario is not optimal.

If in addition, γ > 1, we have Lγ,d > L
(N)
γ,d for all N : theN -th bound state scenario is not optimal.

In dimension d = 2, for all γ ∈ (1, 1.1654], the «optimal» potential V has an infinity of bound states,
but is not semi-classical ( = Crystallisation).
Current knowledge in low dimensions:

d = 1 γ

0 1/2

one-bound state
1 3/2

semi-classicalnot semi-classical
Conjecture: one-bound state

d = 2 γ

γc ∈ (1.1654, 3/2]
semi-classical

not semi-classical not sc, not N
«crystallisation»

d = 3 γ

γc ∈ [1, 3/2]
semi-classical

not sc, not 1not semi-classical Conjecture: γc = 1

David Gontier Cristallisation in the LT 6 / 15



Idea of the proof
Fact: There is an optimal potential V for L(1)

γ,d.

Let p := (γ + d
2
)′ and Q be the (unique) radial decreasing solution to (Gagliardo-Niremberg)

−∆Q−Q2p−1 = −Q, and set m :=

ˆ
Rd

Q2. (∗)

Then V = −Q2(p−1) is an optimiser for L(1)
γ,d. Actually,

λ1(−∆+ V ) = −1, and
ˆ
Rd

V
γ+ d

2
− =

ˆ
Rd

Q2p, so L
(1)
γ,d =

1´
Rd Q2p

.

Idea: Consider the test potential

Ṽ (x) := −
(
Q2

+(x) +Q2
−(x)

)p−1
, where Q±(x) := Q

(
x±

R

2
e1

)
.

We add the densities, not the potentials! See [Gontier, Lewin, Nazar, 2020] for similar ideas in NLS.
We have

L
(2)
γ,d ≥

|λ1(−∆+ Ṽ )|γ + |λ2(−∆+ Ṽ )|γ´
Rd |Ṽ |γ+

d
2

.

Remark: Q(x) ≈ C|x|−
d−1
2 e−|x| for x large. The «interaction» between the two bubbles is

exponentially small. All quantities are expressed with

A := A(R) :=
1

2

ˆ
Rd

(
Q2

+ +Q2
−
)p −Q2p

+ −Q2p
− ≥ 0, since p ≥ 1.

Key Remark: Evaluating around 0, we obtain that A(R) ≥ cst · e−p|R| ·R−(d−1).
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Computation of the numerator
We can bound from below the numerator by looking at (−∆+ Ṽ ) projected on Ran{Q+, Q−}. We find

|λ1(−∆+ Ṽ )|γ + |λ2(−∆+ Ṽ )|γ ≥ 2 +
2γ

m
A+ O(e−2R)︸ ︷︷ ︸

=o(A) if p<2

.

Computation of the denominator
Since p = (γ + d

2
)′, we get

ˆ
Rd

|Ṽ |γ+
d
2 =

ˆ
Rd

(Q2
+ +Q2

−)p = 2

ˆ
Rd

Q2p + 2A.

Estimate. This gives, if p < 2, i.e. if γ ≥ 2− d
2
, that

L
(2)
γ,d ≥

1´
Rd Q2p︸ ︷︷ ︸
=L

(1)
γ,d

(
1 +

(
γ −

m´
Rd Q2p

)
A+ o(A)

)
.

Pozhoev’s identities.
´
(∗)×Q and

´
(∗)× x · ∇Q give{´

Rd |∇Q|2 −
´
Rd Q2p = −

´
Rd Q2 = −m,(

d
2
− 1
) ´

Rd |∇Q|2 − d
2p

´
Rd Q2p = − d

2
m,

which implies

(
γ −

m´
Rd Q2p

)
=

γ

pm
≥ 0.
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Periodic Lieb-Thirring
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Facts:
If γ ≥ γc(d), the «optimal» V is the semi-classical case V = cst.
If γ ≥ 1, the «optimal» V must have infinitely many bound states.

Idea: Study the periodic Lieb-Thirring inequality.

Lemma

Let γ be as before. Then, for all periodic V ∈ L
γ+ d

2
loc (Rd), we have

Tr
(
(−∆+ V )γ−

)
≤ Lγ,d

 
V

γ+ d
2

− .

with the same best constant Lγ,d. In addition, V = cst < 0 is an optimiser iff Lγ,d = Lsc
γ,d.

Here, if L is any periodic lattice of V , with cell Γ, then
Trace per unit volume:

Tr
(
(−∆+ V )γ−

)
:= lim

L→∞

1

|LΓ|
TrL2(Rd) (1LΓ(−∆+ V )γ1LΓ) .

Integral per unit volume: 
V

γ+ d
2

− := lim
L→∞

1

|LΓ|

ˆ
LΓ

V
γ+ d

2
− =

1

|Γ|

ˆ
Γ
V

γ+ d
2

− .

Conjecture: We have

either there is N ∈ N and VN ∈ Lγ+ d
2 (Rd) so that Lγ,d = L

(N)
γ,d , with optimal potential VN ;

or Lγ,d > L
(N)
γ,d for all N ∈ N, in which case there is periodic optimiser. This minimiser can be

constant (L = Lsc) or not (crystallisation).
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The case γ = 3/2 in dimension d = 1.
In the original article by Lieb-Thirring 1976, they proved

L3/2,1 = L
(1)
3/2,1

= L
(N)
3/2,1

= Lsc
3/2,1 =

3

16
.

Idea of the proof. Consider the Korteweg-de-Vries equation in W = W (t, x) defined by

∂tW := 6W∂xW − ∂3
xxxW, W (t = 0, x) = V (x).

Then,

the norm
´
R W 2 is independent of t (here, 2 = 3/2 + 1/2 = γ + d

2
);

the general KdV theory shows that the profile of W splits into non-interacting bubbles (= solitons) as
t → ∞;
In addition, each soliton must be of the form

V1(x) :=
−2c2

cosh2(cx)
.

the spectrum of −∆+W (t, ·) is independent of t (Lax’ theory).

Can we have a periodic superposition of solitons?
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Theorem (R.L. Frank, DG, M. Lewin)
For all 0 < k < 1, the potential

Vk(x) := 2k2sn (x|k)2 − 1− k2 , with minimal period 2K(k),

is an optimiser for the periodic problem at γ = 3/2 and d = 1. Here, sn(·|k) is the Jacobi elliptic function,
and K(·) is the complete elliptic integral of the first kind. In addition,

lim
k→0

Vk(x) = −1 and lim
k→1

Vk(x) =
−2

cosh2(x)
.

This potential is sometime called the periodic Lamé potential, or the cnoidal wave.
It interpolates between the semi-classical constant and the N = 1 soliton.
The operator −∆+ Vk has a single negative Bloch band, and a spectral gap of size k2.

5.0 2.5 0.0 2.5 5.0
2

1

0
k = 0.20

5.0 2.5 0.0 2.5 5.0

k = 0.50

5.0 2.5 0.0 2.5 5.0

k = 0.90

5.0 2.5 0.0 2.5 5.0

k = 0.95

Figure: The potential Vk for some values of k.
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How to distinguish these solutions?
Recall that the inequality is invariant by scaling V 7→ t2V (tx).
Let Ṽk be the 1-periodic version of Vk .

Fact: the map (0, 1) 3 k 7→
ˆ 1

0
Ṽk

2
is increasing from π2 to ∞.

Idea: Study the problem at Iγ+ d
2 :=

 
V

γ+ d
2

− fixed. Let L be a lattice with unit cell |Γ| = 1, and set

Lγ,d,L(I) :=
1

Iγ+ d
2

sup

{ 
B.Z.

ε1(−∆q + V )γ−dq, V ∈ L
γ+ d

2
per (Γ),

 
V γ+ d

2 = Iγ+ d
2

}
.

B.Z. is the Brillouin zone, q is the Bloch quasi-momentum, −∆q := | − i∇+ q|2 acts on L2(Γ);

we only consider the first band (variant with K bands possible), so
 
B.Z.

ε1(−∆q + V )γ−dq ≤ Tr
(
(−∆+ V )γ−

)
with equality iff −∆+ V has a single negative Bloch band.

Remark: In the γ = 3/2 and d = 1 case,

For I ≤ π2, the constant potential V = −I has a single negative Bloch band, so V = −I is an
optimiser (there is no spectral gap: semi-classical/fluid case, metallic system);

At I = π2, the second Bloch band of V = −I touches 0;

For I > π2, V = −I is no longer an optimiser. But there is 0 < k < 1, so that Ṽk is an optimiser
(there is a spectral gap of size k2: solid phase, insulating system).
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Numerical results in dimension d = 1
We plot γ 7→ Lγ,1(I)/Lsc

γ,1 for different values of I .
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All curves cross at γ = 3/2, as expected.

If I < π2, the corresponding curve hits 1 (semi-classical) for some γ < 3/2.

If γ < 3/2, the curves are increasing with I . The potentials concentrate as I → ∞.

Lieb-Thirring conjecture in dimension d = 1: Lγ,1 = L
(1)
γ,1: optimisers are not periodic.

David Gontier Cristallisation in the LT 14 / 15



Numerical results in dimension d = 2
We fix γ = 1.1654 > γ1∩sc(d = 2), and plot I 7→ Lγ,2,L(I)/Lsc

γ,2 for different lattices.

40 60 80 100
I

0.999985

0.999990

0.999995

1.000000

1.000005

1.000010
gamma = 1.1654

L1/Lsc
L(I)/Lsc, Triangular
L(I)/Lsc, Square
L(I)/Lsc, Hexagonal

The black curve represents the value L(1)
γ,2/L

sc
γ,2, which is less than 1 since γ = 1.1654 > γ1∩sc(2).

For I ≈ 30, the triangular lattice gives a better bound than the fluid phase: crystallisation.
We need very precise computations: precision to the order 10−7.
We believe that the previous exponentially small attraction scenario indeed happens.

Triangular Square Hexagonal L
(1)
γ,2

Critical γ 1.165417 1.165395 1.165390 1.165378

Table: Critical values of γ for different lattices.
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