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Some historical remarks.

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)1 :
”Le kilogramme, symbole kg, est l’unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la
constante de Planck, h, égale à 6, 626 070 15× 10−34 J.s.”

Question: How do you measure h? How do you measure h with 10−9 accuracy?

Comments by von Klitzing2: ”The discovery of the QHE led to a new type of electrical resistor […]. This
resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one
part in 1010.”

QHE = Quantum Hall Effect3 (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

1https://www.bipm.org/fr/measurement-units/
2von Klitzing, Nature Physics 13, 2017
3K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494–497, 1980.
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Modern interpretation: The plateaus correspond to different topological phases of matter4, and the QHE is
a manifestation of bulk-edge correspondence.

”When some bulk systems are cut, edge modes must appear at the boundary. These modes are quan-
tized: we can associate a topological number to them.”

The Rossby Waves (wind) might be a manifestation of bulk-edge correspondence (Tauber/Delplace/Venaille, J.
Fluid Mech. Vol 868 (2019). )
Many proofs of bulk-edge correspondence, in many contexts, using many tools:

First proof (complex analysis): Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).

Operator/functional theory: Elbau/Graf, Commun. Math. Phys. 229, 415–432 (2002). Elgart/Graf/Schenker, Commun. Math.

Phys. 259, (2005).

K-theory Kellendonk/Richter/Schulz-Baldes, Rev. Math. Phys. 14, 87–119 (2002).

Micro-local analysis Drouot, arXiv:1909.10474 (2019).

Vector bundle theory: Graf/Porta, Comm. Math. Phys. 324, 851–895 (2013).

Maslov index Avila/Schulz-Baldes/Villegas-Blas, Math. Phys., Analysis and Geometry 16, (2013).

4D.J. Thouless, F.D.M. Haldane and J.M. Kosterlitz got Nobel prize in 2016 for the discovery of topological phases of matter
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Another motivation: spectral pollution
We want to compute the spectrum of the (simple) operator

H := −∂2xx + V (x), with V (x) = 50 · cos(2πx) + 10 · cos(4πx).

The potential V is 1-periodic. Assume we studyH in a box [t, t+ L] with Dirichlet boundary conditions.

Depending on where we fix the origin t, the spectrum differs…
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries (they cannot
propagate in the bulk).

In this talk: understand why edge modes must appear.
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Framework
Bulk operator
Let V be a bounded potential. H := −∂2xx + V acting on L2(R) is self-adjoint (with domainH2(R)).

Edge operator
We want to defineH] := −∂2xx + V acting on L2(R+).

Self-adjoint extensions
The operatorH] with core domain C∞

0 (R+) has

minimal domain Dmin := H2
0 (R+), maximal domain Dmax = D∗

min = H2(R+).

Dmin 6= Dmax, soH] is not self-adjoint (we need to set boundary conditions).
A domain Dmin ⊂ D ⊂ Dmax defines a self-adjoint extension ofH] iff D∗ = D, where

D∗ :=
{
ψ ∈ L2(R+), Tψ : φ 7→ 〈ψ,H]φ〉 is bounded on D

}
.

Key remark: E ∈ R is an eigenvalue of (H],D) iff
E is an eigenvalue of (H],Dmax): there is ψ ∈ Dmax so thatH]ψ = Eψ;
ψ ∈ D.

Vectorial space of weak-solution S(E) := Ker
(
H]

max − E
)
.

E ∈ R is an eigenvalue of (H],D) iff S(E) ∩ D 6= {0} .

Remark
S(E) depends only on the bulk (no boundary conditions);
D depends only on the edge (usually independent of V , e.g. Dirichlet boundary conditions).
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Boundary symplectic space
Idea: compute this intersection in the boundary space

ψ ∈ Dmax = H2(R+) 7→ Trψ := (ψ(0), ψ′(0)) ∈ Hb := C2.

Remark: The map Tr : Dmax → Hb is onto.

Symplectic form (= non degenerate, continuous, sesquilinear form ω : Hb ×Hb → C such that
ω(x,y) = −ω(y,x).)

∀x = (x, x′) ∈ C2, ∀y = (y, y′) ∈ C2, ω(x,y) := xy′ − x′y.

Lagrangian spaces A sub-vectorial space ` ⊂ Hb is Lagrangian if `◦ = `, where

`◦ := {x ∈ Hb, ∀y ∈ Hb, ω(x,y) = 0} .

Second Green’s formula (for second order elliptic operator)

∀ψ, φ ∈ Dmax, 〈ψ,H]
maxφ〉 − 〈H]

maxψ, φ〉 = ψ(0)φ′(0)− ψ′(0)φ(0)

= ω (Tr(ψ),Tr(φ)) .
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Self-adjoint extensions and Lagrangian planes

Lemma (classical)

The self-adjoint extensions ofH] are in one-to-one correspondence with the Lagrangian planes of Hb. More
specifically, Dmin ⊂ D ⊂ Dmax defines a self-adjoint extension iff it is of the form

D = Tr−1(`), for a Lagrangian subspace `.

Proof.
Let Dmin ⊂ D ⊂ Dmax, and set ` := TrD. Let x ∈ `◦ and ψ ∈ Tr−1{x} ⊂ H]

max, we have

∀φ ∈ D, ω(Trψ,Trφ) = 0, so 〈ψ,H]
maxφ〉 = 〈H]

maxψ, φ〉

In particular, φ 7→ 〈ψ,H]
maxφ〉 is bounded on D, so ψ ∈ D∗. Conversely, we check that ψ ∈ D∗ implies

Tr(ψ) ∈ `◦. This proves that D∗ = Tr−1(`◦).

Examples

Dirichlet boundary conditions corresponds to the plane `D := {0} × C.

Neumann boundary conditions corresponds to the plane `N := C× {0}.
θ-Robin boundary conditions corresponds to the plane `θ := VectC{(sin(πθ), cos(πθ))} :

Ψ′(0) + αΨ(0) = 0, α = tan(πθ).

(θ = 0 is Dirichlet, and θ = 1/2 is Neumann. Note that θ 7→ `θ is 1-periodic…)

David Gontier Edge states for 2nd order elliptic operators 7 / 17



Weak solutions and Lagrangian planes
DefineH],±

max := −∆+ V on L2(R±) with domainH2(R±).

Lemma (new?)

Let E ∈ R be in the resolvent set of the bulk operatorH . Let S±(E) := Ker(H],±
max − E) be the set of

weak solutions, and let `±(E) := TrS±(E). Then `±(E) are Lagrangian planes, and

Hb = `−(E)⊕ `+(E).

Proof.
Step 1. First we have

∀ψ, φ ∈ S+(E), 〈ψ,H]
maxφ〉 − 〈H]

maxψ, φ〉 = 〈ψ,Eφ〉 − 〈Eψ, φ〉 = 0.

So, by Green’s identity, ω(Tr(ψ),Tr(φ)) = 0, hence `+(E) ⊂ `+(E)◦. Similarly, `−(E) ⊂ `−(E)◦.

Step 2. Since E /∈ σ(H), the map (H − E)−1 is well-defined and maps L2(R) toH2(R). Writing

H := L2(R) = H+ ⊕H−, with H± :=
{
ψ ∈ L2(R), ψ(x) = 0 on R∓}

,

gives
D := H2(R) = D+ +D−, with D± := (H − E)−1H±.

If f ∈ D+, then f is square integrable, and (−∂2xx + V −E)f = 0 on R−. So the restriction of f to R−

belongs to S−(E). This proves D+ ⊂ S−(E), and similarly, D− ⊂ S+(E). Taking traces gives

`+(E) + `−(E) ⊃ Tr(D−) + Tr(D+) = Tr(D) = Hb.

Together with Step 1, and some simple algebra, we obtain the result.
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Lagrangian planes and unitaries
The J matrix

J :=

(
0 1
−1 0

)
, so that ω(x,y) = xy′ − x′y = 〈x, Jy〉C2 .

We have J2 = −1, so σ(J) = {−i, i}. In addition,

Ker(J − i)⊕Ker(J + i) = Hb, with, explicitly, Ker(J ∓ i) =

(
1
±i

)
C.

Lemma (reformulation of Leray, Analyse Lagrangienne et mécanique quantique, 1978)

The Lagrangian planes of (Hb = C2, ω) are in one-to-one correspondence with the unitaries U : C → C,
with

` :=

{(
1
i

)
x+

(
1
−i

)
Ux, x ∈ C

}
.

Example: For the Robin Lagrangian plane `θ := VectC{(sin(πθ), cos(πθ))}, we have(
sin(πθ)
cos(πθ)

)
=

(
1
i

)
1

2
[sin(πθ)− i cos(πθ)] +

(
1
−i

)
1

2
[sin(πθ) + i cos(πθ)] ,

so Uθ =
sin(πθ)+i cos(πθ)
sin(πθ)−i cos(πθ)

= e−2iπθ ∈ S1 ≈ U(1).

Lemma
If `1 and `2 are two Lagrangian planes, then

dim (`1 ∩ `2) = dimKer(U1 − U2) = dimKer (U∗
1U2 − 1) .
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Gathering the previous results gives the following.

Lemma

For all E ∈ R \ σ(H), and for (H],D]) a self-adjoint extension of the edge operator, we have

dimKer
(
H] − E

)
= dim

(
D] ∩ S+(E)

)
= dim

(
`] ∩ `+(E)

)
= dimKer

((
U]

)∗
U(E)− 1

)
.

Remarks:

the last problem is set on U(1) ≈ S1. It is somehow much simpler to study;

we only used that (−∂2xx + V ) is self-adjoint (V needs not be periodic);

the proofs work similarly for general second order elliptic operators.

Yes,… but why do we have edge states?

Idea: consider periodic families of second order elliptic operators =⇒ periodic families of Lagrangian
planes `]t and `+t (E) =⇒ periodic family t→ (U]t )∗Ut(E) ∈ S1.
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Including orientations

Theorem (DG 2021)
Let t 7→ Ht be a continuous periodic family of bulk operators.
Let t 7→ (H]

t ,D
]
t) be a continuous periodic family of (self-adjoint extensions of) edge operators.

Assume that E ∈ R is in none of the spectra of the bulk operatorsHt. Then

Sf
(
H]
t , E

)
= Mas

(
`]t, `

+
t (E)

)
= Sf

((
U]t

)∗
Ut(E), 1

)
= Winding

((
U]t

)∗
Ut(E)

)
= Winding(Ut(E))−Winding(U]t ) ∈ Z

Spectral flow Sf(Ht, E) counts the net number of eigenvalues going downwards in the gap where E lies.

Maslov index5 Mas(`1(t), `2(t)) counts the number of signed crossings of Lagrangian plane.

Winding number: if t 7→ U(t) ∈ S1 is continuous and periodic,

Winding(U) = ]{turns in the positive directions} = ]{U(·) crosses 1 ∈ S1, counting orientations}.

The winding number is an homomorphism, which gives the last line of the Theorem.

In the last line, we decoupled the bulk and the edge: the spectral flow is a combination of the two!
If the previous integer is non-null, edge states appear at the energy E for some t ∈ [0, 1].

5Maslov, Théorie des perturbations et méthodes asymptotiques. 1972
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Example 1: Robin boundary conditions
Consider a bulk HamiltonianHθ := −∂2xx + V (independent of θ)
Consider the edge HamiltonianH]

θ := −∂2xx + V , with θ-Robin boundary conditions, i.e. with domain
Dθ = Tr−1 (`θ).

For E in the resolvent set of −∂2xx + V , we have

Winding(U+
θ (E)) = 0, since the bulk operator is independent of V ;

Winding
(
U]θ

)
= Winding

(
e−2iπθ

)
= −1.

Lemma

In each spectral gap ofH = −∂2xx + V , there is a spectral flow of exactly 1 eigenvalue going downwards.
This includes the lower gap (−∞, inf σ(H)).
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Example 2: Junctions
LetHL(t) := −∂2xx + VL,t andHR(t) := −∂2xx + VR,t be two periodic families of Schrödinger
operators. We consider the junction operator

Hjunction
t := −∂2xx +

[
VL,t(x)1(x < 0) + VR,t(x)1(x > 0)

]
.

Theorem
If E ∈ R is in the resolvent set of all left and right bulk operators, then

Sf(Hjunction
t , E) = Winding

(
U+
R (E)

)
−Winding

(
U−
L (E)

)
.

Idea of the proof
We note that E is an eigenvalue ofH iff `+(E) ∩ `−(E) 6= {0}:
the Cauchy solution of (−∂2xx + V − E)ψ = 0, Tr(ψ) ∈ `+(E) ∩ `−(E) is square-integrable on R.
Actually, we have

dimKer (H − E) = dim
(
`+(E) ∩ `−(E)

)
= dimKer

(
U−(E)∗U+(E)− 1

)
.

Adding the parameter t, and taking into account orientations, we get

Sf (Ht, E) = Mas
(
`+t (E), `−t (E)

)
= Sf

(
U−
t (E)∗U+

t (E), 1
)
= Winding

(
U−
t (E)∗U+

t (E)
)

= Winding
(
U+
t (E)

)
−Winding

(
U−
t (E)

)
.

For the junction operatorHjunction
t , U+

t (E) only depends on the right side, while U−
t (E) only depends

on the left.
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Example 3: Dislocations
Let V (x) be a 1-periodic potential. We consider the bulk operator

Ht := −∂2xx + V (x− t),

and the edge operatorH]
t on R+ with Dirichlet boundary conditions.

SinceHt is a translated version ofH0, and using Bloch theory, we have

σ (Ht) = σ (H0) =
⋃

k∈B.Z.

∞⋃
n=1

{εn,k},

where εn,k are the Bloch eigenmodes.

Lemma
For E in a gap ofH0, we have

Sf
(
H]
t , E

)
= N (E),

where N (E) is the number of Bloch modes below E.

Idea of the proof (adapted from R. Hempel M. Kohlmann, J. Math. Anal. Appl. 381 (2011).)
The state γE := 1(H0 − E) represents a state having N (E) electrons per unit cell.
Consider the dislocated operator

Hjunction
t := −∂2xx +

[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
.

At t = 0, and t = 1, we recover the bulk operatorH . During the motion t ∈ [0, 1], a new cell has
appeared, so N (E) electrons have appeared. They can only come from the upper bands, so a flow of
N (E) eigenvalues going downwards must appear.
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Numerical simulation
In our setting (one dimensional Schrödinger operator), all gaps are open, so N (E) = N in theN -th gap.
Potential

V (x) = 50 · cos(2πx) + 10 · cos(4πx)

Figure: (left) Spectrum of H](t) for t ∈ [0, 1]. (center) Spectrum of the operator on [t, t + L], (right) Spectrum for a
junction operator.

On the right, we observe a spectral flow of eigenmodes for the left boundary (going downwards), and a
spectral flow of eigenmodes for the right boundary (going upwards).
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Example 4: Protected states in the Dirac equation
Dirac equation

i

(
ψ↑

−ψ↓

)′
=

(
0 V (x)

V (x) 0

)(
ψ↑

ψ↓

)
+ E

(
ψ↑

ψ↓

)
.

Lemma ( Fefferman/Lee-Thorp/Weinstein, AMS Vol. 247 (2017).)
If V switches from Vper at x ≤ −L to −Vper at x ≥ L, then 0 is in the spectrum of the Dirac operator.
= «Topologically protected state».

Introduce the t parameter

V ]χ(t, x) = χ(x)Vper(x)

(
0 1
1 0

)
+ (1− χ(x))Vper(x)

(
sin(2πt) cos(2πt)
cos(2πt) − sin(2πt)

)
.

Lemma
There a decreasing spectral flow of exactly 1 eigenvalue going downwards in each essential gap, and
D]χ( 12 − t) = −D]χ( 12 + t). In particular, 0 is an eigenvalue at t = 1/2.
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Conclusion
Extensions

The theory applies to operators acting on L2(R,Cn). The unitaries U(t) are now in U(n). We need
to consider the winding of detU(t) ∈ S1.
The theory also applies to the infinite dimensional setting

H = −∆+ V acting on L2(R× [0, 1],C) (tube).

The boundary space is now Hb = H3/2([0, 1]) × H1/2([0, 1]).
One needs to assume finite dimensional crossings. It does not work for all self-adjoint extensions.
det(U(t)) has no meaning.
Based on the infinite dimensional version of the Maslov index by Furutani, Latushkin and Sukhtaiev.

Thank you for your attention.
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