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Lieb-Thirring inequality.
(In this talk, only dimension d = 1 and power v = 3/2).

Theorem (Lieb-Thirring)

LetV € L%(R) satisfies V < 0, and let H := —02, + V. Let \1 < A2 < --- < 0 be the negative
eigenvalues of H. Then, for all N € N*, we have

S < 2 [ Vpes @)
2 j < %6 ) z)dx, .

Goal of this talk: We will provide three different proofs:
@ Lieb-Thirring original proof (1975-1976, fast, once you know the soliton theory...)
@ Benguria-Loss proof (2000, very fast)
@ Zakharov-Faddeev proof (1972, very complex, uses all the scattering theory machinery).

In the process, we will prove the following

Forall N € N*, the set of potentials V' for which we have equality is a real manifold of dimension 2N, called
the set of N -solitons. In other words, the set of N -solitons is parametrised by 2N coefficients.

Remark. The set of solitons has been extensively studied (see Deift-Trubowitz 79 and Crum 54). They
appear in many, many contexts.
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Some preliminary remarks
Translational invariance
Assume V is an optimizer. Then V(- — t) is also an optimizer (invariance by translations).

Scaling invariance
If V' is an optimizer, with eigenvalue A\ < A2 < -+ < Ay, <0, then

Vo() = a?V (az)

is also an optimizer, with eigenvalues a?X1 < alo << a?i, <O.
(proof: consider the eigenfunctions uq,;(z) = a'/?u;(ax)).

Lemma (The N = 1 case)
If N = 1, the only optimizers of the LT inequality are the potentials

—2a2

Vel = cosh?(a(x —t))

Such function is called a soliton.

Parameters The parameter t gives the location of the soliton, and a gives the scale or the amplitude of the

soliton. Note that
[ WasP@) = a2
R

tons in Lieb-Thirring



Lieb-ThirI’ing Ol’igil’lal pI‘OOf, 1975-1976 (Following P. Lax 1968 -also following Gardner, Kruskal and Miura)
Let ¢ — V; be a smooth family of potentials. Let (¢, u¢) be a branch of eigenpair for Hy := —92, + V4,

with |lu¢]|? = 1, then
Hui = Apug, At = (ut, Hyug), HutH2 =1.

Differentiating gives the Hellman-Feynman equation
OtAt = (Orue, Hyue) + (ue, (O Hy) we) + (ue, He (Opur))
= At ((Brue, ut) + (ug, Opur) +(ue, (0 Vi)ug).

=8¢ |lue||2=0
Lax pair. Assume 9;V; = [B, H] for some operator B. Then
Ot = (ug, (0 Vi)ur) = (uy, BH — HB,ut) = A¢(ut, (B — B)ug) = 0.

Theorem (Lax)
If 8: Vi = [B, H], then the operators Hy all have the same spectrum: o(Hr) = o(Hp).

Examples
o If B = 0, we have [B, H| = [0z, V] = (0. V).
The solution of 9:V; = 0, Vi is Vi(x) = Vo(z +t). So V and V(- — t) gives the same spectrum...

o If B=4083,, — 3V’ — 6V 0y, then a computation gives

0Vi = =V +6V4V/ (Korteweg de Vries (KdV) equation).

So if V; solves the KdV equation, H; := 76336 + V; have the same spectrum for all ¢.
In addition, | |V4|? is constant.
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Lieb-Thirring original proof (end)
Conclusion
Consider Vj an optimizer for LT(N), and let V; be the KdV solution of

6t‘/;5 — 7‘/,‘/11/ + 6‘/15‘/;,
Vi=o = Vo.

Then V4 is also an optimizer for LT.

“Now the theory of the KdV equation says that ast — oo, Vi evolves into a sum of solitons [...]. The
solitons are well separated since they have different velocities”.

Bubbles
Evolving KdV splits the solitons = bubbles. We are back to the case N = 1.

Parameters ?
The 2N parameters are in some sense the location and magnitude of each soliton.
Problem

@ The LT proof relies on the theory of KdV... not very satisfying.

@ The parametrisation of the N-soliton is not so clear (superposition of solitons?).
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A magical change of functions (Crum 1954 (?))
Let A = —32 < 0, and let u > 0 be a positive solution (not necessarily in L2) of

(=03, +V +B%u=0.

/ un!! — (u/2)

hi=2L satisfies B = 5 =(V+ ,82) — h?  (Riccati (non-linear) equation).
u u

Introducing the operators
A:=0; —h(z) sothat A* = -8, — h(x),
we have
A*A= (0 —h)(0z — h) = =82, + [0z, W] + h? = =82, + K2 + 1/
—02,+V +

and
(02 — h) (=02 — h) = =02, + [h,0z] + h* = =02, — W/ + h?
—32, +V + 8% -2,

Commutation. We have o(A* A) \ {0} = o(AA*) \ {0}.

AA*

Conclusion

—821 +V and -— 831 +V —2(logu)".

have the same spectrum, expect maybe at A = — 2.
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Example: Adding one soliton
Free Hamiltonian. Start from
HO = 7831, VO =0.

Let B > 0 and set A = (i3)2. The positive solutions of (—u’’ + 32)u = 0 are of the form
u(x) := PP 4 Plat2b)g=fo _ gfacfb (eﬁ(sz) +e7ﬁ(z*b))

= 2e%(2+0) cosh(B(x — b)).

This gives
/ inh —b 2
AL G ) ) V-

u cosh(B(z — b)) cosh”(B(x — b))

So,
232
Ho:=—0%, and Hy :=-02, — ———

0 v ! % cosh?(B(x — b))
have the same spectrum, except maybe at A\ = —32. Actually, H1 has a simple eigenvalue at ).
Remark
We needed only two parameters to add a soliton: the eigenvalue A\ = —32, and the translation factor b.
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Benguria-Loss proof (removing a soliton)

Let V' be a (fast decaying) potential. Consider u; the first (positive) eigenvalue of H with eigenvalue
A1 <0, s0

—ulll + Vui = Aut.
Since V' decays fast,

u1(z) ~ cst - e~ VIMIZI(1 4 6(1)), asz — oo.
and

/
hi(z) :== Z—i = FvV|A|[(14+0(1)), as Lz — co.

By the previous result:

H=-02,+V, and H=-02,+Vi with Vi:=V —28,;logus,

have the same spectrum, except maybe at \1. Actually, \1 € o(H) and \1 ¢ o(H1).

We removed the first eigenbound, but we did not modify the rest of the spectrum.

David Gontier
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Benguria-Loss proof (end)
In addition, we have

/|V1|2:/(V—2h’1)2:/\/2+4/h’l(h’l—
R R R R
R‘C:““/V274/h’1(,\1+h§)
R R

4 4] :
=/v274,\1 [h1]=, — [—hﬂ =/ V2
Jr 3 Tl R

Repeating the process. Set V,, the potential after n iterations. Then

S 3
Sl =g [IvE - [ vl

Jj=1

This already proves the LT inequality.

If V' is an optimizer for LT(N), then we must have Vy = 0.
In addition, all V; must be optimizer for LT(N-j).
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Basics in Scattering theory
Assume V is compactly supported in [—L, L] (for simplicity). Consider

z€U:={2€C, Imz>0}
and the 2nd order ODE

‘ —u" 4+ Vu = 22u. ‘

Outside [—L, L], we must have
—u'" = 2%u, sowisof the form w(x) = Cf:ei” + C’é‘:efi“”7 for +x> L.
We introduce f(z) and g. (z) the solution with the asymptotics

fa(x) = et*® for > 1L
gz(x) = e 12 for =< —L°

IfIm z > 0, then f, is exponentially decaying at +o0, and g is exponentially decaying at —occ.
Similarly, f—, is exponentially increasing at +oco, and g— ., is exponentially increasing at —oco.

Basis of solution. The pair (f-, f—-) and (g=, g—) both span the set of solutions. there are factor a(¢),
b(¢), ¢(¢) and d(¢) so that

fz =b(2)gz + a(z)g—- I
gz = c(2)fz +d(2) f-=.

Example
IfV =0, wehavea=d=1andb=c=1.

The complex-valued number a(z) is sometime called the transmission coefficient.
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Lemma

For all z € U, we have

a(z) =d(z) = iw(fz,gz) = i (fzg; — f;gz) (z) (Wronskian).

In addition, if z = k € R*, we have b(k) = —c(k), and

ja(R)2 = 1+ [b(k). |

Proof. Take Wronkians everywhere and manipulate the equations until you succeed!
Transmission and reflection coefficients

T(z) := % and R(z):= %,

Bl satisfy Vk € R*, |T]2(k) + |R|?(k) = 1.
z

Scattering matrix
[ T(k) R(k) o
S(k) := (—E(k) W) is unitary.

We say that V is reflection-less if for all K € R*, we have b(k) = 0, which is also |a(k)| = 1.

Forward scattering: Compute S from V'
Inverse scattering: Recover V' from S (almost possible). Recover S from |a(k)| (almost possible).
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Zakharov-Faddev proof

Theorem (Zakharov-Faddeev)

For all V with [ (14 |x|) - |[V|(x) < oo, the operator H has a finite number of eigenvalues N (Bargmann’s
bound), and

> a2 = 76/ V2 — 2—/ k2 log |a(k)|dk.
j=1 R T JR

In particular, since |a(k)| > 1, we recover LT(N). In addition, we have equality iff |a(k)| = 1, that is:
V' is an optimizer for LT iff / is reflection-less.
Remarks

1
o Actually, they prove formulas for all Zf;l |/\j\"+§, n €N
@ When V is reflectionless, we obtain a series of equality. They are all related to "Lax pairs”

(Z;V:I |A;13/2 is related to KdV).
@ Similar equalities for Z;V:I [A;|™ can be found in Buslaev/Faddeev 1960.
o Laptev/Weidl (2000) extended the proof to the matrix case H = (—82,) x I, + V on L?(R,C").

Zp\ 13/2 = —/TrVQ(:L‘ /k210g|detA( )|dk.

This allows to prove the Lieb-Thirring conjecture Lg 3/ = for all dimensions d > 1.

SC
Ld,3/2
The proof, although quite short, does not provide useful insights.

Can we characterize the reflection-less potentials?
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We have a(z) = 0 iff 22 € oqisc (H).
Writing \; = (i8;)? with B; > 0, the only zeros of a are {iBj }1<j<nN-
Finally, at these points, we have

a' (i) = —i/Rfi/39w~

Idea of the proof

We have a(z) = 0 iff W(f.,g-) =0.

If this happens, f. and g. are linearly dependent, hence both functions decays exponentially at =co.
In particular, they are square-integrable, and satisfy H f, = 22 f., so 22 € o(H).

cj ::/l;ffﬂ.

Norming constant

Theorem (Deift-Trubowitz 1979)

If the potential V satisfies [ (1 + |z|)|V|(z) < oo, then V' can be recovered from (|R(k)|, {85}, {c;})
If V. is reflection-less, it can be recovered from ({8;},{c;}).

We recover the 2N parameters.

Idea of the proof

Similar to Benguria-Loss proof (remove the states one-by-one).

The difficult part is to prove that we can recover the first eigenfunction fig, from (|R(k)|,{8;},{c;})-
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Periodic setting

Theorem (R.L. Frank, DG, M. Lewin)
Forall0 < k < 1, the potential

‘ Vie(z) := 2k?sn (z|k)? — 1 — k2|, with minimal period 2K (k),

is an optimiser for the periodic Lieb-Thirring inequality. Here, sn(-|k) is the Jacobi elliptic function, and K (-)
is the complete elliptic integral of the first kind. In addition,
=2,

lim V; =-1 d lim V; — .
k30 k(@) and B3 k(@) cosh?(x)

This potential is sometime called the periodic Lamé potential, or the cnoidal wave.
It interpolates between the semi-classical constant and the N = 1 soliton.
The operator —A + V}, has a single negative Bloch band, and a spectral gap of size k2.

o k =0.20 k = 0.50 k =0.90 k=0.95
T /\/\/\/\ \/\/\/
-2

=50 =25 00 25 5.0 -5.0 =25 00 25 5.0 =50 =25 0.0 25 5.0 -5.0 =25 0.0 25 5.0

Figure: The potential V}, for some values of k.
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