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Goal of the talk
o Make a connection between spectral properties of materials, and electronic transport
@ The case of periodic materials.

@ The case of periodic materials, cut in half.
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Start with a single atom in R?. We study the spectrum of the Schrédinger operator

H=-A+V(x), eg V(x)= —Z

x|

@ Discrete spectrum (= eigenvalues), and continuous/essential spectrum.
@ lowest part of the spectrum = ground state energy, then excited state energy.

@ An electron needs energy to jump from one level to the next (quantum).
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Then take two atoms in R®.

H:—A—&—V(x—?)—i—‘/(x—l—g).

@ When R = oo, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
e When R >> 1, tunnelling effect = interaction of eigenvectors => splitting of the eigenvalues;

o The eigenvectors are delocalized between the two atoms;
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Now take an infinity of atoms in R, located along a lattice (= material)

H=-A+ Z V(x—v)
veRzd

(] (] (] (] o o

@ When R = oo, each eigenvalue is of infinite multiplicity;
o When R >> 1, each eigenvalue becomes a band of essential spectrum,;
o Each band represents «one electron per unit cell »;

@ When R decreases, the bands may overlap.
The spectrum of —A + V with V-periodic has a band-gap structure!

Rigorous proof using the Bloch transform (~ discrete version of the Fourier transform).
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Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H:=-8%,4+V(z), with V(z)=50-cos(2rz) + 10 - cos(4rz).

The potential V' is 1-periodic. We expect a band-gap structure for the spectrum.
We study H in a box [t, t + L] with Dirichlet boundary conditions, and with finite difference.

Spectrum of H on [t, £+5]

0.0 0.z 0.4 0.6 vk} 10

Depending on where we fix the origin ¢, the spectrum differs...
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.

In this talk: understand why edge modes must appear.
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Setting

Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian
Hf = —82, +V(z—1t) on L*RY),

with Dirichlet boundary conditions, that is with domain H?(R*) N H} (RT).

Since V' is 1-periodic, the map ¢ — Ht’j is also 1-periodic.

Theorem (Komlyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards ast goes from 0 to 1.
In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

Spectrum of H on [t, t+5]

Figure: (left) Spectrum of H* (t) for t € [0, 1]. (right) Spectrum of the operator on [t, t + L].

We provide here two proofs, applications, and extensions of this theorem.

E. Korotyaev, Commun. Math. Phys., 213(2):471-489, 2000.
R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166-178, 2011.

D. Gontier, J. Math. Phys. 61, 2020.
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First proof: «compute» everything




Preliminaries.

Potential: Let V' € C'1(R, R) be any potential (not necessarily 1-periodic).

Hamiltonian: H := —02, + V as an operator on L%(R).
Associated ODE: —u”" +V(z)u=FEu, on R.
Vector space of solutions: Let Ly, (E) denote the vectorial space of solutions of the ODE.
Since it is a second order ODE, dim Ly (E) = 2, and
Ly (E) =Ran{cg,sg}, {_Clé +Ver = Bep ) {_S/é FVer = Esp
cg(0) =1, dg(0)=0 sg(0) =0, s5(0) =1

Lemma (definition?)

E € R is an eigenvalue of H iff Ly (E) N L2(R) # 0.

Transfer matrix

Forallz € R, we havedet Ty (z) = 1

Indeed, det T is the Wronskian of the ODE. At = 0, we have T (0) = I, and

(detTg) = (cpsy — SEC/E‘)/ =cpsh —spch =cg(V — E)sg —sgp(V — E)cg = 0.
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Case of periodic potentials.
We now assume that V' is 1-periodic.
If u(z) is solution to the ODE, then so is u(- + 1). In particular there are constants «, 3, 7, d such that

or equivalently Tg(z+1) = (g g) Tg(z).

cg(z+1) =acg(z) + Bsp(x)
sg(z+1) =~cg(z) + dsg(z).

Atz = 0, we recognise T (z = 1), so‘ Te(z+1)=Ts(1)Te(z) ‘

So for any solution u € L, we have

w(@+n)\ _ n ((u(z)
(u’(z+n)) - [TE(I)] (u/(w) :
=> The behaviour of solutions at infinity is given by the singular values of Tz (1).

If A1 and A2 are the singular values of T (1), then
@ Ao = detTE(l) =1
oA\ + A= Tr(TE) e R.

David Gontier Spectral properties of materials cut in half



Two cases.

o if [A\1| > 1, then |A2| < 1. This implies A1, A2 € Rand| |Tr(Tg)| > 2 |

There is one mode exponentially increasing at 400 and exponentially decreasing at —oo.
There is one mode exponentially increasing at —oo and exponentially decreasing at +oc.
The elements of £z cannot be approximated in L?, which implies E ¢ o (H).

o if |\1]| = 1, then |\2| = 1. This implies [A\1| = 1, A2 = A1 and | |Tr(Tg)| < 2|

All solutions in £ g are bounded (quasi-periodic).
All solutions in £z can be approximated in L2, which implies E € 0ess(H).

The spectrum of H can be read from the (continuous) map E — Tr(Tg).

Example: for V() := 50 - cos(2wz) + 10 - cos(4mz),

Tr(Te)
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Theorem (Spectrum of 1-dimensional periodic operators)

IfV is 1-periodic, the spectrum H := —02,, + V (z) is purely essential (no eigenvalues).
It is composed of bands:
o(H) = oess(H) = | B, B
n>1

Essential gap: The interval g,, := (En , B, 1) is called the n-th essential gap of the operator H.

n+1
Physical interpretation:

o If E € o(H), electrons with energy E can travel through the medium (quasi-periodic solutions);

o If E ¢ o(H), electrons cannot propagate: they are exponentially attenuated in the medium.
Example: If V = 0, then H = —82,,. We have —u” = Euif u = aeVE 4 ge—iVE,

o IfE >0, VE € R, and we have travelling waves;

o If £ <O, VE € iR, and we have exponential waves.

o The spectrum of —d2,, is [0, c0).
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How about the half system?
Let E ¢ o(H). The set of solutions can be split as

Ly (E) = LH(E) ® Ly(B), LE(E):={ueLy(B), ueL?®RY)}.
They are both of dimension 1.

We define the discrete set Z‘J/r [u] := w1 ({0}) for u € E‘J; (E).
o The set Z‘J; C R depends only on E‘t (not on u).
o The set Z‘J/r is 1-periodic (because if u € Et (E),thenu(- —1) € ,C‘J;(E), hence u(- — 1) = au).

Key remark: If 0 € Z%, then E is an eigenvalue of H? (with corresponding eigenspace ,C?;).
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How about the half system?
Let E ¢ o(H). The set of solutions can be split as

Ly (E) = LH(E) ® Ly(B), LE(E):={ueLy(B), ueL?®RY)}.
They are both of dimension 1.
We define the discrete set Z‘J/r [u] := w1 ({0}) for u € E‘J; (E).

o The set Z‘J; C R depends only on E‘t (not on u).

o The set Z‘J/r is 1-periodic (because if u € Et (E),thenu(- —1) € ,C‘J;(E), hence u(- — 1) = au).
Key remark: If 0 € Z%, then E is an eigenvalue of H? (with corresponding eigenspace E?S).
Consider now V(z) = V(z — t), Hy = —02, + V4, Lti (E) = E‘fﬁt (B), 2} = Z‘JZ,

@ We have Zt+ = ZS' + t (the set of roots is shifted);

o If0 € Zf, then E € o (HY).

So, the number of ¢ € [0, 1) so that £ € o (Hf) equals the number of points of Z‘J} in (—1,0].
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If E is in the n-th gap, and if u € Ly (E) is any non null solution, then w has n zeros in (—1, 0].

Proof.
Step 1. If g € Zp, thenzo + 1 € 2.
In particular, (E, ut=0|[z(,z(+1]) is an eigenpair of the Dirichlet problem

(-02,+V(z))u=Eu, on (wg,zo+1)
u(zo) = u(zo +1) = 0.

We want to evaluate M, the number of roots of w in [zg, ¢ + 1)
Step 2 (deformation). For 0 < s < 1, we introduce (E(s), us) the Dirichlet eigenpair of

(*B%z + sV(w)) us; = Esus, on (zo,z0+ 1)
Us(z0) = us(zo +1) = 0.

which is a continuation of (E, u) at s = 1, and by M the number of zeros of us in the interval
[xo, xo + 1)‘

By continuity, F(s) cannot cross the essential spectrum, so F(s) is always in the n-th gap.

By Cauchy-Lipschitz, two zeros cannot merge, so M is independent of s, and M = M.

At s = 0, we recover the usual Laplacian (hence us—o(z) ~ sin(w(n + 1)z))

We deduce that F(s) is the branch of n-th eigenvalues, and that M = n.
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IfE(t) is a branch of eigenvalues ofo in the gap, then E'(t) < 0 (all branches go downwards).

< ), a(t )) is a branch of eigenpair for Hf with ||T¢]|2 = 1. We have H(t)u(t) = E(t), and
E(t) = (u(t), H(t)u(t)). Differentiating in ¢ gives (Hellmann-Feynman argument)

E’(t) = (uz, O Hyur) + (Oruy, Hyur) + (e, HeOptir)

— (@, (0 V) @) + B(t) (00T, @) + (@, 00ily)) = /0 NCAGICA

=04 ||u¢||2=0

On the other hand, if u(t) = u(z — t) is a branch of functions in £, (E) (E is fixed now), then
(=02, + Vi — B)uy = 0.
These functions do not satisfy Dirichlet in general! Differentiating in ¢ gives
(=02, + Vi — E)dsus + (0:Vi) us = 0.

We multiply by u; and integrate on RT. We integrate by part and obtain (now we have boundary terms)
oo
/j(&WHmpzaﬂMm&m@)
Jo

Of course, at the point ¢, we have u; = Uz. Since u¢(z) = u(z — t), we obtain

E'(t) = —|0rut|2(0) < 0.
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An application:

junctions and dislocations

Spectral properties of materials cut in half



The Spectral flow
If t — Ay is a 1-periodic and continuous family of self-adjoint operators, and if E ¢ oess(A¢) for all ¢, we
can define the Spectral flow

Sf (A, E) := number of eigenvalues going downwards in the essential gap where F lies.

The previous result can be formulated as:
St (Hf, E) =N(E), N(E) := number of bands below E.

Facts :
e Ift — K is a 1-periodic continuous family of compact operators, then

Sf(At, E) = Sf(At + K, E) .
o If f : R — IR is strictly increasing, then
SE(f (Ae), F(E)) = St (As, E) .
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Application: Junctions between two materials
Let Vi, and Vg be two 1-periodic potentials. We consider the junction operator

HIMN .= 92 4 [V (2)1(z < 0) 4+ Vg(z — t)1(z > 0)] on L3(R)

IfE € R is in the resolvent set of all left and right bulk operators, then

SE(H]" ", B) = Nt (E).
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Application: Junctions between two materials
Let Vi, and Vg be two 1-periodic potentials. We consider the junction operator

HIMN .= 92 4 [V (2)1(z < 0) 4+ Vg(z — t)1(z > 0)] on L3(R)

IfE € R is in the resolvent set of all left and right bulk operators, then

SE(H]" ", B) = Nt (E).

Idea of the proof
Consider the cut Hamiltonian

HM = -2, + [Vi(2)1(z < 0) 4+ Vr(z — t)1(z > 0)] on L2(R)= L2(R™)UL*(R"),

and with Dirichlet boundary conditions at z = 0.
For any ¥ negative enough (below the essential spectra of all operators), we have

L N —1
K= (S — HM™) - (E - Hiunmon> is compact (here, it is finite rank).
So
U |
Sf<(2 - H{““C‘”“) (2 - E)*l) - Sf((E —H M (2 - E)*l) .
Since f(x) := (X — x) ! is strictly increasing on # > ¥, we have

St (Hi““““m, E‘) = Sf (HS™, B) = of (Hf!*, E) = NH(B).
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Remarks on this first proof

Good points

Can be generalized in different settings.

Instead of a flow of roots (the set Z‘t), we use the notion of Maslov index = crossings of Lagrangian planes
(tools of symplectic geometry).

@ Vector valued operators )
Hy:=—-A+V(z), on L*R,CV).
We prove that if E ¢ o(H), then dim(ﬁ‘j;) are both of dimension N.

@ We can change the boundary conditions (and have a ¢t-dependent boundary conditions). For instance,
we prove that for the family of operators

Hf := —A + V(x), withRobindomain sin(wt)u(0) = cos(mt)u’(0),

we have Sf(Hf, E) = —1 in all gaps (including the 0-th one!)

Bad point
Not really adapted to the two-dimensional setting...
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Second proof (by Hempel and Kohlmann)
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Idea of the proof

Idea: Prove the result in the dislocated case.

Let L € N be a (large) integer. Consider the family of operators

HPE = =02, + [V(@)1(z < 0) + V(& — t)1(z > 0)], on L*([~3L, 5L +1])

with periodic boundary conditions.

. junction .
@ The branches of eigenvalues of ¢ — ’HJL .  are continuous;
,

e Att = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues

o Att = 1, the system is 1-periodic, on a box of size L + 1. Each «band» contributes to L + 1
eigenvalues.

=> The extra eigenvalue must come from an upper band...

=> There is a «spectral flow» of 1 between the second band and the first one
There is a «spectral flow» of 2 between the third band and the second one, ...
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A «fun» analogy

The «Grand Hilbert Hotel»
An infinity of floors, an infinity of rooms in each floor.

~ HILEERT—

o~ o~ -3 = “.xv ... Floor 3.
X X =X = = ... Floor 2. .

&
G

x = * x = ... Floor 1. ‘

I
I




As t moves from O to 1...
t=00 t=025 t=05 t=075 t=1.0

... anew room is created on each floor!

t—t+1
s

Floor 3.

Floor 2. .

Floor 1. ' l— — .

O
&




As t moves from O to 1...

t=00 t=025 t=05 t=075 t=10

... anew room is created on each floor!

t—t4+1
ey
-3 -3 -3 3 -3 Floor 3.
i -3 -3 -3 -3 Floor 2.
-3 -3 i i 5 Floor 1.

In order to fill the new rooms,
@ 1 person from floor 2 must come down to floor 1;
@ 2 persons from floor 3 must come down to floor 2;

@ and so on.

Remark: the proof can be generalized to higher dimensions!
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The two-dimensional case
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Let V be a Z2-periodic potential, and we study the edge operator

HY(t)=—-A+V(z—ty), on L?*(Ry xR), withDirichlet boundary conditions.
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Let V be a Z2-periodic potential, and we study the edge operator

HY(t)= —A+V(z—t,y), on L?(Ry XR), withDirichlet boundary conditions.

e For L € N, consider the model in the tube R X [0, L] with periodic boundary conditions in 3.
o Consider the «Two-dimensional Grand Hilbert Hotel».

@ Ast moves from O to 1, L new rooms are created on each floor.

o Let L — oo...

There is a spectral flow of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.
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The two-dimensional twisted case.
We rotate V' by 6.
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The two-dimensional twisted case.
We rotate V' by 6.

Commensurate case (tanf = %)
Considering a Supercell of size L = \/W , we recover a LZ2-periodic potential.

«Ast moves from 0 to L, L? new rooms are created»

Key remark:
o Themapt — H g (t) is now 1/ L-periodic (up to some x2 shifts)
@ So the map t — O'(Hg(t)) is 1/ L periodic.

«Ast moves from 0 to %, 1 new room is created»
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In-commensurate case (tan 6 ¢ Q, corresponds to L — 00)
o The spectrum of H#(t) is independent of ¢ (ergodicity);
o All bulk gaps are filled with edge spectrum!

Theorem (DG, Comptes Rendus. Mathématique, Tome 359 (2021) )

Iftan 0 ¢ Q, the spectrum ong is of the form (2, 00).

5 5
4 4
Bulk spectrum Bulk spectrum
3 3
Edge spectrum
2 2
1 1
o o
00 0z 04 06 08 Lo 0.0 02 04 06 08 10
(a) Uncut two-dimensional material (b) Two-dimensional material with incommensurate cut
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Idea of the proof

Remark: The map 6 — Hy is not norm-resolvent continuous...
so the convergence of the spectrum is not guaranteed, and we need to prove it by hand.

Limiting procedure
Consider a sequence 0, — 0, with tan(6,,) = % € Q,and set Ly, := \/p2 + q2.

By the commensurate case result, there is ¢, € [0, %] and ¢, € L2, (RT X [0, Ly]) so that
n

(—A+Vp, (t —tn) — E)én =0, / l¢n]® = 1.
R+ x[0,Ly]

It is tempting to extract a weak-limit of ¢, but this will fail (we would get ¢« = 0 at the end)...
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Idea of the proof

Remark: The map 6 — Hy is not norm-resolvent continuous...
so the convergence of the spectrum is not guaranteed, and we need to prove it by hand.

Limiting procedure
Consider a sequence 0, — 0, with tan(6,,) = % € Q,and set Ly, := \/p2 + q2.

By the commensurate case result, there is ¢, € [0, %] and ¢, € L2, (RT X [0, Ly]) so that
n

(—A+Vp, (t —tn) — E)én =0, / l¢n]® = 1.
R+ x[0,Ly]

It is tempting to extract a weak-limit of ¢, but this will fail (we would get ¢« = 0 at the end)...

Idea: Normalize the functions in L°°
Consider the functions

U, = ¢7", sothat (=A+Vp, (t—tn) — E)¥p =0, [¥nllree =1.

l[#nllzee

(the parameter L, is no longer here).
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(—A 4V, (t —tn) — E)Vyp =0, ||¥nlpe =1.
Step 1: Control the mass
Consider x,, € R? so that ¥, (x5,) > %

e Upon shifting the whole system in the x2-direction (which effectively corresponds to changing ¢r,),
we may assume Ty 2 = 0.

o Since E ¢ gess(H ), the function W, is exponentially decaying away from the boundary (the bulk is
an insulator). So there is C' > 0 independent of n so that 0 < ;1 < C (the full proof uses
Combes-Thomas estimates).

Step 2: Regularity and taking the limit
@ Since ||[(=AW¥,)|| < C, thereis § > 0 so that U, (z) > % forall z € B(zn, d).
o Take the limit n — oo, and sub-sequences. ¥,, — ¥, weakly-* in L°°.

@ We have, in the distributional sense
(A + Vy(xz —t*) — E)¥, = 0.

@ We have ||¥4||oo < 1, and since fB(O 5 Vs # 0, we have W, # 0.
o This implies that E € o(Hy).
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(—A 4V, (t —tn) — E)Vyp =0, ||¥nlpe =1.
Step 1: Control the mass
Consider x,, € R? so that ¥, (x5,) > %

e Upon shifting the whole system in the x2-direction (which effectively corresponds to changing ¢r,),
we may assume Ty 2 = 0.

o Since E ¢ gess(H ), the function W, is exponentially decaying away from the boundary (the bulk is
an insulator). So there is C' > 0 independent of n so that 0 < ;1 < C (the full proof uses
Combes-Thomas estimates).

Step 2: Regularity and taking the limit
@ Since ||[(=AW¥,)|| < C, thereis § > 0 so that U, (z) > % forall z € B(zn, d).
o Take the limit n — oo, and sub-sequences. ¥,, — ¥, weakly-* in L°°.

@ We have, in the distributional sense
(A + Vy(xz —t*) — E)¥, = 0.

@ We have ||¥4||oo < 1, and since fB(O 5 Vs # 0, we have W, # 0.
o This implies that E € o(Hy).

Open question
Is E an eigenvalue of Hy (~ Anderson localization), or in the essential spectrum (travelling waves).
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Another application: the definition of the kilo
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May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)! :
“Le kilogramme, symbole kg, est I'unité de masse du SL Il est défini en prenant la valeur numérique fixée de la
constante de Planck, h, égale d 6,626 070 15 x 10734 757

Question: How do you measure h? How do you measure h with 109 accuracy?
Comments by von Klitzing?: ”The discovery of the QHE led to a new type of electrical resistor [...]. This
resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one

part in 1010

QHE = Quantum Hall Effect® (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

0o 2 4 6 8 10 12 1
35
10
Pox 30 Py
08
k(¥sq 2° hié
20 5%
15
04
10
02
05
0 2 00
I 4 6 8 10 12 14

Magnetic Field (T)

"https://www.bipm.org/fr/measurement-units/
2yon Klitzing, Nature Physics 13, 2017
3K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.
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In this setting, the magnetic field A plays the role of the pump.
Hp = —82, + (—idy + Bz)2.
After a Fourier transform in y, we get

—k
Hp, = —02, + (ky + Bz)> = =02, + B*(z —t)?, with t= ?y.

If B # 0, the bulk Hamiltonian has discrete spectrum. c(Hp) = |B|(2N + 1). (Landau operator).
The edge Hamiltonian HﬁB . has flows of eigenvalues between the Landau levels.

Inparticularo(H%) = [|B|, ).

The plateaus observed by von Klitzing correspond to these spectral flows.
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In this setting, the magnetic field A plays the role of the pump.
Hp = —82, + (—idy + Bz)2.
After a Fourier transform in y, we get

—k
Hp, = —02, + (ky + Bz)> = =02, + B*(z —t)?, with t= ?y.

If B # 0, the bulk Hamiltonian has discrete spectrum. c(Hp) = |B|(2N + 1). (Landau operator).
The edge Hamiltonian HﬁB . has flows of eigenvalues between the Landau levels.

Inparticularo(H%) = [|B|, ).

The plateaus observed by von Klitzing correspond to these spectral flows.

Thank you for your attention!
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