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Goal of the talk
Make a connection between spectral properties of materials, and electronic transport
The case of periodic materials.
The case of periodic materials, cut in half.
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Start with a single atom in Rd. We study the spectrum of the Schrödinger operator

H = −∆+ V (x), e.g. V (x) =
−Z

|x|
.

σ(H)

Discrete spectrum (= eigenvalues), and continuous/essential spectrum.
lowest part of the spectrum = ground state energy, then excited state energy.
An electron needs energy to jump from one level to the next (quantum).
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Then take two atoms in Rd.

H = −∆+ V

(
x−

R

2

)
+ V

(
x+

R

2

)
.

σ(H)

When R = ∞, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
When R � 1, tunnelling effect = interaction of eigenvectors =⇒ splitting of the eigenvalues;
The eigenvectors are delocalized between the two atoms;
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Now take an infinity of atoms in Rd, located along a lattice (= material)

H = −∆+
∑

v∈RZd

V (x− v)

σ(H)

When R = ∞, each eigenvalue is of infinite multiplicity;
When R � 1, each eigenvalue becomes a band of essential spectrum;
Each band represents «one electron per unit cell »;
When R decreases, the bands may overlap.

The spectrum of −∆+ V with V -periodic has a band-gap structure!

Rigorous proof using the Bloch transform (∼ discrete version of the Fourier transform).
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Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H := −∂2
xx + V (x), with V (x) = 50 · cos(2πx) + 10 · cos(4πx).

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.
We study H in a box [t, t+ L] with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs…
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.

In this talk: understand why edge modes must appear.
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Setting
Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

H]
t = −∂2

xx + V (x− t) on L2(R+),

with Dirichlet boundary conditions, that is with domain H2(R+) ∩H1
0 (R+).

Since V is 1-periodic, the map t 7→ H]
t is also 1-periodic.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1.
In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

Figure: (left) Spectrum of H](t) for t ∈ [0, 1]. (right) Spectrum of the operator on [t, t + L].

We provide here two proofs, applications, and extensions of this theorem.

E. Korotyaev, Commun. Math. Phys., 213(2):471–489, 2000.
R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166–178, 2011.
D. Gontier, J. Math. Phys. 61, 2020.
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First proof: «compute» everything
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Preliminaries.
Potential: Let V ∈ C1(R,R) be any potential (not necessarily 1-periodic).

Hamiltonian: H := −∂2
xx + V as an operator on L2(R).

Associated ODE: −u′′ + V (x)u = Eu, on R.
Vector space of solutions: Let LV (E) denote the vectorial space of solutions of the ODE.
Since it is a second order ODE, dimLV (E) = 2, and

LV (E) = Ran {cE , sE} ,
{
−c′′E + V cE = EcE

cE(0) = 1, c′E(0) = 0
,

{
−s′′E + V sE = EsE

sE(0) = 0, s′E(0) = 1
.

Lemma (definition?)
E ∈ R is an eigenvalue ofH iff LV (E) ∩ L2(R) 6= ∅.

Transfer matrix
TE(x) :=

(
cE(x) c′E(x)
sE(x) s′E(x)

)
.

Lemma
For all x ∈ R, we have detTE(x) = 1

Indeed, detTE is the Wronskian of the ODE. At x = 0, we have TE(0) = I2, and

(detTE)′ =
(
cEs′E − sEc′E

)′
= cEs′′E − sEc′′E = cE(V − E)sE − sE(V − E)cE = 0.
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Case of periodic potentials.
We now assume that V is 1-periodic.
If u(x) is solution to the ODE, then so is u(·+ 1). In particular there are constants α, β, γ, δ such that{

cE(x+ 1) = αcE(x) + βsE(x)

sE(x+ 1) = γcE(x) + δsE(x).
or equivalently TE(x+ 1) =

(
α γ
β δ

)
TE(x).

At x = 0, we recognise TE(x = 1), so TE(x+ 1) = TE(1)TE(x) .

So for any solution u ∈ LE , we have(
u(x+ n)
u′(x+ n)

)
= [TE(1)]n

(
u(x)
u′(x)

)
.

=⇒ The behaviour of solutions at infinity is given by the singular values of TE(1).

If λ1 and λ2 are the singular values of TE(1), then
λ1λ2 = detTE(1) = 1.
λ1 + λ2 = Tr(TE) ∈ R.
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Two cases.
if |λ1| > 1, then |λ2| < 1. This implies λ1, λ2 ∈ R and |Tr(TE)| > 2 .
There is one mode exponentially increasing at +∞ and exponentially decreasing at −∞.
There is one mode exponentially increasing at −∞ and exponentially decreasing at +∞.
The elements of LE cannot be approximated in L2, which implies E /∈ σ(H).

if |λ1| = 1, then |λ2| = 1. This implies |λ1| = 1, λ2 = λ1 and |Tr(TE)| ≤ 2 .
All solutions in LE are bounded (quasi-periodic).
All solutions in LE can be approximated in L2, which implies E ∈ σess(H).

The spectrum of H can be read from the (continuous) map E 7→ Tr(TE).

Example: for V (x) := 50 · cos(2πx) + 10 · cos(4πx),
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Theorem (Spectrum of 1-dimensional periodic operators)
If V is 1-periodic, the spectrumH := −∂2

xx + V (x) is purely essential (no eigenvalues).
It is composed of bands:

σ(H) = σess(H) =
⋃
n≥1

[E−
n , E+

n ].

Essential gap: The interval gn := (E+
n , E−

n+1) is called the n-th essential gap of the operator H .

Physical interpretation:
If E ∈ σ(H), electrons with energy E can travel through the medium (quasi-periodic solutions);
If E /∈ σ(H), electrons cannot propagate: they are exponentially attenuated in the medium.

Example: If V = 0, then H = −∂2
xx. We have −u′′ = Eu if u = αei

√
E + βe−i

√
E .

If E ≥ 0,
√
E ∈ R, and we have travelling waves;

If E < 0,
√
E ∈ iR, and we have exponential waves.

The spectrum of −∂2
xx is [0,∞).
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How about the half system?
Let E /∈ σ(H). The set of solutions can be split as

LV (E) = L+
V (E)⊕ L−

V (E), L±
V (E) :=

{
u ∈ LV (E), u ∈ L2(R±)

}
.

They are both of dimension 1.

We define the discrete set Z+
V [u] := u−1({0}) for u ∈ L+

V (E).

The set Z+
V ⊂ R depends only on L+

V (not on u).

The set Z+
V is 1-periodic (because if u ∈ L+

V (E), then u(· − 1) ∈ L+
V (E), hence u(· − 1) = αu).

Key remark: If 0 ∈ Z+, then E is an eigenvalue ofH] (with corresponding eigenspace L+
V ).

Consider now Vt(x) = V (x− t), Ht = −∂2
xx + Vt, L±

t (E) = L±
Vt

(E), Z+
t := Z+

Vt
, …

We have Z+
t = Z+

0 + t (the set of roots is shifted);

If 0 ∈ Z+
t , then E ∈ σ

(
H]

t

)
.

So, the number of t ∈ [0, 1) so that E ∈ σ
(
H]

t

)
equals the number of points of Z+

V in (−1, 0].
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Lemma
If E is in the n-th gap, and if u ∈ LV (E) is any non null solution, then u has n zeros in (−1, 0].

Proof.
Step 1. If x0 ∈ Z0, then x0 + 1 ∈ Z0.
In particular, (E, ut=0|[x0,x0+1]) is an eigenpair of the Dirichlet problem{(

−∂2
xx + V (x)

)
u = Eu, on (x0, x0 + 1)

u(x0) = u(x0 + 1) = 0.

We want to evaluate M, the number of roots of u in [x0, x0 + 1)

Step 2 (deformation). For 0 ≤ s ≤ 1, we introduce (E(s), ũs) the Dirichlet eigenpair of{(
−∂2

xx + sV (x)
)
ũs = Esũs, on (x0, x0 + 1)

ũs(x0) = ũs(x0 + 1) = 0.

which is a continuation of (E, u) at s = 1, and by Ms the number of zeros of ũs in the interval
[x0, x0 + 1).

By continuity, E(s) cannot cross the essential spectrum, so E(s) is always in the n-th gap.
By Cauchy-Lipschitz, two zeros cannot merge, so Ms is independent of s, and M = Ms=1.
At s = 0, we recover the usual Laplacian (hence us=0(x) ≈ sin(π(n+ 1)x))

We deduce that E(s) is the branch of n-th eigenvalues, and that M = n.
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Lemma
If Ẽ(t) is a branch of eigenvalues ofH]

t in the gap, then E′(t) < 0 (all branches go downwards).

If
(
Ẽ(t), ũ(t)

)
is a branch of eigenpair for H]

t with ‖ũt‖2 = 1. We have H(t)ũ(t) = Ẽ(t), and

Ẽ(t) = 〈ũ(t), H(t)ũ(t)〉. Differentiating in t gives (Hellmann-Feynman argument)

Ẽ′(t) = 〈ũt, ∂tHtũt〉+ 〈∂tũt, Htũt〉+ 〈ũt, Ht∂tũt〉

= 〈ũt, (∂tVt) ũt〉+ Ẽ(t) (〈∂tũt, ũt〉+ 〈ũt, ∂tũt〉)︸ ︷︷ ︸
=∂t‖ũt‖2=0

=

ˆ ∞

0
(∂tVt) |ũt|2dx.

On the other hand, if u(t) = u(x− t) is a branch of functions in L+
t (E) (E is fixed now), then

(−∂2
xx + Vt − E)ut = 0.

These functions do not satisfy Dirichlet in general! Differentiating in t gives

(−∂2
xx + Vt − E)∂tut + (∂tVt)ut = 0.

We multiply by ut and integrate on R+. We integrate by part and obtain (now we have boundary terms)
ˆ ∞

0
(∂tVt) |ut|2 = ∂xut(0)∂tut(0).

Of course, at the point t, we have ut = ũt. Since ut(x) = u(x− t), we obtain

Ẽ′(t) = −|∂tut|2(0) < 0.
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Anapplication:
junctions and dislocations
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The Spectral flow
If t 7→ At is a 1-periodic and continuous family of self-adjoint operators, and if E /∈ σess(At) for all t, we
can define the Spectral flow

Sf (At, E) := number of eigenvalues going downwards in the essential gap where E lies.

The previous result can be formulated as:

Sf
(
H]

t , E
)
= N (E), N (E) := number of bands below E.

Facts :
If t 7→ Kt is a 1-periodic continuous family of compact operators, then

Sf (At, E) = Sf (At +Kt, E) .

If f : R → R is strictly increasing, then

Sf (f (At) , f(E)) = Sf (At, E) .
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Application: Junctions between two materials
Let VL and VR be two 1-periodic potentials. We consider the junction operator

H
junction
t := −∂2

xx + [VL(x)1(x < 0) + VR(x− t)1(x > 0)] on L2(R)

Theorem
If E ∈ R is in the resolvent set of all left and right bulk operators, then

Sf(H junction
t , E) = N+(E).

Idea of the proof
Consider the cut Hamiltonian

Hcut
t := −∂2

xx + [VL(x)1(x < 0) + VR(x− t)1(x > 0)] on L2(R) = L2(R−) ∪ L2(R+),

and with Dirichlet boundary conditions at x = 0.
For any Σ negative enough (below the essential spectra of all operators), we have

Kt :=
(
Σ−Hcut

t

)−1 −
(
Σ−H

junction
t

)−1
is compact (here, it is finite rank).

So
Sf
((

Σ−H
junction
t

)−1
, (Σ− E)−1

)
= Sf

((
Σ−Hcut

t

)−1
, (Σ− E)−1

)
.

Since f(x) := (Σ− x)−1 is strictly increasing on x > Σ, we have

Sf
(
H

junction
t , E

)
= Sf

(
Hcut

t , E
)
= Sf

(
H],+

t , E
)
= N+(E).
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Remarks on this first proof
Good points
Can be generalized in different settings.
Instead of a flow of roots (the set Z+

V ), we use the notion of Maslov index = crossings of Lagrangian planes
(tools of symplectic geometry).

Vector valued operators
Ht := −∆+ Vt(x), on L2(R,CN ).

We prove that if E /∈ σ(H), then dim(L±
V ) are both of dimension N .

We can change the boundary conditions (and have a t-dependent boundary conditions). For instance,
we prove that for the family of operators

H]
t := −∆+ V (x), with Robin domain sin(πt)u(0) = cos(πt)u′(0),

we have Sf(H]
t , E) = −1 in all gaps (including the 0-th one!)

Bad point
Not really adapted to the two-dimensional setting…
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Second proof (byHempel andKohlmann)
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Idea of the proof
Idea: Prove the result in the dislocated case.

Let L ∈ N be a (large) integer. Consider the family of operators

Hjunction
L,t := −∂2

xx +
[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
, on L2([− 1

2
L, 1

2
L+ t])

with periodic boundary conditions.

The branches of eigenvalues of t 7→ Hjunction
L,t are continuous;

At t = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues.
At t = 1, the system is 1-periodic, on a box of size L+ 1. Each «band» contributes to L+ 1
eigenvalues.

=⇒ The extra eigenvalue must come from an upper band…
=⇒ There is a «spectral flow» of 1 between the second band and the first one

There is a «spectral flow» of 2 between the third band and the second one, …

David Gontier Spectral properties of materials cut in half 21 / 32



A «fun» analogy

The «Grand Hilbert Hotel»
An infinity of floors, an infinity of rooms in each floor.

Idea: each period represents 1 room (per floor), each spectral band represents one floor.

😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴

… Floor 3.

...
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As t moves from 0 to 1…

… a new room is created on each floor!

😴 😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴 😴

… Floor 3.

t→t+1−−−−−→

In order to fill the new rooms,
1 person from floor 2 must come down to floor 1;
2 persons from floor 3 must come down to floor 2;
and so on.

Remark: the proof can be generalized to higher dimensions!

David Gontier Spectral properties of materials cut in half 23 / 32



As t moves from 0 to 1…

… a new room is created on each floor!

😴 😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴 😴

… Floor 3.

t→t+1−−−−−→

In order to fill the new rooms,
1 person from floor 2 must come down to floor 1;
2 persons from floor 3 must come down to floor 2;
and so on.

Remark: the proof can be generalized to higher dimensions!

David Gontier Spectral properties of materials cut in half 23 / 32



Thetwo-dimensional case
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Let V be a Z2-periodic potential, and we study the edge operator

H](t) = −∆+ V (x− t, y), on L2(R+ × R), with Dirichlet boundary conditions.

For L ∈ N, consider the model in the tube R+ × [0, L] with periodic boundary conditions in x2.
Consider the «Two-dimensional Grand Hilbert Hotel».
As t moves from 0 to 1, L new rooms are created on each floor.
Let L → ∞…

There is a spectral flow of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.
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The two-dimensional twisted case.
We rotate V by θ.

Commensurate case (tan θ = p
q
)

Considering a Supercell of size L =
√

p2 + q2, we recover a LZ2-periodic potential.
« As t moves from 0 to L, L2 new rooms are created»

Key remark:

The map t 7→ H]
θ(t) is now 1/L-periodic (up to some x2 shifts)

So the map t 7→ σ(H]
θ(t)) is 1/L periodic.

«As t moves from 0 to 1
L
, 1 new room is created»
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In-commensurate case (tan θ /∈ Q, corresponds to L → ∞)
The spectrum of H](t) is independent of t (ergodicity);
All bulk gaps are filled with edge spectrum!

Theorem (DG, Comptes Rendus. Mathématique, Tome 359 (2021) )

If tan θ /∈ Q, the spectrum ofH]
θ is of the form (Σ,∞).

(a) Uncut two-dimensional material (b) Two-dimensional material with incommensurate cut
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Idea of the proof
Remark: The map θ 7→ Hθ is not norm-resolvent continuous…
so the convergence of the spectrum is not guaranteed, and we need to prove it by hand.

Limiting procedure
Consider a sequence θn → θ, with tan(θn) = pn

qn
∈ Q, and set Ln :=

√
p2n + q2n.

By the commensurate case result, there is tn ∈ [0, 1
Ln

] and φn ∈ L2
per(R+ × [0, Ln]) so that

(−∆+ Vθn (t− tn)− E)φn = 0,

ˆ
R+×[0,Ln]

|φn|2 = 1.

It is tempting to extract a weak-limit of φn, but this will fail (we would get φ∗ = 0 at the end)…

Idea: Normalize the functions in L∞

Consider the functions

Ψn :=
φn

‖φn‖L∞
, so that (−∆+ Vθn (t− tn)− E)Ψn = 0, ‖Ψn‖L∞ = 1.

(the parameter Ln is no longer here).
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(−∆+ Vθn (t− tn)− E)Ψn = 0, ‖Ψn‖L∞ = 1.

Step 1: Control the mass
Consider xn ∈ R2 so that Ψn(xn) >

1
2
.

Upon shifting the whole system in the x2-direction (which effectively corresponds to changing tn),
we may assume xn,2 = 0.
Since E /∈ σess(H), the function Ψn is exponentially decaying away from the boundary (the bulk is
an insulator). So there is C > 0 independent of n so that 0 < xn,1 < C (the full proof uses
Combes-Thomas estimates).

Step 2: Regularity and taking the limit
Since ‖(−∆Ψn)‖ ≤ C , there is δ > 0 so that Ψn(x) >

1
4
for all x ∈ B(xn, δ).

Take the limit n → ∞, and sub-sequences. Ψn → Ψ∗ weakly-* in L∞.
We have, in the distributional sense

(−∆+ Vθ(x− t∗)− E)Ψ∗ = 0.

We have ‖Ψ∗‖∞ ≤ 1, and since
´
B(0,δ) Ψ∗ 6= 0, we have Ψ∗ 6= 0.

This implies that E ∈ σ(Hθ).

Open question
Is E an eigenvalue of Hθ (∼ Anderson localization), or in the essential spectrum (travelling waves).
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Another application: the definition of the kilo
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May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)1 :
”Le kilogramme, symbole kg, est l’unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la
constante de Planck, h, égale à 6, 626 070 15× 10−34 J.s.”

Question: How do you measure h? How do you measure h with 10−9 accuracy?

Comments by von Klitzing2: ”The discovery of the QHE led to a new type of electrical resistor […]. This
resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one
part in 1010.”

QHE = Quantum Hall Effect3 (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

1https://www.bipm.org/fr/measurement-units/
2von Klitzing, Nature Physics 13, 2017
3K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494–497, 1980.
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In this setting, the magnetic field A plays the role of the pump.

HB = −∂2
xx + (−i∂y +Bx)2.

After a Fourier transform in y, we get

HB,ky = −∂2
xx + (ky +Bx)2 = −∂2

xx +B2(x− t)2, with t =
−ky

B
.

Lemma
If B 6= 0, the bulk Hamiltonian has discrete spectrum. σ(HB) = |B|(2N+ 1). (Landau operator).
The edge HamiltonianH]

B,t has flows of eigenvalues between the Landau levels.

In particular σ(H]
B) = [|B|,∞).

The plateaus observed by von Klitzing correspond to these spectral flows.

Thank you for your attention!
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