Kekulé distortions in graphene

David Gontier joint work with Adéchola Kouandé, Thaddeus Roussigné and Éric Séré

CEREMADE, Université Paris-Dauphine & DMA, École Normale Supérieure

Roscoff July 08, 2024.

Kekulé (1829-1896, German)

- Funder of the structure of molecules (atoms + covalent bonds).
- Discovered that the Carbon atom has 4 covalent bonds.
- Understood first the structure of Benzene (out of a day-dream involving Ouroboros).

Graphene? Usually represented with the **regular** honeycomb lattice.

THERE ARE NO DOUBLE BONDS!

 \implies responsible for the high conductivity of graphene.

Kekulé distortions \approx Add the fourth bond to each Carbon atom.

Kekulé-O (3-periodic)

A 1-periodic Kekulé

A random Kekulé

Many possible Kekulé distortions a priori (linked with the theory of dimers and random surfaces).

Courtesy of B. Laslier

Question: Is graphene distorted?

Remarks:

- A double bond brings the atom closer;
- Electrons can jump more easily to close atoms (larger hopping parameters);
- There is a competition between the distortion energy of the lattice, and the quantum energy of the electrons.

One-dimensional graphene (aka polyacetylene)

Polyacetylene

- Conductivity of undopped polyacetylene: $4.4 \times 10^{-5} \ \Omega^{-1} \cdot \text{cm}^{-1}$.
- Conductivité of dopped (with iode) polyacetylene: $38 \Omega^{-1} \cdot \text{cm}^{-1}$.
- Nobel prize to Heeger, MacDiarmid, Shirakawa for «conductive polymers» (2000).

There is an insulator/metallic transition due to dopping.

Peierls/Su-Schrieffer-Heeger (SSH) model

- L classical atoms (Carbon), linked by springs of stiffness K and rest length d_{\sharp} .
- *Quantum* non-interacting electrons in a tight-binding Hamiltonian generated by the Carbon atoms:

$$T := T(\mathbf{t}) = \begin{pmatrix} 0 & t_1 & 0 & 0 & \cdots & t_L \\ t_1 & 0 & t_2 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & t_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & t_{L-2} & 0 & t_{L-1} \\ t_L & 0 & \cdots & 0 & t_{L-1} & 0 \end{pmatrix}.$$

Hopping parameters. We assume a linear relation: $(t_n - t_{\sharp}) = -\alpha(d_n - d_{\sharp})$.

Peierls energy (\sim 1930) (Peierls? Hueckel? Su-Schrieffer-Heeger (SSH)?) After rescaling and with $\mu:=\frac{Kt_\sharp}{\alpha^2}$,

$$\mathcal{E}_L(\mathbf{t},\gamma) := \frac{\mu}{2} \sum_{n=1}^L (t_n - 1)^2 + 2 \operatorname{Tr} (T\gamma).$$

We want to minimize the energy for all $t_n \in \mathbb{R}_+$ and all $0 \le \gamma = \gamma^* \le 1$.

David Gontier Kekulé distortions in graphene

Theorem (Peierls 33, Kennedy/Lieb 1987, Lieb/Nachtergaele 1995)

If L=2N is even, there are at most two optimal configurations,

$$t_n = W + (-1)^n \delta$$
 or $t_n = W - (-1)^n \delta$, with $\delta \ge 0$.

In addition, if N is odd or if L is large enough, then $\delta > 0$ (Peierls dimerization).

The corresponding Hamiltonian is of the form

$$T = \begin{pmatrix} 0 & a & 0 & 0 & \cdots & b \\ a & 0 & b & \cdots & 0 & 0 \\ 0 & b & 0 & a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & b & 0 & a \\ b & 0 & \cdots & 0 & a & a \end{pmatrix}, \quad \sigma(T) = \bigcup_{k \in \frac{2\pi}{L}} \left\{ \pm |a + b e^{ik}| \right\}, \quad \left\{ b = W - \delta \right\}.$$

There is a gap of size 2δ around the origin.

Case $\delta > 0$. Two distinct minimizers. The model is insulating.

Case $\delta = 0$. Unique minimizer. The corresponding model is metallic.

Proof 1 (Kennedy-Lieb 1987), with convexity

Lemma (Exercice 1)

For
$$T\in\mathcal{S}_L(\mathbb{C})$$
 with $\mathrm{Tr}(T)=0$, we have: $\inf_{\substack{\gamma\in\mathcal{S}_L\\0\leq\gamma\leq1}}\{2\mathrm{Tr}(T\gamma)\}=-2\mathrm{Tr}(T_-)=-\mathrm{Tr}\left(\sqrt{T^2}\right)$. The minimum is obtained for $\gamma=\mathbb{1}(T<0)$.

Lemma (Exercice 2)

The map
$$\mathcal{S}_L^+(\mathbb{C}) \ni A \mapsto -\mathrm{Tr}\left(\sqrt{A}\right)$$
 is **convex**.

 \implies The energy is **convex** it the variable $T^2 \implies$ Minimizers are at most 2-periodic.

To study dimerization, it remains to study a functional with two variables W and δ (Peierls 1933).

Thermodynamic limit $(L \to \infty)$

We are left with only two variable in the energy, namely W and δ .

The limit $\underline{\mathcal{E}} := \lim_{L \to \infty} \frac{1}{L} \mathcal{E}_L$ (energy per unit cell) is well-defined, and given by

$$\underline{\mathcal{E}}(W,\delta) = \frac{\mu}{2} \left[(W-1)^2 + \delta^2 \right] - \frac{1}{2\pi} \int_0^{2\pi} \sqrt{4W^2 \cos^2(s) + 4\delta^2 \sin^2(s)} ds$$
$$\approx \frac{\mu}{2} \left[(W-1)^2 + \delta^2 \right] - \frac{4W}{\pi} \left(1 + \frac{\delta^2}{2W^2} \log \left(\frac{\delta}{2W} \right) \right).$$

Conclusion: For all $\mu > 0$, we have $\delta > 0$.

(it costs δ^2 to open a gap δ , and we gain $\delta^2 \log(\delta)$ quantum energy).

Remark (Exercice?). The gain of energy due to Peierls dimerization is of order $\Delta E \approx C e^{-\frac{\pi}{2}\mu}$.

Similar results with positive temperature $\theta > 0$

Peierls free energy

$$\mathcal{E}_L^{\theta}(\mathbf{t},\gamma) := \frac{\mu}{2} \sum_{n=1}^L (t_n - 1)^2 + 2 \mathrm{Tr} \left(T \gamma \right) + 2 \theta \mathrm{Tr} \left(\underbrace{\gamma \log(\gamma) + (1 - \gamma) \log(1 - \gamma)}_{\text{fermionic entropy of the electrons}} \right).$$

Lemma (Exercice 3)

For all matrix $T \in \mathcal{S}_L(\mathbb{C})$ with $\mathrm{Tr}(T) = 0$, we have

$$\inf_{\substack{\gamma \in \mathcal{S}_L \\ 0 \leq \gamma \leq 1}} 2 \left\{ \mathrm{Tr}(T\gamma) + \theta \mathrm{Tr} \left(\gamma \log(\gamma) + (1-\gamma) \log(1-\gamma) \right) \right\} = \mathrm{Tr} \left[h_{\theta}(T^2) \right],$$

with
$$h_{\theta}(x) := -2\theta \log \left(2\cosh\left(\frac{\sqrt{x}}{2\theta}\right) \right)$$
. The minimum is attained for $\gamma = \left(1 + \mathrm{e}^{\frac{T}{\theta}} \right)^{-1}$.

The key property is that h_{θ} is a convex function.

So, if L=2N is eveny, there are at most 2 minimizers, of the form

$$t_n = W + (-1)^n \delta$$
 ou $t_n = W - (-1)^n \delta$, with $\delta \ge 0$.

We can perform the thermodynamic limit again, and obtain the free energy per unit cell

$$\underline{\mathcal{F}}(W,\delta) = \frac{\mu}{2} \left[(W-1)^2 + \delta^2 \right] + \frac{1}{2\pi} \int_0^{2\pi} h_\theta \left(4W^2 \cos^2(s) + 4\delta^2 \sin^2(s) \right) \mathrm{d}s.$$

Theorem (DG, Kouandé, Séré 2023)

For all $\mu > 0$, there is a critical temperature $\theta_c(\mu) > 0$ such that:

- If $\theta < \theta_c(\mu)$, we have $\delta > 0$ (Peierls dimerization);
- $Si \theta \geq \theta_c(\mu)$, we have $\delta = 0$.

In addition, for large μ , we have $\theta_c(\mu) \sim_{\mu \to \infty} Ce^{-\frac{\pi}{4}\mu}$.

Phase transition due to temperature

Apparently, a reasonable value for μ is $\mu \approx 3.1$. This gives $\theta_c(\mu) \approx 2900^\circ K...$

Proof 2 (Lieb-Nachtergaele 1995), with Reflection Positivity

Reflection Positivity (general principle from Quantum Field Theory)

$$\mathcal{E}(t_L, t_{\mathrm{cut}}, t_R) \geq \frac{1}{2} \left(\mathcal{E}(t_L, t_{\mathrm{cut}}, \widetilde{t}_L) + \mathcal{E}(\widetilde{t}_R, t_{\mathrm{cut}}, t_R) \right).$$

So, any minimising configuration should be symmetric with respect to all cuts \implies 2-periodicity for polyacetylene.

Two-dimensional polyacetylene (aka graphene)

For graphene, Reflection Positivity applies (Frank-Lieb, 2012).

So, at most 3 different hopping parameters/distances may appear. Graphene is **at most** 3 **periodic** (with 6 Carbon atoms per unit cell).

This already discards the 1–periodic Kekulé and other *«random»* Kekulé distortions.

Results for the Peierls/SSH model for graphene Denote by $t_1 \le t_2 \le t_3$ the three remaining hopping/parameters.

Theorem (DG, Roussigné, Séré, 2024)

There is a critical value $\mu_c > 0$ so that,

- for $\mu \ge \mu_c$, we have $t_1 = t_2 = t_3$. No distortion \implies no gap.
- for $\mu < \mu_c$, we have $t_1 = t_2 < t_3$. Kekulé-O distortion \implies gap.

Kekulé-O, exaggerated

We find
$$\mu_c = 0.88...$$

...and the experimental value seems to be much greater.

Results for the Peierls/SSH model for graphene Denote by $t_1 \le t_2 \le t_3$ the three remaining hopping/parameters.

Theorem (DG, Roussigné, Séré, 2024)

There is a critical value $\mu_c > 0$ so that,

- for $\mu \ge \mu_c$, we have $t_1 = t_2 = t_3$. No distortion \implies no gap.
- for $\mu < \mu_c$, we have $t_1 = t_2 < t_3$. Kekulé-O distortion \implies gap.

Kekulé-O, exaggerated

We find $\mu_c = 0.88...$

...and the experimental value seems to be much greater.

Thank you for your attention.

Kinks in the Peierls/SSH model

Let's go back to polyacetylene in the $\theta = 0$ case.

In the even (L=2N) case, there are two minimizers $\mathbf{t}_n^\pm=W\pm(-1)^n\delta$.

Theorem ((odd case) Garcia-Arroyo/Séré, 2011)

If L = 2N + 1 is odd, minimizers look like «kinks»:

If $\mathbf{t}(2N+1)$ is a centered minimiser, then $\lim_{N\to\infty}\mathbf{t}(2N+1)_n=:t_n$ exists, and

$$\lim_{n\to\infty}|t_n-t_n^+|=\lim_{n\to\infty}|t_n-t_n^-|=0. \qquad \textit{heteroclinic configuration}.$$

Same phenomena with a billiard (maximise the periodic billiard path with L points)

Chaîne de taille 101

L = 10

L = 11

Edge modes

The corresponding Hamiltonian can be seen as a junction between T^+ and T^- .

Lemma (Exercice 3)

Consider any positive sequence t_n with $\lim_{n\to\infty} |t_n - t_n^+| = \lim_{n\to\infty} |t_n - t_n^-| = 0$, and consider the corresponding tight-binding Hamiltonian $(T\psi)_n = t_n\psi_{n+1} + t_{n-1}\psi_{n-1}$. Then $0 \in \sigma(T)$.

In addition, if $\delta > 0$ (so $\mathbf{t}^+ \neq \mathbf{t}^-$), then 0 is an eigenvalue of multiplicity 1, and the corresponding eigenvector is exponentially localised (= edge mode).

Example of topologically protected states (Majorana states?).

Theorem (DG, Kouandé, Séré)

If (t_n) is any (heteroclinic) positive critical point of the infinite Peierls model, then the convergence of t_n to t_n^{\pm} at $\pm \infty$ is exponential.