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STATISTICAL STUDY OF CELLULAR AGING

Julien Guyon1, Ariane Bize1, Grégory Paul2, Eric Stewart2, Jean-Francois

Delmas1 and Francois Taddéi2

Abstract. Whereas aging is obvious in macroscopic organisms, it is not in single-celled ones, such
as the model organism E. Coli, where one has the best chances of describing and quantifying the
molecular process involved. To determine if E. Coli experiences aging related to the inheritance of the
old pole, E. J. Stewart et al. [1] followed 94 individual exponentially growing cells through up to nine
generations, determining the complete lineage and the growth rate of each cell. Averaging over these
94 experiments leads the authors to the conclusion that the two supposedly identical cells produced
during cell division are functionally asymmetric.

This preliminary study, avoiding inter-experiment averaging, aims at reasoning experiment-wise and
describing the structure of dependency within a lineage of E. Coli. We propose a single-experiment
model for the dynamics of such a lineage of growth rates. We fit it to the data and perform experiment-
wise tests which lead us to accept that the old pole progeny cell experiences slowed growth rate and
hence should be considered an aging parent repeatedly producing rejuvenated offspring. Eventually,
as a first step towards answering statistical questions about markovian models on binary trees, we run
simulations of the model and conjecture results. At this preliminary stage, we have not used the results
on bifurcative autoregressive models [2] which seem to be an appropriate background for the gaussian
model.

Résumé. S’il est facile d’identifier le vieillissement chez les organismes macroscopiques, il en va
autrement chez les êtres unicellulaires tel l’organisme modèle E. Coli où l’on a pourtant les meilleures
chances de décrire et de quantifier les processus moléculaires qu’il met en jeu. Afin de savoir si
l’héritage du vieux pôle parental est source de vieillissement chez E. Coli, E. J. Stewart et al. [1] ont
suivi 94 cellules dans leur développement exponentiel pendant 9 générations, construisant 94 arbres
généalogiques et y reportant les taux de croissance de chacun des descendants. En moyennant ces
arbres, les auteurs concluent à l’assymétrie fonctionnelle des deux cellules filles produites à chaque
division et jusque là supposées identiques.

Dans cette étude préliminaire, nous évitons le recours au moyennage inter-expériences et nous raison-
nons expérience par expérience, décrivant la structure de dépendance au sein d’un lignage de E. Coli.
Nous proposons pour chaque expérience un modèle de dynamique d’un tel lignage de taux de crois-
sance. Nous le calons aux données et réalisons pour chaque expérience prise individuellement un test
qui nous conduit à accepter l’hypothèse selon laquelle que la cellule fille qui hérite du vieux pôle de sa
mère crôıt moins vite que sa soeur et doit être considérée comme un parent vieillissant pouvant donner
naissance à une progéniture rajeunie. Enfin, des simulations du modèle nous permettent de conjecturer
des résultats sur les modèles markoviens sur les arbres binaires. A ce stade prélimiaire de l’étude, nous
n’avons pas utilisé les résultats sur les modèles autorégressifs avec bifurcation [2] qui semblent fournir
un cadre adapté au modèle gaussien.
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Figure 1. ”What is true for E. coli is true for the elephant” As aging requires a differential
distribution of aged and young components between parent and offspring, it has been postulated
that organisms that reproduce by symmetrical division do not age. It has now been shown,
however, that in the symmetrically dividing bacterium Escherichia coli aging can occur even
in the absence of both a visible asymmetry and a juvenile phase. This false-color image shows
a growing microcolony of E. coli, where the cells are colored by age (in numbers of divisions).
The oldest cells are red, and the youngest blue. Original quote attributed to Jacques Monod.
Cover credit: Photograph provided by Eric Stewart and Stefanie Timmermann, Inserm U571,
Faculté de Médecine Necker Enfants-Malades, Paris, France.

Introduction

E. J. Stewart, G. Paul, F. Taddéi, from the Laboratoire de Génétique moléculaire, évolutive et médicale
(INSERM U571, Faculté de Médecine Necker) and R. Madden, from the Institut des Hautes Etudes Scien-
tifiques, have been working on Escherichia Coli ’s aging [1]. E. Coli is a single-celled, model organism. It has
been widely studied by the biologists who have gathered great information on it. Whereas aging is obvious in
macroscopic organisms, it is not in single-celled ones, where one has the best chances of describing and quan-
tifying the molecular process involved. It is especially hard to identify in E. Coli, which reproduces without a
juvenile phase and with an apparently symmetric division. E. J. Stewart et al. have designed an experimental
protocol which brings evidence of aging in E. Coli and we propose a statistical study of the data they get.

In Section 1, we describe the biological experiment and present the data. Inter-experiment averaging shows
a clear segregation between the new and old poles (see Subsection 1.1), whereas single-experiment data does
not. In Section 2, we propose a mathematical model for this data and perform single-experiment statistical
tests that lead us to accept aging in E. Coli. The model consists of a markovian dynamics on a binary tree. It
raises interesting statistical questions. In Section 3, as a first step towards answering them, we run simulations
of the model and conjecture some results.
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Figure 2. The life cycle of E. coli, from E. J. Stewart et al. [1]

1. The biology

Here we briefly describe E. Coli ’s life cycle, the experiment designed by E. J. Stewart et al. and the data
they get. Figures 2, 5 and 6 are taken from [1] where one can find further information.

1.1. The experiment

E. Coli is a rod-shaped bacterium. It reproduces by dividing in the middle, producing a new end per progeny
cell, see Figure 2. This new end is called new pole, whereas the other end is pre-existing and is called old pole.

This defines an age in divisions for each pole, and hence for each cell. One expects any cell component formed
in the poles and with limited diffusion to accumulate at the old pole, so that there might be a physiological
asymmetry between the old and new poles. To determine if E. Coli experiences aging related to the inheritance
of the old pole, E. J. Stewart et al. followed 94 individual exponentially growing cells through up to nine
generations in an automated fluorescence microscopy system which allowed them to determine the complete
lineage, the identity of each pole and, among other physical parameters, the growth rate of each cell. In the
next two sections, we present their results.

1.2. Original data

Each of the 94 films give rise to a genealogical tree such as the ones in Figure 3. The new poles are in blue
and the old poles in red. On the y-axis appears the growth rate, whereas the x-axis displays time in divisions.
There is no striking evidence for reproductive asymmetry between the progeny cells visible to the naked eye.

1.3. Averaged data

In order to eliminate the random effects which appear in Figure 3, E. J. Stewart et al. have averaged the
94 lineages by each unique cell position within the lineage. Figure 4 is the average tree thus produced. It makes
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Figure 3. Two single-experiment data trees

clearly appear a segregation between the new and old poles. The latter experience cumulatively slowed growth,
which is an evidence for aging.

In Figure 5, each branch point is an average cell for that position in the lineage, and the length of the lines
connecting cells to their progeny are proportional to the growth rate of the cell. At each division, the cell
inheriting the old pole of the progenitor cell is on the right branch, in red. Again there is striking evidence for
cumulatively slowed growth in the old poles.

Eventually, E. J. Stewart et al. performed a pair-wise comparison of the 7,953 sets of sister cells that were
produced at the eighth generation in each of the films, see Figure 6. This analysis shows that the average growth
rate of the old pole progeny cell is 2.2% slower than that of the new pole cell.

Such average graphs clearly show a functional asymmetry between the old and new poles. However, averaging
between experiments can be problematic, since they are not independent and identically distributed. Indeed, two
initial cells giving rise to two different films are actually taken from the same macrocolony, so that there might
be a correlation between the experiments. Moreover, as shown in Figure 3, the range of values of the growth
rate changes from experiment to experiment, probably due to a slight change in the experimental conditions.
In the next section, we propose a statistical model that allows to segregate between the populations of old and
new poles experiment-wise. It also has the advantage to take into account the structure of dependency within
a lineage.

2. The mathematical model

2.1. Description and objectives

In order to describe the dynamics of the growth rate, we propose the following markovian model with memory
1: (ρ2, ρ3) ∈ R

2
+ and for all n ≥ 2,

{

ρ2n = α0ρn + β0 + ε2n,
ρ2n+1 = α1ρn + β1 + ε2n+1.

(1)
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Figure 4. The average data tree

In this writing, ρi is the growth rate of individual i and n is the mother of 2n - the new pole progeny cell - and
2n + 1 - the old pole progeny cell. The εi’s form a sequence of independent and identically distributed (i.i.d.)
centered gaussian random variables with common variance σ2, independent on the initial condition (ρ2, ρ3). We
speak of memory 1 because a cell’s growth rate is explained by its mother’s. For instance, a markovian model
with memory 2 would also take into account the grandmother’s growth rate. Since we do not know which of
the first two sisters is the new pole progeny cell issued from individual 1, we do not make (ρ2, ρ3) part of the
dymamics and take it as the initial condition.

On each germinal line, (1) defines a Markov chain on the real axis. This Markov chain is not homogeneous
since the one-step dynamics depend on whether you are the new pole progeny cell or the old pole one.

The model should also be thought of as a gaussian linear model, since the εi’s are i.i.d. gaussian variables
and the dependency between a cell’s growth rate and its mother’s is assumed to be affine: Y = Mθ + ε with

Y =
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. (2)

Nevertheless, the explaining factor, the sequence (ρi, i ∈ N) itself, is stochastic, so that one cannot blindly apply
the gaussian linear model theory which assumes the explaining factor to be deterministic.
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Figure 5. Average lineage showing old pole effect on growth rate, from E. J. Stewart et al. [1]
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Figure 6. The effects of consecutive divisions as an old or new pole on growth rate, from E.
J. Stewart et al. [1]

We aim at

(i) estimating the 4-dimensional parameter θ = (α0, β0, α1, β1) and σ2,
(ii) testing the null hypothesis H0 = {(α0, β0) = (α1, β1)} against its alternative H1 = {(α0, β0) 6= (α1, β1)},
(iii) testing the validity of the model.

In view of the biological question addressed here, (ii) is crucial: rejecting H0 comes down to accepting that the
old pole progeny cell experiences slowed growth rate and hence should be considered an aging parent repeatedly
producing rejuvenated offspring.

2.2. A parameter estimator

We seek to estimate the parameters of the model. Each of the 94 experiments gives rise to a genealogical
binary tree I which is not necessarily complete. I should be seen as a set of individuals, each of them given by
its number through the rule: i is the mother of 2i - the new pole progeny cell - and 2i+1 - the old pole progeny
cell. Incompleteness means that we can have I ∩{2n, . . . , 2n+1−1} 6= {2n, . . . , 2n+1−1}, see for instance Figure
3. However, since we cannot observe a cell without observing its mother, for i ≥ 1 we have that 2i ∈ I ⇒ i ∈ I
and 2i + 1 ∈ I ⇒ i ∈ I . We denote by I0 the set of new pole progeny cells of I , i.e. I0 = I ∩ (2N), and by

I1 the set of old pole progeny cells of I , i.e. I1 = I ∩ (2N + 1). We also denote I↑
0 = {i ∈ I |2i ∈ I0} and

I↑1 = {i ∈ I |2i + 1 ∈ I1} the sets of new poles’ (resp. old poles’) mothers. Since the εi’s are i.i.d. gaussian

variables, the maximum likelihood estimator θ̂ = (α̂0, β̂0, α̂1, β̂1) of θ is also the least squares one:



















α̂0 = Cov(ρI0 , ρI↑
0

)/Var(ρI↑
0

),

β̂0 = ρ̄I0 − α̂0 ¯ρI↑
0

,

α̂1 = Cov(ρI1 , ρI↑
1

)/Var(ρI↑
1

),

β̂1 = ρ̄I1 − α̂1 ¯ρI↑
1

.

(3)
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parameter α̂0 β̂0 α̂1 β̂1 σ̂2

experiment 1 -0.1089 0.0460 0.0977 0.0370 1.1 10−5

experiment 2 0.0261 0.0354 -0.1247 0.0399 7.8 10−6

Table 1. Estimation of the parameters of the model

In this writing, # denoting the cardinality,

ρ̄I0 =
1

#I0

∑

i∈I0

ρi,

¯ρI↑
0

=
1

#I0

∑

2i∈I0

ρi,

Cov(ρI0 , ρI↑
0

) =
1

#I0

∑

2i∈I0

ρ2iρi − ρ̄I0 ¯ρI↑
0

,

Var(ρI↑
0

) =
1

#I0

∑

2i∈I0

ρ2
i − ¯ρI↑

0

2

respectively stand for the new pole progeny cell’s empirical growth rate mean, their mother’s empirical growth
rate mean, the empirical covariance between mothers’ and their new pole progeny cell’s growth rates and the
empirical variance of the mothers’ growth rates. Similar definitions hold for the old poles population.

Note that, like in the linear gaussian model theory, (3) can be written as

θ̂ = (tMM)−1 tMY,

where M and Y are respectively the #I × 4 matrix and the #I dimensional column vector defined in (2). We
then estimate σ2 by

σ̂2 =
1

#I − 4

∥

∥

∥
Y − Mθ̂

∥

∥

∥

2

,

where ‖·‖ denotes the euclidian norm.
In Table 1, we give the estimated parameters for the 2 experiments of Figure 3.

2.3. Two approached tests

Rejecting the null hypothesis H0 = {(α0, β0) = (α1, β1)} boils down to accepting that E. Coli experiences
aging related to the inheritance of the old pole. To do so, we perform two different approached tests.

2.3.1. Wilcoxon’s test

To start with, we perform Wilcoxon’s test applied to the growth rates of sister cells. It is a non parametric
test which allows to segregate between new and old poles in a more general background than the gaussian one
we just presented. The null hypothesis is that growth rates distributions are independant of the age of poles in
the cell, and thus if the data was independent old poles and new poles cells’ growth rate would follow the same
distribution. Two sister cells form a pair. For each pair, we compute the difference between the growth rates.
We order these differences according to ascending absolute values. We are then able to attribute a rank k to
each pair according to this new order, and call D(k) the difference of growth rate between the sister cells of the
kth pair. For each set of data, we compute

T+ =
∑

k

k1{D(k)>0}.
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Figure 7. Histogram of the p-values for Wilcoxon’s test

parameter #I F p-value
experiment 1 382 3.1475 0.0441
experiment 2 294 4.3159 0.0142

Table 2. Testing H0 = {(α0, β0) = (α1, β1)} against its alternative H1 = {(α0, β0) 6= (α1, β1)}

Thus, T+ is the sum of the ranks for pairs showing a positive difference. Let us call p the number of pairs of
sister cells. If the data was independent, under the null hypothesis, the expectancy and the variance of T + are

given by E[T+] = p(p + 1)/4 and Var(T +) = p(p + 1)(2p + 1)/24 and Z = T+−p(p+1)/4√
p(p+1)(2p+1)/24

converges in law

towards a gaussian law of parameters (0,1) when p tends to infinity. For each set of data, we compute Z and
the associated p-values. Figure 7 shows an histogram of them. A uniform distribution of the p-values would
indicate that the old and new poles are indistinguishable. Such is not the case. Values produced are in great
majority inferior to 0.1. This first test hence indicates that there is a difference between the new and old poles
in terms of growth rate. It is inaccurate since the data is not independent: a cell’s growth rate is linked to its
mother’s, so that there is a dependance between cells throughout the tree, both horizontally and vertically. It
is nevertheless useful as a first impression and all the more convincing as it shows a clear answer.

2.3.2. Fisher’s test

We then proceed to a Fisher’s test. As in the linear gaussian model, we compute the least squares estimator

θ̂0 of θ under H0 and estimate Y under H0 by Ŷ0 = Mθ̂0 and under the general model by Ŷ = Mθ̂. Then we
compute Fisher’s statistic

F =

∥

∥

∥
Ŷ − Ŷ0

∥

∥

∥

2

2σ̂2
. (4)

Even though the explaining factor M is stochastic, which prevents one to state that F follows Fisher’s law
F2,#I−4 with 2 and #I − 4 degrees of freedom, one expects F to take “small” values under H0 and to tend
to infinity as #I increases under the alternative hypothesis H1. See Section 3 for simulations of the random
variable F under both hypothesis.

Making as if F followed F2,#I−4, we compute its p-value for each of the 94 films. For the two experiments
of Figure 3, the results are given in Table 2.
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Figure 8. Histogram of the p-values produced by Fisher’s test
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Figure 9. Two single-experiment residuals

Figure 8 shows the histogram of the 94 p-values thus produced. Even if F is only an approximated Fisher’s
random variable, we now have a strong experiment-wise indication for a segregation between new pole progeny
cells and old pole ones in terms of growth rate, since under H0 one would have expected a uniformly distributed
histogram of the p-values.

To conclude, Wilcoxon’s and Fisher’s tests convince us that the experimental data show a difference between
the new and old poles.

2.4. Validity of the model

In order to check the validity of the model, we perform two tests.

The first one consists in computing the residual ε̂ = Y −Mθ̂. If (1) is a correct description of the dynamics
of the growth rates, one expects ε̂ to be “close” to a realization of a sequence of i.i.d. gaussian variables. For
the two experiments of Figure 3, we graph i 7→ ε̂i and the corresponding histograms, see Figures 9 and 10.

Assuming that each such time series are independent draws from a given law, we want to check whether
the latter is a centered gaussian law or not. To this end, we evaluate the variance σ̂2, divide R into 10
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Figure 10. Histogram of two single-experiment residuals

parameter #I χ2 p-value adequation
experiment 1 382 5.8534 0.6636 true

experiment 2 294 12.3946 0.1344 true

Table 3. Adequation of the distribution of the εi’s to a centered gaussian law

parameter R2

experiment 1 0.0164
experiment 2 0.0318

Table 4. Percentage of variance explained by the model

N (0, σ̂2) equiprobable intervals and perform a 8 degrees of freedom χ2-test. We come to the conclusion that
the distribution of the εi’s agrees with a centered gaussian law, see Table 3.

The second test consists in computing the percentage of variance explained by the model, i.e. R2 =
Var(Ŷ)/Var(Y). If (1) correctly captures the aggregated stochastic effects, one expects R2 to be close to
1. For the two experiments of Figure 3, the results are given in Table 4.

This result is unsatisfying and leads us to envisage more complex models. Such models would take into
account a more complex structure of dependency. For example, one can make a cell’s growth rate depend on its
grandmother’s, or on its sister’s - this could be done by introducing an unknown correlation between ε2n and
ε2n+1.

2.5. Open questions

Many interesting mathematical questions remain open:

• What is the law of θ̂ ? of σ̂2 ? Do we have an almost sure convergence to the true parameters as the
size of the tree tends to infinity ? a central limit theorem ? with which speed ?

• What is the law of F ? How to build an exact test for H0 ?
• What is the law of ε̂ ?
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parameter estim CI fixed value

α0 0.4075 0.4051− 0.4099 0.41
β0 0.0221 0.0220− 0.0222 0.022
α1 0.4269 0.4244− 0.4294 0.43
β1 0.0201 0.0200− 0.0202 0.020
σ2 9 10−6 9 10−6 − 9 10−6 9 10−6

Table 5. Estimation of parameters of the model

mean variance χ2 degree 0.95-quantile adequation

α̂0 0.4075257 0.0015103 6.36 7 14.07 true

α̂1 0.4269006 0.0016162 6.3 7 14.07 true

β̂0 0.0221010 0.0000020 3.3 7 14.07 true

β̂1 0.0201138 0.0000021 10.08 7 14.07 true

σ̂2 0.0000090 1.5111 10−13 8.36 7 14.07 true

α̂0 − α̂1 −0.0193746 0.0030630 117.9 8 15.51 false

β̂0 − β̂1 0.0019872 0.0000041 1154.9 8 15.51 false

Table 6. Adequation of estimated parameters to gaussian laws

As a first step towards answering these questions, we now perform simulations of model (1). See [2] for strong
law of large numbers and central limit theorem in bifurcating autoregressive models.

3. Simulations

Following the analysis of the experimental data, let us run simulations of model (1). We choose a tree depth
of 10, and fix ρ4, ρ5, ρ6 and ρ7. Thus, we study 1016 cells (#I = 1016).

3.1. Estimation of the parameters

We proceed to 1000 simulations to produce Monte Carlo data. For each simulation, we estimate the param-
eters as in (3). We can then compute the empiric mean and variance and the corresponding 95%-confidence
interval for each parameter. Table 5 shows one set of results. The parameters’ estimators seem to converge
towards the true values.

We then test the adequation of α̂0, α̂1, β̂0, β̂1 and σ̂2, to gaussian laws. The parameters used for the gaussian
law are the empirical means and variances. We use the same set of simulations (1000), thus the fixed parameters
are α0 = 0.41, α1 = 0.43, β0 = 0.22, β1 = 0.20 and σ2 = 0.000009. We find a good adequation to normal
distributions (see Table 6), which suggests that a central limit theorem holds.

We proceed to the same type of adequation tests to compare the distributions of α̂0−α̂1 and β̂0−β̂1 to centered

gaussian laws. We still use the empiric variance. We find high values of χ2, rejecting the adequation at the 5%

significance level: this means that α̂0 seems to be different from α̂1 and β̂0 from β̂1: H1 = {(α0, β0) 6= (α1, β1)}
seems to be true (see Table 6). Some of the histograms produced are shown in Figure 11.

3.2. Fisher’s test

We also perform Fisher’s test as described for the experimental data (see Subsection 2.3.2). The aim is to
check the behaviour of the test according to the initial value of the parameters, as, in fact, F does not follow
a Fisher’s law and we do not know its law. We want to check that F takes “low” values under H0 and “high”
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Figure 11. Histograms of estimated parameters - Left: α̂0 - Right: σ̂2 - Bottom: α̂0 − α̂1

.

values under H1. In all cases, σ = 0.003. We first choose (α0, β0) 6= (α1, β1), with α0 = 0.41, β0 = 0.022,
α1 = 0.43 and β1 = 0.020. We find test values centered around 25. This value of 25 should be compared to
3.00, the quantile of order 0.95 for the Fisher function of parameters (2, 1012). Then, we use α0 = α1 = 0.41,
β0 = β1 = 0.022. We find values in majority inferior to 1. Figure 12 shows the 2 histograms of the test
values. As a conclusion, the test has the expected behaviour and should allow us to discriminate equality of the
parameters.

3.3. The residues

We also study the residues. They are computed using the estimated parameters. We first examine the
correlation between the residues of two sister cells, and between the residues of mother and daughter cells. A
rank n (60) is arbitrarily chosen. We compute the correlations between ε̂n and ε̂2n, ε̂n and ε̂2n+1, ε̂2n and
ε̂2n+1, on the basis of 100 simulations. And this is repeated a hundred times in order to get an empirical mean
and an empirical variance for the different correlations. We find them very low. The former is about 10−8 and
the latter is of the order of 10−12. Figure 13 shows the histogram for these correlation values. Such low values
should indicate that the ε̂n have little correlation.

We then observe adequation of the ε̂n to a gaussian law. We still use the arbitrary rank 60 but proceed to 1000
simulations. We calculate the mean m and the variance v of the ε̂60 thus obtained and we find m = 0.0000368
and v = 0.000090. Following this, we test the adequation of the residues to a gaussian law of parameters (m, v).



14 TITLE WILL BE SET BY THE PUBLISHER

10 20 30 40
0.00

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Figure 14. Histogram of the ε̂n, n = 60, 1000 simulations

In this purpose, we use a χ2 test with 7 degrees of freedom. The value obtained is 6.76, to compare with 14.07,
the 0.95-quantile. This means that ε̂60 fits to a gaussian law, suggesting that all the ε̂i’s do so too. Figure 14
shows the distribution of the ε̂60.
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