Cours de Probabilités, 1e année ENPC
Devoir maison sur la méthode de Monte-Carlo
(obligatoire)

Principe de la méthode de Monte-Carlo. On considere une variable aléatoire X :  — R¢
et une fonction mesurable f : R* — R telle que

E[lf(X)[] < o0.

Le but de la méthode de Monte-Carlo est de calculer de fagon approchée E[f(X)]. Pour cela, on
suppose que 'on sait simuler la variable aléatoire X, c’est-a-dire générer une suite i.i.d. (X;)i>1

telle que X; £ X. L’idée est d’approcher E[f(X)] par
1 n
M= 13 ), 1)
i=1

avec n assez grand. En effet, la loi forte des grands nombres assure que M, — E[f(X)],
n—-+0o

p.s. Cela nous dit que pour n assez grand, M, sera proche de E[f(X)]. En revanche, nous ne
savons pas a ce stade quel n choisir pour obtenir une précision £ donnée. Pour cela, nous faisons
I’hypothese supplémentaire que E[f(X)?] < oo, et on pose

0% = E[f(X)’] - E[f(X)]*.
Alors, le théoreme de la limite centrale assure que

Y (0, — BLF(X)]) 5 N(0,1). )

On fait alors 'approximation que pour n suffisament grand,

V2 (M~ B ) AN, 1).

Comme pour G ~ N(0,1), P(—1,96 < G < 1,96) = 0,95, on a qu’avec probabilité 95%,

1,960 | 1,960
vn U n
L’intervalle |M,, — l’gi", M, + 1’3%”} est appelé intervalle de confiance & 95% pour E[f(X)]. De
méme, comme P(—2,58 < G < 2,58) =~ 0,99, lintervalle [Mn — 2’\5}%",Mn + Qj%"} est un inter-
valle de confiance a 99% pour E[f(X)].
En pratique, lorsqu’on cherche & calculer E[f(X)] de facon approchée, il est rare de connaitre
la valeur exacte de o. Parfois, on connait a priori un majorant ¢ de o et dans ce cas, on sait

qu’avec une probabilité au moins égale a 95%, E[f(X )] appartient a {Mn — 1’3%6, M, + 1’3%6}, et
cet intervalle est donc un intervalle de confiance supérieure & 95%. Néanmoins, dans la grande

majorité des cas, on ne sait rien sur o et on cherche a I’estimer également par Monte-Carlo. Ainsi,

E[f(X)] € [Mn

1 n
g X;)? — M2
Vo= 21000



converge presque stirement vers o2 par la loi forte des grands nombres. Grace & (2) et au théoréme
de Slutsky, on en déduit que

vn c
—~— (M, —E[f(X)]) = N(0,1).
\/‘7”( n — E[f(X)]) (0,1)
En répétant le méme raisonnement que précédemment, on en déduit que
1,96V, 1,96V,
vn Vn

est un intervalle de confiance a 95% pour E[f(X)].

Mn_ 7Mn+

1 Calcul d’intégrale : sommes de Riemann ou méthode de Monte-
Carlo?

Dans cette premiere partie, nous étudions l'approximation numérique de l'intégrale I =
f[O,l]d f(z)dz, ou f:[0,1]* — R est une fonction mesurable intégrable. Le but est de comparer
la méthode usuelle des sommes de Riemann avec la méthode de Monte-Carlo. Nous commengons
par le cas de la dimension d = 1.

1.1 En dimension d =1

En dimension 1, les sommes de Riemann s’écrivent pour n € N*,
n—1 .
1 1
Sn=— E fl—1.
n 4 n
=0

1. On suppose f : [0,1] — R continue. On rappelle le théoreme de Heine : toute application
continue sur un compact est uniformément continue. Ainsi, f satisfait

Ve>0, >0, Vr,y (0,1, |z—yl<n = [f(z)-[fly)l<e

En déduire que S,, — 1.
n——+00

En fait, on peut montrer que S, —+> I pour une classe un peu plus grande de fonctions, les
n—-+0oo

fonctions réglées qui incluent notamment les fonctions f continues par morceaux. En revanche, on
ne dispose pas de vitesse de convergence a ce stade. Pour cela, on a besoin de faire des hypotheses
de régularité sur f. La plus usuelle est de supposer f lipschitzienne, i.e.,

K >0, Yo,y € [0,1],  [f(z) — f(y)| < K]z —yl.
2. On suppose f Lipschitzienne. Montrer que
K
IS, — 1] < o
En déduire que pour calculer I avec une précision de € > 0, il faut un nombre de calculs (et
donc un temps de calcul) proportionnel a g
3. On suppose désormais f mesurable telle que fol f(u)?du < oo, et on note 2 = fol fu)?du—

2
( fol f (u)du) . Ecrire une méthode de Monte-Carlo qui permet d’approcher I. Donner I'in-

tervalle de confiance & 95% en supposant o connu. En déduire que pour obtenir une précision
. . . o2
de € > 0, il faut un temps de calcul proportionnel a % .

> A retenir : En dimension 1, sauf éventuellement dans le cas ou f n’est pas réguliére, il faut
préférer les sommes de Riemann (temps de calcul en O(e~!)) & la méthode de Monte-Carlo (temps
de calcul en O(¢72)). Si f est plus réguliere, on préferera utiliser la méthode des trapezes (f € C?)
ou de Simpson (f € C*) pour obtenir des temps de calcul respectivement en O(e~/2) et O(e~1/4).



1.2 En dimension d quelconque
Pour d > 1, les sommes de Riemann s’écrivent
R S S T ¥
ST,,:MZ--.ZJ@@,...,H).
i1=0  ig=0
4. Montrer que

ip+1 ig+1

n—1 n—1 nrt . .
n n 7 1
I_S":Z“'Z/il /d f(xl,...,:nd)—f<7i,...,Tj)dxl...d:rd.

i1=0  ig=0

5. On suppose f : [0,1]¢ — R lipschitzienne :

va,y € 0,17 |f(2) — f(y)] < Kz —yl.

Montrer que |S,, — I| < %. En déduire que pour obtenir une précision de € > 0, il faut un

. . d
temps de calcul proportionnel a (%d) Eid.

6. On suppose désormais f telle que f[o 1) f(z)%dr < oo, et on pose 0% = f[o 1) f(x)%dw —

2
( f[o,l]d f (x)dw) . Ecrire une méthode de Monte-Carlo qui permet d’approcher I et donner

Iintervalle de confiance a 95% avec o connu. En déduire qu’il faut un temps de calcul
. N 2 7 . .
proportionnel & ds% pour une précision de e.

> A retenir : En pratique, la dimension d et la fonction f sont imposées par le probleme que
I’on considere. Pour une précision de ¢, le temps demandé par le calcul des sommes de Riemann
est en O(E_d) lorsque € — 0. On parle de “malédiction de la dimension” : plus la dimension est
grande, plus le calcul est gourmand en temps : il croit exponentiellement avec la dimension. En
revanche, pour la méthode de Monte-Carlo, le temps de calcul est en O(e~2), quelle que soit la
dimension. Bien str, lorsque f est réguliere, on peut améliorer les sommes de Riemann avec des
méthodes de type trapeézes mais qui sont frappées aussi par la malédiction de la dimension. Pour
fixer les idées (car il faudrait nuancer selon les cas), la méthode de Monte-Carlo s’avere étre la
plus efficace a partir de d = 4.

2 Améliorations de la méthode de Monte-Carlo : méthodes de
réduction de variance

La méthode de Monte-Carlo permet de calculer des intégrales avec une vitesse de convergence
qui ne dépend pas de la dimension. Cette vitesse de convergence est en o//n. La décroissance en
1/4/n est celle du théoreme de la limite centrale, et on ne peut pas la changer sauf si on utilise
une autre méthode que la méthode de Monte-Carlo. Par conséquent, la seule chose que I'on peut
espérer améliorer est la variance o2 (ou, de facon équivalente, diminuer la valeur de 'estimateur
V;, de la variance) : par exemple une diminution d’un facteur 10 de ¢? permet d’obtenir la
méme précision avec 10 fois moins de simulations. Nous allons donner ici un apercu de méthodes
génériques pour réduire la variance de ’estimateur de Monte-Carlo. Par souci de simplicité, nous
présentons ces méthodes en dimension d = 1. Elles se généralisent sans encombre a une dimension
quelconque, et c’est la qu’elles sont pertinentes pour des applications concretes.



2.1 Meéthode de fonction d’importance

Pour fixer les idées, on considere que X est une variable aléatoire réelle de densité p. Soit
f : R — R une fonction mesurable telle que E[| f(X)|] < co. On souhaite calculer E[f(X)] par la
méthode de Monte-Carlo. Soit Y une variable aléatoire réelle de densité ¢ strictement positive.

1. Montrer que f (Y)% est une variable aléatoire intégrable et que

r()] _
B |12 =Bl

On suppose que :
— on sait simuler les variables aléatoires X et Y,

— les densités p et g sont connues et calculables.

Soit (Y;)i>1 une suite i.i.d telle que Y; Ly. Alors, on peut approcher E[f(X)] par M, défini
en (1) ou bien par

< I e p(Y)
My, = — ;f(lﬁ)qm)~

q(Y)
donc crucial pour mettre en oeuvre cette méthode.

- 2
On préferera M, & M, si 62 = E [(f(Y)p(Y)> ] —E[f(X)]? < 02 Le choix de la loi de Y est

2. Exemple. Soit g : [0,1] — R mesurable de carré intégrable. On cherche & calculer I =
fol g(x)e™"dx par la méthode de Monte-Carlo. On se donne une suite i.i.d. (U;);>1 de va-
riables aléatoires uniformes sur [0, 1].

(a) Rappeler la loi de —log(Uy).
(b) Montrer que M,, = 1 S | g(U;)e Viet M, = 1 30 | g(— log(U;))1{~10g(t;)<1} cONVer-
gent presque sirement vers I. Lequel de ces deux estimateurs préférer 7

2.2 Meéthode des variables antithétiques

Cette méthode utilise des symétries de la loi que I'on simule pour avoir “gratuitement” de
nouveaux tirages. Par exemple, on sait que pour U ~ U(]0, 1]), 1 —U suit également la loi U([0, 1]).
Prenons 'exemple ot on souhaite calculer I = fol f(z)dz, avec f mesurable de carré intégrable.
La méthode de Monte-Carlo usuelle consiste a utiliser

My =237 5O,
i=1

ou (U;)i>1 est une suite i.i.d. de variables aléatoires uniformes sur [0, 1]. La méthode des variables
antithétiques consiste a utiliser :

- I S+ fL= 1)
Mn_ng 5 .

1. Montrer que M, converge presque stirement vers [.
2. Montrer que Var(W) < Var(f(U)).



M,, converge donc toujours mieux que M,. Cependant, si dans le calcul numérique de M, et M,
le temps de calcul pour évaluer f est bien plus grand que celui nécessaire a générer un nombre
aléatoire, il est plus judicieux de comparer M,, avec Ma,. En effet ces deux estimateurs demandent
tous les deux 2n calculs de la fonction f. On a

Var(Ma,) = %Var(f(U)),

Var(¥y) = o [Var(£(7)) + Cov(£(U), £(1 - U)].

Par conséquent, on préferera Mn a Moy, si
Cov(f(U), f(1-0)) <0.

C’est généralement ce critere qui est utilisé pour décider si on utilise ou pas la méthode des
variables antithétiques.

3. Exemple : cas ou f est monotone. On suppose g, : [0, 1] — R mesurables et de carré
intégrable. On suppose g croissante et h décroissante.

(a) Montrer que Cov(g(U),h(U)) < 0. (On pourra calculer E[(g(Uy) — g(Us))(h(U1) —
h(Us2))] avec U; indépendante de Us.)

(b) En déduire que si f est monotone,

Cov(f(U), f1-U)) <0.

2.3 Méthode des variables de controle

On considere le cadre donné en introduction avec une variable aléatoire réelle X et une fonction
f:R — R telle que E[f(X)?] < co. On cherche & calculer E[f(X)] par méthode de Monte-Carlo.
On suppose que l'on connait une fonction g : R — R de carré intégrable telle que E[g(X)] est
connu explicitement et telle que Var(g(X)) > 0. On considere alors, pour A € R,

n

D (F(X0) + Ag(Xi) — AE[g(X))].

=1

1
A
Ma=5

Par la loi forte des grands nombres, M, converge presque sirement vers E[f(X)]. Le théoreme
de la limite centrale donne la convergence en loi de ‘!—f(Mfl‘ — E[f(X)]) vers N'(0,1), ou

o3 = E[(f(X) + Ag(X))*] = E[f(X) + Ag(X)]?
Var(£(X)) + 2ACov(f(X), g(X)) + A2Var(g(X)).

_ Cov(f(X),9(X))

Var(g(X)) » Pour lequel af\ atteint son minimum

Le meilleur choix de A est \* =

2 _ Var(f(X))Var(g(X)) — Cov(f(X),g(X))*
- Var(g(X))

On a toujours g2 < o2 par construction. Le probléme pour appliquer cette méthode est qu’il faut
connaltre A\*, ce qui n’est a priori pas le cas. La solution est de 'estimer aussi par Monte-Carlo.
Pour h : R — R, on introduit la notation

My(h) o=~ ST ().
=1

5



On a alors par la loi forte des grands nombres :

M, (fg) — My ()M (g) Cov(f(X), 9(X))
Mo(%) = Mo(g)?  noioe Var(g(X))

p-s.

On définit alors

a1, = () - eI MDD (41, ) — g0

1. En utilisant le théoreme de Slutsky, montrer que @(Mn —E[f(X))) £ N(0,1), puis que

VI (3, — E[F(X)) 5 A0,1),

avec V,, = My (f%) — My (f)? — (Mn](\; )(g;;/[n](\/][z](\:][;( 2r,

- 1,96V/V, - 1,96V,
L s
vn Vn
est un intervalle de confiance a 95% pour E[f(X)].
La variable aléatoire g(X) est appelée variable de controle. On peut généraliser cette méthode

en considérant plusieurs variables de controle g;(X),...,gm(X) dont on connait explicitement
I’espérance.

En particulier,

2. Exemple. On considére un ensemble A C [0,1]% tel que A’ = {(u,v) € [0,1]%,u+ v <
1} C A. Par exemple, A peut étre le quart de disque {(u,v) € [0,1]?,u? + v? < 1} ou plus
généralement 'ensemble {(u,v) € [0,1]%,u® + v® < 1} avec a, B > 1. On cherche & calculer
laire de A par méthode de Monte-Carlo, que ’on note |A].

(a) On considere (U;, V;)i>1 une suite i.i.d., avec Uy, Vi ~ U([0, 1]) et indépendantes. Mon-

2 —(

_ 1 .
trer que M, = = > | 14(U;, Vi) converge p.s. vers |A|, puis que NoRE=

n n

|Al) £, N(0,1). Construire un intervalle de confiance & 95% pour |A|.

(b) Calculer E[lA/(Ul,Vl)] et Var(14/(Uy,V1)). Donner en fonction de |A| la valeur de
A € R qui minimise O')\ = E[(1a(U1, V1) +A1 4/ (U1, V1)) =E[14(U1, V1) + A1 4 (U, V1)]?
ainsi que la valeur minimale ¢? = minycp af\.

Vérifier que ¢ = 0 lorsque |A| = 1/2. Expliquer pourquoi ce résultat est attendu.

(¢) On note

M, = M, + 2(M, ZlA/ Ui, Vi) —1/2| =1+ 2(M, ZlA/ Ui, Vi).

Construire un intervalle de confiance & 95% & partir de M,,.



