
Cours de Probabilités, 1e année ENPC

Devoir maison sur la méthode de Monte-Carlo

(obligatoire)

Principe de la méthode de Monte-Carlo. On considère une variable aléatoire X : Ω → Rd

et une fonction mesurable f : Rd → R telle que

E[|f(X)|] < ∞.

Le but de la méthode de Monte-Carlo est de calculer de façon approchée E[f(X)]. Pour cela, on
suppose que l’on sait simuler la variable aléatoire X, c’est-à-dire générer une suite i.i.d. (Xi)i≥1

telle que Xi
L
= X. L’idée est d’approcher E[f(X)] par

Mn =
1

n

n∑
i=1

f(Xi), (1)

avec n assez grand. En effet, la loi forte des grands nombres assure que Mn −→
n→+∞

E[f(X)],

p.s. Cela nous dit que pour n assez grand, Mn sera proche de E[f(X)]. En revanche, nous ne
savons pas à ce stade quel n choisir pour obtenir une précision ε donnée. Pour cela, nous faisons
l’hypothèse supplémentaire que E[f(X)2] < ∞, et on pose

σ2 = E[f(X)2]− E[f(X)]2.

Alors, le théorème de la limite centrale assure que
√
n

σ
(Mn − E[f(X)])

L−→ N (0, 1). (2)

On fait alors l’approximation que pour n suffisament grand,
√
n

σ
(Mn − E[f(X)])

L
≈ N (0, 1).

Comme pour G ∼ N (0, 1), P(−1, 96 ≤ G ≤ 1, 96) ≈ 0, 95, on a qu’avec probabilité 95%,

E[f(X)] ∈
[
Mn − 1, 96σ√

n
,Mn +

1, 96σ√
n

]
.

L’intervalle
[
Mn − 1,96σ√

n
,Mn + 1,96σ√

n

]
est appelé intervalle de confiance à 95% pour E[f(X)]. De

même, comme P(−2, 58 ≤ G ≤ 2, 58) ≈ 0, 99, l’intervalle
[
Mn − 2,58σ√

n
,Mn + 2,58σ√

n

]
est un inter-

valle de confiance à 99% pour E[f(X)].
En pratique, lorsqu’on cherche à calculer E[f(X)] de façon approchée, il est rare de connâıtre

la valeur exacte de σ. Parfois, on connâıt a priori un majorant σ̄ de σ et dans ce cas, on sait

qu’avec une probabilité au moins égale à 95%, E[f(X)] appartient à
[
Mn − 1,96σ̄√

n
,Mn + 1,96σ̄√

n

]
, et

cet intervalle est donc un intervalle de confiance supérieure à 95%. Néanmoins, dans la grande
majorité des cas, on ne sait rien sur σ et on cherche à l’estimer également par Monte-Carlo. Ainsi,

Vn =
1

n

n∑
i=1

f(Xi)
2 −M2

n



converge presque sûrement vers σ2 par la loi forte des grands nombres. Grâce à (2) et au théorème
de Slutsky, on en déduit que

√
n√
Vn

(Mn − E[f(X)])
L−→ N (0, 1).

En répétant le même raisonnement que précédemment, on en déduit que[
Mn − 1, 96

√
Vn√

n
,Mn +

1, 96
√
Vn√

n

]
est un intervalle de confiance à 95% pour E[f(X)].

1 Calcul d’intégrale : sommes de Riemann ou méthode de Monte-
Carlo ?

Dans cette première partie, nous étudions l’approximation numérique de l’intégrale I =∫
[0,1]d f(x)dx, où f : [0, 1]d → R est une fonction mesurable intégrable. Le but est de comparer
la méthode usuelle des sommes de Riemann avec la méthode de Monte-Carlo. Nous commençons
par le cas de la dimension d = 1.

1.1 En dimension d = 1

En dimension 1, les sommes de Riemann s’écrivent pour n ∈ N∗,

Sn =
1

n

n−1∑
i=0

f

(
i

n

)
.

1. On suppose f : [0, 1] → R continue. On rappelle le théorème de Heine : toute application
continue sur un compact est uniformément continue. Ainsi, f satisfait

∀ε > 0, ∃η > 0, ∀x, y ∈ [0, 1], |x− y| ≤ η =⇒ |f(x)− f(y)| ≤ ε.

En déduire que Sn −→
n→+∞

I.

En fait, on peut montrer que Sn −→
n→+∞

I pour une classe un peu plus grande de fonctions, les

fonctions réglées qui incluent notamment les fonctions f continues par morceaux. En revanche, on
ne dispose pas de vitesse de convergence à ce stade. Pour cela, on a besoin de faire des hypothèses
de régularité sur f . La plus usuelle est de supposer f lipschitzienne, i.e.,

∃K > 0, ∀x, y ∈ [0, 1], |f(x)− f(y)| ≤ K|x− y|.

2. On suppose f Lipschitzienne. Montrer que

|Sn − I| ≤ K

2n
.

En déduire que pour calculer I avec une précision de ε > 0, il faut un nombre de calculs (et
donc un temps de calcul) proportionnel à K

ε .

3. On suppose désormais f mesurable telle que
∫ 1
0 f(u)2du < ∞, et on note σ2 =

∫ 1
0 f(u)2du−(∫ 1

0 f(u)du
)2

. Ecrire une méthode de Monte-Carlo qui permet d’approcher I. Donner l’in-

tervalle de confiance à 95% en supposant σ connu. En déduire que pour obtenir une précision
de ε > 0, il faut un temps de calcul proportionnel à σ2

ε2
.

▷ À retenir : En dimension 1, sauf éventuellement dans le cas où f n’est pas régulière, il faut
préférer les sommes de Riemann (temps de calcul en O(ε−1)) à la méthode de Monte-Carlo (temps
de calcul en O(ε−2)). Si f est plus régulière, on préfèrera utiliser la méthode des trapèzes (f ∈ C2)
ou de Simpson (f ∈ C4) pour obtenir des temps de calcul respectivement en O(ε−1/2) et O(ε−1/4).
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1.2 En dimension d quelconque

Pour d ≥ 1, les sommes de Riemann s’écrivent

Sn =
1

nd

n−1∑
i1=0

· · ·
n−1∑
id=0

f

(
i1
n
, . . . ,

id
n

)
.

4. Montrer que

I − Sn =
n−1∑
i1=0

· · ·
n−1∑
id=0

∫ i1+1
n

i1
n

· · ·
∫ id+1

n

id
n

f(x1, . . . , xd)− f

(
i1
n
, . . . ,

id
n

)
dx1 . . . dxd.

5. On suppose f : [0, 1]d → R lipschitzienne :

∀x, y ∈ [0, 1]d, |f(x)− f(y)| ≤ K∥x− y∥1.

Montrer que |Sn − I| ≤ Kd
2n . En déduire que pour obtenir une précision de ε > 0, il faut un

temps de calcul proportionnel à
(
Kd
2

)d 1
εd
.

6. On suppose désormais f telle que
∫
[0,1]d f(x)

2dx < ∞, et on pose σ2 =
∫
[0,1]d f(x)

2dx −(∫
[0,1]d f(x)dx

)2
. Ecrire une méthode de Monte-Carlo qui permet d’approcher I et donner

l’intervalle de confiance à 95% avec σ connu. En déduire qu’il faut un temps de calcul
proportionnel à dσ2

ε2
pour une précision de ε.

▷ À retenir : En pratique, la dimension d et la fonction f sont imposées par le problème que
l’on considère. Pour une précision de ε, le temps demandé par le calcul des sommes de Riemann
est en O(ε−d) lorsque ε → 0. On parle de “malédiction de la dimension” : plus la dimension est
grande, plus le calcul est gourmand en temps : il crôıt exponentiellement avec la dimension. En
revanche, pour la méthode de Monte-Carlo, le temps de calcul est en O(ε−2), quelle que soit la
dimension. Bien sûr, lorsque f est régulière, on peut améliorer les sommes de Riemann avec des
méthodes de type trapèzes mais qui sont frappées aussi par la malédiction de la dimension. Pour
fixer les idées (car il faudrait nuancer selon les cas), la méthode de Monte-Carlo s’avère être la
plus efficace à partir de d ≈ 4.

2 Améliorations de la méthode de Monte-Carlo : méthodes de
réduction de variance

La méthode de Monte-Carlo permet de calculer des intégrales avec une vitesse de convergence
qui ne dépend pas de la dimension. Cette vitesse de convergence est en σ/

√
n. La décroissance en

1/
√
n est celle du théorème de la limite centrale, et on ne peut pas la changer sauf si on utilise

une autre méthode que la méthode de Monte-Carlo. Par conséquent, la seule chose que l’on peut
espérer améliorer est la variance σ2 (ou, de façon équivalente, diminuer la valeur de l’estimateur
Vn de la variance) : par exemple une diminution d’un facteur 10 de σ2 permet d’obtenir la
même précision avec 10 fois moins de simulations. Nous allons donner ici un aperçu de méthodes
génériques pour réduire la variance de l’estimateur de Monte-Carlo. Par souci de simplicité, nous
présentons ces méthodes en dimension d = 1. Elles se généralisent sans encombre à une dimension
quelconque, et c’est là qu’elles sont pertinentes pour des applications concrètes.
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2.1 Méthode de fonction d’importance

Pour fixer les idées, on considère que X est une variable aléatoire réelle de densité p. Soit
f : R → R une fonction mesurable telle que E[|f(X)|] < ∞. On souhaite calculer E[f(X)] par la
méthode de Monte-Carlo. Soit Y une variable aléatoire réelle de densité q strictement positive.

1. Montrer que f(Y )p(Y )
q(Y ) est une variable aléatoire intégrable et que

E
[
f(Y )

p(Y )

q(Y )

]
= E[f(X)].

On suppose que :

— on sait simuler les variables aléatoires X et Y ,

— les densités p et q sont connues et calculables.

Soit (Yi)i≥1 une suite i.i.d telle que Yi
L
= Y . Alors, on peut approcher E[f(X)] par Mn défini

en (1) ou bien par

M̃n =
1

n

n∑
i=1

f(Yi)
p(Yi)

q(Yi)
.

On préfèrera M̃n à Mn si σ̃2 = E
[(

f(Y )p(Y )
q(Y )

)2
]
− E [f(X)]2 < σ2. Le choix de la loi de Y est

donc crucial pour mettre en oeuvre cette méthode.

2. Exemple. Soit g : [0, 1] → R mesurable de carré intégrable. On cherche à calculer I =∫ 1
0 g(x)e−xdx par la méthode de Monte-Carlo. On se donne une suite i.i.d. (Ui)i≥1 de va-
riables aléatoires uniformes sur [0, 1].

(a) Rappeler la loi de − log(U1).

(b) Montrer queMn = 1
n

∑n
i=1 g(Ui)e

−Ui et M̃n = 1
n

∑n
i=1 g(− log(Ui))1{− log(Ui)≤1} conver-

gent presque sûrement vers I. Lequel de ces deux estimateurs préférer ?

2.2 Méthode des variables antithétiques

Cette méthode utilise des symétries de la loi que l’on simule pour avoir “gratuitement” de
nouveaux tirages. Par exemple, on sait que pour U ∼ U([0, 1]), 1−U suit également la loi U([0, 1]).
Prenons l’exemple où on souhaite calculer I =

∫ 1
0 f(x)dx, avec f mesurable de carré intégrable.

La méthode de Monte-Carlo usuelle consiste à utiliser

Mn =
1

n

n∑
i=1

f(Ui),

où (Ui)i≥1 est une suite i.i.d. de variables aléatoires uniformes sur [0, 1]. La méthode des variables
antithétiques consiste à utiliser :

M̃n =
1

n

n∑
i=1

f(Ui) + f(1− Ui)

2
.

1. Montrer que M̃n converge presque sûrement vers I.

2. Montrer que Var(f(U)+f(1−U)
2 ) ≤ Var(f(U)).
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M̃n converge donc toujours mieux que Mn. Cependant, si dans le calcul numérique de Mn et M̃n,
le temps de calcul pour évaluer f est bien plus grand que celui nécessaire à générer un nombre
aléatoire, il est plus judicieux de comparer M̃n avecM2n. En effet ces deux estimateurs demandent
tous les deux 2n calculs de la fonction f . On a

Var(M2n) =
1

2n
Var(f(U)),

Var(M̃n) =
1

2n
[Var(f(U)) + Cov(f(U), f(1− U))].

Par conséquent, on préfèrera M̃n à M2n si

Cov(f(U), f(1− U)) ≤ 0.

C’est généralement ce critère qui est utilisé pour décider si on utilise ou pas la méthode des
variables antithétiques.

3. Exemple : cas où f est monotone. On suppose g, h : [0, 1] → R mesurables et de carré
intégrable. On suppose g croissante et h décroissante.

(a) Montrer que Cov(g(U), h(U)) ≤ 0. (On pourra calculer E[(g(U1) − g(U2))(h(U1) −
h(U2))] avec U1 indépendante de U2.)

(b) En déduire que si f est monotone,

Cov(f(U), f(1− U)) ≤ 0.

2.3 Méthode des variables de contrôle

On considère le cadre donné en introduction avec une variable aléatoire réelleX et une fonction
f : R → R telle que E[f(X)2] < ∞. On cherche à calculer E[f(X)] par méthode de Monte-Carlo.
On suppose que l’on connâıt une fonction g : R → R de carré intégrable telle que E[g(X)] est
connu explicitement et telle que Var(g(X)) > 0. On considère alors, pour λ ∈ R,

Mλ
n =

1

n

n∑
i=1

(f(Xi) + λg(Xi))− λE[g(X)].

Par la loi forte des grands nombres, Mλ
n converge presque sûrement vers E[f(X)]. Le théorème

de la limite centrale donne la convergence en loi de
√
n

σλ
(Mλ

n − E[f(X)]) vers N (0, 1), où

σ2
λ = E[(f(X) + λg(X))2]− E[f(X) + λg(X)]2

= Var(f(X)) + 2λCov(f(X), g(X)) + λ2Var(g(X)).

Le meilleur choix de λ est λ∗ = −Cov(f(X),g(X))
Var(g(X)) , pour lequel σ2

λ atteint son minimum

σ2 =
Var(f(X))Var(g(X))− Cov(f(X), g(X))2

Var(g(X))
.

On a toujours σ2 ≤ σ2 par construction. Le problème pour appliquer cette méthode est qu’il faut
connâıtre λ∗, ce qui n’est a priori pas le cas. La solution est de l’estimer aussi par Monte-Carlo.
Pour h : R → R, on introduit la notation

Mn(h) :=
1

n

n∑
i=1

h(Xi).
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On a alors par la loi forte des grands nombres :

Mn(fg)−Mn(f)Mn(g)

Mn(g2)−Mn(g)2
−→

n→+∞

Cov(f(X), g(X))

Var(g(X))
, p.s.

On définit alors

M̃n = Mn(f)−
Mn(fg)−Mn(f)Mn(g)

Mn(g2)−Mn(g)2
(Mn(g)− E[g(X)]).

1. En utilisant le théorème de Slutsky, montrer que
√
n
σ (M̃n − E[f(X)])

L−→ N (0, 1), puis que

√
n√
Ṽn

(M̃n − E[f(X)])
L−→ N (0, 1),

avec Ṽn = Mn(f
2)−Mn(f)

2 − (Mn(fg)−Mn(f)Mn(g))2

Mn(g2)−Mn(g)2
.

En particulier, [
M̃n − 1, 96

√
Ṽn√

n
, M̃n +

1, 96
√

Ṽn√
n

]
est un intervalle de confiance à 95% pour E[f(X)].

La variable aléatoire g(X) est appelée variable de contrôle. On peut généraliser cette méthode
en considérant plusieurs variables de contrôle g1(X), . . . , gm(X) dont on connâıt explicitement
l’espérance.

2. Exemple. On considère un ensemble A ⊂ [0, 1]2 tel que A′ = {(u, v) ∈ [0, 1]2, u + v ≤
1} ⊂ A. Par exemple, A peut être le quart de disque {(u, v) ∈ [0, 1]2, u2 + v2 ≤ 1} ou plus
généralement l’ensemble {(u, v) ∈ [0, 1]2, uα + vβ ≤ 1} avec α, β ≥ 1. On cherche à calculer
l’aire de A par méthode de Monte-Carlo, que l’on note |A|.
(a) On considère (Ui, Vi)i≥1 une suite i.i.d., avec U1, V1 ∼ U([0, 1]) et indépendantes. Mon-

trer que Mn = 1
n

∑n
i=1 1A(Ui, Vi) converge p.s. vers |A|, puis que

√
n√

Mn(1−Mn)
(Mn −

|A|) L−→ N (0, 1). Construire un intervalle de confiance à 95% pour |A|.
(b) Calculer E[1A′(U1, V1)] et Var(1A′(U1, V1)). Donner en fonction de |A| la valeur de

λ ∈ R qui minimise σ2
λ = E[(1A(U1, V1)+λ1A′(U1, V1))

2]−E[1A(U1, V1)+λ1A′(U1, V1)]
2

ainsi que la valeur minimale σ2 = minλ∈R σ2
λ.

Vérifier que σ2 = 0 lorsque |A| = 1/2. Expliquer pourquoi ce résultat est attendu.

(c) On note

M̃n = Mn + 2(Mn − 1)

[
1

n

n∑
i=1

1A′(Ui, Vi)− 1/2

]
= 1 + 2(Mn − 1)

1

n

n∑
i=1

1A′(Ui, Vi).

Construire un intervalle de confiance à 95% à partir de M̃n.
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