Path-Dependent Volatility: Practical Examples

Julien Guyon

Bloomberg L.P. Quantitative Research

Global Derivatives Barcelona, May 10, 2017

jguyon2@bloomberg.net

Julien Guyon Path-Dependent Volatility: Practical Examples

Motivation: what we can achieve with path-dependent volatility

$$\frac{dS_t}{S_t} = \sigma(t, (S_u, u \le t)) \, dW_t$$

- Calibrate to SPX smile
- Produce rich joint dynamics of spot, implied vol, and implied vol of vol
- Capture historical joint behavior of SPX trend, VIX, and VVIX
- Naturally generate mean reverting volatility
- Jointly calibrate to SPX and VIX smiles? (work in progress)

Dynamics of everything driven by a single Brownian motion:

- Complete model: unique price, perfect delta-hedging
- \blacksquare Instantaneous correlations of all quantities are $\pm 100\%$

A look at SPX data: SPX, VIX and VVIX time series

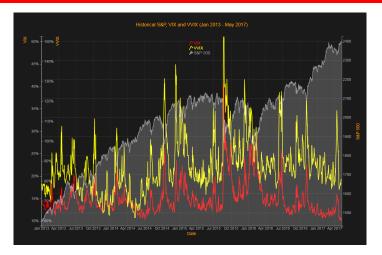


Figure: January 1, 2013 to May 8, 2017

Julien Guyon Path-Dependent Volatility: Practical Examples

A look at SPX data: VIX vs SPX

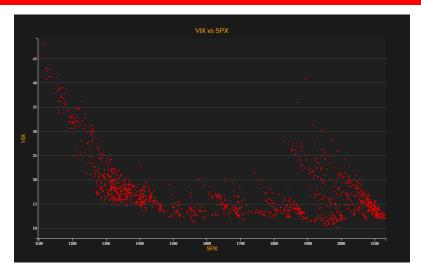


Figure: January 1, 2011 to March 31, 2016

< □ ▶ < Ξ ▶

Julien Guyon Path-Dependent Volatility: Practical Examples

A look at SPX data: VIX vs recent trend of SPX

Figure: January 1, 2013 to May 3, 2017; trend = spot/moving average; window $h=5,30,60,100,150,200,300~{\rm days}$

Julien Guyon

Path-Dependent Volatility: Practical Examples

■ ▶ < ≣ ▶
 Bloomberg L.P.

A look at SPX data: VVIX vs VIX

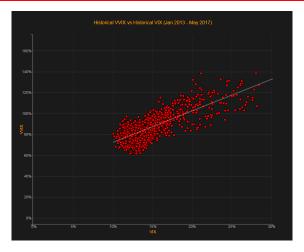


Figure: January 1, 2013 to May 8, 2017

Image: A Image:

Julien Guyon Path-Dependent Volatility: Practical Examples

A look at SPX data: VVIX vs VIX

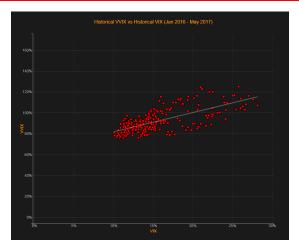


Figure: January 1, 2016 to May 8, 2017

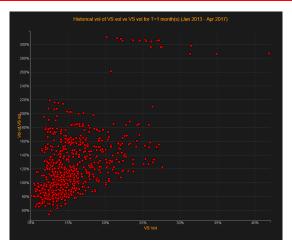


Figure: January 1, 2013 to April 27, 2017; T = 1 month

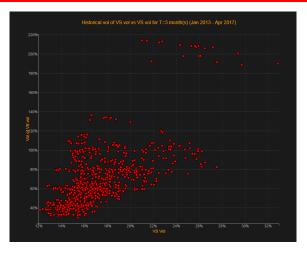


Figure: January 1, 2013 to April 27, 2017; T = 3 months

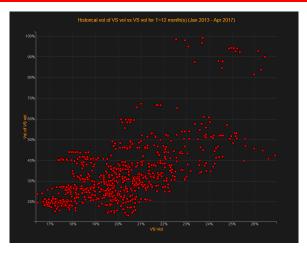


Figure: January 1, 2013 to April 27, 2017; T = 1 year

Path-Dependent Volatility: Practical Examples

Julien Guyon

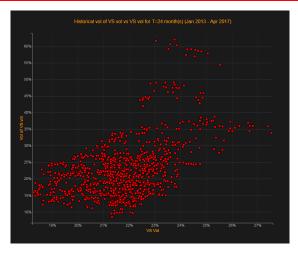
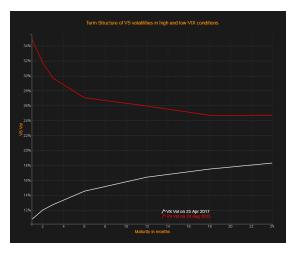


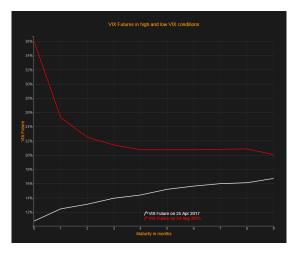
Figure: January 1, 2013 to April 27, 2017; T = 2 years

A look at SPX data: Term-structure of VS vol

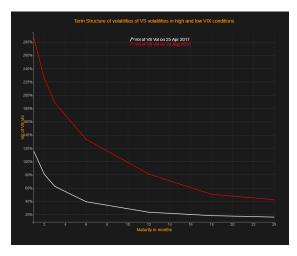


▲ □ ▶ ▲ 필 ▶

A look at SPX data: Term-structure of VIX futures

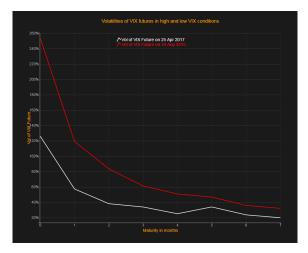


A look at SPX data: Term-structure of vol of VS vol



Complete variance curve models

A look at SPX data: Term-structure of vol of VIX futures



- * 日 * * 差 *

A natural PDV model		

A natural PDV model

$$\frac{dS_t}{S_t} = \sigma(X_t) \, dW_t, \qquad X_t = \frac{S_t}{\bar{S}_t^h}$$

• $\bar{S}_t^h = \text{moving average of } S \text{ over time window } h, \text{ e.g.:}$

classical MA:
$$\bar{S}_t^h = \frac{1}{h} \int_{t-h}^t S_u \, du$$

exponentially weighted MA: $\bar{S}_t^h = \frac{1}{h} \int_{-\infty}^t e^{-\frac{t-u}{h}} S_u \, du$

- 4

- $X_t =$ recent trend of the SPX over time window h
- Instantaneous vol = a function of recent SPX trend
- Function σ is decreasing: negative SPX trends \longleftrightarrow high SPX vol
- *h* = ? Multiple time scales?
- σ = ?

Trend is mean-reverting

CMA:

$$d\bar{S}_{t}^{h} = \frac{1}{h}(S_{t} - S_{t-h}) dt, \qquad \frac{dX_{t}}{X_{t}} = -\frac{1}{h} \frac{S_{t} - S_{t-h}}{\bar{S}_{t}^{h}} dt + \frac{dS_{t}}{S_{t}}$$

Statistical mean-reversion of X towards 1

EWMA:

$$d\bar{S}_t^h = \frac{1}{h}(S_t - \bar{S}_t^h) dt, \qquad \frac{dX_t}{X_t} = -\frac{1}{h}(X_t - 1) dt + \frac{dS_t}{S_t}$$

- X mean-reverts towards 1
- X is Markov: One-factor stochastic volatility model with perfectly correlated Brownian motions

In those PDV models, vol is mean-reverting.

Trend is mean-reverting: CMA

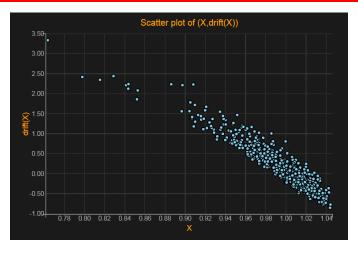


Figure: Drift of X_t (CMA), t = 20 days

Path-Dependent Volatility: Practical Examples

Julien Guyon

	A natural PDV model		
Val of			

$$\frac{dS_t}{S_t} = \sigma(X_t) \, dW_t, \qquad X_t = \frac{S_t}{\overline{S}_t^h}$$
$$\frac{dX_t}{X_t} = \{\text{mean-reversion}\} \, dt + \sigma(X_t) \, dW_t$$
$$\implies \frac{d\sigma(X_t)}{\sigma(X_t)} = \{\text{mean-reversion}\} \, dt + X_t \sigma'(X_t) \, dW_t$$

Inst. vol of inst. vol = $-X_t \sigma'(X_t)$ (σ decreasing)

- Mean-reversion \implies inst. vol of VIX future < inst. vol of inst. vol
- For mean-reversion time scale $h \gg 30$ days, VVIX \approx inst. vol of inst. vol
- Moreover VIX \approx inst. vol
- VVIX $\approx a + b$ VIX translates into $-X_t \sigma'(X_t) = a + b \sigma(X_t)$
- For smaller *h*, find (α, β) s.t. $-X_t \sigma'(X_t) = \alpha + \beta \sigma(X_t)$ can reproduce VVIX $\approx a + b$ VIX

$$\implies \sigma(x) = -\frac{\alpha}{\beta} + \gamma x^{-\beta}$$

Path-dependent volatility $\sigma(X)$

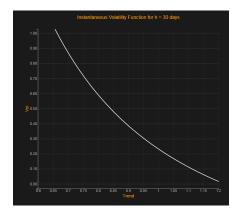


Figure: Graph of $x\mapsto\sigma(x)$ using the values (α,β,γ) corresponding to h=30 days

VVIX vs VIX: $h \gg 30$ days

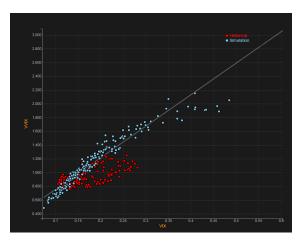


Figure: h=180 days, $\alpha=1,\,\beta=1.5,\,\gamma=0.9$

VVIX vs VIX: $h \approx 30$ days

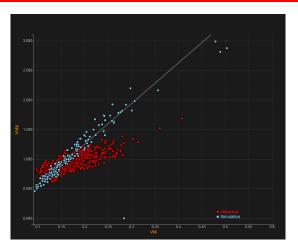


Figure: h = 30 days, $\alpha = 2.5, \beta = 1.2, \gamma = 2.3$

VVIX vs VIX: $h \ll 30$ days

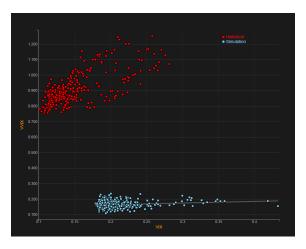


Figure: h = 5 days, $\alpha = 5, \beta = 6, \gamma = 1$

VIX vs recent trend of SPX: $h \gg 30$ days

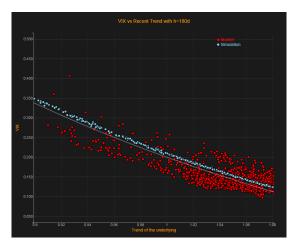


Figure: h=180 days, $\alpha=0.9,\,\beta=1.5,\,\gamma=0.8$

VIX vs recent trend of SPX: $h \approx 30$ days

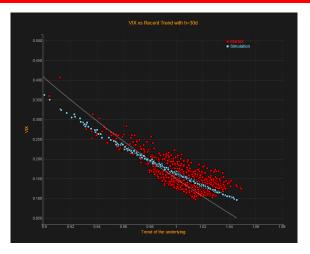


Figure: h=30 days, $\alpha=2.1,\,\beta=1.2,\,\gamma=1.9$

VIX vs recent trend of SPX: $h \leq 30$ days

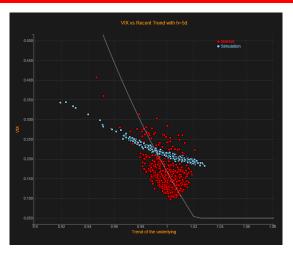


Figure: h = 5 days, $\alpha = 5, \beta = 6, \gamma = 1$

Julien Guyon Path-Dependent Volatility: Practical Examples

VIX and VVIX in pure PDV model with EWMA

$$\begin{aligned} \mathsf{VIX}_t^2 &= \frac{1}{\tau} \int_t^{t+\tau} \mathbb{E}[\sigma(X_u)^2 | \mathcal{F}_t] \, du \\ &= \frac{1}{\tau} \int_t^{t+\tau} \mathbb{E}[\sigma(X_u)^2 | X_t] \, du = \mathsf{VIX}^2(X_t) \end{aligned}$$

•
$$h \gg \tau = 30 \text{ days} \Longrightarrow \text{VIX}(X_t) \approx \sigma(X_t)$$

• $h \ll \tau = 30 \text{ days} \Longrightarrow \text{VIX}(X_t) \approx \sqrt{\int \sigma^2(x) d\mu(x)}, \mu \text{ stationary}$
distribution of X , due to mean-reversion, ergodicity

$$VVIX_t^2 = -\frac{2}{\tau} \mathbb{E}[\ln \mathsf{VIX}_{t+\tau} - \ln \mathbb{E}[\mathsf{VIX}_{t+\tau} | \mathcal{F}_t] | \mathcal{F}_t]$$

= $-\frac{2}{\tau} \mathbb{E}[\ln \mathsf{VIX}(X_{t+\tau}) - \ln \mathbb{E}[\mathsf{VIX}(X_{t+\tau}) | X_t] | X_t] = \mathsf{VVIX}^2(X_t)$

•
$$h \gg \tau \Longrightarrow \mathsf{VVIX}(X_t) \approx \alpha + \beta \sigma(X_t)$$
, inst. vol of $\sigma(X_t)$, i.e.,
 $\mathsf{VVIX}(X_t) \approx \alpha + \beta \mathsf{VIX}(X_t)$

•
$$h \ll \tau \Longrightarrow \mathsf{VVIX}(X_t) \approx 0$$

I □ ► I I I ► I I I ■ ►
Bloomberg L.P.

Julien Guyon

Calibration to SPX smile

$$\frac{dS_t}{S_t} = \sigma(X_t) l_\sigma(t, S_t) \, dW_t, \qquad X_t = \frac{S_t}{\bar{S}_t^h}$$

• Model calibrated to SPX smile $\iff \mathbb{E}[\sigma(X_t)^2 l_\sigma(t, S_t)^2 | S_t] = \sigma_{\mathrm{loc}}(t, S_t)^2$

$$\frac{dS_t}{S_t} = \frac{\sigma(X_t)}{\sqrt{\mathbb{E}[\sigma(X_t)^2 | S_t]}} \sigma_{\text{loc}}(t, S_t) \, dW_t$$

- Particle method = estimate conditional expectation within MC (kernel regression)
- **EWMA**: (X_t, S_t) Markov, X_t not Markov

$$\frac{dX_t}{X_t} = -\frac{1}{h}(X_t - 1) dt + \frac{dS_t}{S_t} = -\frac{1}{h}(X_t - 1) dt + \sigma(X_t)l_\sigma(t, S_t) dW_t$$

Spot-starting smile and forward-starting smile

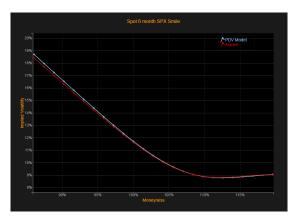


Figure: Spot-starting smile on May 8, 2017, T=6 months, h=30 days, $\alpha=2.5,\,\beta=1.2,\,\gamma=2.3$

Spot-starting smile and forward-starting smile

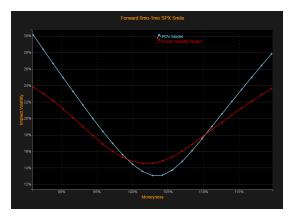


Figure: Forward-starting smile 1 month in 6 months, h=30 days, $\alpha=2.5,\,\beta=1.2,\,\gamma=2.3$

Spot-starting smile and forward-starting smile (flat spot smile)

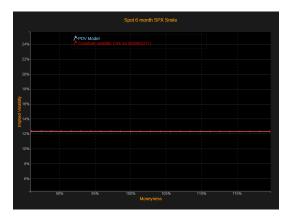


Figure: Spot-starting flat smile 6 months, h = 30 days, $\alpha = 2.5, \beta = 1.2, \gamma = 2.3$

Spot-starting smile and forward-starting smile (flat spot smile)

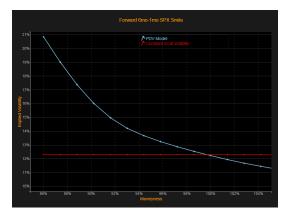


Figure: Forward-starting smile 1 month in 6 months, h=30 days, $\alpha=2.5,\,\beta=1.2,\,\gamma=2.3,$ with a flat spot smile

VIX vs recent trend of SPX: $h \gg 30$ days

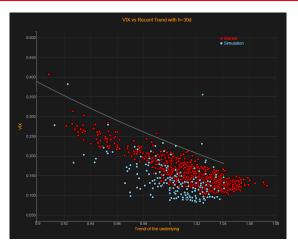


Figure: Leveraged Case with $\alpha=1,\,\beta=1.5,\,\gamma=0.9$

VIX vs recent trend of SPX: $h \approx 30$ days

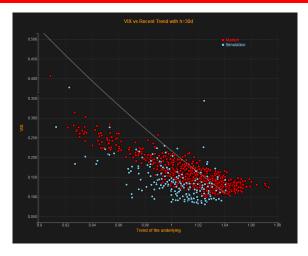


Figure: Leveraged Case with $\alpha=2.5,\,\beta=1.2,\,\gamma=2.3$

Image: Image: A market and a m

Julien Guyon Path-Dependent Volatility: Practical Examples

VIX vs recent trend of SPX: $h \ll 30$ days

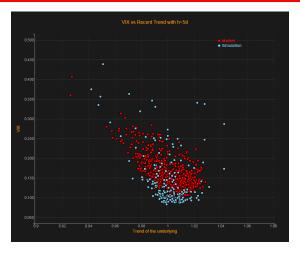


Figure: Leveraged Case with $\alpha = 5, \beta = 6, \gamma = 1$

■ ▶ < ≣ ▶
 Bloomberg L.P.

Julien Guyon Path-Dependent Volatility: Practical Examples

Calibration to VIX futures and VIX smiles

•
$$VIX_t^{T_i}$$
 = monthly VIX future expiring at T_i ; $VIX_{T_i}^{T_i} = VIX_{T_i}$

• We assume $T_{i+1} - T_i = 30$ days (28 or 35 days, in fact)

VIX options pay at
$$T_i$$
 $(VIX_{T_i} - K)_+ = (VIX_{T_i}^{T_i} - K)_+$ or $(K - VIX_{T_i})_+ = (K - VIX_{T_i}^{T_i})_+$

■ Goal: for each *T_i*, calibration to VIX^{*T_i*}₀ and all *T_i*-VIX options, on top of calibration to SPX options

$$\frac{dS_t}{S_t} = \frac{\sigma_i(X_t)}{\sqrt{\mathbb{E}[\sigma_i(X_t)^2 | S_t]}} \sigma_{\text{loc}}(t, S_t) \, dW_t, \qquad t \in [T_i . T_{i+1})$$

Find σ_i s.t. this model is calibrated to VIX₀^{T_i} and all T_i-VIX options

The choice of X matters

$$\mathsf{VIX}_{T_i}^2 \quad = \quad \frac{1}{\tau} \int_{T_i}^{T_{i+1}} \mathbb{E} \left[\frac{\sigma_i(X_t)^2}{\mathbb{E}[\sigma_i(X_t)^2 | S_t]} \sigma_{\mathrm{loc}}(t, S_t)^2 \middle| \mathcal{F}_{T_i} \right] \, dt$$

• If $X_t = f(t, S_t)$ then local volatility (LV) model:

$$\frac{\sigma_i(X_t)}{\sqrt{\mathbb{E}[\sigma_i(X_t)^2|S_t]}} = 1, \qquad \frac{dS_t}{S_t} = \sigma_{\mathrm{loc}}(t, S_t) \, dW_t, \qquad t \in [T_i \cdot T_{i+1})$$

■ If X is the recent SPX trend with time window h:

- \blacksquare If h large, then calibrated model is close to LV model \Longrightarrow hard to calibrate to VIX futures and VIX options
- If $h\ll \tau=30$ days, then fast mean-reversion $\Longrightarrow {\rm VIX}^2_{T_i}$ has small variance \Longrightarrow hard to calibrate to VIX options
- X could be driven by another Brownian motion, e.g.:

$$dX_t = -k(X_t - m) dt + \nu dZ_t, \qquad d\langle W, Z \rangle_t = \rho dt$$

Stochastic local volatility model

Image: Image:

Julien Guvon

	Calibration to VIX smiles	

Optimization problem

$$\mathsf{VIX}_{T_i}^2 = \frac{1}{\tau} \int_{T_i}^{T_{i+1}} \mathbb{E} \left[\frac{\sigma_i(X_t)^2}{\mathbb{E}[\sigma_i(X_t)^2 | S_t]} \sigma_{\mathrm{loc}}(t, S_t)^2 \Big| \mathcal{F}_{T_i} \right] dt$$

Find σ_i s.t.

$$\mathbb{E}\left[\mathsf{VIX}_{T_i}\right] = \mathsf{VIX}_0^{T_i,\mathrm{mkt}}$$

$$\forall K, \quad \mathbb{E}\left[\left(\mathsf{VIX}_{T_i} - K\right)_+\right] = C_{\mathsf{VIX}}^{\mathrm{mkt}}(T_i, K)$$

In the case where SPX smile is flat at $\bar{\sigma}_{SPX}$:

$$\mathbb{E}\left[\bar{\sigma}_{\mathsf{SPX}}\sqrt{\frac{1}{\tau}\int_{T_{i}}^{T_{i+1}}\mathbb{E}\left[\frac{\sigma_{i}(X_{t})^{2}}{\mathbb{E}[\sigma_{i}(X_{t})^{2}|S_{t}]}\Big|\mathcal{F}_{T_{i}}\right]dt}\right] = \mathsf{VIX}_{0}^{T_{i},\mathsf{mkt}}$$

$$\forall K, \quad \mathbb{E}\left[\left(\bar{\sigma}_{\mathsf{SPX}}\sqrt{\frac{1}{\tau}\int_{T_{i}}^{T_{i+1}}\mathbb{E}\left[\frac{\sigma_{i}(X_{t})^{2}}{\mathbb{E}[\sigma_{i}(X_{t})^{2}|S_{t}]}\Big|\mathcal{F}_{T_{i}}\right]dt} - K\right)_{+}\right] = C_{\mathsf{VIX}}^{\mathsf{mkt}}(T_{i},K)$$

I → I = →Bloomberg L.P.

Julien Guyon Path-Dependent Volatility: Practical Examples

	Calibration to VIX smiles	

In the case where SPX smile is flat at $\bar{\sigma}_{SPX}$:

$$\begin{split} \mathbb{E}\left[\bar{\sigma}_{\mathsf{SPX}}\sqrt{\frac{1}{\tau}\int_{T_{i}}^{T_{i+1}}\mathbb{E}\left[\frac{\sigma_{i}(X_{t})^{2}}{\mathbb{E}[\sigma_{i}(X_{t})^{2}|S_{t}]}\Big|\mathcal{F}_{T_{i}}\right] dt}\right] &= \mathsf{VIX}_{0}^{T_{i},\mathrm{mkt}}\\ \forall K, \quad \mathbb{E}\left[\left(\bar{\sigma}_{\mathsf{SPX}}\sqrt{\frac{1}{\tau}\int_{T_{i}}^{T_{i+1}}\mathbb{E}\left[\frac{\sigma_{i}(X_{t})^{2}}{\mathbb{E}[\sigma_{i}(X_{t})^{2}|S_{t}]}\Big|\mathcal{F}_{T_{i}}\right] dt} - K\right)_{+}\right] &= C_{\mathsf{VIX}}^{\mathrm{mkt}}(T_{i},K) \end{split}$$

• In order to calibrate to a nonzero VIX smile, we need $\frac{1}{\tau} \int_{T_i}^{T_{i+1}} \mathbb{E}\left[\frac{\sigma_i(X_t)^2}{\mathbb{E}[\sigma_i(X_t)^2|S_t]}\Big|\mathcal{F}_{T_i}\right] dt$ to have enough variance. Moreover, VIX smiles are typically increasing so we need the distribution of VIX_{T_i} to have positive skew.

• EWMA: (S_t, X_t) is Markov, so

$$\mathsf{VIX}_{T_i}^2 = \frac{1}{\tau} \mathbb{E}\left[\int_{T_i}^{T_{i+1}} \frac{\sigma_i(X_t)^2}{\mathbb{E}[\sigma_i(X_t)^2 | S_t]} \, dt \middle| S_{T_i}, X_{T_i} \right] = \mathsf{VIX}_{T_i}^2(S_{T_i}, X_{T_i})$$

 \implies Nonparametric regression in dimension 2

Approximation

$$\frac{1}{\tau} \int_{T_i}^{T_{i+1}} \mathbb{E} \left[\frac{\sigma_i(X_t)^2}{\mathbb{E}[\sigma_i(X_t)^2 | S_t]} \middle| \mathcal{F}_{T_i} \right] \, dt \approx \frac{\sigma_i(X_{T_i})^2}{\mathbb{E}[\sigma_i(X_{T_i})^2 | S_{T_i}]}.$$

is good only if $h \gg 30$ days, but in that case X_t is very correlated with S_t so this quantity has little variance...

• We can also work with another X process that has mean-reversion time $h \gg 30$ days but is not necessarily very correlated with S_t , e.g., an Ornstein-Uhlenbeck process:

$$\frac{dS_t}{S_t} = \frac{\sigma_i(X_t)}{\sqrt{\mathbb{E}[\sigma_i(X_t)^2 | S_t]}} \sigma_{\text{loc}}(t, S_t) \, dW_t, \quad t \in [T_i \cdot T_{i+1})$$

$$dX_t = -k(X_t - 1) \, dt + \nu dZ_t, \quad d\langle W, Z \rangle_t = \rho \, dt$$

Julien Guvon

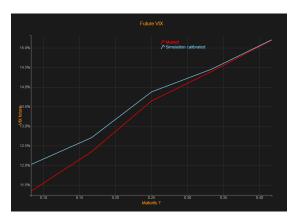


Figure: X is an O-U process, mean-reversion 1/k=120 days, vol of vol $\nu=1,~\rho=0.$ Flat (time-dependent) SPX smile

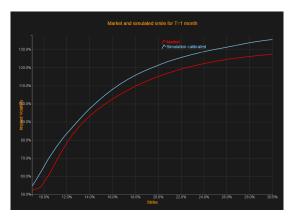


Figure: T=1 month; X is an O-U process, mean-reversion 1/k=120 days, vol of vol $\nu=1,~\rho=0.$ Flat (time-dependent) SPX smile

Julien Guyon Path-Dependent Volatility: Practical Examples

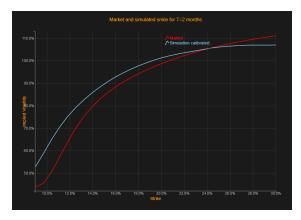


Figure: T=2 months; X is an O-U process, mean-reversion 1/k=120 days, vol of vol $\nu=1,~\rho=0.$ Flat (time-dependent) SPX smile

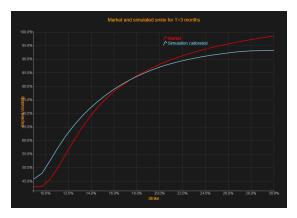


Figure: T=3 months; X is an O-U process, mean-reversion 1/k=120 days, vol of vol $\nu=1,~\rho=0.$ Flat (time-dependent) SPX smile

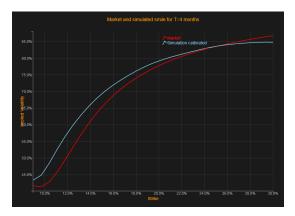


Figure: T=4 months; X is an O-U process, mean-reversion 1/k=120 days, vol of vol $\nu=1,~\rho=0.$ Flat (time-dependent) SPX smile

Julien Guyon Path-Dependent Volatility: Practical Examples I □ ► < ∃ ►</p>
Bloomberg L.P.

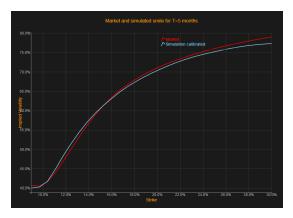


Figure: T=5 months; X is an O-U process, mean-reversion 1/k=120 days, vol of vol $\nu=1,~\rho=0.$ Flat (time-dependent) SPX smile

Results (work in progress): optimal σ_i

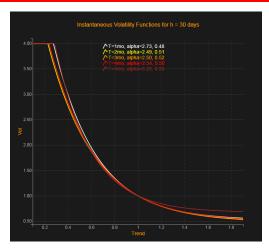


Figure: Corresponding optimal functions $\sigma_i(x) = 1 + \alpha_1(\exp(-\alpha_0(x-1)) - 1)$

Julien Guyon Path-Dependent Volatility: Practical Examples

Comparison with stochastic volatility models

Closest SV model:

$$\begin{aligned} \frac{dS_t}{S_t} &= \sigma(Y_t) \, dW_t \\ \frac{dY_t}{Y_t} &= -k(Y_t - 1) \, dt + \sigma(Y_t) \, dZ_t, \qquad d\langle W, Z \rangle_t = \rho \, dt \\ \sigma(y) &= -\frac{\alpha}{\beta} + \gamma y^{-\beta}, \qquad -y\sigma'(y) = \alpha + \beta \sigma(y) \end{aligned}$$

for which

$$\frac{d\sigma(Y_t)}{\sigma(Y_t)} = \{\text{mean-reversion}\} dt + (\alpha + \beta\sigma(Y_t)) dZ_t$$

Another close SV model:

$$\begin{array}{lll} \displaystyle \frac{dS_t}{S_t} &=& a_t \, dW_t \\ \displaystyle \frac{da_t}{a_t} &=& \{ {\rm mean-reversion} \} \, dt + (\alpha + \beta a_t) \, dZ_t, \qquad d \langle W, Z \rangle_t = \rho \, dt \end{array}$$

Complete variance curve models (after Dupire, Buehler, Bergomi)

$$\xi_t^T = \xi_0^T F^T(t, (S_u, u \le t)), \qquad \frac{dS_t}{S_t} = \sqrt{\xi_t^t} \, dW_t$$

Instantaneous forward variances $(\xi_t^T, 0 \le t \le T)$ are martingales. Functional Itô calculus (Dupire, 2009) \Longrightarrow

$$\Delta_t F^T + \frac{1}{2} S_t^2 \xi_0^t F^t(t, (S_u, u \le t)) \Delta_x^2 F^T = 0$$

Particular case $\xi_t^T = \xi_0^T F^T(t, X_t)$ where $X_t = \frac{S_t}{\bar{S}_t^h}$, \bar{S}_t^h EWMA:

$$\frac{dX_t}{X_t} = -\frac{1}{h}(X_t - 1)\,dt + \sqrt{\xi_t^t}\,dW_t$$

The ξ^T are martingales iff

$$\partial_t F^T(t,x) - \frac{1}{h}x(x-1)\partial_x F^T(t,x) + \frac{1}{2}x^2\xi_0^t F^t(t,x)\partial_x^2 F^T(t,x) = 0$$

Julien Guvon

Complete variance curve models

$$\partial_t F^T(t,x) - \frac{1}{h} x(x-1) \partial_x F^T(t,x) + \frac{1}{2} x^2 \xi_0^t F^t(t,x) \partial_x^2 F^T(t,x) = 0$$

For each given $F^T(T, \cdot)$, $F^T(t, x)$, t < T is the solution to a 1d PDE. E.g., choose $F^T(T, x) = \sigma(x)^2$, i.e., $\sqrt{\xi_t^t} = \sqrt{\xi_0^t}\sigma(X_t)$:

$$\partial_t F^T(t,x) - \frac{1}{h} x(x-1) \partial_x F^T(t,x) + \frac{1}{2} x^2 \xi_0^t \sigma(x)^2 \partial_x^2 F^T(t,x) = 0$$

$$F^T(T,x) = \sigma(x)^2$$

- If $(\xi_0^T, T \ge 0)$ is flat, then $F^T(t, x) = F(T t, x)$.
- The whole variance curve is diffused.
- Any initial VS curve $(\xi_0^T, T \ge 0)$ is calibrated, without resorting to a leverage function.
- SPX smile is *not* calibrated.

Comparison of model families

	inst. vol model	variance curve model		
Equation	$\frac{dS_t}{S_t} = \sigma(X_t) \boldsymbol{l}_{\sigma}(t, S_t) dW_t$	$\begin{cases} \xi_t^T = \xi_0^T F^T(t, X_t) \\ \frac{dS_t}{S_t} = \sqrt{\xi_t^t} dW_t \\ = F^t(t, X_t) \sqrt{\xi_0^t} dW_t \end{cases}$		
Calib. to VS curve	Yes	Yes		
at time 0	介			
Calib. to SPX smile	Yes	No		
at time 0				
Simul. of future	Difficult	Easy		
inst. fwd variance ξ_t^T	$\mathbb{E}[\sigma(X_t)^2 l_{\sigma}(t, S_t)^2 S_t, X_t]$	$\xi_0^T F^T(t, X_t)$		
Calib. to VIX smile	Depends on	Depends on		
at time 0	choice of X	choice of X		

Examples of choices of X:

•
$$X_t = \frac{S_t}{\bar{S}^h_t}$$
, \bar{S}^h_t EWMA

• $X_t = \text{Ornstein-Uhlenbeck process driven by extra Brownian motion } Z$

			Complete variance curve models
Conc	lusion		

We have introduced a simple path-dependent volatility model that:

- calibrates to SPX smile
- produces rich joint dynamics of spot, implied vol, and implied vol of vol
- captures historical joint behavior of SPX trend, VIX, and VVIX
- naturally generates mean reverting volatility
- jointly calibrates to SPX and VIX smiles? (work in progress)

This joint calibration approach to SPX and VIX smiles can use any X process, not necessarily path-dependent. Further results hopefully coming soon...

			Complete variance curve models
Than	ks		

I would like to thank Maxime Cauchois for producing the graphs.

A few selected references

- - Bergomi, L.: Smile dynamics II, Risk, October, 2005.
 - Dupire, B.: Functional Itô Calculus, SSRN preprint, 2009.
 - Guyon, J. and Henry-Labordère, P.: *Being Particular About Calibration*, Risk, January, 2012.
- Guyon, J. and Henry-Labordère, P.: *Nonlinear Option Pricing*, Chapman & Hall/CRC Financial Mathematics Series, 2013.
 - Guyon, J.: Path-Dependent Volatility, Risk, October, 2014.