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Motivation

Motivation

m Volatility indices, such as the VIX index, are not only used as
market-implied indicators of volatility.

m Futures and options on these indices are also widely used as
risk-management tools to hedge the volatility exposure of options
portfolios.

m The very high liquidity of S&P 500 (SPX) and VIX derivatives requires
that financial institutions price, hedge, and risk-manage their SPX and
VIX options portfolios using models that perfectly fit market prices of
both SPX and VIX futures and options, jointly.

m Calibration of stochastic volatility models to liquid hedging instruments:
SPX options 4+ VIX futures and options.

m Since VIX options started trading in 2006, many researchers and
practitioners have tried to build such a jointly calibrating model, but could
only, at best, get approximate fits.

m “Holy Grail of volatility modeling”
m Very challenging problem, especially for short maturities.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Motivation

Brief reminder on the VIX index

Julien Guyon

VIX = Volatility IndeX.
Published every 15 seconds by the Chicago Board Options Exchange.
Indicator of short-term options-implied volatility. Known as *“fear factor.”

Objective of CBOE: VIX is meant to reflect the 30-day implied
volatility of SPX options.

Problem: implied vol of SPX call/put options depend on the option strike.
VIX should be a strike-free measure of SPX implied vol.

Natural choice: define VIX as the implied volatility of a 30-day variance
swap on SPX.

Problem: Variance swaps are OTC. Not listed on an exchange.

=—> VIX is defined as the implied volatility of a 30-day log-contract
on SPX:

2., St
(VIX;)? := —;Prlcet [ln (Fttj_T )} , 7 = 30 days
t

The log-contract is not listed on an exchange but it can be replicated at ¢
using OTM call and put options on the SPX with maturity ¢ + 7.

© 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX® Options
$100 Multiplier

Volume on Aug. 10, 2017 hit a record 2,538,121 contracts
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Figure: Average daily volume for VIX options and VIX futures. Source: CBOE
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Figure: SPX smile as of January 22, 2020, T' = 30 days
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Motivation

Motivation

m ATM skew:
Definition: Sy = e T)
o K=Fp
SPX, small T St ~ —-1.5
1
Classical one-factor SV model: St = 5 X spot-vol correl x vol-of-vol
—

m Calibration to short-term ATM SPX skew —>
vol-of-vol > 3 = 300% > short-term ATM VIX implied vol

The very large negative skew of short-term SPX options, which in classical
continuous SV models implies a very large volatility of volatility, seems
inconsistent with the comparatively low levels of VIX implied volatilities.

Julien Guyon > 2021 Bloomberg Finance L.P. All rights reserved.
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Gatheral (2008)

Consistent Modeling of SPX and VIX options

Consistent Modeling of SPX and VIX options J

Jim Gatheral

@g Merrill Lynch

The Fifth World Congress of the Bachelier Finance Society
London, July 18, 2008

Julien Guyon ) 2021 Bloomberg Finance L.P. All rights reserved.
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Consistent Modeling of SPX and VIX options
Variance curve models
Double CEV dynamics and consistency

Double CEV dynamics

@ Buehler's affine variance curve functional is consistent with
double mean reverting dynamics of the form:

L - waw
dv = —k(v—V)dt+mv*dZ
dv = —c(V —z)dt+mpv’dZ (2)

for any choice of a, 5 € [1/2,1].
o We will call the case v = 3 = 1/2 Double Heston,
o the case o = 3 = 1 Double Lognormal,
o and the general case Double CEV.
@ All such models involve a short term variance level v that
reverts to a moving level v/ at rate x. v’/ reverts to the
long-term level z3 at the slower rate ¢ < k.
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Consistent Modeling of SPX and VIX options
The Double CEV model
Calibration of &1, &> to VIX option prices

Double CEV fit to VIX options as of 03-Apr-2007

Setting the correlation p between volatility factors z; and z; to its historical average (see later) and iterating on
the volatility of volatility parameters £; and £, to minimize the differences between model and market VIX option
prices, we obtain the following fits (orange lines)
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Consistent Modeling of SPX and VIX options
The Double CEV model
Calibration of p1 and 3 to SPX option prices

Double CEV fit to SPX options as of 03-Apr-2007

Minimizing the differences between model and market SPX option prices, we find p; = —0.9, py = —0.7 and
obtain the following fits to SPX option prices (orange lines)
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Fit to VIX options

T=0.12
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Fit to VIX options

T=0.21
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Fit to SPX options
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Fit to SPX options
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Similar experiments with other models

m Skewed 2-factor Bergomi model (Bergomi 2008)
m Skewed rough Bergomi model (G. 2018, De Marco 2018):

ol =¢ ((1 —NE (VO /Ot(t - s)H*%dzs) +AE (yl /Ot(t - s)Hfl/QdZS))

with A € [0, 1].
m Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
VIX smile well calibrated = not enough SPX ATM skew

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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ewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018
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Motivation

Skewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.08
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Skewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018- H=0.10, T=0.15
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Skewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018- H=0.10, T=025
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Skewed rough Bergomi: Calibration to VIX future and options (G. 2018)

VIX implied volatilities as of March 21, 2018- H=0.10, T=033
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Skewed rough Bergomi calibrated to VIX: SPX smile (G. 20

SPX implied volatilities, Tspx = 0.08

0250 q
—e— Market

0.225 1 . T F‘t

—— Skewed rough Bergomi

—— SPX future, market
0200 4

0175 4

0.150 4

implied vol

0125 §

0.100 4

0075 4

2500 2600 2700 2800 2900 3000
strike

021 Bloomberg Fi e L.P. All rights reserved.




Motivation

Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
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Motivation

model (Gatheral Jusselin Rosenbaum 2020)
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Motivation

Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
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Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
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Related works with continuous models on the SPX

m Jacquier-Martini-Muguruza, On the VIX futures in the rough Bergomi
model (2017):

“Interestingly, we observe a 20% difference between the [vol-of-vol] pa-
rameter obtained through VIX calibration and the one obtained through
SPX. This suggests that the volatility of volatility in the SPX market
is 20% higher when compared to VIX, revealing potential data incon-
sistencies (arbitrage?).”

m Goutte-Ismail-Pham (2017), Heston with parameters driven by a Hidden
Markov jump process.

m Fouque-Saporito (2018), Heston with stochastic vol-of-vol. See later.
Param

m Gatheral-Jusselin-Rosenbaum (2020): quadratic rough Heston volatility
model. See later. Param

m Guo-Loeper-Obtéj-Wang (2020): joint calibration via semimartingale
nonlinear optimal transport. Closely related to VIX-contrained
martingale Schrédinger bridges. See later. Nonparam

m G. (2020): The VIX Future in Bergomi Models: Analytical Expansions and
Joint Calibration with S&P 500 Skew.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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m To try to jointly fit the SPX and VIX smiles, many authors have
incorporated jumps in the dynamics of the SPX: Sepp, Cont-Kokholm,
Papanicolaou-Sircar, Baldeaux-Badran, Pacati-Pompa-Reno,
Kokholm-Stisen, Bardgett-Gourier-Leippold, Forde-Gerhold-Smith...

m Jumps offer extra degrees of freedom to partly decouple the ATM SPX
skew and the ATM VIX implied volatility.

m So far all the attempts at solving the joint SPX/VIX smile calibration
problem only produced an approximate fit.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Exact joint SPX/VIX smile calibration:
a dispersion-constrained martingale
Schrodinger problem approach

(G. 2019)

(@© 2021 Bloomberg Finance
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Exact joint calibration as a dispersion-constrained martingale Schrodinger
problem (G. 2019)

m A completely different approach: instead of postulating a parametric
continuous-time (jump-)diffusion model on the SPX, we build a
nonparametric discrete-time model:

m Help decouple SPX skew and VIX implied vol.
m Perfectly fits the smiles.
m Given a VIX future maturity 71, we build a joint probability measure on
(S1,V, S2) which is perfectly calibrated to the SPX smiles at 71 and
T = T1 + 30 days, and the VIX future and VIX smile at 7T3.

m Si: SPXat Ty, V:VIXatTi, Sz SPXatTs.

m Our model satisfies:
= Martingality constraint on the SPX;
m Consistency condition: the VIX at T is the implied volatility of the 30-day
log-contract on the SPX.
m Our model is cast as the solution of a dispersion-constrained martingale
transport problem which is solved using the Sinkhorn algorithm, in the
spirit of De March and Henry-Labordére (2019).

Julien Guyon > 2021 Bloomberg Finance L.P. All rights reserved.
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Risk, April 2020

Julien Guyon

The joint S&P 500/Vix smile calibration

puzzle solved

Since Vix options started trading in 2006, many researchers have tried to build a model that jointly and exactly calibrates to the prices of
Standard & Poor’s 500 options, Vix futures and Vix options. In this article, Julien Guyon solves this long-standing puzzle by casting it as a
discrete-time dispersion-constrained martingale transport problem, which he solves in a non-parametric way using Sinkhorn’s algorithm

olatility indexes, such as the Vix index, do not just serve as market-
implied indicators of volatility. Futures and options on these
i indexes are also widely used as risk management tools to hedge the
volatility exposure of options portfolios. The existence of a liquid market for
these futures and options has led to the need for models that jointly calibrate
to the prices of options on the underlying asset and the prices of volatility
derivatives. Without such models, financial institutions could possibly arbi-
trage each other: even market-making desks within the same institution could
do so, eg, the Vix desk could arbitrage the S&P 500 (SPX) desk. By using
models that fail to correctly incorporate the prices of the hedging instru-
ments, such as SPX options, Vix futures and Vix options, exotic desks may
misprice options, especially (but not only) those with payoffs that involve
both the underlying and its volatility index.

For this reason, since Vix options began trading in 2006, many researchers
and practitioners have tried to build a model that jointly and exactly cali-
brates to the prices of SPX futures, SPX options, Vix futures and Vix options.
“This is known to be a very challenging problem, especially for shore matu-
rities. In particular, the very large negative skew of short-term SPX options,

Dispersion-Constrained Martingale Schrédinger Bridges

and Vix smiles: that the distribution of the Dupire market local variance be
smaller than the distribution of the (instantaneous) Vix squared in the convex
order, at all times. He also reported that for short maturities the distribution
of the true Vix squared in the marker local volatility model is actually larger
than the market-implied distribution of the true Vix squared in the convex
order. Guyon showed numerically that when the (typically negative) spot-vol
correlation is large enough in absolute value, both (a) traditional stochastic
volatility models with large mean reversion and (b) rough volatility models
with asmall Hurst exponent can reproduce this inversion of convex ordering.
Acciaio, & Guyon (2020) provide a mathematical proof that the inversion
of convex ordering can be produced by continuous models. However, the
inversion of convex ordering is only a necessary condition for the joint SPX/
Vix calibration of continuous models; it is not sufficient.

Since it looks to be very difficult to jointly calibrate the SPX and Vix
smiles with continuous models, many authors have incorporated jumps in
the dynamics of the SPX: see references in Guyon (2019a). Jumps offer
extra degrees of freedom to partly decouple the ATM SPX skew and the

© 2021 Bloomberg Finance L.P. All rights reserved.
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Preprint, 2021

DISPERSION-CONSTRAINED MARTINGALE SCHRODINGER PROBLEMS
AND THE EXACT JOINT S&P 500/VIX SMILE CALIBRATION PUZZLE"

JULIEN CUYON
QUANTITATIVE RESEARCH, BLOOMBERC L P.

Anstract. We solve for the first time* a longstanding puzzle of quantitative finance that has often been
described as the Holy Crail of volatility modeling: build a model that jointly and exactly calibrates to the
prices of S&P 500 (SPX) options, VIX futures, and VIX options. So far the best attempts, which used
parametric continuous-time (jump-)diffusion models on the SPX, only produced approximate fits, We use a
very different, nonparametric and discrete-time approach. Civen a VIX future maturity Ty, we consider the
set P of all joint probability measures on the SPX at T}, the VIX at Ty, and the SPX at T = Ty + 30 days
which are perfectly calibrated to the full SPX smiles at T; and Ty, and the full VIX smile at T}, and which
also satisfy the martingality constraint on the SPX as well as the requirement that the VIX is the implied
volatility of the 30-day log-contract on the SPX.

We first consider robust hedging in this setting. By casting the superreplication problem as what we call
& dispersion-constrained martingale optimal transport problem, we establish a strong duality theorem and,
as a result, prove that the absence of joint SPX/VIX arbitrage is equivalent to the set P of jointly calibrating
models being nonempty. Should they arise, joint arbitrages are identified using classical linear programming.
In the absence of joint arbitrage, we then provide a solution to the joint calibration puzazle olving what
we call a dispersion-constrained martingale Schridinger problem: we choose a reference measure and build
the unigue jointly calibrating model that minimizes the relative entropy. We establish several dual versions
of the problem, one of which has a natural financial i in terms of 1 utility indiffe
pricing, and prove absence of duality gaps. The minimum entropy jointly calibrating model is explicit in
terms of what we call the dual Schridinger portfolio, the maximizer of the dual problems, should it
exist. We numerically compute this Schrodinger portfolio using an extension of the Sinkhorn algorithm, in
the spirit of De March and Henry-Labordére (2019). Our numerical experiments show that the algorithm
performs very well in both low and high volatility regimes.

Along the way, we provide new variants, as well as a new proof, of strong duality theorems for the
classical Schrédinger problem and for a mixed Schrédinger-Menge-Kantorovich problem (also known as
entropic optimal transport problem) that has recently attracted a lot of attention in the optimal transport
community, which are interesting in themselves. Our methodology applies not only to the VIX, but also to
any index computed as a function of the price of an option on some underlying asset.

1. INTRODUCTION

Implicd volaility indices, such as the VIX index [17], do not only serve as market-implied indicators of
volatility. Futures and options on these ind; ¢ also widely used as risk-management tools to hedge the
Julien Guyon ®© 2021 Bloomberg Finance L.P. All rights reserved.
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Setting and notation

51,V So

Ty, «—————— 30days ——» T}

m For simplicity: zero interest rates, repos, and dividends.
m p1 = risk-neutral distribution of S; <— market smile of SPX at 73.
m Ly = risk-neutral distribution of V' <— market smile of VIX at T3.

m Lo = risk-neutral distribution of Sz <— market smile of SPX at T%.
m Fy: value at time 0 of VIX future maturing at 77.
[

We denote E? := E#, EV := E*V and assume
E'[Si] = So, E[[InSi|] <oo, i€{1,2}; EV[V]=Fy, EY[V’] < oo

m No calendar arbitrage <= p1 <. p2 (convex order)

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Setting and notation

2., S . S
V2= (VIXp )? = —;Pmce;r1 {ln (é)} = Pricen, [L (é)]

m 7 := 30 days.

m L(z) := —2Inz: convex, decreasing.

L(s)

Julien Guyon 2021 Bloomberg Fi e L.P. All rights reserved.
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Build a jointly calibrating model

m Let P(u1, pv, p2) := probability measures on R>g X R>p X R s.t.

Sl ~ M1, VN,uv, 5’2 ~ U2, }EH [SQlSl,V] :Sl, }EH [L (*)

sl,v} =V

m Strong duality for dispersion-constrained martingale optimal transport
(G., 2019): Absence of joint SPX/VIX arbitrage <= P(u1, pv, u2) # 0.

m Build a model 1 € P(u1, pv, 2) = solve the joint calibration puzzle.

m Our strategy is inspired by Avellaneda (1998, 2001) and De March and
Henry-Labordére (2019).

m Choose a reference probability measure i on R5o x R>¢ X R>¢ and look
for the measure p € P(u1, pv, 2) that minimizes the relative entropy
H(u|i) of p w.r.t. fi, also known as the Kullback-Leibler divergence:

E* [m%] — EF [Z—Zlnj—g] if u < f,

+00 otherwise.

Dp:= _inf  Hulp), H(ulg) =
HEP(p1,1v ,12)

m This is a strictly convex problem that can efficiently be solved after
dualization using an extension of Sinkhorn’s algorithm (Sinkhorn,
1967).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Build a jointly calibrating model

P(pa, pov, ph2)

2021 Bloomberg
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Reminder on Lagrange multipliers

(in§7 flxz,y) = inf sup {f(z,y) — A(g(z,y) — )}
g(z,y)=c Z,Y XER
= sup inf {f(z,y) — Mg(z,y) — o)}
AER &Y

m To compute the inner inf over x,y unconstrained, simply solve
Vf(z,y) = AVg(z,y): easy!

m Then maximize the result over A\ unconstrained: easy!

= Constraint g(z,y) = ¢ < Z{f(z,y) — Ag(z,y) —c)} = 0.

inf  H(ulp) = inf sup {H(ul) + B'Tus (5] - B fua(51)] }
pst Si~pn Koy (4
inf H(p|lp) = inf H(plp) —E*[A —
won meit vls, HlR) inf sup (nli) [As(S1,V)(S2 51)]}
inf  H(plp) = inf sup { H(u|lp)—E* [AL(Sl,V) <L <%) - V2>} }
st ]EM[L(%’)‘SLV]:VQ ALY S

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Reminder on Lagrange multipliers

(in§7 flxz,y) = inf sup {f(z,y) — A(g(z,y) — )}
g(z,y)=c Z,Y NeER
= sup inf {f(z,y) — Mg(z,y) —c)}
AER T>Y

m To compute the inner inf over x,y unconstrained, simply solve
Vf(z,y) = AVg(z,y): easy!

®m Then maximize the result over A unconstrained: easy!

= Constraint g(z,y) = ¢ < Z{f(z,y) — Ag(z,y) —c)} = 0.

inf  H(ulp) = inf sup {H(ul) + B'Tui (5] - B fua(51)] }
wst Sievp By (4
inf H(p|lp) = inf H(u|p) —E* [As(S1,V)(S2 — S
won meit vls, HlR) inf sup. (k) [As(S1, V)(S2 1)]}
inf  H(plp) = inf sup { H(u|lp)—E* [AL(Sl,V) <L <%) - V2>} }
b st ]EM[L(%’)‘SLV]:VQ AL 51
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Dispersion-constrained MOT /Schrédinger problems

Reminder on Lagrange multipliers

(in§7 flxz,y) = inf sup {f(z,y) — A(g(z,y) — )}
g(z,y)=c Z,Y NeER
= sup inf {f(z,y) — Mg(z,y) —c)}
AER T>Y

m To compute the inner inf over x,y unconstrained, simply solve
Vf(z,y) = AVg(z,y): easy!

®m Then maximize the result over A unconstrained: easy!

= Constraint g(z,y) = ¢ < Z{f(z,y) — Ag(z,y) —c)} = 0.

inf  H(ulp) = inf sup {H(ula) +E i (5)] - B ua(51)] )
pst Si~pn Koy (4
inf H(uli = inf H(ulp) — E* [A X -
e e g HOD) = ot sup {H(uli) ~ B [As (51, V(S5 sl }
inf  H(plp) = inf sup < H(plp)—E" [AL(S1,V) (L <%) - VQ)} }
st ]EM[L(%’)‘SLV]:VQ ALY S1
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Dispersion-constrained MOT /Schrédinger problems

Reminder on Lagrange multipliers

g(mn;gch(x,y) = inf sup {f (@, y) = Mg(z,y) — o)}
= sup inf {f(z,y) — Mg(z,y) — o)}
AER T2y

m To compute the inner inf over x,y unconstrained, simply solve
Vf(z,y) = AVg(z,y): easy!

® Then maximize the result over A\ unconstrained: easy!

= Constraint g(z,y) = ¢ <= Z{f(z,y) — Ag(z,y) —c)} =0.

inf  H(u|g) = infsup qH(ulg)+ E'[ui(S1)] — E* [u1(51)]}
st Si~pn Ko (1)
. _ . =\ Tk (S) 3
won meitls s, HlR) = IEfAS;R) H(plp) —E [As (SLV,Sz)]}
inf  H(ulp) = inf sup {H(ulp)—E* [A) (5, V,52)] }
W st EM[L(gf)‘sl,v]:vz HOAL(GY)

Julien Guyon

© 2021 Bloomberg Finance L.P. Al rights reserved.

Dispersion-Constrained Martingale Schrédinger Bridges



Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dy = inf  H(ulp)

HEP(p1,1v ,H2)

= it sup {H(ulp) + E'fur ()] + EY [uy (V)] + E*us(S2)]

HEMI yeu

B [ua(81) + uv (V) + us(82) + AP (S1,V, 82) + AP (51, 52)] }

= sup inf H(ulp) + B [ur (S1)] + EY [uy (V)] + E?[uz(S2)]
weY HEM1

—B [ur (S1) + ur (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers
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HEMI yeu
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weY HEM1

—B [ur (S1) + ur (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dy = inf  H(ulp)

REP(p1,0v ,12)

= it sup {H(ulp) + E'fur ()] + EY [uy (V)] + E*us(S2)]

HEMI yeu

B [ua(81) + uv (V) + us(82) + AP (S1,V, 82) + AP (51, 52)] }

= sup iljlél H(uli) +E'ui(S1)] + EY [uy (V)] + E?[uz(S2))]
weld HEM

—B [ur (S1) + ur (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model

Dy = sup {E[ua (52)] + B [y (V)] + B [ua(52)]

—|—H'g}£1{H(u|ﬂ) _E* [m(sl) Fuy (V) + uz(S2) + (Agﬁ‘) n A<LL>) (S1,V, 52)] }}

m Remarkable fact: The inner infimum can be exactly computed:
inf {H(uli) — E*[X]} = —nE" [*]
nf {H(ulp) —E*[X]} = ~InE” e

and the infimum is attained at = jix defined by (Gibbs type)

dﬂx - 6X

di ~ EAleX]

m That is why we like (and chose) the “distance” H(u|a)!

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Build a jointly calibrating model

i (w) = E'ua (81)] + E [uy (V)] + E*[u2(S2)]

I EE |emi(S+uy (V+us(8)+a5) (51,V.52)+A ) (51,V.82) |

® inf,ep(uy,uy ,u0): CONstrained optimization, difficult.

m sup, ;. unconstrained optimization, easy! If sup is attained, to find the
optimum u* = (uj, u}, us, A%, A}), simply cancel the gradient of J}.

m Most important, inf,cp (., 4y up) H(14|R) is reached at

et (D) Fud (0)+us (52)+ A5 (s1,0,50)+87 5 (s1,0,52)

*(dsy1,dv,ds2) = fi(dsy, dv,ds .
(s 2) = ildsn Q)Eg [eu;<sl>+u;(V)+u;<sz>+Ag<S><sl,v,52>+Az<L>(sl,v,52>]

m Problem solved: p* € P(u1, pv, p2)!
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Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale Schrodinger problem

m Notation (u1 ® uv @ u2)(s1,v, s2) := ui(s1) + uv (v) + uz2(s2)

m Recall

Dy = inf H(pulg) = sup Jp'(u) =: Pa

HEP(p1,1v 12) ueY

- (S) L A L)
Ji () = B fua (S)]4EY [uy (V)]+E? s (52))~In E* {e(m@w@uws +af )@ww}

m Generalization:
G :={g:(0,400] = (—o0,400] | V& € (0,+00], g(z) >Inz and g(1) =0}
For g € G we define JS : U = L' B — [—00, +00) by

T = B fur (SHEY v (V) B ua()] g (7 [elaomvonasal sl )

Z*(u) — EF |:e(u1®uv@u2+A(SS)+A2L))(Sl7V,52):|
mlu) =
For E € {L'B,CCy, CyCh}, we denote Eexp := {u € F| Zz(u) < +o0}.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.

Dispersion-Constrained Martingale Schrédinger Bridges



Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale Schrodinger problem

Theorem (G. 2020)
Let i € M1 and g € G. The following equality holds in [0, +00]:

sup JI(u) = sup Ji(u) = inf H(u|g).
ueCCy u€LlB BEP(p1,pv ,12)
Moreover:
L The stronger CyCy-duality sup,.cc,c, Ji(u) = infuep(uy py us) H(1lR)

_ (S) (L)
holds if for all (As,Ar) € CZ, B* e(AS AL )(SI’V’SZ)] < +o0.

2 If P(u1, pv, p2) # 0, then the infimum is attained.

3 If the problem is finite, then P(u1, v, u2) # O and the infimum is
uniquely attained. We then denote by p* := argmin,,cp (., 1.0 H (1] 2)
the minimum entropy jointly calibrating model.

(@© 2021 Bloomberg Finance L.P. All rights reserved.

Julien Guyon
Dispersion-Constrained Martingale Schradinger Bridges




Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale Schrodinger problem

Theorem (G. cont'd)

4 Let E € {L'B,CCy} and u* € E. The following assertions are equiv.:
(i) Ji*(w*) = supyep I3 (w).
(if) The problem is finite, u* € Eexp, and
dp*
dit

* ok * *(S) *(L)
= Zp(w*)1 e(u1€9uv®u2+As +A7 )(SlvV,52> G—a.s.
In this case, let uf := (uj —In Zgz(w*), ul, us, A%, AL). Thenu' € E
and u' satisfies the three equivalent assertions below.

5 Let E € {L'B,CC,} and u' € E. The following assertions are equivalent:
(i) Jl—bdfl (ul) = sup,cp J;—Ld*l ().

(if) Forallg € g, Jg(uf) = SUPy,cp Jg(u).
(iii) The problem is finite and

& t t i T(S) (L)
Cfi/{ :6(u1®uv®u2+AS +AL )(Sl!VxS2) fi—as.
i

In this case, Zz(u) = 1.

Julien Guyon Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale Schrodinger problem

* *(L)

du Zﬂ(u*)—l e(lLTelL;éB’{L§+AE(S)+AL )(Sl’V,Sz)

HL—a.s.
dp

L ATS) | AT
c(ufonl o al®sal®) @iy o

m We call maximizers (u},ui, ub, A%, A%) and (ul,ul,, ul, AL AT)
Schradinger potentials (if they exist).

m We call the corresponding portfolios
Tux = u] D uy O us + AZ«(S) + AZ(L) and
R 1 T AT(S) AT(L) S T foli

Wt = U Duy Duy +AgT + A chrédinger portfolios.

m The Schrodinger portfolio is essentially unique: two Schrédinger portfolios
mu+ and 7, are fi-a.e. equal up to an additive constant.

s

m We call 7,; the standard Schrédinger portfolio.

Julien Guyon © 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale Schrodinger problem

Sketch of the proof of strong duality:
Prove strong duality for the classical Schrodinger problem (marginal
constraints only, £ = LY or Cor Chp)

inf H(plp) = sup  Jyo(ui,uv,us)

RETL(p1, v ,12) (u1,uy,uz)EE

using Fenchel-Rockafellar convex duality theorem. Be careful: in general
M(X) C Cy(X)" when X is not compact!

Extend to the mixed Schrddinger-Monge-Kantorovich problem (or
entropy-regularized optimal transport problem, E = L' or )

{H(plp) —E*[f(S1,V,S2)]} = sup T35 (u, uv, ug).

inf
HET(p1, v ,12) (u1,uy ,uz)€E

T (ur, uy s uz)i= B ua (51)] + EY [uy (V)] + E*[us(S2)] — g (B [y &) (51.V:82)])

T (ur uyuz) = B un (S1)) + EY [uy (V)] + E[uz(S2)] — g (B7 [e(1 @1y SuatDE1V52)])

© 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale Schrodinger problem

Sketch of the proof:
Prove strong duality for the classical Schrodinger problem (marginal
constraints only, £ = LY or C or Ch)

inf H(plp) = sup  Jy9(ui,uv,us)

REIL(p1, v ,12) (u1,uy,uz)EE

using Fenchel-Rockafellar convex duality theorem. Be careful: in general
M(X) C Cy(X)" when X is not compact!

Extend to the mixed Schrddinger-Monge-Kantorovich problem (or
entropy-regularized optimal transport problem, E = L' or )

{H(plp) —E*[f(S1,V,S2)]} = sup T2 (u, uv, ue).

inf
HET(p1, v ,12) (u1,uy ,uz)€E

TS (ur, wy, usz) o= E[ur (S1)] + EY [uy (V)] + E2[uz(S2)] — g (Eﬁ [e‘“l@“v@”z)(sb“ﬁ])

TN (ur,uyuz)i= B ua (S1)] + EY [uy (V)] + E*[ua (S2)] — g (B [ 8y Sv2t N1 v52)])
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Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale Schrodinger problem

Sketch of proof:

Prove strong duality for the classical Schrédinger problem

inf H(plp) = sup  Jp%(ur,uv,uz)
HETL(p1, 1y ,12) (u1,uy,uz)EE

Extend to the mixed Schrédinger-Monge-Kantorovich problem

inf {H(ul) —E'[F(SL V.Sl = sup IS0 (uy, uy, o).

HETL(p1, 1y ,12) (u1,uy ,us)EE

Back to the dispersion-constrained martingale Schrodinger problem:
Dualize the martingality and dispersion constraints:

inf H () = inf su H( E* [(AD) £ AP 51,V 89)]
KEP(u1,1v 12) (ki) = uel'l(m,uww)(As,Afecb{ (blF) = K s v )( ' 2)]J

Use the weak compactness of II(u1, uy, p2) and Sion’s minimax theorem
to swap inf and sup.
Apply the SMK strong duality.
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Dispersion-Constrained Martingale Schrédinger Bridges



Dispersion-constrained MOT /Schrédinger problems

The Schrodinger equations (a.k.a. Schrodinger system)

%:01 Vs1 >0, ui(s1) = ®i(s1;uv,u2, As,Ar)

%:0: You >0, uy(v) = Py(v;ui,uz,Ag,Ar)

%:0 : Vsy >0, uz(s2) = Pa(s2;ui,uv,As,Ar)
%:0 i Vs1 >0, Vo>0, 0 = Pag(si,v;u2,As(s1,v),Ar(s1,v))
G ot Vs >0, Y00, 0 = ®a,(s1,05uz,As(s1,v), Ar(si,v))

m We could have simply postulated a model of the form
(S) (L)
p(dsy, dv dSQ) :ﬂ(dsl dv d82)eU1(61)+uv(v)+u2(S2)+As (s1,v,82)+A " (51,v,52)
I ’ I ) :

m Then the 5 conditions defining P(u1, pv, p2) translate into the 5 above
equations.

m The system of equations is solved using Sinkhorn’s algorithm.
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Dispersion-constrained MOT /Schrédinger problems

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) is a coordinate ascent method which was first
used in the context of optimal transport by Cuturi (2013). It performs
alternating projections.

m Extension: Fixed point method that alternates maximizations in the
different directions (one per Lagrange multiplier) to approximate the
maximizer v

m Start from initial guess u(®) = (u§°),u§§’>,ug°),Ag°>, A(LO)), recursively
define w1V knowing u(™ by

Vs1 > 0, u%’””(m) = ¢1(51;u$>,ug"),A§"’, A(Ln>)
w20, ww) = ey g AL ALY
Vsy > 0, uénﬂ)(sz) = Dy(sy; ugnﬂ), ug;wl), Ag"), A(L"))
Vs1 >0, Vv >0, 0 = Pag (817v;ué"+1)7Ag"+l)(sl7v)7A$:")(51,v))
Vs1 >0, Yv >0, 0 = @, (sl,v;uén"'l),A(Sn+l)(sl,v),Ag”’l)(sl,v))

until convergence.
m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Sinkhorn's algorithm
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Dispersion-constrained MOT /Schrédinger problems

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) is a coordinate ascent method which was first
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maximizer v
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Dispersion-constrained MOT /Schrédinger problems

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) is a coordinate ascent method which was first
used in the context of optimal transport by Cuturi (2013). It performs
alternating projections.

m Extension: Fixed point method that alternates maximizations in the
different directions (one per Lagrange multiplier) to approximate the
maximizer v

m Start from initial guess u(®) = (u§°),u§§’>,ug°),Ag°>, A(LO)), recursively
define w1V knowing u(™ by

Vs1 > 0, u§"+1)(31) = Dq(s1; u%}”,ué"), Ag”, A(Ln>)
w20, ww) = ey g AL ALY
Vsg > 0, uénﬂ)(sz) = Dy(sy; ugnﬂ), ug;wl), Ag"), A(L"))
Vs1 >0, Vv >0, 0 = Pag (817v;ué"+1)7Ag"+l)(sl7v)7A$:")(51,v))
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until convergence.
m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) is a coordinate ascent method which was first
used in the context of optimal transport by Cuturi (2013). It performs
alternating projections.

m Extension: Fixed point method that alternates maximizations in the
different directions (one per Lagrange multiplier) to approximate the
maximizer v

m Start from initial guess u(®) = (u§°),u§§’>,ug°),Ag°>, A(LO)), recursively
define w1V knowing u(™ by

Vs1 > 0, u§"+1)(31) = Dq(s1; u%}”,ué"), Ag”, A(Ln>)
w20, ww) = ey g AL ALY
Vsy > 0, uénﬂ)(sz) = Dy(sy; ugnﬂ), ug;wl), Ag"), A(L"))
Vs1 >0, Vv >0, 0 = Pag (817v;ué"+1)7Ag"+l)(sl7v)7A$:")(51,v))
Vs1 >0, Yv >0, 0 = @, (sl,v;uén"'l),A(Sn+l)(sl,v),Ag”’l)(sl,v))

until convergence.
m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Sinkhorn's algorithm

If the algorithm diverges, then P; = +00, so D = +o0, i.e.,
Pp1, pv, pz) O {p € Ma|H (pu|p) < +oo} = 0.

m In practice, when [i has full support, this is a sign that there likely exists

a joint SPX/VIX arbitrage.

One should directly check if P(p1, pv, n2) = 0 (linear program).

m We have never experienced this situation in our numerical tests, which
covered both low and high volatility regimes.

Julien Guyon > 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Numerical experiments

Julien Guyon All rights reserve
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Dispersion-constrained MOT /Schrédinger problems

Implementation details

m Choice of ji:

B S1 ~ p1 and V ~ py independent;
m Conditional on (S1,V), S2 lognormal with mean S; and variance V.

Under i, S2 % po.

m Instead of abstract payoffs w1, uv, u2, we work with market strikes and
market prices of vanilla options on S1, V, and Sa.

m Canceling the gradient of J}{’ — system of equations solved using
Sinkhorn's algorithm.

m Enough accuracy is typically reached after =~ 100 iterations.

Julien Guyon (© 2021 Bloomberg Fi e L.P. All rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Smile of SPX as of August 1, 2018, T; = 21 days

Smile of VIX as of August 1, 2018, T =21 days
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Dispersion-constrained MOT /Schrédinger problems

Local VIX, calibration as of August 1, 2018, T1 =21 days

Joint density of (S1, V), calib as of August 1, 2018, 71 = 21 days
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Figure: Joint distribution of (S1, V) and local VIX function VIXjoc(s1)

VIXRo(S1) == E* [V?]S1]
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Dispersion-constrained MOT /Schrédinger problems

Th = 21 days

Distribution of S; given (S1, V), calib as of Aug 1, 2018, T; = 21 days

0.008 .
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o5, Distribution of 7% + 1T, calib as of Aug 1, 2018, T, =21 days
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Figure: Conditional distribution of Sy given (s1,v) under p* for different vales of
(s1,v): s1 € {2571,2808,3000}, v € {10.10, 15.30, 23.20, 35.72} %, and distribution

of the normalized return R := % + %Vﬁ
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Dispersion-constrained MOT /Schrédinger problems

Function ui(s1) as of Aug 1, 2018, T = 21 days

Function uy(v) as of Aug 1, 2018, Ty = 21 days
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Dispersion-constrained MOT /Schrédinger problems

Smile of SPX as of August 1, 2018, Ty = 49 days

» 190 Smile of VIX as of August 1, 2018, Ty = 49 days
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Dispersion-constrained MOT /Schrédinger problems

August 1, 2018, T7 = 49 days

3200 10
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Dispersion-constrained MOT /Schrédinger problems

December 24, 2018, T}

= 23 days: large VIX, Fy

Smile of SPX as of December 24, 2018, T, = 23 days

Smile of VIX as of December 24, 2018, T1 = 23 days
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December 24, 2018, 17 = 23 days
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Dispersion-constrained MOT /Schrédinger problems

Strong duality for the VIX-constrained martingale optimal transport
(Monge-Kantorovich) problem

Uy: set of superreplicating portfolios, i.e., the set of all functions
(u1,uv,u2, Ag, Ar) that satisfy the superreplication constraint:

u1(s1) + uv (v) + ua(s2) + A(SS)(sl, v, 82) + A(LL>(81,’U, s2) > f(s1,v,82).

Theorem (G. 2020)

Let f:Rs0 x R>9 X Rso — R be upper semicontinuous and satisfy
£ (s1,0,82)] < C(L+ s1+ 2+ |L(s1)| + |L(s2)| + v*)

for some constant C > 0. Then
Py 1= inf { B fus (S1)] + EY [uv (V)] + E*[us(52)]}
f

= sup  EX[f(S1,V,S2)] =: Dy.

REP (11,1 ,142)

Moreover, Dy # —oo if and only if P(p1, v, u2) # 0, and in that case the
supremum is attained.

Julien Guyon (@© 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained MOT /Schrédinger problems

Characterization of joint SPX/VIX arbitrage

Definition: A joint SPX/VIX arbitrage, or (S1, Sz, V)-arbitrage, is a portfolio
that superreplicates f = 0 with negative price.

Theorem (G. 2020)

The following assertions are equivalent:
(i) The market is free of joint SPX/VIX arbitrage.
(i) P(p1, pv, p2) # 0.
(iii) There exists a coupling v of 1 and py such that Law, (S1, L(S1) + V?)

and Law,,, (S2, L(S2)) are in convex order, i.e., for any convex function
f:Rso xR =R,

EY[f(S1, L(S1) + V*)] < E*[f(S2, L(S2))].

Julien Guyon (@© 2021 Bloomberg Finance L.P. All rights reserved.
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Continuous time:
Exact joint calibration via
dispersion-constrained martingale
Schrodinger bridges

(G. 2020)

(@© 2021 Bloomberg Finance L.P. All rights reserve
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Dispersion-constrained martingale Schradinger bridges

Martingale optimal transport approach in continuous time

m Same point of view as the discrete-time model: Pick a reference measure
Py <— a particular SV model:

ds:
Sy
da; = blar)dt + o(ar) (deE +V1- p2th°’l)

m We want to prove that P # () and build P € P, where

a, AW

P:={P e Mi|S1 ~ p1,S2 ~ u2, /EP[L(S2/S1)|Fi] ~ pv,S is a P-martingale}.
m No need to introduce a new r.v. for the VIX: VIX = |/EP[L(S2/S1)|F1].

m We look for P € P that minimizes the relative entropy w.r.t. Py:

D := inf H(P|Py)
PEP

m Inspired by Henry-Labordére 2019: From (Martingale) Schrédinger Bridges
to a New Class of Stochastic Volatility Models (calib to SPX smiles)

m Follows closely the construction of Schrodinger bridges

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale Schradinger bridges

Simple Schrodinger bridge (a la Follmer, Saint-Flour 1988)

dX, = dwp, Xo = o
P = {PeMi|X1~p}
D = inf H(P|Po)
PeP

= inf s H(P|Po) + E** [u1(X1)] — EF [ua (X
ot sup  {HPIPO) 4 B fun (X)) - B fun (X)) }

= inf < H(P|Po) + E* [u1(X1)] — EF [ur (X
Lo int {HEIP) + B fur (0]~ E fur (X)) |

Recall the remarkable fact about the inner infimum:

Pél}\fh {H(P“P)o) — E” [u1 (X1)] } = —InE™ [e"l(xl)]

AdP* eu1(X1)
and the infimum is reached at P* defined by o m.
0 ev

© 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale Schradinger bridges

Simple Schrodinger bridge (a la Follmer, Saint-Flour 1988)

dX, = dwp, Xo = o
P = {PeMi|X1~p}
D = inf H(P|Po)
PeP

= inf s H(P|Po) + E** [u1(X1)] — EF [ua (X
ot sup  {HPIPO) 4 B fun (X)) - B fun (X)) }

= inf { H(P[Po) + E* [u1(X1)] — B [ur (X
Loup ot {HEIP) + B fun (40)] - B i (X0)] |

Recall the remarkable fact about the inner infimum:

int {H(BP) ~ B fur (X1)] } = — I e )]

AdP* eu1(X1)
and the infimum is reached at P* defined by o m.
0 ev

© 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale Schradinger bridges

Simple Schrodinger bridge (a la Follmer, Saint-Flour 1988)

o _ H1 _ Po | ju1(X1) _.
D:= inf HP[Po) =  sup {IE [ur(X1)] — InE [e ]}_.P

ur €LY (p1)
m Assume P < 400 and the sup is reached at uy. Then

dP* -
My, = — = ¢"1(%0)

(Z =1 by cash adjustment of uj)
m Let M; := EXO[ My, | F] = BP0 [T (XD|F,]. Then M; = U*(t, X;) where
aU" + %aiU* =0, U*(Ti,z)=e1®@.
m By Girsanov, Wy := W, — fot 0> InU” (s, Xs) ds is a P*-Brownian motion,
dXy = 8, U™ (t, X;) dt + dW; = 8, mEP[e"1 XV | X, = 2] x, dt + dW;

Brownian motion with drift, which is explicitly known.
In practice, u1(X1) is replaced by >, ax (X1 — K)+. The gradient of

E* |:Z ak (X1 — K)+:| — InEFo [eZKEKL QK(X17K)+]
Kek
is simply the vector of differences between model and market call prices.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale Schradinger bridges

VIX-constrained martingale Schrodinger bridge

da = (b(ar)+(1— p*)o(ar)*dau’(t,Se,ar)) dt + o(ar) (det* ++1- deW:’l)

m Let P:=5SupP,, 4y u, {Zie{l,Q,V}(u“ u;) — u(0, So,ao)} where u is
solution to a nonlinear Hamilton-Jacobi-Bellman PDE:

uw(Ts,s,a;0%) = wa(s)+ 0" L(s),
B+ Lo + %(1 — o) @au)® = 0, te(Ty,T),
®(s,a) :=sup inf {uv(v) — 8N(L(s) +0°) + u(Tl,s,a;5L)},
v>06L€eR
u(Tlasva) = U1(8)+<I>(S,CL),
drut Lut S(1- p)o(@)@un)* = 0, te[0T)

m Assume P < 400 and (uj,uj,,u3) maximizes P — u*

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale Schradinger bridges

VIX-constrained martingale Schrodinger bridge

da; = (b(at)+(1 — pg)a(at)Q(‘)au*(t7 St, af)) dt + o(at) (det* +4/1— deWt*’J‘)

m Optimal deltas:

A} = —0su™(t, Sty ar) — pc;((;t)aau*(t, St, at); AR = 6*’]“(5’1,(11)
£S5t

m The drift of (a;) under P* also reads as
. T A w .
bar) + (1 — p?)o(ar)?0a I EO [T SO+ T AT(rSrandSe+ @™ (51015, 4], t € [0,T1],
x Ty Aw s+ Lg
b(ar) + (1 — p?)o(ar)28g InEO[eu3 (S2)+[p 2 A% (r.Sriar)dSr+87 1 (S1,01)L(S2) | g, qy], t € [Ty, T).

m It is path-dependent on [T1,T3].
m If P = 400, then

PN{Pe M |H(PPy) < +oo} = 0.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale Schradinger bridges

d(l/f 0.5
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Dispersion-constrained martingale Schradinger bridges

day = —k(ay —m) dt + vay dZ;. ‘Market’: v =04, Py : v =0.5

N L _
Optimal 6'(s, a), T =0.17 VIX v(s, a) in calibrated model, Ty = 0.17

Julien Guyon (© 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale Schradinger bridges

day = —k(ay —m) dt + vay dZ;. ‘Market’: v =04, Py : v =0.5
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Dispersion-constrained martingale Schradinger bridges

day = —k(ay —m) dt + vay dZ, 1.2, P

k=15, ay=m=0.2, p=-0.7
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Dispersion-constrained martingale Schradinger bridges

day = —k(ay —m) dt + vay dZ,

Optimal 6'(s, a), T1 = 0.17 VIX v(s, a) in calibrated model, T; =0.17

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved
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Dispersion-constrained martingale Schradinger bridges

day = —k(ay —m) dt + va; dZ;. ‘Market: v =12, Py:v =1

Optimal payoff uy
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Dispersion-constrained martingale Schradinger bridges

day = —k(ay —m) dt + vay dZ,
p=—0.3
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Dispersion-constrained martingale Schradinger bridges

Thanks!
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Dispersion-constrained martingale Schradinger bridges

Equations for u* = (u,uj,, u3, A, A})

aJln
st =0° Vs1>0, ui(s1) = ®i(s1;uv,u2,As,Ar)
aJn
Fur =0 Yu > 0, uy(v) = Py(v;ui,uz,As,Ar)
ol
Gzt =0 ¢ V52>0, uz(s2) = ®a(s2;ur,uv,As,Ar)
aJln
P8 =0 Vs1 >0, Vv > 0, 0 = Pag(si,v;As5(s1,v),Ar(s1,v))
aJn
saLCrw=0: Vs1>0, Vv >0, 0 = ®a,(s1,v;A5(s1,v),AL(s1,v))
(S) (L)
Bi(s1iuy,Ag,AL) = 1nu1(31)71n(/g(sl,dru,ds2)e“V(“)+“2(S2>+As (s1,0,82)+Ap (Sl>“vs2>>
. (S) ) (L) \
A Ay lwv(v),ln(/WSLU7d52)6u1<51>+u2<52>+AS (s1,0,82)+AY <81,u,32>>
(S) (L)
Po(sgiur,uy,Ag,Ap) = Inpg(sg)—In (/ﬁ'(dsbdvvSz)eul(sl)Jruv(vHAs (2Tl (5171)’52))

ug(s2)+dg(sg—s1)+d (L(:%) —"2)

PAag(s1,viug, dg,8L) = /ﬁ(51«v,d52)(52—51)5
ug(s9)+6g(sg—s1)+68 (L(52)71/2>
®ay (o1, viun,85,0L) = /p(sl,v,dsz)<L(ji>,v2)e 2(s2)+85(s2—s)+51 (L( 52 ]
y .

021 Bloomberg Fi e L.P. All rights reserved.




Dispersion-constrained martingale Schradinger bridges

Implementation details

Practically, we consider market strikes K := (K1, v, K2) and market prices
(Ck,C¥,C%) of vanilla options on S1, V, and Sz, and we build the model

B * L AO% g 4 A0 v (s K
pre(dsy, dv, ds2) = fi(dsy, dv, dsg)e® T2 S1TAV vHlrer, ok (1K)

eZKEICV af*(v— K) 4+ kek, a% (52*K)++A*( )(Sl,vv52)+Az(L)(81yU»S2)
where 0* := (c*, ALY, AV, o', aV, 0, A%, A}) maximizes
id—1 0 0 Z 11 Z V AV Z 2 2
J;‘i,}C (0) = C+A530+AvFV+ GKCK+ aKCK+ GKCK
KeKq Keky KeKo

_RE |t AYSIFAY VA, akc(S1-K) 1+ 5k, ak (V-K) 4 +5x, a%(<s2—K)++A<SS><.~>+A<L”<~.>]

over the set © of portfollos 9 = (c, A57Av,a a",a% Ag,Ar) such that
C,AS,AV €R, a' e R*1, ¢V e R*V, ¢? € R*?, and
As, A : Rsg X R>¢9 — R are measurable functions of (s1,v).

Julien Guyon (@© 2021 Bloomberg Fi L.P. All rights reserved.
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Dispersion-constrained martingale Schradinger bridges

Implementation details

m This corresponds to solving the entropy minimization problem
Pox = inf H(ulm) = sup Jiic' (9) = Dix
I3
where P(KC) denotes the set of probability measures & on
Rxo X R>0 X R>q such that
E*[S1] = So, E*[V]=Fy, VK€K, E“[(S:—K),]=Ck,
VK € Kv, B [(V — K)4] =Ck, VK €Ka, B*[(S; — K)4] =C%,

B [S5|$1,V] = S1, E {L (%)
1

Sl,V] =V2.

m One can directly check that model ux is an arbitrage-free model that
jointly calibrates the prices of SPX futures, options, VIX future, and VIX

options. Indeed, if led,zl reaches its maximum at 6%, then 0* is solution to
id—1

Pl (9) =0
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Dispersion-constrained martingale Schradinger bridges

Implementation details

Tl (0) = c+ A3So+ AVF + > axCi+ Y axCr+ Y akCk
KeKky KeKky Keks

_RE |t ASSIHAY VA, ak (S1-K) 1+ 5k, ak (V-K)4+5x, a%(<srf<)++AgS><...>+A<LL)<...>]

aJe ! CTdut aJat T du
K. iR | Ok | K 6. Rk P | _
TS I - L
i i [y i OTir o | dpic 1
BE o .Ewh |y — F B —0:EF - K =
oo R R LA CRUE R
! d Tt T dut
i, K i M \4 a,K i Hic 2
=0:E - K)y——| = =0:E -K =
daV. 0 {(V )+ di } Ck daz. 0 _(52 )+ i ] Cik
oIt . ;
ﬁ;cv):o:ﬂ‘:“ {(Sg—sl)d:; Slzsl,V:’L):|:O, V8120,1}>0
1,
I

=0, Vs1>0,v>0

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.

Dispersion-Constrained Martingale Schrédinger Bridges



	Motivation
	Dispersion-constrained MOT/Schrödinger problems
	Dispersion-constrained martingale Schrödinger bridges

