Dispersion-Constrained Martingale Schrödinger Bridges: Exact Joint S&P 500/VIX Smile Calibration via Minimum Entropy

Julien Guyon

Bloomberg L.P., Quantitative Research Columbia University, Department of Mathematics NYU, Courant Institute of Mathematical Sciences

SIAM Conference on Financial Mathematics & Engineering Minisymposium "Volatility Modeling: Joint Calibration of S&P 500 and VIX Smiles" June 2, 2021

jguyon 2 @bloomberg.net, jg 3601 @columbia.edu, julien.guyon @nyu.edu

Dispersion-Constrained Martingale Schrödinger Bridges

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

- Volatility indices, such as the VIX index, are not only used as market-implied indicators of volatility.
- Futures and options on these indices are also widely used as risk-management tools to hedge the volatility exposure of options portfolios.
- The very high liquidity of S&P 500 (SPX) and VIX derivatives requires that financial institutions price, hedge, and risk-manage their SPX and VIX options portfolios using models that perfectly fit market prices of both SPX and VIX futures and options, jointly.
- Calibration of stochastic volatility models to liquid hedging instruments: SPX options + VIX futures and options.
- Since VIX options started trading in 2006, many researchers and practitioners have tried to build such a jointly calibrating model, but could only, at best, get approximate fits.
- "Holy Grail of volatility modeling"
- Very challenging problem, especially for short maturities.

Image: A image: A

Brief reminder on the VIX index

- VIX = Volatility IndeX.
- Published every 15 seconds by the Chicago Board Options Exchange.
- Indicator of short-term options-implied volatility. Known as "fear factor."
- Objective of CBOE: VIX is meant to reflect the 30-day implied volatility of SPX options.
- Problem: implied vol of SPX call/put options depend on the option strike. VIX should be a strike-free measure of SPX implied vol.
- Natural choice: define VIX as the implied volatility of a 30-day variance swap on SPX.
- Problem: Variance swaps are OTC. Not listed on an exchange.
- ⇒ VIX is defined as the implied volatility of a 30-day log-contract on SPX:

$$\left(\mathrm{VIX}_{t}\right)^{2} := -\frac{2}{\tau}\mathrm{Price}_{t}\left[\ln\left(\frac{S_{t+\tau}}{F_{t}^{t+\tau}}\right)\right], \qquad \tau = 30 \text{ days}$$

The log-contract is not listed on an exchange but it can be replicated at t using OTM call and put options on the SPX with maturity t + τ.

Figure: Average daily volume for VIX options and VIX futures. Source: CBOE

(□) (Ξ)

Figure: SPX smile as of January 22, 2020, T = 30 days

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

• • • • • • •

Figure: VIX smile as of January 22, 2020, T = 28 days

ATM skew:

 \blacksquare Calibration to short-term ATM SPX skew \Longrightarrow

vol-of-vol $\geq 3 = 300\% \gg$ short-term ATM VIX implied vol

The very large negative skew of short-term SPX options, which in classical continuous SV models implies a very large volatility of volatility, seems inconsistent with the comparatively low levels of VIX implied volatilities.

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

Gatheral (2008)

Consistent Modeling of SPX and VIX options

Consistent Modeling of SPX and VIX options

Jim Gatheral

The Fifth World Congress of the Bachelier Finance Society London, July 18, 2008

▲ □ ▶ ▲ Ξ ▶

© 2021 Bloomberg Finance L.P. All rights reserved.

Dispersion-Constrained Martingale Schrödinger Bridges

Consistent Modeling of SPX and VIX options Variance curve models Double CEV dynamics and consistency

Double CEV dynamics

• Buehler's affine variance curve functional is consistent with double mean reverting dynamics of the form:

for any choice of $\alpha, \beta \in [1/2, 1]$.

- We will call the case $\alpha = \beta = 1/2$ Double Heston,
- the case $\alpha = \beta = 1$ Double Lognormal,
- and the general case Double CEV.
- All such models involve a short term variance level ν that reverts to a moving level ν' at rate κ. ν' reverts to the long-term level z₃ at the slower rate c < κ.

O > <
 E >

Consistent Modeling of SPX and VIX options

The Double CEV model Calibration of ξ_1 , ξ_2 to VIX option prices

Double CEV fit to VIX options as of 03-Apr-2007

Setting the correlation ρ between volatility factors z_1 and z_2 to its historical average (see later) and iterating on the volatility of volatility parameters ξ_1 and ξ_2 to minimize the differences between model and market VIX option prices, we obtain the following fits (orange lines):

< □ > < Ξ >

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges © 2021 Bloomberg Finance L.P. All rights reserved.

Consistent Modeling of SPX and VIX options

The Double CEV model

Calibration of ρ_1 and ρ_2 to SPX option prices

Double CEV fit to SPX options as of 03-Apr-2007

Minimizing the differences between model and market SPX option prices, we find $\rho_1 = -0.9$, $\rho_2 = -0.7$ and obtain the following fits to SPX option prices (orange lines):

▲ □ ▶ ▲ Ξ ▶

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges © 2021 Bloomberg Finance L.P. All rights reserved.

Fit to VIX options

T = 0.12

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

3.0

Fit to VIX options

T = 0.21

∍⇒

Fit to SPX options

T = 0.13

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

() > () > ()

Fit to SPX options

T = 0.24

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

Similar experiments with other models

- Skewed 2-factor Bergomi model (Bergomi 2008)
- Skewed rough Bergomi model (G. 2018, De Marco 2018):

$$\sigma_t^2 = \xi_0^t \left((1-\lambda) \mathcal{E}\left(\nu_0 \int_0^t (t-s)^{H-\frac{1}{2}} dZ_s \right) + \lambda \mathcal{E}\left(\nu_1 \int_0^t (t-s)^{H-1/2} dZ_s \right) \right)$$

with $\lambda \in [0,1]$.

- Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
- VIX smile well calibrated ⇒ not enough SPX ATM skew

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

Skewed rough Bergomi calibrated to VIX: SPX smile (G. 2018)

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

Julien Guyon

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

© 2021 Bloomberg Finance L.P. All rights reserved.

Related works with continuous models on the SPX

 Jacquier-Martini-Muguruza, On the VIX futures in the rough Bergomi model (2017):

"Interestingly, we observe a 20% difference between the [vol-of-vol] parameter obtained through VIX calibration and the one obtained through SPX. This suggests that the volatility of volatility in the SPX market is 20% higher when compared to VIX, revealing potential data inconsistencies (arbitrage?)."

- Goutte-Ismail-Pham (2017), Heston with parameters driven by a Hidden Markov jump process.
- Fouque-Saporito (2018), Heston with stochastic vol-of-vol. See later.
 Param
- Gatheral-Jusselin-Rosenbaum (2020): quadratic rough Heston volatility model. See later. Param
- Guo-Loeper-Obłój-Wang (2020): joint calibration via semimartingale nonlinear optimal transport. Closely related to VIX-contrained martingale Schrödinger bridges. See later. Nonparam
- G. (2020): The VIX Future in Bergomi Models: Analytical Expansions and Joint Calibration with S&P 500 Skew.

- To try to jointly fit the SPX and VIX smiles, many authors have incorporated jumps in the dynamics of the SPX: Sepp, Cont-Kokholm, Papanicolaou-Sircar, Baldeaux-Badran, Pacati-Pompa-Renò, Kokholm-Stisen, Bardgett-Gourier-Leippold, Forde-Gerhold-Smith...
- Jumps offer extra degrees of freedom to partly decouple the ATM SPX skew and the ATM VIX implied volatility.
- So far all the attempts at solving the joint SPX/VIX smile calibration problem only produced an approximate fit.

▲ □ ▶ ▲ Ξ ▶

Exact joint SPX/VIX smile calibration: a dispersion-constrained martingale Schrödinger problem approach

(G. 2019)

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges © 2021 Bloomberg Finance L.P. All rights reserved.

Exact joint calibration as a dispersion-constrained martingale Schrödinger problem (G. 2019)

- A completely different approach: instead of postulating a parametric continuous-time (jump-)diffusion model on the SPX, we build a nonparametric discrete-time model:
 - Help decouple SPX skew and VIX implied vol.
 - Perfectly fits the smiles.
- Given a VIX future maturity T_1 , we build a joint probability measure on (S_1, V, S_2) which is perfectly calibrated to the SPX smiles at T_1 and $T_2 = T_1 + 30$ days, and the VIX future and VIX smile at T_1 .
- S_1 : SPX at T_1 , V: VIX at T_1 , S_2 : SPX at T_2 .
- Our model satisfies:
 - Martingality constraint on the SPX;
 - **Consistency condition**: the VIX at T_1 is the implied volatility of the 30-day log-contract on the SPX.
- Our model is cast as the solution of a dispersion-constrained martingale transport problem which is solved using the Sinkhorn algorithm, in the spirit of De March and Henry-Labordère (2019).

Image: A image: A

Risk, April 2020

The joint S&P 500/Vix smile calibration puzzle solved

Since Vix options started trading in 2006, many researchers have tried to build a model that jointly and exactly calibrates to the prices of Standard & Poor's 500 options, Vix futures and Vix options. In this article, Julien Guyon solves this long-standing puzzle by casting it as a discrete-time dispersion-constrained martingale transport problem, which he solves in a non-parametric way using Sinknors' algorithm.

olatility indexes, such as the Vix index, do not just serve as marketimplied indicators of volatility. Futures and options on these indexes are also widely used as risk management tools to hedge the volatility exposure of options portfolios. The existence of a liquid market for these futures and options on the underlying asset and the prices of volatility derivatives. Without such models, financial institutions could possibly arbitrage each other: even market-making desls within the same institution could do so, eg, the Vix desk could arbitrage the S&CP 500 (SPX) desk. By using models that fail to correctly incorporate the prices of the hedging instruments, such as SPX options, Vix futures and Vix options, exotic desls may misprice options, especially (but not only) those with payoffs that involve both the underlying and its volatility index.

For this reason, since Vix options began trading in 2006, many researchers and practitioners have tried to build a model that jointly and exactly calbrates to the prices of SPX futures, SPX options, Vix futures and Vix options. This is known to be a very challenging problem, especially for short maurities. In particular, the very large negative skew of short-term SPX options. and Vix smiles: that the distribution of the Dupire market local variance be smaller than the distribution of the (jitstantaneous) Vix squared in the convex order, at all times. He also reported that for short maturities the distribution of the true Vix squared in the market local volatility model is actually larger than the market-implied distribution of the true Vix squared in the convex order. Guyon thouwed numerically that when the (typically negative) spot-vol correlation is large enough in absolute value, both (a) traditional stochastic volatility models with large mean reversion and (b) rough volatility models with a small Hurst exponent can reproduce this inversion of convex ordering. Accialo & Guyon (2020) provide a mathematical proof that the inversion of convex ordering is only a necessary condition for the joint SPX/ Viscelibration of continuous models. It is not sufficient.

Since it looks to be very difficult to jointhy calibrate the SPX and Vix smiles with continuous models, many authors have incorporated jumps in the dynamics of the SPX: see references in Guyon (2019a). Jumps offer extra degrees of freedom to partly decouple the ATM SPX skew and the ATM Vix implement dualities. However, that stranger can be however.

Preprint, 2021

DISPERSION-CONSTRAINED MARTINGALE SCHRÖDINGER PROBLEMS AND THE EXACT JOINT S&P 500/VIX SMILE CALIBRATION PUZZLE*

JULIEN GUYON QUANTITATIVE RESEARCH, BLOOMBERG L.P

ABSTRACT. We solve for the first time * a longstanding puzzle of quantitative finance that has often been described as the Holy Crail of volatility modeling: build a model that jointly and exactly calibrates to the prices of S&P 500 (SPX) options, VIK futures, and VIX options. So far the best attempts, which used parametric continuous-time (jump-)diffusion models on the SPX, only produced approximate fits. We use a very different, nonparametric and dimetric-time approach. Given a VIX future maturity T_1 , we consider the set P of all joint probability measures on the SPX at T_1 , the VIX at T_1 , and the SPX at $T_2 = T_1 + 30$ days which are perfectly calibrated to the full SPX smits at T_1 and T_2 , and the full VIX at $T_2 = T_1 + 30$ days volatility of the 30-day log-constraint on the SPX.

We first consider robust hedging in this setting. By casting the superceplication problem as what we call a dispersion-constrained maringlace optimal transport problem, we establish a strong duality theorem and, as a result, prove that the absence of joint SPX/VIX arbitrags is equivalent to the set P of jointly calibrating models being momenty. Should they aris, joint arbitrags are identified using classical langer programmings in the absence of joint arbitrage, we then provide a solution to the joint calibration puzzle by solving what we call a dispersion-constrained maringle. Schrödinger problem: we choose a reference measure and build the unique jointly calibrating model that minimizes the relative entropy. We establish several dual versions of the problem, one drivink has a neuron way the relative the strong of the problem, so that the strong strong the solution to the dual problems, should it terms of what we call the dual Schrödinger performs. We the maximizer of the dual problems, should it terms of what we call the dual Schrödinger performs of the maximizer of the dual problems, should it the spirit of De March and Henry-Laborker (2019). Our numerical experiments show that the algorithm performs very well in both low and high volatility regimes.

Along the way, we provide new variants, as well as a new proof, of strong duality theorems for the classical Schrödinger problem and for a mixed Schrödinger-Monge-Kantorovich problem (also known as entropic optimal transport problem) that has recently attracted a lot of attention in the optimal transport community, which are interesting in themselves. Our methodology applies not only to the VIX, but also to any index computed as a function of the price of an option on some underlying asset.

1. INTRODUCTION

Implied volatility indices, such as the VIX index [17], do not only serve as market-implied indicators of volatility. Futures and options on these indices are also widely used as risk-management tools to hedge the

(□) (Ξ)

© 2021 Bloomberg Finance L.P. All rights reserved

Dispersion-Constrained Martingale Schrödinger Bridges

Setting and notation

- For simplicity: zero interest rates, repos, and dividends.
- $\mu_1 = \text{risk-neutral distribution of } S_1 \longleftrightarrow \text{market smile of SPX at } T_1.$
- μ_V = risk-neutral distribution of $V \longleftrightarrow$ market smile of VIX at T_1 .
- $\mu_2 = \text{risk-neutral distribution of } S_2 \longleftrightarrow \text{market smile of SPX at } T_2.$
- F_V : value at time 0 of VIX future maturing at T_1 .
- We denote $\mathbb{E}^i := \mathbb{E}^{\mu_i}$, $\mathbb{E}^V := \mathbb{E}^{\mu_V}$ and assume

 $\mathbb{E}^{i}[S_{i}] = S_{0}, \quad \mathbb{E}^{i}[|\ln S_{i}|] < \infty, \quad i \in \{1, 2\}; \qquad \mathbb{E}^{V}[V] = F_{V}, \quad \mathbb{E}^{V}[V^{2}] < \infty.$

• No calendar arbitrage $\iff \mu_1 \leq_c \mu_2$ (convex order)

Image: Image:

Setting and notation

$$V^{2} := (\operatorname{VIX}_{T_{1}})^{2} := -\frac{2}{\tau} \operatorname{Price}_{T_{1}} \left[\ln \left(\frac{S_{2}}{S_{1}} \right) \right] = \operatorname{Price}_{T_{1}} \left[L \left(\frac{S_{2}}{S_{1}} \right) \right]$$

τ := 30 days.
 L(x) := -²/_τ ln x: convex, decreasing.

▲ □ ▶ ▲ Ξ ▶

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges

Build a jointly calibrating model

• Let $\mathcal{P}(\mu_1, \mu_V, \mu_2) :=$ probability measures on $\mathbb{R}_{>0} \times \mathbb{R}_{\geq 0} \times \mathbb{R}_{>0}$ s.t.

$$S_1 \sim \mu_1, \quad V \sim \mu_V, \quad S_2 \sim \mu_2, \quad \mathbb{E}^{\mu} \left[S_2 | S_1, V \right] = S_1, \quad \mathbb{E}^{\mu} \left[L \left(\frac{S_2}{S_1} \right) \middle| S_1, V \right] = V^2.$$

- Strong duality for dispersion-constrained martingale optimal transport (G., 2019): Absence of joint SPX/VIX arbitrage $\iff \mathcal{P}(\mu_1, \mu_V, \mu_2) \neq \emptyset$.
- Build a model $\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)$ = solve the joint calibration puzzle.
- Our strategy is inspired by Avellaneda (1998, 2001) and De March and Henry-Labordère (2019).
- Choose a reference probability measure $\bar{\mu}$ on $\mathbb{R}_{>0} \times \mathbb{R}_{\geq 0} \times \mathbb{R}_{>0}$ and look for the measure $\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)$ that minimizes the relative entropy $H(\mu|\bar{\mu})$ of μ w.r.t. $\bar{\mu}$, also known as the Kullback-Leibler divergence:

$$D_{\bar{\mu}} := \inf_{\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)} H(\mu|\bar{\mu}), \quad H(\mu|\bar{\mu}) := \begin{cases} \mathbb{E}^{\mu} \left[\ln \frac{d\mu}{d\bar{\mu}} \right] = \mathbb{E}^{\bar{\mu}} \left[\frac{d\mu}{d\bar{\mu}} \ln \frac{d\mu}{d\bar{\mu}} \right] & \text{if } \mu \ll \bar{\mu}, \\ +\infty & \text{otherwise} \end{cases}$$

This is a strictly convex problem that can efficiently be solved after dualization using an extension of Sinkhorn's algorithm (Sinkhorn, 1967).

O > <
 E >

Build a jointly calibrating model

▲ □ ▶ ▲ Ξ ▶

© 2021 Bloomberg Finance L.P. All rights reserved.

Dispersion-Constrained Martingale Schrödinger Bridges
$$\inf_{g(x,y)=c} f(x,y) = \inf_{x,y} \sup_{\lambda \in \mathbb{R}} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$
$$= \sup_{\lambda \in \mathbb{R}} \inf_{x,y} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$

- To compute the inner inf over x, y unconstrained, simply solve $\nabla f(x, y) = \lambda \nabla g(x, y)$: easy!
- Then maximize the result over λ unconstrained: easy!
- Constraint $g(x,y) = c \iff \frac{\partial}{\partial \lambda} \{f(x,y) \lambda(g(x,y) c)\} = 0.$

$$\begin{split} \inf_{\substack{\mu \text{ s.t. } S_1 \sim \mu_1}} H(\mu|\bar{\mu}) &= \inf_{\substack{\mu \ u_1(\cdot)}} \left\{ H(\mu|\bar{\mu}) + \mathbb{E}^1[u_1(S_1)] - \mathbb{E}^{\mu} \left[u_1(S_1) \right] \right\} \\ \inf_{\substack{\mu \text{ s.t. } \mathbb{E}^{\mu}[S_2|S_1,V] = S_1}} H(\mu|\bar{\mu}) &= \inf_{\substack{\mu \ \Delta_S(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu} \left[\Delta_S(S_1,V)(S_2 - S_1) \right] \right\} \\ \inf_{\substack{\mu \text{ s.t. } \mathbb{E}^{\mu} \left[L\left(\frac{S_2}{S_1}\right) \middle| S_1,V \right] = V^2}} &= \inf_{\substack{\mu \ \Delta_L(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu} \left[\Delta_L(S_1,V) \left(L\left(\frac{S_2}{S_1}\right) - V^2 \right) \right] \right\} \end{split}$$

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

$$\inf_{g(x,y)=c} f(x,y) = \inf_{x,y} \sup_{\lambda \in \mathbb{R}} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$
$$= \sup_{\lambda \in \mathbb{R}} \inf_{x,y} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$

- To compute the inner inf over x,y unconstrained, simply solve $\nabla f(x,y)=\lambda \nabla g(x,y) {\rm : \ easy!}$
- Then maximize the result over λ unconstrained: easy!
- Constraint $g(x,y) = c \iff \frac{\partial}{\partial \lambda} \{ f(x,y) \lambda(g(x,y) c) \} = 0.$

$$\begin{split} \inf_{\substack{\mu \text{ s.t. } S_1 \sim \mu_1}} H(\mu|\bar{\mu}) &= \inf_{\substack{\mu \ u_1(\cdot)}} \sup_{\substack{u_1(\cdot)}} \left\{ H(\mu|\bar{\mu}) + \mathbb{E}^1[u_1(S_1)] - \mathbb{E}^\mu \left[u_1(S_1) \right] \right\} \\ \inf_{\substack{\mu \text{ s.t. } \mathbb{E}^\mu [S_2|S_1,V] = S_1}} H(\mu|\bar{\mu}) &= \inf_{\substack{\mu \ \Delta_S(\cdot,\cdot)}} \sup_{\substack{\Delta_S(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^\mu \left[\Delta_S(S_1,V)(S_2 - S_1) \right] \right\} \\ \inf_{\substack{\mu \text{ s.t. } \mathbb{E}^\mu \left[L\left(\frac{S_2}{S_1}\right) \middle| S_1,V \right] = V^2}} &= \inf_{\substack{\mu \ \Delta_L(\cdot,\cdot)}} \sup_{\substack{\Delta_L(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^\mu \left[\Delta_L(S_1,V) \left(L\left(\frac{S_2}{S_1}\right) - V^2 \right) \right] \right\} \end{split}$$

© 2021 Bloomberg Finance L.P. All rights reserved

Dispersion-Constrained Martingale Schrödinger Bridges

$$\inf_{g(x,y)=c} f(x,y) = \inf_{x,y} \sup_{\lambda \in \mathbb{R}} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$
$$= \sup_{\lambda \in \mathbb{R}} \inf_{x,y} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$

- To compute the inner inf over x,y unconstrained, simply solve $\nabla f(x,y) = \lambda \nabla g(x,y) {:}$ easy!
- Then maximize the result over λ unconstrained: easy!
- Constraint $g(x,y) = c \iff \frac{\partial}{\partial \lambda} \{f(x,y) \lambda(g(x,y) c)\} = 0.$

$$\inf_{\substack{\mu \text{ s.t. } S_{1} \sim \mu_{1}}} H(\mu|\bar{\mu}) = \inf_{\substack{\mu \ u_{1}(\cdot)}} \left\{ H(\mu|\bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] - \mathbb{E}^{\mu}[u_{1}(S_{1})] \right\} \\
\inf_{\substack{\mu \text{ s.t. } \mathbb{E}^{\mu}[S_{2}|S_{1},V]=S_{1}}} H(\mu|\bar{\mu}) = \inf_{\substack{\mu \ \Delta_{S}(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu}\left[\Delta_{S}(S_{1},V)(S_{2}-S_{1})\right] \right\} \\
\inf_{\substack{\mu \text{ s.t. } \mathbb{E}^{\mu}\left[L\left(\frac{S_{2}}{S_{1}}\right)|S_{1},V\right]=V^{2}}} = \inf_{\substack{\mu \ \Delta_{L}(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu}\left[\Delta_{L}(S_{1},V)\left(L\left(\frac{S_{2}}{S_{1}}\right) - V^{2}\right)\right] \right\}$$

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

$$\inf_{g(x,y)=c} f(x,y) = \inf_{x,y} \sup_{\lambda \in \mathbb{R}} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$
$$= \sup_{\lambda \in \mathbb{R}} \inf_{x,y} \left\{ f(x,y) - \lambda(g(x,y)-c) \right\}$$

- To compute the inner inf over x,y unconstrained, simply solve $\nabla f(x,y) = \lambda \nabla g(x,y)$: easy!
- Then maximize the result over λ unconstrained: easy!
- Constraint $g(x,y) = c \iff \frac{\partial}{\partial \lambda} \{ f(x,y) \lambda(g(x,y) c) \} = 0.$

$$\begin{split} \inf_{\substack{\mu \text{ s.t. } S_{1} \sim \mu_{1}}} H(\mu|\bar{\mu}) &= \inf_{\substack{\mu \ u_{1}(\cdot)}} \left\{ H(\mu|\bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] - \mathbb{E}^{\mu} \left[u_{1}(S_{1}) \right] \right\} \\ \inf_{\substack{\mu \text{ s.t. } \mathbb{E}^{\mu}[S_{2}|S_{1},V] = S_{1}}} H(\mu|\bar{\mu}) &= \inf_{\substack{\mu \ \Delta_{S}(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu} \left[\Delta_{S}^{(S)}(S_{1},V,S_{2}) \right] \right\} \\ \inf_{\substack{\mu \text{ s.t. } \mathbb{E}^{\mu} \left[L\left(\frac{S_{2}}{S_{1}}\right) \middle| S_{1},V \right] = V^{2}}} &= \inf_{\substack{\mu \ \Delta_{L}(\cdot,\cdot)}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu} \left[\Delta_{L}^{(L)}(S_{1},V,S_{2}) \right] \right\} \end{split}$$

Dispersion-Constrained Martingale Schrödinger Bridges

- *M*₁: set of probability measures on ℝ_{>0} × ℝ_{≥0} × ℝ_{>0}: unconstrained
 U: set of portfolios u = (u₁, u_V, u₂, Δ_S, Δ_L): Lagrange multipliers
- $$\begin{split} D_{\bar{\mu}} &:= \inf_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} H(\mu | \bar{\mu}) \\ &= \inf_{\mu \in \mathcal{M}_{1}} \sup_{u \in \mathcal{U}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \\ &= \sup_{u \in \mathcal{U}} \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \end{split}$$

< □ > < ≧ >

Dispersion-Constrained Martingale Schrödinger Bridges

*M*₁: set of probability measures on ℝ_{>0} × ℝ_{≥0} × ℝ_{>0}: unconstrained
 U: set of portfolios u = (u₁, u_V, u₂, Δ_S, Δ_L): Lagrange multipliers

$$D_{\bar{\mu}} := \inf_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} H(\mu|\bar{\mu})$$

$$= \inf_{\mu \in \mathcal{M}_{1}} \sup_{u \in \mathcal{U}} \left\{ H(\mu|\bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] - \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\}$$

$$= \sup_{u \in \mathcal{U}} \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu|\bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] - \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\}$$

< □ > < Ξ >

Dispersion-Constrained Martingale Schrödinger Bridges

*M*₁: set of probability measures on ℝ_{>0} × ℝ_{≥0} × ℝ_{>0}: unconstrained
 U: set of portfolios u = (u₁, u_V, u₂, Δ_S, Δ_L): Lagrange multipliers

$$\begin{aligned} D_{\bar{\mu}} &:= \inf_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} H(\mu | \bar{\mu}) \\ &= \inf_{\mu \in \mathcal{M}_{1}} \sup_{u \in \mathcal{U}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \\ &= \sup_{u \in \mathcal{U}} \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \end{aligned}$$

< □ > < 星 >

*M*₁: set of probability measures on ℝ_{>0} × ℝ_{≥0} × ℝ_{>0}: unconstrained
 U: set of portfolios u = (u₁, u_V, u₂, Δ_S, Δ_L): Lagrange multipliers

$$\begin{aligned} D_{\bar{\mu}} &:= \inf_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} H(\mu | \bar{\mu}) \\ &= \inf_{\mu \in \mathcal{M}_{1}} \sup_{u \in \mathcal{U}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \\ &= \sup_{u \in \mathcal{U}} \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \end{aligned}$$

- 《 曰 》 《 臣 》

*M*₁: set of probability measures on ℝ_{>0} × ℝ_{≥0} × ℝ_{>0}: unconstrained
 U: set of portfolios u = (u₁, u_V, u₂, Δ_S, Δ_L): Lagrange multipliers

$$\begin{aligned} D_{\bar{\mu}} &:= \inf_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} H(\mu | \bar{\mu}) \\ &= \inf_{\mu \in \mathcal{M}_{1}} \sup_{u \in \mathcal{U}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \\ &= \sup_{u \in \mathcal{U}} \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \end{aligned}$$

◆□▶▲臺▶

*M*₁: set of probability measures on ℝ_{>0} × ℝ_{≥0} × ℝ_{>0}: unconstrained
 U: set of portfolios u = (u₁, u_V, u₂, Δ_S, Δ_L): Lagrange multipliers

$$\begin{aligned} D_{\bar{\mu}} &:= \inf_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} H(\mu | \bar{\mu}) \\ &= \inf_{\mu \in \mathcal{M}_{1}} \sup_{u \in \mathcal{U}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \\ &= \sup_{u \in \mathcal{U}} \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \end{aligned}$$

■ ▶ < ≣ ▶

*M*₁: set of probability measures on ℝ_{>0} × ℝ_{≥0} × ℝ_{>0}: unconstrained
 U: set of portfolios u = (u₁, u_V, u₂, Δ_S, Δ_L): Lagrange multipliers

$$\begin{split} D_{\bar{\mu}} &:= \inf_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} H(\mu | \bar{\mu}) \\ &= \inf_{\mu \in \mathcal{M}_{1}} \sup_{u \in \mathcal{U}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \\ &= \sup_{u \in \mathcal{U}} \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu | \bar{\mu}) + \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \\ &- \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2}) \right] \right\} \end{split}$$

< □ > < 至 >

$$D_{\bar{\mu}} = \sup_{u \in \mathcal{U}} \left\{ \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] + \inf_{\mu \in \mathcal{M}_{1}} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu} \left[u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \left(\Delta_{S}^{(S)} + \Delta_{L}^{(L)} \right) (S_{1}, V, S_{2}) \right] \right\} \right\}$$

Remarkable fact: The inner infimum can be exactly computed:

$$\inf_{\mu \in \mathcal{M}_1} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu}[\mathbf{X}] \right\} = -\ln \mathbb{E}^{\bar{\mu}} \left[e^{\mathbf{X}} \right]$$

and the infimum is attained at $\mu = \overline{\mu}_X$ defined by (Gibbs type)

$$\frac{d\bar{\mu}_X}{d\bar{\mu}} = \frac{e^X}{\mathbb{E}^{\bar{\mu}}[e^X]}.$$

• That is why we like (and chose) the "distance" $H(\mu|\bar{\mu})!$

O > <
 E >

٠

Julien Guvon

Build a jointly calibrating model

$$D_{\bar{\mu}} := \inf_{\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)} H(\mu|\bar{\mu}) = \sup_{u \in \mathcal{U}} J^{\ln}_{\bar{\mu}}(u) =: P_{\bar{\mu}}$$

$$J^{\ln}_{\bar{\mu}}(u) := \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] - \ln \mathbb{E}^{\bar{\mu}} \left[e^{u_{1}(S_{1}) + u_{V}(V) + u_{2}(S_{2}) + \Delta_{S}^{(S)}(S_{1}, V, S_{2}) + \Delta_{L}^{(L)}(S_{1}, V, S_{2})} \right].$$

• $\inf_{\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)}$: constrained optimization, difficult.

- $\sup_{u \in U}$: unconstrained optimization, easy! If sup is attained, to find the optimum $u^* = (u_1^*, u_V^*, u_2^*, \Delta_S^*, \Delta_L^*)$, simply cancel the gradient of $J_{\bar{\mu}}^{\ln}$.
- \blacksquare Most important, $\inf_{\mu\in \mathcal{P}(\mu_1,\mu_V,\mu_2)}H(\mu|\bar{\mu})$ is reached at

$$\mu^*(ds_1, dv, ds_2) = \bar{\mu}(ds_1, dv, ds_2) \frac{e^{u_1^*(s_1) + u_V^*(v) + u_2^*(s_2) + \Delta_S^{*(S)}(s_1, v, s_2) + \Delta_L^{*(L)}(s_1, v, s_2)}}{\mathbb{E}^{\bar{\mu}} \left[e^{u_1^*(S_1) + u_V^*(V) + u_2^*(S_2) + \Delta_S^{*(S)}(S_1, V, S_2) + \Delta_L^{*(L)}(S_1, V, S_2)} \right]}$$

Problem solved: $\mu^* \in \mathcal{P}(\mu_1, \mu_V, \mu_2)!$

© 2021 Bloomberg Finance L.P. All rights reserved.

Image: Image:

Dispersion-Constrained Martingale Schrödinger Bridges

Motivation

e,

Julien Guvon

Strong duality for the VIX-constrained martingale Schrödinger problem

• Notation $(u_1 \oplus u_V \oplus u_2)(s_1, v, s_2) := u_1(s_1) + u_V(v) + u_2(s_2)$

Recall

$$D_{\bar{\mu}} := \inf_{\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)} H(\mu | \bar{\mu}) = \sup_{u \in \mathcal{U}} J^{\ln}_{\bar{\mu}}(u) =: P_{\bar{\mu}}$$
$$J^{\ln}_{\bar{\mu}}(u) := \mathbb{E}^1[u_1(S_1)] + \mathbb{E}^V[u_V(V)] + \mathbb{E}^2[u_2(S_2)] - \ln \mathbb{E}^{\bar{\mu}} \left[e^{\left(u_1 \oplus u_V \oplus u_2 + \Delta_S^{(S)} + \Delta_L^{(L)}\right)(S_1, V, S_2)} \right]$$

Generalization:

$$\mathcal{G} := \{g : (0, +\infty] \to (-\infty, +\infty] \mid \forall x \in (0, +\infty], \ g(x) \ge \ln x \text{ and } g(1) = 0\}$$
For $g \in \mathcal{G}$ we define $J^{g}_{\overline{\mu}} : \mathcal{U} = L^{1}B \to [-\infty, +\infty)$ by

$$I_{\bar{\mu}}^{g}(u) := \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] - g\left(\mathbb{E}^{\bar{\mu}}\left[e^{\left(u_{1}\oplus u_{V}\oplus u_{2}+\Delta_{S}^{(S)}+\Delta_{L}^{(L)}\right)(S_{1},V,S_{2})}\right]\right)$$

$$Z_{\bar{\mu}}(u) := \mathbb{E}^{\bar{\mu}} \left[e^{\left(u_1 \oplus u_V \oplus u_2 + \Delta_S^{(S)} + \Delta_L^{(L)} \right)(S_1, V, S_2)} \right]$$

For $E \in \{L^1B, CC_b, C_bC_b\}$, we denote $E_{exp} := \{u \in E \mid Z_{\overline{\mu}}(u) < +\infty\}$.

- < □ > < ≣ >

Theorem (G. 2020)

Let $\bar{\mu} \in \mathcal{M}_1$ and $g \in \mathcal{G}$. The following equality holds in $[0, +\infty]$:

$$\sup_{u \in CC_b} J^g_{\bar{\mu}}(u) = \sup_{u \in L^{1B}} J^g_{\bar{\mu}}(u) = \inf_{\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)} H(\mu|\bar{\mu}).$$

Moreover:

- 1 The stronger $C_b C_b$ -duality $\sup_{u \in C_b C_b} J^g_{\bar{\mu}}(u) = \inf_{\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)} H(\mu|\bar{\mu})$ holds if for all $(\Delta_S, \Delta_L) \in C_b^2$, $\mathbb{E}^{\bar{\mu}} \left[e^{\left(\Delta_S^{(S)} + \Delta_L^{(L)} \right)(S_1, V, S_2)} \right] < +\infty.$
- 2 If $\mathcal{P}(\mu_1, \mu_V, \mu_2) \neq \emptyset$, then the infimum is attained.
- 3 If the problem is finite, then $\mathcal{P}(\mu_1, \mu_V, \mu_2) \neq \emptyset$ and the infimum is uniquely attained. We then denote by $\mu^* := \arg \min_{\mu \in \mathcal{P}(\mu_1, \mu_V, \mu_2)} H(\mu|\bar{\mu})$ the minimum entropy jointly calibrating model.

Image: Image:

Theorem (G. 2020, cont'd)

4 Let $E \in \{L^1B, CC_b\}$ and $u^* \in E$. The following assertions are equiv.:

(i)
$$J_{\bar{\mu}}^{\ln}(u^*) = \sup_{u \in E} J_{\bar{\mu}}^{\ln}(u).$$

(ii) The problem is finite, $u^* \in E_{exp}$, and

$$\frac{d\mu^*}{d\bar{\mu}} = Z_{\bar{\mu}}(u^*)^{-1} e^{\left(u_1^* \oplus u_V^* \oplus u_2^* + \Delta_S^{*(S)} + \Delta_L^{*(L)}\right)(S_1, V, S_2)} \quad \bar{\mu} - \text{a.s.}$$

In this case, let $u^{\dagger} := (u_1^* - \ln Z_{\bar{\mu}}(u^*), u_V^*, u_2^*, \Delta_S^*, \Delta_L^*)$. Then $u^{\dagger} \in E$ and u^{\dagger} satisfies the three equivalent assertions below.

5 Let $E \in \{L^1B, CC_b\}$ and $u^{\dagger} \in E$. The following assertions are equivalent:

(i)
$$J_{\bar{\mu}}^{\mathrm{id}-1}(u^{\dagger}) = \sup_{u \in E} J_{\bar{\mu}}^{\mathrm{id}-1}(u).$$

(ii) For all $g \in \mathcal{G}$, $J_{\bar{\mu}}^{g}(u^{\dagger}) = \sup_{u \in E} J_{\bar{\mu}}^{g}(u).$
(iii) The problem is finite and
 $\frac{d\mu^{*}}{d\bar{\mu}} = e^{\left(u_{1}^{\dagger} \oplus u_{V}^{\dagger} \oplus u_{2}^{\dagger} + \Delta_{S}^{\dagger(S)} + \Delta_{L}^{\dagger(L)}\right)(S_{1}, V, S_{2})} \quad \bar{\mu}$ -a

In this case, $Z_{\bar{\mu}}(u^{\dagger}) = 1$.

< E.

.s.

$$\frac{d\mu^*}{d\bar{\mu}} = Z_{\bar{\mu}}(u^*)^{-1} e^{\left(u_1^* \oplus u_V^* \oplus u_2^* + \Delta_S^{*(S)} + \Delta_L^{*(L)}\right)(S_1, V, S_2)} \quad \bar{\mu} - \text{a.s.}$$
$$= e^{\left(u_1^\dagger \oplus u_V^\dagger \oplus u_2^\dagger + \Delta_S^{\dagger(S)} + \Delta_L^{\dagger(L)}\right)(S_1, V, S_2)} \quad \bar{\mu} - \text{a.s.}$$

- We call maximizers $(u_1^*, u_V^*, u_2^*, \Delta_S^*, \Delta_L^*)$ and $(u_1^{\dagger}, u_V^{\dagger}, u_2^{\dagger}, \Delta_S^{\dagger}, \Delta_L^{\dagger})$ Schrödinger potentials (if they exist).
- We call the corresponding portfolios $\begin{aligned} \pi_{u^*} &:= u_1^* \oplus u_V^* \oplus u_2^* + \Delta_S^{*(S)} + \Delta_L^{*(L)} \text{ and} \\ \pi_{u^{\dagger}} &:= u_1^{\dagger} \oplus u_V^{\dagger} \oplus u_2^{\dagger} + \Delta_S^{\dagger(S)} + \Delta_L^{\dagger(L)} \text{ Schrödinger portfolios.} \end{aligned}$
- The Schrödinger portfolio is essentially unique: two Schrödinger portfolios π_{u^*} and $\pi_{u^{\dagger}}$ are $\bar{\mu}$ -a.e. equal up to an additive constant.
- We call $\pi_{u^{\dagger}}$ the standard Schrödinger portfolio.

Image: Image:

Sketch of the proof of strong duality:

I Prove strong duality for the classical Schrödinger problem (marginal constraints only, $E = L^1$ or C or C_b)

$$\inf_{\mu \in \Pi(\mu_1, \mu_V, \mu_2)} H(\mu | \bar{\mu}) = \sup_{(u_1, u_V, u_2) \in E} J^{\mathsf{S}, g}_{\bar{\mu}}(u_1, u_V, u_2)$$

using Fenchel-Rockafellar convex duality theorem. Be careful: in general $\mathcal{M}(\mathcal{X}) \subsetneq C_b(\mathcal{X})^*$ when \mathcal{X} is not compact!

2 Extend to the mixed Schrödinger-Monge-Kantorovich problem (or entropy-regularized optimal transport problem, $E = L^1$ or C)

$$\inf_{\mu \in \Pi(\mu_1, \mu_V, \mu_2)} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu}[f(S_1, V, S_2)] \right\} = \sup_{(u_1, u_V, u_2) \in E} J_{\bar{\mu}, f}^{\mathsf{SMK}, g}(u_1, u_V, u_2).$$

Dispersion-Constrained Martingale Schrödinger Bridges

Sketch of the proof:

I Prove strong duality for the classical Schrödinger problem (marginal constraints only, $E = L^1$ or C or C_b)

$$\inf_{\mu\in\Pi(\mu_1,\mu_V,\mu_2)} H(\mu|\bar{\mu}) = \sup_{(u_1,u_V,u_2)\in E} J^{\mathsf{S},g}_{\bar{\mu}}(u_1,u_V,u_2)$$

using Fenchel-Rockafellar convex duality theorem. Be careful: in general $\mathcal{M}(\mathcal{X}) \subsetneq C_b(\mathcal{X})^*$ when \mathcal{X} is not compact!

2 Extend to the mixed Schrödinger-Monge-Kantorovich problem (or entropy-regularized optimal transport problem, $E = L^1$ or C)

$$\inf_{\mu \in \Pi(\mu_1, \mu_V, \mu_2)} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu}[f(S_1, V, S_2)] \right\} = \sup_{(u_1, u_V, u_2) \in E} J_{\bar{\mu}, f}^{\mathsf{SMK}, g}(u_1, u_V, u_2).$$

Dispersion-Constrained Martingale Schrödinger Bridges

Sketch of proof:

Prove strong duality for the classical Schrödinger problem

$$\inf_{\mu \in \Pi(\mu_1, \mu_V, \mu_2)} H(\mu|\bar{\mu}) = \sup_{(u_1, u_V, u_2) \in E} J_{\bar{\mu}}^{\mathsf{S}, g}(u_1, u_V, u_2)$$

2 Extend to the mixed Schrödinger-Monge-Kantorovich problem

$$\inf_{\mu \in \Pi(\mu_1, \mu_V, \mu_2)} \left\{ H(\mu|\bar{\mu}) - \mathbb{E}^{\mu} [f(S_1, V, S_2)] \right\} = \sup_{(u_1, u_V, u_2) \in E} J_{\bar{\mu}, f}^{\mathsf{SMK}, g}(u_1, u_V, u_2).$$

Back to the dispersion-constrained martingale Schrödinger problem:
 Dualize the martingality and dispersion constraints:

 $\inf_{\boldsymbol{\mu}\in\mathcal{P}(\mu_1,\mu_V,\mu_2)} H(\boldsymbol{\mu}|\bar{\boldsymbol{\mu}}) = \inf_{\boldsymbol{\mu}\in\Pi(\mu_1,\mu_V,\mu_2)} \sup_{(\Delta_S,\Delta_L)\in C_b} \left\{ H(\boldsymbol{\mu}|\bar{\boldsymbol{\mu}}) - \mathbb{E}^{\boldsymbol{\mu}} \left[\left(\Delta_S^{(S)} + \Delta_L^{(L)} \right) (S_1,V,S_2) \right] \right\}$

2 Use the weak compactness of $\Pi(\mu_1,\mu_V,\mu_2)$ and Sion's minimax theorem to swap inf and sup.

3 Apply the SMK strong duality.

- < □ > < ≣ >

 $\overline{\partial}$

Julien Guvon

The Schrödinger equations (a.k.a. Schrödinger system)

$$\begin{array}{rcl} \frac{\partial J_{\mu}^{\mathrm{id}-1}}{\partial u_{1}(s_{1})} = 0: & \forall s_{1} > 0, & u_{1}(s_{1}) & = & \Phi_{1}(s_{1}; u_{V}, u_{2}, \Delta_{S}, \Delta_{L}) \\ \\ \frac{\partial J_{\mu}^{\mathrm{id}-1}}{\partial u_{V}(v)} = 0: & \forall v \geq 0, & u_{V}(v) & = & \Phi_{V}(v; u_{1}, u_{2}, \Delta_{S}, \Delta_{L}) \\ \\ \frac{\partial J_{\mu}^{\mathrm{id}-1}}{\partial u_{2}(s_{2})} = 0: & \forall s_{2} > 0, & u_{2}(s_{2}) & = & \Phi_{2}(s_{2}; u_{1}, u_{V}, \Delta_{S}, \Delta_{L}) \\ \\ \frac{\partial J_{\mu}^{\mathrm{id}-1}}{\partial \Delta_{S}(s_{1}, v)} = 0: & \forall s_{1} > 0, \ \forall v \geq 0, & 0 & = & \Phi_{\Delta_{S}}(s_{1}, v; u_{2}, \Delta_{S}(s_{1}, v), \Delta_{L}(s_{1}, v)) \\ \\ \frac{\partial J_{\mu}^{\mathrm{id}-1}}{\partial \Delta_{L}(s_{1}, v)} = 0: & \forall s_{1} > 0, \ \forall v \geq 0, & 0 & = & \Phi_{\Delta_{L}}(s_{1}, v; u_{2}, \Delta_{S}(s_{1}, v), \Delta_{L}(s_{1}, v)) \end{array}$$

We could have simply postulated a model of the form

 $\mu(ds_1, dv, ds_2) = \bar{\mu}(ds_1, dv, ds_2) e^{u_1(s_1) + u_V(v) + u_2(s_2) + \Delta_S^{(S)}(s_1, v, s_2) + \Delta_L^{(L)}(s_1, v, s_2)}$

- Then the 5 conditions defining $\mathcal{P}(\mu_1, \mu_V, \mu_2)$ translate into the 5 above equations.
- The system of equations is solved using Sinkhorn's algorithm.

(日)

- Sinkhorn's algorithm (1967) is a coordinate ascent method which was first used in the context of optimal transport by Cuturi (2013). It performs alternating projections.
- Extension: Fixed point method that alternates maximizations in the different directions (one per Lagrange multiplier) to approximate the maximizer u^{\dagger} .
- Start from initial guess $u^{(0)} = (u_1^{(0)}, u_V^{(0)}, u_2^{(0)}, \Delta_S^{(0)}, \Delta_L^{(0)})$, recursively define $u^{(n+1)}$ knowing $u^{(n)}$ by
 - $\begin{aligned} \forall s_1 > 0, & u_1^{(n+1)}(s_1) &= \Phi_1(s_1; u_V^{(n)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall v \ge 0, & u_V^{(n+1)}(v) &= \Phi_V(v; u_1^{(n+1)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_2 > 0, & u_2^{(n+1)}(s_2) &= \Phi_2(s_2; u_1^{(n+1)}, u_V^{(n+1)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_S}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n)}(s_1, v)) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_L}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n+1)}(s_1, v)) \end{aligned}$

until convergence.

 Each of the above 5 lines corresponds to a Bregman projection in the space of measures.

O > <
 E >

- Sinkhorn's algorithm (1967) is a coordinate ascent method which was first used in the context of optimal transport by Cuturi (2013). It performs alternating projections.
- Extension: Fixed point method that alternates maximizations in the different directions (one per Lagrange multiplier) to approximate the maximizer u^{\dagger} .
- Start from initial guess $u^{(0)} = (u_1^{(0)}, u_V^{(0)}, u_2^{(0)}, \Delta_S^{(0)}, \Delta_L^{(0)})$, recursively define $u^{(n+1)}$ knowing $u^{(n)}$ by
 - $\begin{aligned} \forall s_1 > 0, & u_1^{(n+1)}(s_1) &= \Phi_1(s_1; u_V^{(n)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall v \ge 0, & u_V^{(n+1)}(v) &= \Phi_V(v; u_1^{(n+1)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_2 > 0, & u_2^{(n+1)}(s_2) &= \Phi_2(s_2; u_1^{(n+1)}, u_V^{(n+1)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_S}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n)}(s_1, v)) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_L}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n+1)}(s_1, v)) \end{aligned}$

until convergence.

Each of the above 5 lines corresponds to a Bregman projection in the space of measures.

O > <
 E >

- Sinkhorn's algorithm (1967) is a coordinate ascent method which was first used in the context of optimal transport by Cuturi (2013). It performs alternating projections.
- Extension: Fixed point method that alternates maximizations in the different directions (one per Lagrange multiplier) to approximate the maximizer u^{\dagger} .
- Start from initial guess $u^{(0)} = (u_1^{(0)}, u_V^{(0)}, u_2^{(0)}, \Delta_S^{(0)}, \Delta_L^{(0)})$, recursively define $u^{(n+1)}$ knowing $u^{(n)}$ by
 - $\begin{aligned} \forall s_1 > 0, & u_1^{(n+1)}(s_1) &= \Phi_1(s_1; u_V^{(n)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall v \ge 0, & u_V^{(n+1)}(v) &= \Phi_V(v; u_1^{(n+1)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_2 > 0, & u_2^{(n+1)}(s_2) &= \Phi_2(s_2; u_1^{(n+1)}, u_V^{(n+1)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_S}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n)}(s_1, v)) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_L}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n+1)}(s_1, v)) \end{aligned}$

until convergence.

Each of the above 5 lines corresponds to a Bregman projection in the space of measures.

Image: A image: A

- Sinkhorn's algorithm (1967) is a coordinate ascent method which was first used in the context of optimal transport by Cuturi (2013). It performs alternating projections.
- Extension: Fixed point method that alternates maximizations in the different directions (one per Lagrange multiplier) to approximate the maximizer u^{\dagger} .
- Start from initial guess $u^{(0)} = (u_1^{(0)}, u_V^{(0)}, u_2^{(0)}, \Delta_S^{(0)}, \Delta_L^{(0)})$, recursively define $u^{(n+1)}$ knowing $u^{(n)}$ by

until convergence.

 Each of the above 5 lines corresponds to a Bregman projection in the space of measures.

Image: A image: A

- Sinkhorn's algorithm (1967) is a coordinate ascent method which was first used in the context of optimal transport by Cuturi (2013). It performs alternating projections.
- Extension: Fixed point method that alternates maximizations in the different directions (one per Lagrange multiplier) to approximate the maximizer u^{\dagger} .
- Start from initial guess $u^{(0)} = (u_1^{(0)}, u_V^{(0)}, u_2^{(0)}, \Delta_S^{(0)}, \Delta_L^{(0)})$, recursively define $u^{(n+1)}$ knowing $u^{(n)}$ by
 - $$\begin{split} \forall s_1 > 0, & u_1^{(n+1)}(s_1) &= \Phi_1(s_1; u_V^{(n)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall v \ge 0, & u_V^{(n+1)}(v) &= \Phi_V(v; u_1^{(n+1)}, u_2^{(n)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_2 > 0, & u_2^{(n+1)}(s_2) &= \Phi_2(s_2; u_1^{(n+1)}, u_V^{(n+1)}, \Delta_S^{(n)}, \Delta_L^{(n)}) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_S}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n)}(s_1, v)) \\ \forall s_1 > 0, \forall v \ge 0, & 0 &= \Phi_{\Delta_L}(s_1, v; u_2^{(n+1)}, \Delta_S^{(n+1)}(s_1, v), \Delta_L^{(n+1)}(s_1, v)) \end{split}$$

until convergence.

 Each of the above 5 lines corresponds to a Bregman projection in the space of measures.

Image: A image: A

- Sinkhorn's algorithm (1967) is a coordinate ascent method which was first used in the context of optimal transport by Cuturi (2013). It performs alternating projections.
- Extension: Fixed point method that alternates maximizations in the different directions (one per Lagrange multiplier) to approximate the maximizer u^{\dagger} .
- Start from initial guess $u^{(0)} = (u_1^{(0)}, u_V^{(0)}, u_2^{(0)}, \Delta_S^{(0)}, \Delta_L^{(0)})$, recursively define $u^{(n+1)}$ knowing $u^{(n)}$ by

until convergence.

Each of the above 5 lines corresponds to a Bregman projection in the space of measures.

★ □ ▶ ★ ∃ ▶

If the algorithm diverges, then $P_{\bar{\mu}} = +\infty$, so $D_{\bar{\mu}} = +\infty$, i.e.,

$$\mathcal{P}(\mu_1, \mu_V, \mu_2) \cap \{\mu \in \mathcal{M}_1 | H(\mu|\bar{\mu}) < +\infty\} = \emptyset.$$

- In practice, when $\bar{\mu}$ has full support, this is a sign that there likely exists a joint SPX/VIX arbitrage.
- One should directly check if $\mathcal{P}(\mu_1, \mu_V, \mu_2) = \emptyset$ (linear program).
- We have never experienced this situation in our numerical tests, which covered both low and high volatility regimes.

Numerical experiments

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges © 2021 Bloomberg Finance L.P. All rights reserved.

Implementation details

• Choice of $\bar{\mu}$:

- $S_1 \sim \mu_1$ and $V \sim \mu_V$ independent;
- Conditional on (S_1, V) , S_2 lognormal with mean S_1 and variance V.

Under $\bar{\mu}$, $S_2 \not\sim \mu_2$.

- Instead of abstract payoffs u_1, u_V, u_2 , we work with market strikes and market prices of vanilla options on S_1 , V, and S_2 .
- Canceling the gradient of $J^{\rm ln}_{\bar{\mu}} \to$ system of equations solved using Sinkhorn's algorithm.
- Enough accuracy is typically reached after ≈ 100 iterations.

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

© 2021 Bloomberg Finance L.P. All rights reserved.

Dispersion-Constrained Martingale Schrödinger Bridges

Figure: Joint distribution of (S_1, V) and local VIX function VIX_{loc} (s_1)

$$\mathsf{VIX}^2_{\mathsf{loc}}(S_1) := \mathbb{E}^{\mu^*} \left[V^2 \big| S_1 \right]$$

◆□ ▶ ◆ 壹 ▶

Dispersion-Constrained Martingale Schrödinger Bridges

Figure: Conditional distribution of S_2 given (s_1, v) under μ^* for different vales of (s_1, v) : $s_1 \in \{2571, 2808, 3000\}, v \in \{10.10, 15.30, 23.20, 35.72\}\%$, and distribution of the normalized return $R := \frac{\ln(S_2/S_1)}{V\sqrt{\tau}} + \frac{1}{2}V\sqrt{\tau}$

© 2021 Bloomberg Finance L.P. All rights reserved.

O > <
 E >

Dispersion-Constrained Martingale Schrödinger Bridges

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

Figure: Optimal functions $\Delta_S^*(s_1, v)$ and $\Delta_L^*(s_1, v)$ for (s_1, v) in the quadrature grid
August 1, 2018, $T_1 = 49$ days

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

Dispersion-Constrained Martingale Schrödinger Bridges

August 1, 2018, $T_1 = 49$ days

• • • • • • •

Dispersion-Constrained Martingale Schrödinger Bridges

December 24, 2018, $T_1 = 23$ days: large VIX, $F_V \approx 26\%$

Julien Guyon

© 2021 Bloomberg Finance L.P. All rights reserved.

Dispersion-Constrained Martingale Schrödinger Bridges

December 24, 2018, $T_1 = 23$ days

Image: A image: A

Strong duality for the VIX-constrained martingale optimal transport (Monge-Kantorovich) problem

 \mathcal{U}_f : set of superreplicating portfolios, i.e., the set of all functions $(u_1, u_V, u_2, \Delta_S, \Delta_L)$ that satisfy the superreplication constraint:

 $u_1(s_1) + u_V(v) + u_2(s_2) + \Delta_S^{(S)}(s_1, v, s_2) + \Delta_L^{(L)}(s_1, v, s_2) \ge f(s_1, v, s_2).$

Theorem (G. 2020)

Let $f: \mathbb{R}_{>0} \times \mathbb{R}_{\geq 0} \times \mathbb{R}_{>0} \to \mathbb{R}$ be upper semicontinuous and satisfy

$$|f(s_1, v, s_2)| \le C(1 + s_1 + s_2 + |L(s_1)| + |L(s_2)| + v^2)$$

for some constant C > 0. Then

$$P_{f} := \inf_{\mathcal{U}_{f}} \left\{ \mathbb{E}^{1}[u_{1}(S_{1})] + \mathbb{E}^{V}[u_{V}(V)] + \mathbb{E}^{2}[u_{2}(S_{2})] \right\}$$
$$= \sup_{\mu \in \mathcal{P}(\mu_{1}, \mu_{V}, \mu_{2})} \mathbb{E}^{\mu}[f(S_{1}, V, S_{2})] =: D_{f}.$$

Moreover, $D_f \neq -\infty$ if and only if $\mathcal{P}(\mu_1, \mu_V, \mu_2) \neq \emptyset$, and in that case the supremum is attained.

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

© 2021 Bloomberg Finance L.P. All rights reserved.

4 3 5

Characterization of joint SPX/VIX arbitrage

Definition: A joint SPX/VIX arbitrage, or (S_1, S_2, V) -arbitrage, is a portfolio that superreplicates $f \equiv 0$ with negative price.

Theorem (G. 2020)

The following assertions are equivalent:

(i) The market is free of joint SPX/VIX arbitrage.

(ii)
$$\mathcal{P}(\mu_1, \mu_V, \mu_2) \neq \emptyset$$
.

(iii) There exists a coupling ν of μ₁ and μ_V such that Law_ν(S₁, L(S₁) + V²) and Law_{μ2}(S₂, L(S₂)) are in convex order, i.e., for any convex function f : ℝ_{>0} × ℝ → ℝ,

$$\mathbb{E}^{\nu}[f(S_1, L(S_1) + V^2)] \le \mathbb{E}^2[f(S_2, L(S_2))].$$

< □ > < 분 >

© 2021 Bloomberg Finance L.P. All rights reserved.

Continuous time: Exact joint calibration via dispersion-constrained martingale Schrödinger bridges (G. 2020)

< □ > < Ξ >

© 2021 Bloomberg Finance L.P. All rights reserved

Dispersion-Constrained Martingale Schrödinger Bridges

Martingale optimal transport approach in continuous time

Same point of view as the discrete-time model: Pick a reference measure $\mathbb{P}_0 \longleftrightarrow$ a particular SV model:

$$\begin{aligned} \frac{dS_t}{S_t} &= a_t \, dW_t^0 \\ da_t &= b(a_t) \, dt + \sigma(a_t) \left(\rho \, dW_t^0 + \sqrt{1 - \rho^2} dW_t^{0,\perp} \right) \end{aligned}$$

 \blacksquare We want to prove that $\mathcal{P}\neq \emptyset$ and build $\mathbb{P}\in \mathcal{P},$ where

 $\mathcal{P} := \{ \mathbb{P} \in \mathcal{M}_1 \, | \, S_1 \sim \mu_1, S_2 \sim \mu_2, \sqrt{\mathbb{E}^{\mathbb{P}}[L(S_2/S_1)|\mathcal{F}_1]} \sim \mu_V, S \text{ is a } \mathbb{P}\text{-martingale} \}.$

- No need to introduce a new r.v. for the VIX: $VIX = \sqrt{\mathbb{E}^{\mathbb{P}}[L(S_2/S_1)|\mathcal{F}_1]}$.
- We look for $\mathbb{P} \in \mathcal{P}$ that minimizes the relative entropy w.r.t. \mathbb{P}_0 :

$$D := \inf_{\mathbb{P}\in\mathcal{P}} H(\mathbb{P}|\mathbb{P}_0)$$

- Inspired by Henry-Labordère 2019: From (Martingale) Schrödinger Bridges to a New Class of Stochastic Volatility Models (calib to SPX smiles)
- Follows closely the construction of Schrödinger bridges

O > <
 E >

Simple Schrödinger bridge (à la Follmer, Saint-Flour 1988)

$$dX_t = dW_t^0, \quad X_0 = x_0$$
$$\mathcal{P} := \{\mathbb{P} \in \mathcal{M}_1 \mid X_1 \sim \mu_1\}$$

$$D := \inf_{\mathbb{P}\in\mathcal{P}} H(\mathbb{P}|\mathbb{P}_0)$$

=
$$\inf_{\mathbb{P}\in\mathcal{M}_1} \sup_{u_1\in L^1(\mu_1)} \left\{ H(\mathbb{P}|\mathbb{P}_0) + \mathbb{E}^{\mu_1} \left[u_1(X_1) \right] - \mathbb{E}^{\mathbb{P}} \left[u_1(X_1) \right] \right\}$$

=
$$\sup_{u_1\in L^1(\mu_1)} \inf_{\mathbb{P}\in\mathcal{M}_1} \left\{ H(\mathbb{P}|\mathbb{P}_0) + \mathbb{E}^{\mu_1} \left[u_1(X_1) \right] - \mathbb{E}^{\mathbb{P}} \left[u_1(X_1) \right] \right\}$$

Recall the remarkable fact about the inner infimum:

$$\inf_{\mathbb{P}\in\mathcal{M}_1}\left\{H(\mathbb{P}|\mathbb{P}_0)-\mathbb{E}^{\mathbb{P}}\left[u_1(X_1)\right]\right\}=-\ln\mathbb{E}^{\mathbb{P}_0}\left[e^{u_1(X_1)}\right]$$

and the infimum is reached at \mathbb{P}^* defined by $\frac{d\mathbb{P}^*}{d\mathbb{P}_0}=\frac{e^{u_1(X_1)}}{\mathbb{E}^{\mathbb{P}_0}\left[e^{u_1(X_1)}\right]}.$

Image: A image: A

Dispersion-Constrained Martingale Schrödinger Bridges

Simple Schrödinger bridge (à la Follmer, Saint-Flour 1988)

$$dX_t = dW_t^0, \quad X_0 = x_0$$
$$\mathcal{P} := \{\mathbb{P} \in \mathcal{M}_1 \mid X_1 \sim \mu_1\}$$

$$D := \inf_{\mathbb{P} \in \mathcal{P}} H(\mathbb{P}|\mathbb{P}_{0})$$

=
$$\inf_{\mathbb{P} \in \mathcal{M}_{1}} \sup_{u_{1} \in L^{1}(\mu_{1})} \left\{ H(\mathbb{P}|\mathbb{P}_{0}) + \mathbb{E}^{\mu_{1}} \left[u_{1}(X_{1}) \right] - \mathbb{E}^{\mathbb{P}} \left[u_{1}(X_{1}) \right] \right\}$$

=
$$\sup_{u_{1} \in L^{1}(\mu_{1})} \inf_{\mathbb{P} \in \mathcal{M}_{1}} \left\{ H(\mathbb{P}|\mathbb{P}_{0}) + \mathbb{E}^{\mu_{1}} \left[u_{1}(X_{1}) \right] - \mathbb{E}^{\mathbb{P}} \left[u_{1}(X_{1}) \right] \right\}$$

Recall the remarkable fact about the inner infimum:

$$\inf_{\mathbb{P}\in\mathcal{M}_1}\left\{H(\mathbb{P}|\mathbb{P}_0)-\mathbb{E}^{\mathbb{P}}\left[u_1(X_1)\right]\right\}=-\ln\mathbb{E}^{\mathbb{P}_0}\left[e^{u_1(X_1)}\right]$$

and the infimum is reached at \mathbb{P}^* defined by $\frac{d\mathbb{P}^*}{d\mathbb{P}_0}=\frac{e^{u_1(X_1)}}{\mathbb{E}^{\mathbb{P}_0}\left[e^{u_1(X_1)}\right]}.$

© 2021 Bloomberg Finance L.P. All rights reserved.

Image: A image: A

Dispersion-Constrained Martingale Schrödinger Bridges

Simple Schrödinger bridge (à la Follmer, Saint-Flour 1988)

$$D := \inf_{\mathbb{P}\in\mathcal{P}} H(\mathbb{P}|\mathbb{P}_0) = \sup_{u_1 \in L^1(\mu_1)} \left\{ \mathbb{E}^{\mu_1} \left[u_1(X_1) \right] - \ln \mathbb{E}^{\mathbb{P}_0} \left[e^{u_1(X_1)} \right] \right\} =: P$$

 \blacksquare Assume $P<+\infty$ and the sup is reached at $u_1^*.$ Then

$$M_{T_1} := \frac{d\mathbb{P}^*}{d\mathbb{P}_0} = e^{u_1^*(X_1)} \qquad (Z = 1 \text{ by cash adjustment of } u_1^*)$$

Let $M_t := \mathbb{E}^{\mathbb{P}_0}[M_{T_1}|\mathcal{F}_t] = \mathbb{E}^{\mathbb{P}_0}[e^{u_1^*(X_1)}|\mathcal{F}_t].$ Then $M_t = U^*(t, X_t)$ where
 $\partial_t U^* + \frac{1}{2}\partial_x^2 U^* = 0, \qquad U^*(T_1, x) = e^{u_1^*(x)}.$

By Girsanov, $W_t^* := W_t^0 - \int_0^t \partial_x \ln U^*(s, X_s) \, ds$ is a \mathbb{P}^* -Brownian motion,

 $dX_t = \partial_x \ln U^*(t, X_t) \, dt + dW_t^* = \partial_x \ln \mathbb{E}^{\mathbb{P}_0} [e^{u_1^*(X_1)} | X_t = x]_{|X_t} \, dt + dW_t^*$

Brownian motion with drift, which is explicitly known.

In practice, $u_1(X_1)$ is replaced by $\sum_{K \in \mathcal{K}} \alpha_K (X_1 - K)_+$. The gradient of

$$\mathbb{E}^{\mu_1}\left[\sum_{K\in\mathcal{K}}\alpha_K(X_1-K)_+\right] - \ln\mathbb{E}^{\mathbb{P}_0}\left[e^{\sum_{K\in\mathcal{K}}\alpha_K(X_1-K)_+}\right]$$

is simply the vector of differences between model and market call prices,

VIX-constrained martingale Schrödinger bridge

$$\frac{dS_t}{S_t} = a_t \, dW_t^*$$

$$da_t = (b(a_t) + (1 - \rho^2)\sigma(a_t)^2 \partial_a u^*(t, S_t, a_t)) dt + \sigma(a_t) \left(\rho \, dW_t^* + \sqrt{1 - \rho^2} dW_t^{*,\perp}\right)$$

Let
$$P := \sup_{u_1, u_V, u_2} \left\{ \sum_{i \in \{1, 2, V\}} (\mu_i, u_i) - u(0, S_0, a_0) \right\}$$
 where u is solution to a nonlinear Hamilton-Jacobi-Bellman PDE:

$$\begin{split} u(T_2, s, a; \delta^L) &= u_2(s) + \delta^L L(s), \\ \partial_t u + \mathcal{L}^0 u + \frac{1}{2} (1 - \rho^2) \sigma(a)^2 (\partial_a u)^2 &= 0, \quad t \in (T_1, T_2), \\ \Phi(s, a) &:= \sup_{v \ge 0} \inf_{\delta^L \in \mathbb{R}} \Big\{ u_V(v) \quad - \quad \delta^L (L(s) + v^2) \, + \, u(T_1, s, a; \delta^L) \Big\}, \\ u(T_1, s, a) &= u_1(s) + \Phi(s, a), \\ \partial_t u + \mathcal{L}^0 u + \frac{1}{2} (1 - \rho^2) \sigma(a)^2 (\partial_a u)^2 &= 0, \quad t \in [0, T_1). \end{split}$$

Assume $P < +\infty$ and (u_1^*, u_V^*, u_2^*) maximizes $P \longrightarrow u^*$

() > () > (

Dispersion-Constrained Martingale Schrödinger Bridges

VIX-constrained martingale Schrödinger bridge

$$\frac{dS_t}{S_t} = a_t \, dW_t^*$$

$$da_t = (b(a_t) + (1 - \rho^2)\sigma(a_t)^2 \partial_a u^*(t, S_t, a_t)) dt + \sigma(a_t) \left(\rho \, dW_t^* + \sqrt{1 - \rho^2} dW_t^{*,\perp}\right)$$

Optimal deltas:

$$\Delta_t^* = -\partial_s u^*(t, S_t, a_t) - \rho \frac{\sigma(a_t)}{a_t S_t} \partial_a u^*(t, S_t, a_t); \quad \Delta^{*,L} = \delta^{*,L}(S_1, a_1)$$

• The drift of (a_t) under \mathbb{P}^* also reads as

$$\begin{split} b(a_t) + (1-\rho^2)\sigma(a_t)^2\partial_a \ln \mathbb{E}^0[e^{u_1^*(S_1) + \int_t^{T_1}\Delta^*(r,S_r,a_r)dS_r + \Phi^*(S_1,a_1)}|S_t,a_t], \ t \in [0,T_1], \\ b(a_t) + (1-\rho^2)\sigma(a_t)^2\partial_a \ln \mathbb{E}^0[e^{u_2^*(S_2) + \int_t^{T_2}\Delta^*(r,S_r,a_r)dS_r + \delta^{*,L}(S_1,a_1)L(S_2)}|S_t,a_t], \ t \in [T_1,T_2]. \end{split}$$

- It is path-dependent on $[T_1, T_2]$.
- If $P = +\infty$, then

$$\mathcal{P} \cap \{\mathbb{P} \in \mathcal{M}_1 \,|\, H(\mathbb{P}|\mathbb{P}_0) < +\infty\} = \emptyset.$$

→ □ ▶ ▲ 분 ▶

$da_t = -k(a_t - m) dt + \nu a_t dZ_t$. 'Market': $\nu = 0.4$, $\mathbb{P}_0 : \nu = 0.5$

$$k = 1.5, \quad a_0 = m = 0.2, \quad \rho = 0$$

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

• • • • • • • •

$da_t = -k(a_t - m) dt + \nu a_t dZ_t$. 'Market': $\nu = 0.4$, $\mathbb{P}_0: \nu = 0.5$

$da_t = -k(a_t - m) dt + \nu a_t dZ_t$. 'Market': $\nu = 0.4$, $\mathbb{P}_0 : \nu = 0.5$

(< □) < ∃)</p>

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges

$da_t = -k(a_t - m) dt + \nu a_t dZ_t$. 'Market': $\nu = 1.2, \mathbb{P}_0 : \nu = 1$

$$k = 1.5, \quad a_0 = m = 0.2, \quad \rho = -0.7$$

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

• • • • • • • •

Julien Guyon

$da_t = -k(a_t - m) dt + \nu a_t dZ_t$. 'Market': $\nu = 1.2$, $\mathbb{P}_0 : \nu = 1$

Dispersion-Constrained Martingale Schrödinger Bridges

© 2021 Bloomberg Finance L.P. All rights reserved.

$da_t = -k(a_t - m) dt + \nu a_t dZ_t$. 'Market': $\nu = 1.2$, $\mathbb{P}_0 : \nu = 1$

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges © 2021 Bloomberg Finance L.P. All rights reserved.

$da_t = -k(a_t - m) dt + \nu a_t dZ_t$. 'Market': $\nu = 0.9$, $\rho = -0.5$, $\mathbb{P}_0 : \nu = 1$, $\rho = -0.3$

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges

• • • • • • • •

Thanks!

▲ □ ▶ ▲ Ξ ▶

Julien Guyon Dispersion-Constrained Martingale Schrödinger Bridges © 2021 Bloomberg Finance L.P. All rights reserved.

Equations for $u^* = (u_1^*, u_V^*, u_2^*, \Delta_S^*, \overline{\Delta_L^*})$

$$\begin{split} \frac{\partial J_{\mu}^{h}}{\partial u_{1}(s_{1})} = 0 : \quad \forall s_{1} > 0, \qquad u_{1}(s_{1}) &= \Phi_{1}(s_{1}; u_{V}, u_{2}, \Delta_{S}, \Delta_{L}) \\ \frac{\partial J_{\mu}^{h}}{\partial u_{V}(v)} = 0 : \quad \forall v \ge 0, \qquad u_{V}(v) &= \Phi_{V}(v; u_{1}, u_{2}, \Delta_{S}, \Delta_{L}) \\ \frac{\partial J_{\mu}^{h}}{\partial u_{2}(s_{2})} = 0 : \quad \forall s_{2} > 0, \qquad u_{2}(s_{2}) &= \Phi_{2}(s_{2}; u_{1}, u_{V}, \Delta_{S}, \Delta_{L}) \\ \frac{\partial J_{\mu}^{h}}{\partial \Delta_{S}(s_{1},v)} = 0 : \quad \forall s_{1} > 0, \; \forall v \ge 0, \qquad 0 &= \Phi_{\Delta_{S}}(s_{1}, v; \Delta_{S}(s_{1}, v), \Delta_{L}(s_{1}, v)) \\ \frac{\partial J_{\mu}^{h}}{\partial \Delta_{L}(s_{1},v)} = 0 : \quad \forall s_{1} > 0, \; \forall v \ge 0, \qquad 0 &= \Phi_{\Delta_{L}}(s_{1}, v; \Delta_{S}(s_{1}, v), \Delta_{L}(s_{1}, v)) \\ \Phi_{1}(s_{1}; u_{V}, \Delta_{S}, \Delta_{L}) &:= \ln \mu_{1}(s_{1}) - \ln \left(\int \bar{\mu}(s_{1}, dv, ds_{2})e^{u_{V}(v) + u_{2}(s_{2}) + \Delta_{S}^{(S)}(s_{1}, v, s_{2}) + \Delta_{L}^{(L)}(s_{1}, v, s_{2})} \right) \\ \Phi_{V}(v; u_{1}, \Delta_{S}, \Delta_{L}) &:= \ln \mu_{V}(v) - \ln \left(\int \bar{\mu}(ds_{1}, v, ds_{2})e^{u_{1}(s_{1}) + u_{V}(v) + \Delta_{S}^{(S)}(s_{1}, v, s_{2}) + \Delta_{L}^{(L)}(s_{1}, v, s_{2})} \right) \\ \Phi_{\Delta_{S}}(s_{1}, v; u_{2}, \delta_{S}, \delta_{L}) &:= \int \bar{\mu}(s_{1}, v, ds_{2})(s_{2} - s_{1})e^{u_{2}(s_{2}) + \delta_{S}(s_{2} - s_{1}) + \delta_{L}\left(L\left(\frac{s_{2}}{s_{1}}\right) - v^{2}\right)} \\ \Phi_{\Delta_{L}}(s_{1}, v; u_{2}, \delta_{S}, \delta_{L}) &:= \int \bar{\mu}(s_{1}, v, ds_{2})\left(L\left(\frac{s_{2}}{s_{1}}\right) - v^{2}\right)e^{u_{2}(s_{2}) + \delta_{S}(s_{2} - s_{1}) + \delta_{L}\left(L\left(\frac{s_{2}}{s_{1}}\right) - v^{2}\right)} \right) \\ \Phi_{\Delta_{L}}(s_{1}, v; u_{2}, \delta_{S}, \delta_{L}) &:= \int \bar{\mu}(s_{1}, v, ds_{2})\left(L\left(\frac{s_{2}}{s_{1}}\right) - v^{2}\right)e^{u_{2}(s_{2}) + \delta_{S}(s_{2} - s_{1}) + \delta_{L}\left(L\left(\frac{s_{2}}{s_{1}}\right) - v^{2}\right)} \right)$$

© 2021 Bloomberg Finance L.P. All rights reserved.

Dispersion-Constrained Martingale Schrödinger Bridges

Implementation details

Practically, we consider market strikes $\mathcal{K} := (\mathcal{K}_1, \mathcal{K}_V, \mathcal{K}_2)$ and market prices (C_K^1, C_K^V, C_K^2) of vanilla options on S_1 , V, and S_2 , and we build the model

$$\mu_{\mathcal{K}}^{*}(ds_{1}, dv, ds_{2}) = \bar{\mu}(ds_{1}, dv, ds_{2})e^{c^{*} + \Delta_{S}^{0*}s_{1} + \Delta_{V}^{0*}v + \sum_{K \in \mathcal{K}_{1}} a_{K}^{1*}(s_{1} - K)_{+}}$$
$$e^{\sum_{K \in \mathcal{K}_{V}} a_{K}^{V*}(v - K)_{+} + \sum_{K \in \mathcal{K}_{2}} a_{K}^{2*}(s_{2} - K)_{+} + \Delta_{S}^{*(S)}(s_{1}, v, s_{2}) + \Delta_{L}^{*(L)}(s_{1}, v, s_{2})}}$$

where $\theta^*:=(c^*,\Delta^{0*}_S,\Delta^{0*}_V,a^{1*},a^{V*},a^{2*},\Delta^*_S,\Delta^*_L)$ maximizes

$$\begin{split} J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}(\theta) &:= c + \Delta^0_S S_0 + \Delta^0_V F_V + \sum_{K \in \mathcal{K}_1} a^1_K C^1_K + \sum_{K \in \mathcal{K}_V} a^V_K C^V_K + \sum_{K \in \mathcal{K}_2} a^2_K C^2_K \\ & \mathbb{E}^{\bar{\mu}} \left[e^{c + \Delta^0_S S_1 + \Delta^0_V V + \sum_{\mathcal{K}_1} a^1_K (S_1 - K)_+ + \sum_{\mathcal{K}_V} a^V_K (V - K)_+ + \sum_{\mathcal{K}_2} a^2_K (S_2 - K)_+ + \Delta^{(S)}_S (\ldots) + \Delta^{(L)}_L (\ldots)} \right] \end{split}$$

over the set Θ of portfolios $\theta := (c, \Delta_S^0, \Delta_V^0, a^1, a^V, a^2, \Delta_S, \Delta_L)$ such that $c, \Delta_S^0, \Delta_V^0 \in \mathbb{R}, a^1 \in \mathbb{R}^{\mathcal{K}_1}, a^V \in \mathbb{R}^{\mathcal{K}_V}, a^2 \in \mathbb{R}^{\mathcal{K}_2}$, and $\Delta_S, \Delta_L : \mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}$ are measurable functions of (s_1, v) .

© 2021 Bloomberg Finance L.P. All rights reserved.

Image: Image:

Implementation details

This corresponds to solving the entropy minimization problem

$$P_{\bar{\mu},\mathcal{K}} := \inf_{\mu \in \mathcal{P}(\mathcal{K})} H(\mu|\bar{\mu}) = \sup_{\theta \in \Theta} J_{\bar{\mu},\mathcal{K}}^{\mathsf{id}-1}(\theta) =: D_{\bar{\mu},\mathcal{K}}$$

where $\mathcal{P}(\mathcal{K})$ denotes the set of probability measures μ on $\mathbb{R}_{>0}\times\mathbb{R}_{\geq0}\times\mathbb{R}_{>0}$ such that

$$\mathbb{E}^{\mu}[S_{1}] = S_{0}, \quad \mathbb{E}^{\mu}[V] = F_{V}, \quad \forall K \in \mathcal{K}_{1}, \quad \mathbb{E}^{\mu}\left[(S_{1} - K)_{+}\right] = C_{K}^{1}, \\ \forall K \in \mathcal{K}_{V}, \quad \mathbb{E}^{\mu}\left[(V - K)_{+}\right] = C_{K}^{V}, \quad \forall K \in \mathcal{K}_{2}, \quad \mathbb{E}^{\mu}\left[(S_{2} - K)_{+}\right] = C_{K}^{2}, \\ \mathbb{E}^{\mu}\left[S_{2}|S_{1}, V\right] = S_{1}, \quad \mathbb{E}^{\mu}\left[L\left(\frac{S_{2}}{S_{1}}\right)\middle|S_{1}, V\right] = V^{2}.$$

One can directly check that model μ^{*}_K is an arbitrage-free model that jointly calibrates the prices of SPX futures, options, VIX future, and VIX options. Indeed, if J^{id-1}_{μ,K} reaches its maximum at θ^{*}, then θ^{*} is solution to ^{∂J^{id-1}}_{μ,K}(θ) = 0:

Image: Image:

Implementation details

$$J_{\bar{\mu},\mathcal{K}}^{\mathsf{id}-1}(\theta) := c + \Delta_S^0 S_0 + \Delta_V^0 F_V + \sum_{K \in \mathcal{K}_1} a_K^1 C_K^1 + \sum_{K \in \mathcal{K}_V} a_K^V C_K^V + \sum_{K \in \mathcal{K}_2} a_K^2 C_K^2$$
$$\cdot \mathbb{E}^{\bar{\mu}} \left[e^{c + \Delta_S^0 S_1 + \Delta_V^0 V + \sum_{\mathcal{K}_1} a_K^1 (S_1 - K)_+ + \sum_{\mathcal{K}_V} a_K^V (V - K)_+ + \sum_{\mathcal{K}_2} a_K^2 (S_2 - K)_+ + \Delta_S^{(S)}(\ldots) + \Delta_L^{(L)}(\ldots)} \right]$$

$$\frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial c} = 0 : \mathbb{E}^{\bar{\mu}} \left[\frac{d\mu_{\mathcal{K}}^{*}}{d\bar{\mu}} \right] = 1 \qquad \frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial \Delta_{0}^{0}} = 0 : \mathbb{E}^{\bar{\mu}} \left[S_{1} \frac{d\mu_{\mathcal{K}}^{*}}{d\bar{\mu}} \right] = S_{0}$$
$$\frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial \Delta_{V}^{0}} = 0 : \mathbb{E}^{\bar{\mu}} \left[V \frac{d\mu_{\mathcal{K}}^{*}}{d\bar{\mu}} \right] = F_{V} \qquad \frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial a_{K}^{1}} = 0 : \mathbb{E}^{\bar{\mu}} \left[(S_{1} - K)_{+} \frac{d\mu_{\mathcal{K}}^{*}}{d\bar{\mu}} \right] = C_{K}^{1}$$
$$\frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial a_{K}^{V}} = 0 : \mathbb{E}^{\bar{\mu}} \left[(V - K)_{+} \frac{d\mu_{\mathcal{K}}^{*}}{d\bar{\mu}} \right] = C_{K}^{V} \qquad \frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial a_{K}^{2}} = 0 : \mathbb{E}^{\bar{\mu}} \left[(S_{2} - K)_{+} \frac{d\mu_{\mathcal{K}}^{*}}{d\bar{\mu}} \right] = C_{K}^{2}$$

$$\begin{split} \frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial \Delta_S(s_1,v)} &= 0: \mathbb{E}^{\bar{\mu}} \left[\left(S_2 - S_1 \right) \frac{d\mu_{\mathcal{K}}^*}{d\bar{\mu}} \middle| S_1 = s_1, V = v \right] = 0, \quad \forall s_1 \ge 0, v > 0 \\ \frac{\partial J^{\mathrm{id}-1}_{\bar{\mu},\mathcal{K}}}{\partial \Delta_L(s_1,v)} &= 0: \mathbb{E}^{\bar{\mu}} \left[\left(L\left(\frac{S_2}{S_1}\right) - V^2 \right) \frac{d\mu_{\mathcal{K}}^*}{d\bar{\mu}} \middle| S_1 = s_1, V = v \right] = 0, \quad \forall s_1 \ge 0, v > 0 \\ & \text{in Guyon} \end{split}$$

Julien Guyon

Dispersion-Constrained Martingale Schrödinger Bridges