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Motivation

m Volatility indices, such as the VIX index, are not only used as
market-implied indicators of volatility.

m Futures and options on these indices are also widely used as
risk-management tools to hedge the volatility exposure of options
portfolios.

m Existence of a liquid market for these futures and options = need for
models that jointly calibrate to the prices of options the underlying asset
and prices of volatility derivatives.

m Since VIX options started trading in 2006, many researchers and
practitioners have tried to build a model that jointly and exactly calibrates
to the prices of S&P 500 (SPX) options, VIX futures and VIX options.

m Very challenging problem, especially for short maturities.
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Motivation

m The very large negative skew of short-term SPX options, which in
continuous models implies a very large volatility of volatility, seems
inconsistent with the comparatively low levels of VIX implied
volatilities.

m One should decrease the volatility of volatility to decrease the latter, but
this would also decrease the former, which is already too small. See G.
(2017, 2018).

m Objective: quantitatively describe the structural constraints that
continuous stochastic volatility models jointly put on SPX and VIX
derivatives.
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Motivation

m In particular, we focus on Bergomi models: one factor, two factors (+
skewed versions that calibrate to VIX smile) .

m Popular variance curve models that can be used to price SPX and VIX
derivatives.

m Bergomi-G. (2012) have already derived a general expansion of the smile
in variance curve models at order two in vol-of-vol

m Objective: derive an expansion of the price of VIX futures in Bergomi
models. Order 6.

m Precisely pinpoint the roles of vol-of-vol and mean-reversion.

m Understand the structural constraints that flexible continuous
stochastic volatility models like Bergomi models jointly put on SPX
and VIX derivatives.
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One-factor Bergomi model

One-factor Bergomi model
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One-factor Bergomi model

One-factor Bergomi model

Julien Guyon

&}': instantaneous lognormal variance of the SPX S at time u > ¢ seen
from ¢.

Forward instantaneous variances are driftless (Dupire, Bergomi).

Second generation stochastic volatility models directly model the dynamics
of (&',t € [0,u]) under a risk-neutral measure. Only requirement: that
these processes, indexed by u, be nonnegative and driftless (in ¢).
One-factor Bergomi model: the simplest model on (¢, € [0,u]). First
suggested by Dupire (1993). Assumes that forward instantaneous
variances are lognormal and all driven by a single standard one-dimensional

Brownian motion Z, correlated with the Brownian motion W that drives
the SPX dynamics:

dey
&

T¢, q¢: instantaneous interest rate and dividend yield, inclusive of repo.

=we *qz,, d?st = (ry — q) dt + /& AWy, w, k>0
t
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One-factor Bergomi model

One-factor Bergomi model

dgiut = t,ue_k(“_t)dZt7 % = (re — q)dt + \/gth, w, k>0
b t

m Time-homogeneous exponential kernel K (u — t) = we™*“~Y motivated
by two objectives: (1) K decreasing function; (2) &' admits a
one-dimensional Markov representation:

¢ =& (1t X) (11)
with a Markov process X which does not depend on u.
m Indeed, (1.1) holds with

t 2
X = / e FUdz, Ut z) = exp <we_k(“_t>a: — %e_%(u_t)vt> ,
0

1 — o2kt
v := Var(X:) = 26k:
where the Ornstein-Uhlenbeck process X follows the Markov dynamics:
dXy = —kX,dt + dZ;, Xo=0 (1.2)
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One-factor Bergomi model

One-factor Bergomi model

=& [t Xe)
dX, = —kXydt +dZ;,  Xo=0

2
of =& =& exp <th — %Var(XQ)

m k: parameter of mean-reversion of the instantaneous volatility.

m w: instantaneous (lognormal) volatility of the instantaneous variance;
w/2: instantaneous (lognormal) volatility of the instantaneous volatility o.
w referred to as vol-of-vol.

m Initial condition £; computed from market prices VS(T') of variances swaps
on the SPX: & = - (uVS(u)). Assumed strictly positive and bounded.

m Markov representation is very convenient. Will be instrumental in our
derivation of an expansion of the price of VIX futures in small vol-of-vol.

m In particular, our technique of proof does not apply to the rough Bergomi
models (see pricing methods in Jacquier, Martini, Muguruza, On VIX
Futures in the Rough Bergomi Model, 2017).
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One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

m Let T > 0. By definition, the (idealized) VIX at time T is the implied
volatility of a 30-day log-contract on the SPX index starting at 7.

m For continuous models on the SPX such as the one-factor Bergomi model,

this translates into

1 T+T 1 T+T 1 T+

VIX%:]EP/ aidu}'T} :7/ E[aﬂ}}]du:f/ &t du
TJr TJr TJr

= 7= 23 (30 days)
m F;: information available at time ¢, in this case the filtration generated by

the Brownian motions W and Z
For any continuous model on the SPX:
1

T+
VIXZ = - / &4 du
T
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One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

1 T+t Cnk(u—T) En
Enzzf/ e T du > 0, I, = =", neN
T Jr Zo
17 —x
I(z) = Te z>0, I(0):=1.

m When the initial term-structure of forward instantaneous variances u — &j
is flat at level &, £, = £I(nk7) and I, = I(nkT) are known in closed form.

m Otherwise, the computation of I,, requires a one-dimensional quadrature.
Note: vy, = tI(2kt).

\ 1)
—
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One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

Proposition

In the one-factor Bergomi model, the price of a VIX future satisfies

E[VIX7] = VEo {1 + aow?vp + as(wior)? + Ols(UJQ’UT)3} +0W")

1—_e—2kT

where vy = o and
1
Q2 _§[127
3 15
a4__T612+E11]2 12 8117
3 75 105 315 ¢
ag = 813 + 17;12 + 16 1lels — g il - @Ilk” + 18112~ qgar 1
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One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

Proposition (cont'd)

In particular, this expansion provides a closed form expression of the prices of
VIX futures in the one-factor Bergomi model at order 6 in small vol-of-vol

when u — &5 is flat at level &:

E[VIXr] = /¢ {1 + oo (kr)w?vr 4 aq(kr)(Wor)? + ag(kT)(wQUT)3} +0(w")

where the functions a;(-) are defined by:

ax(@) = 5 1(@)"

o4(z) = — 1 1(22)? + <- (@) 1(22) — = 1(a)*,
i) = 418 (32)% + 1%”235)3 + %I(x)](Zm)I@w)
75 2 5 105 315
—m-’( x)I(2x) —51( z)® 1(34”)‘*‘17281( z)*1(2 »’C)—@I( z)°.
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One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

In the case where w,, is maturity-dependent, we can still expand in small
vol-of-vol by multiplying w, by a dimensionless parameter ¢ (that can later be
taken equal to one) and expand in powers of . Then the expansion still holds
by replacing w by € and with

1 G u n_—nk(u—T)
Bp = f/ Eow, e du, — , n € N.

T

g] ‘ 3[I]
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One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

In the case where the mean reversion k(t) is time-dependent,

dX; = —k(t) X, dt + dZi,

the expansion still holds with

=TT (K- K(T)) _ Zn
En = = oe du, In=—>,
7 Y =0
o1 T b
vy = (3721\(”/ ) gs
0

where .
K(t) ::/0 k(s) ds.

Of course one can mix maturity-dependent w, with time-dependent k().

Julien Guyon Bloomberg L.P.

The VIX Future in Bergomi Models



One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

In the case where both k(t) and w(t) are time-dependent,

dX, = —k(t) X, dt + w(t) dZi,
we can still expand in small vol-of-vol by multiplying w(t) by a dimensionless

parameter £ (that can later be taken equal to one) and expand in powers of ¢.
Then the expansion still holds by replacing w by € and with

1 T+ _ _ En
T Jr =0
T
ve = e_QK(t)/ w(s)?eX s,
0

Julien Guyon

The VIX Future in Bergomi Models

Bloomberg L.P.



One-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

One can easily mix maturity-dependent w,, with time-dependent w(t) (and
time-dependent k(t)) if they are in product form: w,(t) = wyw(t). Then, as
above, we can expand in powers of £ and the expansion still holds by replacing
w by € and with

1 T+ _ _ En
En = 7/ ng:}:e n(K () K(T))duv In ==
7 Jr Eg
iy
vy = e_QK(t)/ w(s)?e?K &) gs.
0
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One-factor Bergomi model

Numerical inspection of the formula

Julien Guyon

E[VIX7] = VEo {1 + asw’vr + as(w’vr)® + ag(w2vT)3} +0W")

m The formula is essentially an expansion in powers of w?vr, suggesting
that the expansion is accurate not only for small w, but also for small
w2’UT.

m Let us define v := —2-. As Var(wX;) = w’v; = (1 — e "), v is the
long term standard deviation of wXj;.

m Since w?vr < v? and w?ur = WTT(2kT) < W?T, we have

0 < wvr < min(v?,wT).

m In particular we expect the expansion to be accurate when v is small
enough or when wv/T is small enough.

m v small enough: mean-reversion large enough to mitigate vol-of-vol.

m Both v and wv/T are dimensionless quantities, while w has the dimension
of a volatility, i.e., time™1/2,

m We expect the expansion to be accurate when the vol w is small
enough compared to the vols v/2k or 1//T.
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One-factor Bergomi model

Numerical inspection of the formula

E[VIX7] = /€ {1 + ao(kr)wvr + as(kr) (W vr)? + a6(kT)(w2vT)3} +0W"

= How small should w be, compared to v/2k or 1/v/T7?
m Dependence of the formula on ¢ is trivial: simply proportional to /€.

m After dividing by V&, each term in the expansion is of the form
i (kT)(w?vr)", where agi(k7) depends only on k, not on w or T.

m ao;(z) is small and decreases quickly with i. In particular a2(0) = —é,
4(0) = 135, and a(0) = — 555

m az(x) and both ratios a4 (z)/az(x) and as(x)/aa(x) take values around
—5% for reasonable values of x = k7, e.g., z € [0,2].

m Suggests that the expansion should be accurate for w?vr up to~ T if
w?vr = 7, then the order i term in the expansion az;(k7)(w?vr)" is only

about a third, in absolute value, of the order ¢ — 1 term.

m However, if w?vr > 20, then the order ¢ term can be larger than the order
i — 1 term, suggesting divergence of the series.
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One-factor Bergomi model

Numerical inspection of the formula

E[VIX7] = /€ {1 + ao(kr)wvr + as(kr) (W vr)? + ae,(k:T)(wQUT)3} +0W"

—— mlx) / —— alx)
. —ax —= ay(larx)
— alx) ¢ — a(x)aalx)

o 1 2 3 1 5 o0 B3 aso 075 100 1 5 s 20

Figure: Left: Graph of functions a2, au, and ag of Formula (1.3). Right: Graph of asg
and of ratios aia/a2 and ag/aus
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One-factor Bergomi model

Numerical experiments: k& = 0.25

VIXfutur in the one factor Bergomimode: k=025, w=2, 6 =315 ViXfuture inthe one actor k=025, 0=3,u,=108
gl Smallvolofvol expansionorder 2 | 200 small vokofvolexparsion order 2
o= Smallvokof vl expansion order 4 Sl volof-vol expansion order 4
—— Smallvoofol expansion order 6 —— small volofvol expansion oder &
© — Exact quadrature s — Exact quadrature
»
150
fns
Zuo
u
s
5
2
2
o o o o w0 S o o

4 05
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Figure: VIX future in the one-factor Bergomi model as a function of maturity (in
years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact
quadrature for several sets of parameters. Left: w?v; ~ 3. Right: w?v; ~ 7
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One-factor Bergomi model

Numerical experiments: k = 2

VIX future in the ane-factor Bergomi model: k=2, w = 3.5, wiVy = 3.01 VX future in the one-factor k=2,0=53, 0V, =689

Small vol-ool expansion order 2 Smallvolof-vol expansion order 2
= Small vol.o-vol expansion order 4
—— small vokof-vol expansion order 6
— Exact quadrature

= Smallvolof-volexpansion order 4
—— smallvolof-vol expansion order 6 |,
o — Exact quadrature

o 0 @ o o6 s
Mot nyears Matuity i years

Figure: VIX future in the one-factor Bergomi model as a function of maturity (in
years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact
quadrature for several sets of parameters. Left: w?v; ~ 3. Right: w?v; ~ 7

Julien Guyon Bloomberg

The VIX Future in Bergomi Models



One-factor Bergomi model

Numerical experiments:

VIX future i the one-factor

ViX future in the one-factor Bergomi mode': k= 10, =12, ¥ =7.20

smal vok-of-vol expansion order 2 Small volof-vol expansion order 2
—~ Smal vol.of vol expansion order 4 —— Small vokof-vol expansion order 4
—— small vokof vol expansion orders | 1 —— Small vokof-vol expansion order 6
= — Exact quadature — Exact quadrature

wix future in percent
wix future in percent

. p o s
Wty inyears Maty in years

Figure: VIX future in the one-factor Bergomi model as a function of maturity (in
years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact
quadrature for several sets of parameters. Left: w?v; ~ 3. Right: w?v; ~ 7
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One-factor Bergomi model

Numerical experiments: w?v; ~

VIX future in the one-factor Bergomi model: k=2, w=8, w?/; =15.71

VIX future in percent

Small vol-of-vol expansion order 2
—— Small vol-of-vol expansion order 4
—— Small vol-of-vol expansion order 6
— Exact quadrature

00 02 o4 06 o8 10
Maturity in years

Figure: VIX future in the one-factor Bergomi model as a function of maturity (in
years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact
quadrature when w = 8 and k = 2 (w?v ~ 15; w202/12 ~T)
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One-factor Bergomi model

Contango vs backwardation

m Since we used a flat initial term-structure of forward instantaneous
variances u — &Y, the model generates a decreasing term-structure of VIX
futures (backwardation).

m To recover an increasing term-structure (contango), as usually observed in
the market, we should use an increasing term-structure of forward
instantaneous variances.

m The term-structure implied from the market prices of variances swaps on
the SPX &5 = %(uVS(u)) is typically increasing, except during those
periods when the VIX index blows up.
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One-factor Bergomi model

Expansion of the volatility of the squared VIX implied by VIX future prices

m It is natural to quote the price of a VIX future in terms of the implied
(lognormal) volatility of the squared VIX.

m The (undiscounted) time O price of the payoff VIX3 is known from the
market prices of variance swaps on the SPX:

(T+nVS(T+7)-TVS(T) _ 1 /”T

Price[VIX7] = & du = Zo.
T
m —> The volatility of the squared VIX implied by the VIX future price for

maturity T is the value ovix2, such that

Price[VIX1] = VEq exp ( ~oge T>

m R.h.s. is the (undiscounted) time 0 price of the payoff VIXz in the model
where VIX3 is lognormal with mean Z¢ and volatility oVix2, -

o 8 In Price[VIX7] 8 In Price[VIX7]
g =4 ln—— [ 2y
v T Eo T \/Price[VIX%]

m No arbitrage = Price[VIXr] < /Price[VIX7] so ovixz, is well defined.
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One-factor Bergomi model

Volatility of VIX? implied by VIX future, as of August 1, 2018

Volatility of VIX2 implied by prices of VIX futures as of August 1, 2018

2
g
3
4
2
i
s
E

025

Maturity

Julien Guyon Bloomberg L.P.
The VIX Future in Bergomi Models



One-factor Bergomi model

Expansion of the volatility of the squared VIX implied by VIX future prices

Proposition

In the one-factor Bergomi model, the volatility Tvixez, of the squared VIX
implied by the VIX future price for maturity T satisfies

ovxe, = wIm/I(2kT){1 + Bowvr + B4(w2vT)2} +0W®)

where vr = 1_62;2” TI(2kT) and
1
B o= 1 (— - —) (13)
1 a3 1 ow a2\
= = 02) (923 1.4
Pa 2 ( 3 ) 8 <a2 2 ) (1.4)
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One-factor Bergomi model

Expansion of the volatility of the squared VIX implied by VIX future prices

Proposition (cont'd)

In particular, this formula provides a closed form expression of the implied
volatility Ty, in the one-factor Bergomi model at order 5 in small vol-of-vol
when u — &5 is flat:

ova, = wI(kr) I(2kT){1 + Ba(kr)wor + m(m)(ﬁw)?} + 0w

where the functions (2(-) and B4(-) are defined from the functions c;(-) by
(1.3)-(1.4). In particular, at first order in vol-of-vol w,

1—e* [1—e-2T 3
v = W\ T T O
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One-factor Bergomi model

Numerical inspection of the formula

ouxa, = wI (k) I(2kT){1 + Ba(kr)wvr + m(m)(w%ﬂz} + 0w

m Formula is essentially expansion in powers of w?vr = Accurate for w?vr
small enough, in particular when v or wv/T are small enough.

m The domain of accuracy of the implied volatility expansion is actually
much larger than that of the price expansion.

m Indeed, both 32(z) and the ratio B4(x)/B2(x) take very small values,
around —1%, for z = k7 € [0, 2], suggesting that the implied vol
expansion should be accurate even for wvr ~ 20-30.

m Moreover, contrary to the ratios az;(x)/a2,—2(z), both S2(x) and the
ratio Sa(x)/B2(x) tend to zero, together with their first order derivatives,
when x tends to zero.

m —> Even when vr becomes extremely large (k — 0, ' — o0), the first
two ratios of consecutive terms in the expansion (with fo(z) := 1)

ﬂzi (kT) 2 1 BQz(kT)
Baia(kr) " = 2% Bai—a(kr) |

stay bounded (they tend to zero when vr tends to infinity).

2
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One-factor Bergomi model

Numerical inspection of the formula
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Figure: Left: Graph of functions B2 and 4. Right: Graph of 82 and of ratio 34/82
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One-factor Bergomi model

Numerical inspection of the formula

\
ot e

Figure: Top: Graph of k — BQ(kT) and k — ﬁ g“gﬁ? for 0 < k < 30. Bottom:

Graph of k — /32(1”) (left) and ks % x 10~7 (right) for 0 < k < 100
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One-factor Bergomi model

Numerical inspection of the formula

oz, = wl(kr) 1(sz){1 + Ba(kr)wvr + m(m)(&wf} + 0w

Bai(kT) o 52z(k7)
B o (k) | = 2k 2k Bara(hr) |

m The r.h.s. are bounded above by 7 x 10~ 4w? for all k < 30. This suggests
that, for all 7" and a very wide range of values of k, the above expansion
should be very accurate even for extremely large w, say, w = 10.

m Even for this unreasonably large value of w, the first two correcting terms
in the expansion are small whatever the value of k£ and T

Be(kT)wvr <31 x107%,  Ba(kr)(Wvr)® < 2x 1072
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One-factor Bergomi model

Numerical experiment

vix f k=2,u=8 W =15.71

Volatlty of VIKg implied by prices of VIK futures i the one-factor Bergomi model: k=2, w=8.0, u? =15.71

small volofvol expansion oder 1
—=— smal volof vol expansion order 3
™ —— smallvok-of-volexpansion order 5
— Eact quadrature

ViX tuture n percent

smallvokof-vol expansion order 2
e~ small volof-vol expansion order 4
=101 —— Small volof vol expansion rder 6

0
e~ Using order 1 exparsion of implied volof <2
— Exact quadratire
B s
0 o o o o o @ o0 o s o 0
Matrty i years

Wtuty inyears

Figure: Implied vol of VIX squared (left) and price of VIX future (right) in the
one-factor Bergomi model as a function of maturity (in years). Comparison of small
vol-of-vol expansion with the exact quadrature when w = 8 and k = 2 (w?v; ~ 15;

w2v2/12 ~T)
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One-factor Bergomi model

Inspection of the first order formula

Julien Guyon

1—e k™ [1— 2T
kT 2kT

+ O(W®).

In fact, for practical purposes, the first order formula can be considered
exact.

The implied volatility of a very short VIX% is the volatility w of the
instantaneous variance &;, dampened by the factor I(kt) = 1’2;)” which
accounts for the mean-reversion of volatility over 30 days.

—2kT

For non-zero maturities 7', this is multiplied by \/I(2kT) = \/ =5~
For large T, the term-structure of the implied volatility of the squared VIX
decays as the power law T/2.

Interpretation: Mean-reversion causes the price of the VIX future to

converge when T increases, as the Ornstein-Uhlenbeck process X reaches
its stationary distribution. Price[VIXr] = v/ exp (~ 2% T)

= U\QAXZTT must converge, so gy x2, behaves like T71/2,
For large k, oyx2 ~ =7z

Bloomberg L.P.
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Two-factor Bergomi model

Two-factor Bergomi model
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Two-factor Bergomi model

Two-factor Bergomi model

m In the one-factor Bergomi model, all forward variances are driven by a
single Brownian motion Z.

m A positive move of the short end of the variance curve (dZ; > 0) implies a
positive move of the long end of the curve.

m To allow for more flexibility for the dynamics of forward variances, at least
2 factors are needed.

m 2 factors actually enough to mimic power-law-like decay of term-structure
of vols of variance swap rates (Bergomi) as well as power-law-like decay of
term-structure of ATM implied vols of equity indices.

m In the two-factor Bergomi model (Bergomi 2005), the curve &; is driven by
two Brownian motions Z! and Z? whose constant correlation is denoted

by p:
Le s {ele*’“(“*ﬂdztl " 926*’“2@*%23} ,
&
_1
g = (0%+2p9102+9§) 2, ki,ka >0, 91,926[0,1], 01 +602:=1

Julien Guyon Bloomberg L.P.
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Two-factor Bergomi model

Two-factor Bergomi model

dev e et
i:wag{ele ki(u=) g7l L g, e=Fa ”dzf},

33
1
2

g = (0% +2p0192 +9§) s kl,kg > 0, 91,02 S [0, 1], 0, +60:=1

m Normalizing factor ay s.t. w is the inst vol of the inst variance £;.

m For identification purposes, we assume that k1 > ka:
Z" drives short end of variance curve only (up to u —t =~ 1/k1)
Z? drives both its short and long end (up to u — t ~ 1/ks > 1/k1).

m In the two-factor model, &' admits a two-dimensional Markov
representation in terms of two Ornstein-Uhlenbeck processes X' and X?

Julien Guyon Bloomberg L.P.
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Two-factor Bergomi model

Two-factor Bergomi model

G =& f(tar) = &gt (t Xi, XT)
dX! = —k; X! dt +dZ}, Xi=o0, ie{1,2}
i = g {91e_k1(“_t)th + 926_k2(“_t)Xt2}

2

ve(u) 1= Var(zy') = ag{ﬂfe_%l(“_t)vg + 92 2h2(u=t),2

FU(t @) == exp (wx - w—zvt(u))

+ 291926_(k1+k2)(u_t)vtl’2}

L 1= ekt Lo 1 — = (k1+ka)t
T
1 2 N Uzl Utl'Q
(Xt aXt ) ~ 0» 1,2 2
Uy Vg
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Two-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

m For (m,n) € N?, we define

1 (mky+nks)(u—T) Emn
- —(mk nKe — um s
Smyn = *\/‘ €g€ ! 2w du > O, [m,n = .

T Jr E0,0

m When u — & is flat at level &, E,, , = £I((mk1 + nk2)7) and
I, = I((mki + nk2)T) are known in closed form.
m For clarity, T being fixed, we use the notations vy := v#, vz := v%, and

12
V1,2 ‘= UT .
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Two-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

In the two-factor Bergomi model, the price of a VIX future satisfies

E[VIX7] = 1/Z0,0 {1 + ’yg(wag)Q + 74(w049)4 + 'ya(wag)ﬁ} + O(w7) (2.1)

where
e % -9
2= g (9111M1 +260162710l01v1,2 + 92101v2) )
( L2 1 i 15 1 0302
Y4 = - + — 20 — T ) v
6 20 10 1o 10) f1v1
1 % 5 g 3
+ (*2120111 + - (110111 + 110120101) - 5110101) 0102v1v1,2
1 15 5.9
+ (—glu + *110111101 - 7110101) 6163v1v2
1 3 15
2 2 2 2 242, 2
+ ( 3+ I20102) + = (110I02 +I20181) + = IioT11 o1 — *110101) V5T @
B 16 8 32
1 % 15 % g
+ (—2111102 T = (111101 aF 110101102) - 5110101) 010501 2va
1 15
4 4 2
Jr(**’onr I8y Toz — 128101) CoRR
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Two-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

and 6 = 22:0 Y6—p,p Where

1 3 W 5 5 315 6 3
¥6,0 = ( 12 * % 120 + 5110120130 = %5 o130 — *110130 + 110120 110) 01 vy
~ 9 3 2 15 o 105 4
5,1 = (**130121 + *120111 + —1Iz0l10721 + 130710711 — *110120111 — ——110f21 + —I10l11
8 8 16 8 32 32 64
3 75 % 15 g 105 o 945 05 0nu?
+——TIy0I30l01 — —I10T50I01 — — 20130101 + — I29T20l01 — — I 11) 2v2uq o
16 043040 P 042040 32 1043010 32 1012040 512 1040 1 1 N
945 105 15 105 15 15
4 2 2 2 2 2 3 2
Y4,2 = (*71 I51 + — 120710701 — —Z 120701 + —T10l11l01 — - Ii0721701 — —T107207111¢
Toaa (10701 T o0 10fo1 = = T20701 T o Tio 35110 s
3 45 3 3 1
2 2 2 2\ 4,2 2
+—1I20l21101 — —Iipf11 + - T10l21711 + —I20171 — —1 )9 03viv2
- G Wi ¥ 2 T 11 = 70121 ) 610271
945 525 15 15 315 15
4 2 2 2 2 2 2 3 2
+ (772 IioTo1 + 7120101110 - *110101130 - *120101 T I7pT11101 — 5110121101
15

75 3
4 2
**110120111101 + *130111101 + *120121101 + 7110102 *4110120102 + 1*6110130102 +

s 105 12 ;2 v Z i L i, A 2 HoTaol 4 2 12 ! sl L12.) o462
= 12 — *101121 10720712 20711 — =T30712 — = ) E
32 10 6a 0711 16 16 oy g 21) 7172
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Two-factor Bergomi model

Expansion of the price of VIX futures in small vol-of-vol

945 4 4 105 3 105 o 2 15 2 45 2 105
= +<7—1 Igy + — 1011120 + — I79I11151 — —I10I21151 — —I20Il11151 + —1I
56 1001 + " ~rf10f01 20 + - f10 01~ 5110 01~ ;5120 01+ o Tl01g 1

15 15 5 105 2 3 3 45 ,
——Ti0l20l01702 — —I10fo1712 — ——T10l11701 + —T21111101 + —T20701712 — ——Tipl1170:
16 16 32 4 8 32

3 3 3 3 4 1 3.3
+§110121102 + §120111102 + 1110111112 + qu - 2112121) 0763v1v12v2

( 31513 ;3 n 105 113 5 1018 n 1050, 12 15 a2 15 112
= 10120751 — 30 11161 — 10721751 — 20711
125 (1001 + — 01~ 55 o1+ - Mo 01~ 55 01~ 15 01

105 45 3 i5 s 45 % 3
+—1Ijplo1lo2 — —~Ti0l20f01l02 + —I30l01l02 — ——Iipl12l01 — —-T10l11101 + 1111211

6a 1° 32 16 32 10 32 1 8
1

3 15 5 3 3 5 g 3
+—1I20l12701 — —Ijpl11102 + —T10l21102 + ~T20111702 — ——Ii0f03 + — I10720703 —
16 16 16 8 32 16 24
3 1 1
3 3,3 3
+§1'10111112 + gfu - g121112) 0763079

and p,6—p is built from ~6_p, , by swapping 61 and 62, vi and v, and I,
and I, m. In particular, the expansion provides a closed form expression of the

prices of VIX futures in the two-factor Bergomi model at order 6 in small
vol-of-vol when u +— &§ is flat.
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Two-factor Bergomi model

Expansion of the volatility of the squared VIX implied by VIX future prices

In the two-factor Bergomi model, the volatility Ty, of the squared VIX

implied by the VIX future price for maturity T satisfies

UVIX%, = woy \/9%]120](2]€1T) + 2,00192[10]011((]{:1 + kQ)T) + egIgII(kaT)

x {1+ 62(wa0)? + a(wao)* } +0@)

oo L e s lfw_  B)_1(n_ =)
T o2\yn 2 ) 2 \ 2 3 s\v 2/ °
In particular, this provides a closed form expression of the implied volatility

Tvixz, in the two-factor Bergomi model at order 5 in small vol-of-vol when the
initial curve u — &5 is flat. At first order, this closed form expression reads

o —w 021(ky7)21(2k1T) + 2p01021(k17)I(kaT)I((k1 + k2)T) + 021(ka7)21(2kyT)
ViXg 02 + 2p01 05 + 63

+ 0(w?).
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Two-factor Bergomi model

Numerical experiments: p =0

VIX future in the two-factor Bergomi model: w =3.48, k; =5.35, k;=0.28,6,=0.76, p=0

2 small vol-of-vol expansion order 2
—e— small vol-of-vol expansion order 4
—— small vol-of-vol expansion order 6
—— Exact quadrature

VIX future in percent

o 2 4 6 8
Maturity in years

Figure: VIX future in the two-factor Bergomi model as a function of maturity (in

years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact
quadrature for parameter set |l of Bergomi (Stochastic Volatility Modeling, 2016)

Julien Guyon Bloomberg

The VIX Future in Bergomi Models



Two-factor Bergomi model

Numerical experiments: p =0

Vol o Vix? impiied by VIX futures in the two-factor Bergomi model: = 3.8, k; =5.35, =028, 8, =0.76,0=0 VIX future in the two-factor Bergom madel: w =3.48, ky =5.35, k; = 0.28, 8, = 0.76, p=0
Small volot.vol expansion order 1 | 20 ‘Small volof vol expansion order 2
—— small vol-of-vol expansion order 3 —=— Small vol-of-vol expansion order 4
—— Small vol-of-vol expansion order 5 == Using order 1 expansion of implied vol of ViXZ
0 — Exact uadrature » — Exactquadrature
. .
H
& 2007 M
3 §
% v
3
:
-
.
ol

Figure: Left: Implied volatility of the squared VIX. Right: VIX future computed using
the implied volatility expansion at order one. Parameter set Il of Bergomi (Stochastic
Volatility Modeling, 2016)
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Two-factor Bergomi model

Numerical experiments: p # 0

VIX uture n the two-factor Bergomi model: w =372,k =750, ky=0.24,6,=0.17, =01 VIX future i the two-factor Bergomi model: w = 3,72,k =7.54, ky =0.24,6,=0.17,p=0.1
n smallvolofvol expansion order 2 | 200 Smal ol of-vol expansion order 2
=~ Small vokof.vol expansion order 4 = small volof-vol expansion order 4
—— Small volof.vol expansion order 6 —— Small volof-vol expansion order 6
— Exact quadrature — Exact quadrature

i tuture in percant

3 o ) ats a0s [
Maturty in years watury i years

Figure: Left: VIX future in the two-factor Bergomi model as a function of maturity (in
years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact
quadrature for parameter set 1l of Bergomi (Stochastic Volatility Modeling, 2016);

p = 0.7. Right: zoom on small T’
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Two-factor Bergomi model

Numerical experiments: p # 0

Vol of ViX implied by VIX futures in the twofactor Bergomi modek w= 3.72, k=154, k, =0.26,6, =0.77,p=0.7 VX future in the two factor 372,k =754, k;=024,0,=0.77,p=07

small volof.vol expansion order 2.
= Small vokof-vol expansion order 4
—— small vol-of-vol expansion order 6

Smalvokofvolexpansion order 1 01
= Small valof-vol expansion order 3
—— smal volof-vol expansion order 5
— bract quadrature = Using order 1 expansion of implied volof ViX}.

20
— Exact quadrature

ViX future in percent

i i
Maturty i ears Maturty i years

Figure: Left: VIX future in the two-factor Bergomi model as a function of maturity (in
years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact
quadrature for parameter set 1l of Bergomi (Stochastic Volatility Modeling, 2016);

p = 0.7. Right: zoom on small T’
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Proofs
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Proofs

Proof: one-factor Bergomi model

m VIX3 = L [T e2 du = f(T, X1) with

T
_1 R —k(u—T) w? —2k(u—T)
f(T,z) == & exp | we r— —e vr | du.
T Jr 2
m The Hermite polynomials (of unit variance) H, satisfy for all (), 2) € R?
PGS A"
o S e
n=0

m As a consequence, for all (), z,v) € R?

A2y 2 (W) z | v & A"
e = exp (x\\/ﬂﬁ - 2) = Z H, (%> o= ZH"(Z’U)H

n=0 n=0

where

H,(z,v) := o2 H, (i) = S 7(_1)17”! P2 P (3.1)
’ Vv — 2vpl(n — 2p)!

are the Hermite polynomials of variance v.
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Proofs

Proof: one-factor Bergomi model

m The first seven polynomials H,(z,v) are

Ho(z,v) =1
o(@v) Hy(z,v) = z* — 6va® + 30°
Hi(z,v) ==z 5 5 )
5 Hs(z,v) = 2° — 10vz” + 150"z
Ha(z,v) =2" —v 6 4 2.2 3
3 Hg(z,v) = 2° — 150z 4+ 45v"2" — 150°.
Hs(z,v) =2° — vz
m In particular,
w2 o w™
exp <weik(“7T)ac — 367%(“7”1@) = ;)Hn(x,vT)efnk(ufT)ﬁ.

m We get

Julien Guyon Bloomberg L.P.
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Proofs

Proof: one-factor Bergomi model

m Denote I, , Po(z,v) := I H,(z,v), and
£:= o>  E.Hu(x, vT) =3 Pu(z, vT)wn— Then

Zo

VI = VETFE = VEe Y. Qulasvr)a” +0(")
n=0

where the polynomials Q,(z,v) are expressed in terms of the rescaled
Hermite polynomials P, (z,v):

Lete=3°_, Pn% +O(WT). Then VI+e=32_, Quw™ + O(W") where

1 5
2 4
-1 Qi=Lpi— Lppy— Lp2 +—PP2——P
Qo % 24 13T 332 1 128 1
1
Q= -P; Py PPy PyP3; P2P3; 3 5 7 e
2 Qg=—> -2 _ 238,15, "ppZ_ —_pPdP+—P}
. - 240 96 e 32 64 64 256
Q= _,P2-_P 1 1 1 1 1
4 ! Qe=——Pg— — P Ps— ——PyPy— —P3+ — PP,
1 1440 480 192 288 128
Q3: fP3—7P1P2+fP 1 1 5 15 35 63
12 8 16 ! + —PPyP3+ — Py — — PPy — — P2PZ + — PPy — — Pf
32 128 192 256 512 3072
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Proofs

Proof: one-factor Bergomi model

m To complete the proof, since

6
E[VIX7] = B[\/f(T, X1)] = VZ0 > E[@n (X7, v7)|w" + O(w"),

it is enough to compute E[Q, (X, vr)] for n € {0,1,...,6}.

m P, (resp. Pany1) being an even (resp. odd) polynomial in z, @1, Qs and
Qs are odd polynomials in z. As X7 is a symmetric random variable, this
implies that E[Q,(X7,vr)] =0 for n € {1, 3,5}.

m For the computation of E[Q, (X1, vr)], n € {2,4,6}, remember that,
from the orthogonality property of Hermite polynomials,
E[Py, P (X7,vr)] = 0 whenever m # n (in particular, E[P,(X7,vr)] =0
for n #£ 0).

@n)! n

m The other terms can be computed using that E[X7"] = 552 v}
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Proofs

Proof: two-factor Bergomi model

& =& M (tay) = &g (t, X/, XT)
dX! = —k; X! dt +dZ}, Xi=o0, ie{1,2}
i = g {91e_k1(“_t)th + 926_k2(“_t)Xt2}
w2
fU(t,z) :=exp (wx - 7vt(u))
ve(u) 1= Var(zy') = ag{ﬂfe_%l(“_t)v% + 22k (umt),,2

+ 291926_(k1+k2)(u_t)vtl’2}

L 1= ekt Lo 1 — = (k1+ka)t
T
1 2 N Uzl Utl'Q
(Xt aXt ) ~ 0» 1,2 2
Uy Vg
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Proofs

Proof: two-factor Bergomi model

m Denote wy := way,

Xl Ul U1,2 0 67k15
Xt = (X%) 5 ‘/t = COV(Xt) = < 1t,2 t2 ) s )\((5) = We (0;6_k25) .

v} v;
m With these notations (prime = transpose)

£ = £% exp ()\(u X, — %/\(u ) Vid(u — t)) ,
m Then VIX% = 1 [TH7 ¢t du = f(T, X1) with

T

1 T4 1 5
f(T,z) = - / &6 exp (/\(u -1z — ix\(u —T)'Vr(u — T)) du, =z €R".
T

Julien Guyon Bloomberg L.P.
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Proofs

Proof: two-factor Bergomi model

I 1
f(T,z) = ;/ &6 exp ()\(u -1z — §A(u —T)'Vr\(u — T)) du, x € R
T

m For clarity, T being fixed, denote

([ Xa\ (v vi2) ,_ _
X = (X2) = XT, V= (1)172 vo ) = VT, )\u = )\(u T)

m Expand the above exponential term in powers of \,:
ex )\'ac—l)\'V)\ :ZH(x V)&
p u 2 u u eNz v ) ]/'

where AV := AT'\52, vl := 111!, and the H, (x, V) are the dual
bivariate Hermite polynomials (see Takemura and Takeuchi 1988).
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Proofs

Proof: two-factor Bergomi model

m The first H,(x, V) are given by

Hoo(x,V) =1 Hoq(z,V) = a3za — 201 0m1 — V12

Hio(z,V) =1 Hyo(z,V) = z1 — 6v1z? + 3v

Hoo(z,V) = 22 — vy Hs:(z,V) = Thze — 301 25E1 — 3viziz2 + 3V1v1,2
Hiq(x,V) =x1m2 —v12 Hyo(z,V) = x%zg — '021:1 —4vi 2x1T2 — v1x2 + v1v9 + 20
Hzo(z,V) =27 — 3uim Hso(z,V) = 5 — 10v125 + 15072

(z,V) = z‘llxz — 41)1,291:"1s — 6v1x%m2 + 120101 221 + 311%:1:2

(z,V) = x?x% — vgxil" — 6v1 256%:152 — 31}1;1:11‘% +3 (v1v2 + 211%2) x1 + 6viv1 2x2
Heo(z,V) = 2§ — 150123 + 450227 — 1503

(z,V) = z?mg — 5111,2901 — 101)19:1:1:2 + 301}11)1’2:13% + 151}%1112 — 151}%1}1,2
Hyo(x, V) = xt23 — vort — 6v12222 + 3033 — 8u1 22320 + 6 (viva + 21}%2) z?

+ 24v1vy 2122 — 31}%1}2 — 121}1@%,2

H33(z,V) = mi’xg — 91]1,237%23% — 3112:10‘1’902 — 31)19019:% +9 (U1’U2 + 211%,2) 1T + 91)1’21)236%
+ 9’011)1,21‘% — 9v1v1 202 — 67):13‘2.
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Proofs

Proof: two-factor Bergomi model

1o R Y 2
f(T,x) := f/ &5 exp ()\ux — EAuVAu) du, zT€R

T

exp ()\;ac — %)\;V/\u> = Z H,,(LV)%

vEN?

1 1 T+
f(Tz) = > Hy (@ V) / YA du
vEN2
_ Z Hy (o, Vw7 07105 1 T5367(y1k1+u2k2)(u7T)du
EN2 Vl'VQ' T Jr 7
671052
_ vi+tvg 2 =
- %2 HV(‘T7 V)we V1!V2' —Vi,V2

= Z Zp' ) 0703 PEpn—pHpnp(z, V).
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Proofs

Proof: two-factor Bergomi model

o0 n '
HT@) =3y 00y Sy oy @, V), @ € R

| | —»)!
n=0 n p=0 p'(n p)'
m Let us denote f(T,z) = Zo,0(1 + ) with (recall I, := _TZ;L
o0 wn
e = ) —tPu(a,V)
n=1
Pu(z,V) = L gegnrr o (z,V)
n{ZT, = Vo — oy l1Y2 dpn—plpn—plT,
= pl(n —p)!

m Then
6
VIT ) = /EooVT+e = /ZEo0 ) Qnla,V)wi +O(w")
n=0

where Qn(x, V) are built from P,(x, V) as seen in the one-factor case.

E[VIXr] = E[/f( TX]—\/_OOZEQHXVweJrO( !
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Proofs

Proof: two-factor Bergomi model

V|XT: \/ TX]—\/HOOZEQWXV)]WO‘FO( )

m H,(z,V), as a polynomial in z, has same parity as |v| := 11 + 12
= P,(z,V) has same parity as n = Q1(z, V), Qs(z,V) and Qs(z,V)
are odd polynomials in z. Since X is a centered random variable,
E[Qn(X,V)] = 0 for n € {1,3,5}.

m To compute E[Q.(X, V)], n € {2,4,6}, use the weak orthogonality
property of Hermite polynomials: E[H,H, (X, V)] = 0 whenever
|| # |v|. In particular, E[P,, P,(X,V)] = 0 whenever m # n, and
E[P,.(X,V)] =0 for n # 0. For the other terms use

o1y 2 . —t 2 ory3 x2 x 2 2
E[X7] = v1, E[X1Xp]=wvig, E[X{]=3v], E[X7Xp]=3vivi g, E[X]{X3]=rvjvy+2v],,

3

]E[X?] = 15v7, ]E[X?X2] = 151)%1)1,2, ]E[X%XS] = 3vjvg + 121;11)%’2, ]E[X%Xg] = 9111'01,2112 + 6v:13,2,

E[X%""X%"] (2n)! i il (=)=t =J (2m + 2i)! );nfnJrJU%vQ(" ]) m>n
2m+tn i=0j=0 (2D)!(m + )Gl (n — i — j)!
n—1 n—i— ;
Bx2mlx2ntly (2n + 1)1 i Z (-1) I(2m + 2i + 2)! In—nﬁ»jvgv?(;fj)%»l’ m>n

2mtntl 0 (2i+ DI0m + i+ DGn — i — )
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Joint SPX/VIX smile calibration

Joint SPX/VIX smile calibration
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Joint SPX/VIX smile calibration

The joint SPX/VIX smile calibration puzzle

m It looks impossible to jointly calibrate the SPX and VIX smiles using
continuous-time stochastic vol models with continuous SPX paths.

m In those models, large ATM SPX skew —> large vol-of-vol,
inconsistent with the relatively low VIX implied vols, especially for
short maturities.

m However, mean-reversion also comes into play. Increasing mean-reversion
means that ATM SPX skew flattens and VIX implied vol decreases. At
different speeds?

m Objective: precisely pinpoint the roles of vol-of-vol and mean-reversion.

m Bergomi-G. (2012): Expansion of SPX smile in small vol-of-vol in generic
stochastic vol models.

m This talk: Expansion of VIX futures in small vol-of-vol in Bergomi models.

m Putting together both expansions sheds light on the structural joint

constraints on SPX and VIX imposed by stochastic vol models in
general, using the example of Bergomi models.
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Joint SPX/VIX smile calibration

The joint SPX/VIX smile calibration puzzle

m In particular G. (2017) has shown that SPX/VIX market data shows
inversion of convex ordering for short maturities 7":

VIX e < VIXipe 1.

m G. (2018) has shown that in the Bergomi models inversion of convex
ordering requires large mean-reversion and large vol-of-vol.

m Here we directly use approximate formulas of SPX skew and VIX futures in
the one-factor Bergomi model to prove that in the Bergomi models joint

calibration requires large k£ and w.
. . . 2
m Make this statement more precise: How big should 7 be? “-?

Reminder on the ergodic regime:

m The limiting regime where k£ and w tend to +o00 while %2 is kept constant
corresponds to an ergodic limit where (wX:) quickly reaches its stationary

distribution N(0, ‘2”—:) Cf Fouque, Papanicolaou and Sircar (2000).

m Only regime where k,w are large and the variance of o7 has a finite limit,
which is the natural regime in finance.

Julien Guyon Bloomberg L.P.

The VIX Future in Bergomi Models



Joint SPX/VIX smile calibration

The SPX smile in the one-factor Bergomi model

m Bergomi-G. expansion (2012) gives the smile of generic stochastic
volatility models at order 2 in vol-of-vol:

K K
(T K) = 7" +Srin( & | +Crn® | & | + 0w
So SO
m In the case of the one-factor Bergomi model with a flat initial term

structure of variance swaps ({5 = &), coefficients are explicit functions of
w, k, p, &, T. In particular, the ATM skew

St =227 (kr) + LA “QWT (27—[(kT) +4w - 3J(kT)2>
where
1—e* a—1+e™ @
) = 50 J@ =
Kla) = 1—e*—ae 0‘7 H(a) = J (o) — K (a)
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Joint SPX/VIX smile calibration

SPX skew and implied vol of VIX? at first order in w (BergomilF)

pw kT —14e "
2 (KT)?

1—e ™ [1—e-2kT 3
v = W\ T HOW)

Small mean-reversion: cannot jointly calibrate

mSr~ %". Calibration to very short-term SPX smile: Sy ~ —1.5
== pw xR —6 = w > 6.
m oyz A w > 6: too large compared to market data (= 3)!

m Vol-of-vol implied by SPX skew =~ 2 x vol-of-vol implied by VIX futures!
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Joint SPX/VIX smile calibration

SPX skew and implied vol of VIX? at first order in w (BergomilF)

_ pw 2
Sro= 5 ez oW
1—e™* [1—e2kT
G = W a7 TOW)

Large mean-reversion:

m St~ 2‘;7“}, kT > 1. Calibration to SPX smile, T' = i:
g ~ —0.6 = 222 ~ —0.6 = % > 0.3: w and k are large. Numerical
example: k=20,p=—-1=—=w>6

B oz N armever mﬂ\/TEST behaves like 575 < %! Because of
mean-reversion, implied vol of VIXZ% is much smaller. Numerical example

with w = 6: Tvixz, & 1.
2
= Both w and k must be large, with w ~ k so - large!
Large stationary standard deviation of instantaneous vol.
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Joint SPX/VIX smile calibration

Problems

2 . .
“ large = the small vol-of-vol expansions may be inaccurate, and the

volatility is difficult to simulate (very large variance).

m Calibration only to VIX future, not to the full VIX smile. Use skewed
Bergomi model (Bergomi 2008).

m Term-structure of SPX ATM skew requires at least two mean-reversion

scales. The slow mean-reversion component ruins the = behavior.

Julien Guyon Bloomberg L.P.

The VIX Future in Bergomi Models



Joint SPX/VIX smile calibration

Two-factor Bergomi model: varying all parameters

1.5 1

WIX2 implied vol

0.5

0.0 1

T T T
0.2 0.4 0.6 0.8 1.0 1.2
SPX ATM skew (absolute value)

w € [3,8], k1 € [20,100], k2 € [8,20], 62 € [0,0.3], ps1, ps2 € [-0.99,-0.5], T = 0.1

Bloomberg L.P.

Julien Guyon
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Joint SPX/VIX smile calibration

Term-structure of SPX ATM skew

One-factor Bergomi model with large mean-reversion and vol-of-vol: Sp ~ %
To mimic a power-law decay St ~ %: 2-factor Bergomi model and rough

volatility model.

Market Quote
0.2855T#(-04146)

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

SPX ATM skew, May 7, 2018

Market
akT-1+e7¥)
WY

— 0.36T+(-0.31)

, with c=2.3, k=9.9

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

SPX ATM skew, May 7, 2018

Market

T2 with ¢=3.1, k=35.6

Lo yith =15, k=3.0

— 0.36T(-0.31)

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

SPX ATM skew, May 7, 2018

SPX Index, as of 05-07-2018

Market

2
T ATL4e™ \ith 1=2.6, k1=158.9, ©2=1.3, k2=2.2

PR

— 0.36T*+(-0.31)

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

However... SPX ATM skew, Jan 18, 2018

Market
kT =1+eH)
kT

— 0.35T*%(-0.24)

, with c=1.5, k=3.1

Julien Guyon Bloomberg L.P.
The VIX Future in Bergomi Models



Joint SPX/VIX smile calibration

Rough Bergomi model: Power-law kernel K(0) = voH—2

= No Markov representation for &;'.

m Instantaneous variance o} := £/ is not a semimartingale. One cannot
write 1t6 dynamics d¢éf = ---dt + - - - dZ; for the instantaneous variance.
No notion of a dynamic volatility of instantaneous spot variance.

m However we can compare the values of Var (ln g—tu) in the power-law and

0
exponential kernel models:

2H 2H okt
qu” — (u—1t) 2 _ok(u—t)l —€
Y 2H we 2% (4.1)
20 1 — o2kt
u=t—0: VQﬁ — wQQeikszt (4.2)
tH=2

— w (4.3)

1

v
vV2H
t

v \/27; can be interpreted as a short term volatility of instantaneous
spot variance.

n 1] = time™"; [vp7 4] = {ut’“ﬂ = vol.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

Rough Bergomi model: Power-law kernel K(0) = voH—2

m Short-term ATM skew in SV models ~ pw. Explains why the ATM skew
in such rough volatility models behaves like TH-3 for short maturities
T (Alés, Fukasawa...), which is one of the reasons why this model has
been introduced (Gatheral, Jaisson, Rosenbaum, Friz, Bayer).

m In the limit H — 0, for fixed v, 1/2% — 400 for any ¢t > 0.

.. . - . 2
m In order for Var(o?) to tend to a finite limit, we must impose that SH
tend to a finite limit = A natural limiting regime, analogous to the
ergodic regime described above for the exponential kernel, is H,v — 0,

with % kept constant.

= However in this ergodic limit the SPX skew is ~ vVATH "2 ..

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

Joint calibration with continuous SPX
models?
Numerical tests




Joint SPX/VIX smile calibration

Joint calibration: Calibrating first to VIX market

Skewing the models on &;':

m Following Bergomi (2008), we use a linear combination of two lognormal
random variables to model the instantaneous variance o7 so as to generate
positive VIX skew:

t t
o = ¢t <(1 —NE (wo/ e_k(t_s>dZs) +AE (w1/ e_k(t_s)dZs>>
0 0

or

ol =&} f/\c‘f(u() o H*%dzs) )\E(ul - H’l/QdZs))
e (1-n¢ (w [e-9) e (=9

with A € [0, 1].

= £(X) is simply a shorthand notation for exp (X — 3 Var(X)).
m Also (independently) introduced by De Marco.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

Skewed rough Bergomi: Calibration to VIX future and VIX options (March
21, 2018

VIX implied volatilities as of March 21, 2018

& T7=008
- T=015

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

Skewed rough Bergomi: Calibration to VIX future and VIX options (March
21, 2018

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.08

225
200
175
]
H
T 150
s
E
1325
1.00
-8 Market
075 8~ Skewed rough Bergomi model
—— VIX future, market
——- VIX future, skewed rough Bergomi model
o1 02 03 04 0s 06 o7 08

strike
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Joint SPX/VIX smile calibration

ugh Bergomi: Calibration to VIX future and VIX options

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.15

18 4
16 4
14
s
H
T 124
H
E
10
0.8
-8 Market
—@- Skewed rough Bergemi model
—— VIX future, market
——- VIX future, skewed rough Bergomi model
06 . . - . - - )
o1 02 03 04 os 06 07 08

strike

Julien Guyon Bloomberg

The VIX Future in Bergomi Models



Joint SPX/VIX smile calibration

ugh Bergomi: Calibration to VIX future and VIX options

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.25

16 7
14 4
12
s
H
T 104
H
E
08
06
-8 Market
—@- Skewed rough Bergemi model
—— VIX future, market
——- VIX future, skewed rough Bergomi model
04 . . - . - - )
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strike
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Joint SPX/VIX smile calibration

ugh Bergomi: Calibration to VIX future and VIX options

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.33

13
12
11
10
s
H
T o094
H
E
08
07
06 -8 Market
—@- Skewed rough Bergemi model
—— VIX future, market
—- VIX future, skewed rough Bergomi model
0s . . - . - - )
o1 02 03 04 os 06 07 08

strike
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Joint SPX/VIX smile calibration

Skewed rough Bergomi: Calibration to VIX future and VIX options (March
21, 2018

Time-dependent optimal parameters A, vy, v as of March 21, 2018, H=0.10

_—A

—_u

o

0o 0.1 02 0.3 0.4 05
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Joint SPX/VIX smile calibration

Skewed rough Bergomi: Calibration to VIX future and VIX options (March

21, 2018

Empirical average of of in skewed rough Bergomi model calibrated on March 21, 2018, H = 0.10, N=400000

— &

—— Empirical average of of

Julien Guyon
The VIX Future in Bergomi Models

Bloomberg L.P.




Joint SPX/VIX smile calibration

ugh Bergomi calibrated to VIX: SPX smile

SPX implied volatilities, Tspx = 0.08

030
—&~ Market
Fit
—— Skewed rough Bergomi
—— SPX future, market
025 A
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B
T o154
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strike
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Joint SPX/VIX smile calibration

calibrated to VIX: SPX smile

SPX implied volatilities, Tspx = 0.16

030
—&~ Market
Fit
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—— SPX future, market
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Joint SPX/VIX smile calibration

ugh Bergomi calibrated to VIX: SPX smile

SPX implied volatilities, Tspx = 0.24

030
—&~ Market
Fit
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—— SPX future, market
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Joint SPX/VIX smile calibration

omi calibrated to VIX: SPX smile

030 SPX implied volatilities, Tspx = 0.33

—@ Market

Fit
—— Skewed rough Bergomi
—— SPX future, market

implied vol

010 4

0.05 4

2200 2400 2600 2800 3000
strike
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Joint SPX/VIX smile calibration

Skewed rough Bergomi calibrated to VIX: SPX smile

m Not enough ATM skew for SPX, despite pushing negative spot-vol
correlation as much as possible.

m | get similar results when | use the skewed 2-factor Bergomi model
instead of the skewed rough Bergomi model.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

Joint calibration: Calibrating first to SPX market

Consider only continuous models on SPX that are calibrated to SPX smile:
dSt at

Se  VE[2]S)]

and optimize on (a:) so as to match VIX options — or compute the infimum of
VIX implied vols within those models.

o (t, St) dWy

Natural candidates for (a:): skewed rough or 2-factor Bergomi model.
More generally: a; = 0;(X4), t € [T}, T; + 7]

m The leverage function
Uloc(t, St)
E[a?]S:]

does not mean revert; it fights against inversion of convex ordering.
m Numerically estimate

1 T;+T1 O"(Xt)Z
VIX: = 7/ E[Zi oc(t, S 2’; ] dt
T T Jr, Elo:(X.)2[5] " (8, 8e)| Fr.

(use least squares Monte Carlo or neural networks)

I(t,Sy) =

Julien Guyon Bloomberg L.P.
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One-factor Bergomi model Two-factor Bergomi model Proofs Joint SPX/VIX smile calibration
Joint calibration: Calibrating first to SPX market (Aug 1, 2018)

VIX Smiles

1/—— Maodel
— Market

latility

-
=

Implie

Julien Guyon
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Joint SPX/VIX smile calibration

Why jumps can help

m For a continuous model to calibrate jointly to SPX and VIX options, the
distribution of E [% fTT+T ol dt‘]—'T] should be as narrow as possible, but
without killing the SPX skew. The problem of ergodic/stationary (o) is
that they produce flat SPX skew.

m Jump-Lévy processes are precisely examples of processes that can generate
deterministic realized variance together with a smile on the underlying.

m This explains why jumps have proved useful in this problem.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

Conjecture

m Consider continuous models on SPX that are calibrated to SPX smile:

dSt at
—— = ———010c(t, St) dW;.
S~ VEms oW
m Define
VIXZ = 1/T+TE o (t,Se)|Fr| dt
N L THE A

m Conjecture: Continuous-time continuous-paths models for the SPX
cannot fit VIX smile for small 7"

inf E[(VIXr — K){] > COl(T, K).

(at)

m Controlled singular Mc-Kean equation, mean-field HJB PDE.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX smile calibration

The joint SPX/VIX smile calibration puzzle solved

m Exact joint calibration of SPX and VIX smiles.

m Completely different approach: instead of parametric continuous-time
models we use nonparametric discrete-time models.

m Discrete-time allows to decouple SPX skew and VIX implied vol.
m Nonparametric gives flexibility to fit the whole smiles.

m The model is solution to a dispersion-constrained martingale transport
problem.

m Numerically built using the Sinkhorn algorithm.

Talk tomorrow at 3:15pm.

Julien Guyon Bloomberg L.P.
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