# The VIX Future in Bergomi Models 

## Julien Guyon

## Bloomberg L.P.

Quantitative Research
QuantMinds 2019
Vienna, May 14, 2019
jguyon2@bloomberg.net jg3601@columbia.edu julien.guyon@nyu.edu

## Motivation

■ Volatility indices, such as the VIX index, are not only used as market-implied indicators of volatility.
■ Futures and options on these indices are also widely used as risk-management tools to hedge the volatility exposure of options portfolios.

- Existence of a liquid market for these futures and options $\Longrightarrow$ need for models that jointly calibrate to the prices of options the underlying asset and prices of volatility derivatives.

■ Since VIX options started trading in 2006, many researchers and practitioners have tried to build a model that jointly and exactly calibrates to the prices of S\&P 500 (SPX) options, VIX futures and VIX options.

- Very challenging problem, especially for short maturities.


## Motivation

■ The very large negative skew of short-term SPX options, which in continuous models implies a very large volatility of volatility, seems inconsistent with the comparatively low levels of VIX implied volatilities.

■ One should decrease the volatility of volatility to decrease the latter, but this would also decrease the former, which is already too small. See G. (2017, 2018).

- Objective: quantitatively describe the structural constraints that continuous stochastic volatility models jointly put on SPX and VIX derivatives.


## Motivation

■ In particular, we focus on Bergomi models: one factor, two factors (+ skewed versions that calibrate to VIX smile).

- Popular variance curve models that can be used to price SPX and VIX derivatives.
- Bergomi-G. (2012) have already derived a general expansion of the smile in variance curve models at order two in vol-of-vol
- Objective: derive an expansion of the price of VIX futures in Bergomi models. Order 6.

■ Precisely pinpoint the roles of vol-of-vol and mean-reversion.
■ Understand the structural constraints that flexible continuous stochastic volatility models like Bergomi models jointly put on SPX and VIX derivatives.

## One-factor Bergomi model

## One-factor Bergomi model

- $\xi_{t}^{u}$ : instantaneous lognormal variance of the $\operatorname{SPX} S$ at time $u>t$ seen from $t$.
- Forward instantaneous variances are driftless (Dupire, Bergomi).

■ Second generation stochastic volatility models directly model the dynamics of $\left(\xi_{t}^{u}, t \in[0, u]\right)$ under a risk-neutral measure. Only requirement: that these processes, indexed by $u$, be nonnegative and driftless (in $t$ ).
■ One-factor Bergomi model: the simplest model on ( $\left.\xi_{t}^{u}, t \in[0, u]\right)$. First suggested by Dupire (1993). Assumes that forward instantaneous variances are lognormal and all driven by a single standard one-dimensional Brownian motion $Z$, correlated with the Brownian motion $W$ that drives the SPX dynamics:

$$
\frac{d \xi_{t}^{u}}{\xi_{t}^{u}}=\omega e^{-k(u-t)} d Z_{t}, \quad \frac{d S_{t}}{S_{t}}=\left(r_{t}-q_{t}\right) d t+\sqrt{\xi_{t}^{t}} d W_{t}, \quad \omega, k>0
$$

- $r_{t}, q_{t}$ : instantaneous interest rate and dividend yield, inclusive of repo.


## One-factor Bergomi model

$\frac{d \xi_{t}^{u}}{\xi_{t}^{u}}=\omega e^{-k(u-t)} d Z_{t}, \quad \frac{d S_{t}}{S_{t}}=\left(r_{t}-q_{t}\right) d t+\sqrt{\xi_{t}^{t}} d W_{t}, \quad \omega, k>0$
■ Time-homogeneous exponential kernel $K(u-t)=\omega e^{-k(u-t)}$ motivated by two objectives: (1) $K$ decreasing function; (2) $\xi_{t}^{u}$ admits a one-dimensional Markov representation:

$$
\begin{equation*}
\xi_{t}^{u}=\xi_{0}^{u} f^{u}\left(t, X_{t}\right) \tag{1.1}
\end{equation*}
$$

with a Markov process $X$ which does not depend on $u$.
■ Indeed, (1.1) holds with

$$
\begin{aligned}
X_{t} & :=\int_{0}^{t} e^{-k(t-s)} d Z_{s}, \quad f^{u}(t, x):=\exp \left(\omega e^{-k(u-t)} x-\frac{\omega^{2}}{2} e^{-2 k(u-t)} v_{t}\right) \\
v_{t} & :=\operatorname{Var}\left(X_{t}\right)=\frac{1-e^{-2 k t}}{2 k}
\end{aligned}
$$

where the Ornstein-Uhlenbeck process $X$ follows the Markov dynamics:

$$
\begin{equation*}
d X_{t}=-k X_{t} d t+d Z_{t}, \quad X_{0}=0 \tag{1.2}
\end{equation*}
$$

## One-factor Bergomi model

$$
\begin{aligned}
\xi_{t}^{u} & =\xi_{0}^{u} f^{u}\left(t, X_{t}\right) \\
d X_{t} & =-k X_{t} d t+d Z_{t}, \quad X_{0}=0 \\
\sigma_{t}^{2}:=\xi_{t}^{t} & =\xi_{0}^{t} \exp \left(\omega X_{t}-\frac{\omega^{2}}{2} \operatorname{Var}\left(X_{t}\right)\right)
\end{aligned}
$$

- $k$ : parameter of mean-reversion of the instantaneous volatility.

■ $\omega$ : instantaneous (lognormal) volatility of the instantaneous variance; $\omega / 2$ : instantaneous (lognormal) volatility of the instantaneous volatility $\sigma_{t}$. $\omega$ referred to as vol-of-vol.

- Initial condition $\xi_{0}^{u}$ computed from market prices $\operatorname{VS}(T)$ of variances swaps on the SPX: $\xi_{0}^{u}=\frac{d}{d u}(u \operatorname{VS}(u))$. Assumed strictly positive and bounded.
- Markov representation is very convenient. Will be instrumental in our derivation of an expansion of the price of VIX futures in small vol-of-vol.
- In particular, our technique of proof does not apply to the rough Bergomi models (see pricing methods in Jacquier, Martini, Muguruza, On VIX Futures in the Rough Bergomi Model, 2017).


## Expansion of the price of VIX futures in small vol-of-vol

- Let $T \geq 0$. By definition, the (idealized) VIX at time $T$ is the implied volatility of a 30-day log-contract on the SPX index starting at $T$.

■ For continuous models on the SPX such as the one-factor Bergomi model, this translates into

$$
\mathrm{VIX}_{T}^{2}=\mathbb{E}\left[\left.\frac{1}{\tau} \int_{T}^{T+\tau} \sigma_{u}^{2} d u \right\rvert\, \mathcal{F}_{T}\right]=\frac{1}{\tau} \int_{T}^{T+\tau} \mathbb{E}\left[\sigma_{u}^{2} \mid \mathcal{F}_{T}\right] d u=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{T}^{u} d u
$$

- $\tau=\frac{30}{365}$ (30 days)
- $\mathcal{F}_{t}$ : information available at time $t$, in this case the filtration generated by the Brownian motions $W$ and $Z$

For any continuous model on the SPX:

$$
\mathrm{VIX}_{T}^{2}=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{T}^{u} d u
$$

## Expansion of the price of VIX futures in small vol-of-vol

$$
\begin{aligned}
\Xi_{n} & :=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} e^{-n k(u-T)} d u>0, \quad I_{n}:=\frac{\Xi_{n}}{\Xi_{0}}, \quad n \in \mathbb{N} \\
I(x) & :=\frac{1-e^{-x}}{x}, \quad x>0, \quad I(0):=1
\end{aligned}
$$

■ When the initial term-structure of forward instantaneous variances $u \mapsto \xi_{0}^{u}$ is flat at level $\xi, \Xi_{n}=\xi I(n k \tau)$ and $I_{n}=I(n k \tau)$ are known in closed form.

- Otherwise, the computation of $I_{n}$ requires a one-dimensional quadrature. Note: $v_{t}=t I(2 k t)$.



## Expansion of the price of VIX futures in small vol-of-vol

## Proposition

In the one-factor Bergomi model, the price of a VIX future satisfies

$$
\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\sqrt{\Xi_{0}}\left\{1+\alpha_{2} \omega^{2} v_{T}+\alpha_{4}\left(\omega^{2} v_{T}\right)^{2}+\alpha_{6}\left(\omega^{2} v_{T}\right)^{3}\right\}+O\left(\omega^{7}\right)
$$

where $v_{T}=\frac{1-e^{-2 k T}}{2 k}$ and

$$
\begin{aligned}
& \alpha_{2}=-\frac{1}{8} I_{1}^{2} \\
& \alpha_{4}=-\frac{1}{16} I_{2}^{2}+\frac{3}{16} I_{1}^{2} I_{2}-\frac{15}{128} I_{1}^{4}, \\
& \alpha_{6}=-\frac{1}{48} I_{3}^{2}+\frac{1}{16} I_{2}^{3}+\frac{3}{16} I_{1} I_{2} I_{3}-\frac{75}{128} I_{1}^{2} I_{2}^{2}-\frac{5}{32} I_{1}^{3} I_{3}+\frac{105}{128} I_{1}^{4} I_{2}-\frac{315}{1024} I_{1}^{6} .
\end{aligned}
$$

## Expansion of the price of VIX futures in small vol-of-vol

## Proposition (cont'd)

In particular, this expansion provides a closed form expression of the prices of VIX futures in the one-factor Bergomi model at order 6 in small vol-of-vol when $u \mapsto \xi_{0}^{u}$ is flat at level $\xi$ :

$$
\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\sqrt{\xi}\left\{1+\alpha_{2}(k \tau) \omega^{2} v_{T}+\alpha_{4}(k \tau)\left(\omega^{2} v_{T}\right)^{2}+\alpha_{6}(k \tau)\left(\omega^{2} v_{T}\right)^{3}\right\}+O\left(\omega^{7}\right)
$$

where the functions $\alpha_{i}(\cdot)$ are defined by:

$$
\begin{aligned}
\alpha_{2}(x)= & -\frac{1}{8} I(x)^{2}, \\
\alpha_{4}(x)= & -\frac{1}{16} I(2 x)^{2}+\frac{3}{16} I(x)^{2} I(2 x)-\frac{15}{128} I(x)^{4}, \\
\alpha_{6}(x)= & -\frac{1}{48} I(3 x)^{2}+\frac{1}{16} I(2 x)^{3}+\frac{3}{16} I(x) I(2 x) I(3 x) \\
& -\frac{75}{128} I(x)^{2} I(2 x)^{2}-\frac{5}{32} I(x)^{3} I(3 x)+\frac{105}{128} I(x)^{4} I(2 x)-\frac{315}{1024} I(x)^{6} .
\end{aligned}
$$

## Expansion of the price of VIX futures in small vol-of-vol

## Remark

In the case where $\omega_{u}$ is maturity-dependent, we can still expand in small vol-of-vol by multiplying $\omega_{u}$ by a dimensionless parameter $\varepsilon$ (that can later be taken equal to one) and expand in powers of $\varepsilon$. Then the expansion still holds by replacing $\omega$ by $\varepsilon$ and with

$$
\Xi_{n}:=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} \omega_{u}^{n} e^{-n k(u-T)} d u, \quad I_{n}:=\frac{\Xi_{n}}{\Xi_{0}}, \quad n \in \mathbb{N} .
$$

## Expansion of the price of VIX futures in small vol-of-vol

## Remark

In the case where the mean reversion $k(t)$ is time-dependent,

$$
d X_{t}=-k(t) X_{t} d t+d Z_{t}
$$

the expansion still holds with

$$
\begin{aligned}
\Xi_{n} & :=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} e^{-n(K(u)-K(T))} d u, \quad I_{n}:=\frac{\Xi_{n}}{\Xi_{0}} \\
v_{t} & :=e^{-2 K(t)} \int_{0}^{T} e^{2 K(s)} d s
\end{aligned}
$$

where

$$
K(t):=\int_{0}^{t} k(s) d s
$$

Of course one can mix maturity-dependent $\omega_{u}$ with time-dependent $k(t)$.

## Expansion of the price of VIX futures in small vol-of-vol

## Remark

In the case where both $k(t)$ and $\omega(t)$ are time-dependent,

$$
d X_{t}=-k(t) X_{t} d t+\omega(t) d Z_{t}
$$

we can still expand in small vol-of-vol by multiplying $\omega(t)$ by a dimensionless parameter $\varepsilon$ (that can later be taken equal to one) and expand in powers of $\varepsilon$. Then the expansion still holds by replacing $\omega$ by $\varepsilon$ and with

$$
\begin{aligned}
\Xi_{n} & :=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} e^{-n(K(u)-K(T))} d u, \quad I_{n}:=\frac{\Xi_{n}}{\Xi_{0}} \\
v_{t} & :=e^{-2 K(t)} \int_{0}^{T} \omega(s)^{2} e^{2 K(s)} d s
\end{aligned}
$$

## Expansion of the price of VIX futures in small vol-of-vol

## Remark

One can easily mix maturity-dependent $\omega_{u}$ with time-dependent $\omega(t)$ (and time-dependent $k(t))$ if they are in product form: $\omega_{u}(t)=\omega_{u} \omega(t)$. Then, as above, we can expand in powers of $\varepsilon$ and the expansion still holds by replacing $\omega$ by $\varepsilon$ and with

$$
\begin{aligned}
\Xi_{n} & :=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} \omega_{u}^{n} e^{-n(K(u)-K(T))} d u, \quad I_{n}:=\frac{\Xi_{n}}{\Xi_{0}} \\
v_{t} & :=e^{-2 K(t)} \int_{0}^{T} \omega(s)^{2} e^{2 K(s)} d s
\end{aligned}
$$

## Numerical inspection of the formula

$$
\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\sqrt{\Xi_{0}}\left\{1+\alpha_{2} \omega^{2} v_{T}+\alpha_{4}\left(\omega^{2} v_{T}\right)^{2}+\alpha_{6}\left(\omega^{2} v_{T}\right)^{3}\right\}+O\left(\omega^{7}\right)
$$

- The formula is essentially an expansion in powers of $\omega^{2} v_{T}$, suggesting that the expansion is accurate not only for small $\omega$, but also for small $\omega^{2} v_{T}$.
■ Let us define $\nu:=\frac{\omega}{\sqrt{2 k}}$. As $\operatorname{Var}\left(\omega X_{t}\right)=\omega^{2} v_{t}=\nu^{2}\left(1-e^{-2 k t}\right), \nu$ is the long term standard deviation of $\omega X_{t}$.
- Since $\omega^{2} v_{T} \leq \nu^{2}$ and $\omega^{2} v_{T}=\omega^{2} T I(2 k T) \leq \omega^{2} T$, we have

$$
0 \leq \omega^{2} v_{T} \leq \min \left(\nu^{2}, \omega^{2} T\right)
$$

- In particular we expect the expansion to be accurate when $\nu$ is small enough or when $\omega \sqrt{T}$ is small enough.
■ $\nu$ small enough: mean-reversion large enough to mitigate vol-of-vol.
- Both $\nu$ and $\omega \sqrt{T}$ are dimensionless quantities, while $\omega$ has the dimension of a volatility, i.e., time ${ }^{-1 / 2}$.
- We expect the expansion to be accurate when the vol $\omega$ is small enough compared to the vols $\sqrt{2 k}$ or $1 / \sqrt{T}$.


## Numerical inspection of the formula

$\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\sqrt{\xi}\left\{1+\alpha_{2}(k \tau) \omega^{2} v_{T}+\alpha_{4}(k \tau)\left(\omega^{2} v_{T}\right)^{2}+\alpha_{6}(k \tau)\left(\omega^{2} v_{T}\right)^{3}\right\}+O\left(\omega^{7}\right)$

- How small should $\omega$ be, compared to $\sqrt{2 k}$ or $1 / \sqrt{T}$ ?
- Dependence of the formula on $\xi$ is trivial: simply proportional to $\sqrt{\xi}$.
- After dividing by $\sqrt{\xi}$, each term in the expansion is of the form $\alpha_{2 i}(k \tau)\left(\omega^{2} v_{T}\right)^{i}$, where $\alpha_{2 i}(k \tau)$ depends only on $k$, not on $\omega$ or $T$.
- $\alpha_{2 i}(x)$ is small and decreases quickly with $i$. In particular $\alpha_{2}(0)=-\frac{1}{8}$, $\alpha_{4}(0)=\frac{1}{128}$, and $\alpha_{6}(0)=-\frac{1}{3072}$.
- $\alpha_{2}(x)$ and both ratios $\alpha_{4}(x) / \alpha_{2}(x)$ and $\alpha_{6}(x) / \alpha_{4}(x)$ take values around $-5 \%$ for reasonable values of $x=k \tau$, e.g., $x \in[0,2]$.
■ Suggests that the expansion should be accurate for $\omega^{2} v_{T}$ up to $\approx 7$ : if $\omega^{2} v_{T}=7$, then the order $i$ term in the expansion $\alpha_{2 i}(k \tau)\left(\omega^{2} v_{T}\right)^{i}$ is only about a third, in absolute value, of the order $i-1$ term.
- However, if $\omega^{2} v_{T} \geq 20$, then the order $i$ term can be larger than the order $i-1$ term, suggesting divergence of the series.


## Numerical inspection of the formula

$\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\sqrt{\xi}\left\{1+\alpha_{2}(k \tau) \omega^{2} v_{T}+\alpha_{4}(k \tau)\left(\omega^{2} v_{T}\right)^{2}+\alpha_{6}(k \tau)\left(\omega^{2} v_{T}\right)^{3}\right\}+O\left(\omega^{7}\right)$



Figure: Left: Graph of functions $\alpha_{2}, \alpha_{4}$, and $\alpha_{6}$ of Formula (1.3). Right: Graph of $\alpha_{2}$ and of ratios $\alpha_{4} / \alpha_{2}$ and $\alpha_{6} / \alpha_{4}$

Numerical experiments: $k=0.25$



Figure: VIX future in the one-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion at orders 2,4 , and 6 with the exact quadrature for several sets of parameters. Left: $\omega^{2} v_{1} \approx 3$. Right: $\omega^{2} v_{1} \approx 7$



Figure: VIX future in the one-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion at orders 2,4 , and 6 with the exact quadrature for several sets of parameters. Left: $\omega^{2} v_{1} \approx 3$. Right: $\omega^{2} v_{1} \approx 7$

## Numerical experiments: $k=10$




Figure: VIX future in the one-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion at orders 2,4 , and 6 with the exact quadrature for several sets of parameters. Left: $\omega^{2} v_{1} \approx 3$. Right: $\omega^{2} v_{1} \approx 7$

## Numerical experiments: $\omega^{2} v_{1} \approx 15$



Figure: VIX future in the one-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion at orders 2,4 , and 6 with the exact quadrature when $\omega=8$ and $k=2\left(\omega^{2} v_{1} \approx 15 ; \omega^{2} v_{2 / 12} \approx 7\right)$

## Contango vs backwardation

- Since we used a flat initial term-structure of forward instantaneous variances $u \mapsto \xi_{0}^{u}$, the model generates a decreasing term-structure of VIX futures (backwardation).
■ To recover an increasing term-structure (contango), as usually observed in the market, we should use an increasing term-structure of forward instantaneous variances.

■ The term-structure implied from the market prices of variances swaps on the SPX $\xi_{0}^{u}=\frac{d}{d u}(u \operatorname{VS}(u))$ is typically increasing, except during those periods when the VIX index blows up.

## Expansion of the volatility of the squared VIX implied by VIX future prices

■ It is natural to quote the price of a VIX future in terms of the implied (lognormal) volatility of the squared VIX.

- The (undiscounted) time 0 price of the payoff $\mathrm{VIX}_{T}^{2}$ is known from the market prices of variance swaps on the SPX:

$$
\text { Price }\left[\mathrm{VIX}_{T}^{2}\right]=\frac{(T+\tau) \mathrm{VS}(T+\tau)-T \mathrm{VS}(T)}{\tau}=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} d u=\Xi_{0}
$$

$■ \Longrightarrow$ The volatility of the squared VIX implied by the VIX future price for maturity $T$ is the value $\sigma_{\mathrm{VIX}_{T}^{2}}$ such that

$$
\text { Price }\left[\mathrm{VIX}_{T}\right]=\sqrt{\Xi_{0}} \exp \left(-\frac{1}{8} \sigma_{\mathrm{VIX}_{T}^{2}}^{2} T\right)
$$

- R.h.s. is the (undiscounted) time 0 price of the payoff $\mathrm{VIX}_{T}$ in the model where $\mathrm{VIX}_{T}^{2}$ is lognormal with mean $\Xi_{0}$ and volatility $\sigma_{\mathrm{VIX}_{T}^{2}}$.

$$
\sigma_{\mathrm{VIX}_{T}^{2}}=\sqrt{-\frac{8}{T} \ln \frac{\text { Price }\left[\mathrm{VIX}_{T}\right]}{\sqrt{\Xi_{0}}}}=\sqrt{-\frac{8}{T} \ln \frac{\text { Price }\left[\mathrm{VIX}_{T}\right]}{\sqrt{\text { Price }\left[\mathrm{VIX}_{T}^{2}\right]}}} .
$$

■ No arbitrage $\Longrightarrow$ Price $\left.\left[\mathrm{VIX} X_{T}\right] \leq \sqrt{\text { Price }[\mathrm{VIX}}{ }_{T}^{2}\right]$ so $\sigma_{\mathrm{VIX}_{T}^{2}}$ is well defined.

## Volatility of VIX² implied by VIX future, as of August 1, 2018

Volatility of VIX2 implied by prices of VIX futures as of August 1, 2018


## Expansion of the volatility of the squared VIX implied by VIX future prices

## Proposition

In the one-factor Bergomi model, the volatility $\sigma_{V I X_{T}^{2}}$ of the squared VIX implied by the VIX future price for maturity $T$ satisfies

$$
\sigma_{V I X_{T}^{2}}=\omega I_{1} \sqrt{I(2 k T)}\left\{1+\beta_{2} \omega^{2} v_{T}+\beta_{4}\left(\omega^{2} v_{T}\right)^{2}\right\}+O\left(\omega^{6}\right)
$$

where $v_{T}=\frac{1-e^{-2 k T}}{2 k}=T I(2 k T)$ and

$$
\begin{align*}
\beta_{2} & =\frac{1}{2}\left(\frac{\alpha_{4}}{\alpha_{2}}-\frac{\alpha_{2}}{2}\right)  \tag{1.3}\\
\beta_{4} & =\frac{1}{2}\left(\frac{\alpha_{6}}{\alpha_{2}}-\alpha_{4}+\frac{\alpha_{2}^{2}}{3}\right)-\frac{1}{8}\left(\frac{\alpha_{4}}{\alpha_{2}}-\frac{\alpha_{2}}{2}\right)^{2} \tag{1.4}
\end{align*}
$$

## Expansion of the volatility of the squared VIX implied by VIX future prices

## Proposition (cont'd)

In particular, this formula provides a closed form expression of the implied volatility $\sigma_{V I X_{T}^{2}}$ in the one-factor Bergomi model at order 5 in small vol-of-vol when $u \mapsto \xi_{0}^{u}$ is flat:

$$
\sigma_{V I X_{T}^{2}}=\omega I(k \tau) \sqrt{I(2 k T)}\left\{1+\beta_{2}(k \tau) \omega^{2} v_{T}+\beta_{4}(k \tau)\left(\omega^{2} v_{T}\right)^{2}\right\}+O\left(\omega^{6}\right)
$$

where the functions $\beta_{2}(\cdot)$ and $\beta_{4}(\cdot)$ are defined from the functions $\alpha_{i}(\cdot)$ by (1.3)-(1.4). In particular, at first order in vol-of-vol $\omega$,

$$
\sigma_{V I X_{T}^{2}}=\omega \frac{1-e^{-k \tau}}{k \tau} \sqrt{\frac{1-e^{-2 k T}}{2 k T}}+O\left(\omega^{3}\right) .
$$

## Numerical inspection of the formula

$$
\sigma_{\mathrm{VIX}_{T}^{2}}=\omega I(k \tau) \sqrt{I(2 k T)}\left\{1+\beta_{2}(k \tau) \omega^{2} v_{T}+\beta_{4}(k \tau)\left(\omega^{2} v_{T}\right)^{2}\right\}+O\left(\omega^{6}\right)
$$

■ Formula is essentially expansion in powers of $\omega^{2} v_{T} \Longrightarrow$ Accurate for $\omega^{2} v_{T}$ small enough, in particular when $\nu$ or $\omega \sqrt{T}$ are small enough.

- The domain of accuracy of the implied volatility expansion is actually much larger than that of the price expansion.
■ Indeed, both $\beta_{2}(x)$ and the ratio $\beta_{4}(x) / \beta_{2}(x)$ take very small values, around $-1 \%$, for $x=k \tau \in[0,2]$, suggesting that the implied vol expansion should be accurate even for $\omega^{2} v_{T} \approx 20-30$.
■ Moreover, contrary to the ratios $\alpha_{2 i}(x) / \alpha_{2 i-2}(x)$, both $\beta_{2}(x)$ and the ratio $\beta_{4}(x) / \beta_{2}(x)$ tend to zero, together with their first order derivatives, when $x$ tends to zero.
■ $\Longrightarrow$ Even when $v_{T}$ becomes extremely large $(k \rightarrow 0, T \rightarrow \infty)$, the first two ratios of consecutive terms in the expansion (with $\beta_{0}(x):=1$ )

$$
\left|\frac{\beta_{2 i}(k \tau)}{\beta_{2 i-2}(k \tau)} \omega^{2} v_{T}\right| \leq \frac{1}{2 k}\left|\frac{\beta_{2 i}(k \tau)}{\beta_{2 i-2}(k \tau)}\right| \omega^{2}
$$

stay bounded (they tend to zero when $v_{T}$ tends to infinity).

## Numerical inspection of the formula




Figure: Left: Graph of functions $\beta_{2}$ and $\beta_{4}$. Right: Graph of $\beta_{2}$ and of ratio $\beta_{4} / \beta_{2}$

## Numerical inspection of the formula

Figure: Top: Graph of $k \mapsto \frac{\beta_{2}(k \tau)}{2 k}$ and $k \mapsto \frac{1}{2 k} \frac{\beta_{4}(k \tau)}{\beta_{2}(k \tau)}$ for $0 \leq k \leq 30$. Bottom:
Graph of $k \mapsto \frac{\beta_{2}(k \tau)}{2 k}$ (left) and $k \mapsto \frac{\beta_{4}(k \tau)}{(2 k)^{2}} \times 10^{-7}$ (right) for $0 \leq k \leq 100$

## Numerical inspection of the formula

$$
\begin{aligned}
& \sigma_{\mathrm{VIX}}^{T} \\
& =\omega I(k \tau) \sqrt{I(2 k T)}\left\{1+\beta_{2}(k \tau) \omega^{2} v_{T}+\beta_{4}(k \tau)\left(\omega^{2} v_{T}\right)^{2}\right\}+O\left(\omega^{6}\right) \\
& \left|\frac{\beta_{2 i}(k \tau)}{\beta_{2 i-2}(k \tau)} \omega^{2} v_{T}\right| \leq \frac{1}{2 k}\left|\frac{\beta_{2 i}(k \tau)}{\beta_{2 i-2}(k \tau)}\right| \omega^{2}
\end{aligned}
$$

■ The r.h.s. are bounded above by $7 \times 10^{-4} \omega^{2}$ for all $k \leq 30$. This suggests that, for all $T$ and a very wide range of values of $k$, the above expansion should be very accurate even for extremely large $\omega$, say, $\omega=10$.
■ Even for this unreasonably large value of $\omega$, the first two correcting terms in the expansion are small whatever the value of $k$ and $T$ :

$$
\beta_{2}(k \tau) \omega^{2} v_{T} \leq 3.1 \times 10^{-2}, \quad \beta_{4}(k \tau)\left(\omega^{2} v_{T}\right)^{2} \leq 2 \times 10^{-3}
$$

## Numerical experiment




Figure: Implied vol of VIX squared (left) and price of VIX future (right) in the one-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion with the exact quadrature when $\omega=8$ and $k=2\left(\omega^{2} v_{1} \approx 15\right.$; $\omega^{2} v_{2 / 12} \approx 7$ )

## Inspection of the first order formula

$$
\sigma_{\mathrm{VIX}_{T}^{2}}=\omega \frac{1-e^{-k \tau}}{k \tau} \sqrt{\frac{1-e^{-2 k T}}{2 k T}}+O\left(\omega^{3}\right)
$$

■ In fact, for practical purposes, the first order formula can be considered exact.

- The implied volatility of a very short $\mathrm{VIX}_{T}^{2}$ is the volatility $\omega$ of the instantaneous variance $\xi_{t}^{t}$, dampened by the factor $I(k \tau)=\frac{1-e^{-k \tau}}{k \tau}$ which accounts for the mean-reversion of volatility over 30 days.
■ For non-zero maturities $T$, this is multiplied by $\sqrt{I(2 k T)}=\sqrt{\frac{1-e^{-2 k T}}{2 k T}}$.
- For large $T$, the term-structure of the implied volatility of the squared VIX decays as the power law $T^{-1 / 2}$.
■ Interpretation: Mean-reversion causes the price of the VIX future to converge when $T$ increases, as the Ornstein-Uhlenbeck process $X$ reaches its stationary distribution. Price $\left[\mathrm{VIX}_{T}\right]=\sqrt{\Xi_{0}} \exp \left(-\frac{1}{8} \sigma_{\mathrm{VIX}_{T}^{2}}^{2} T\right)$
$\Longrightarrow \sigma_{\mathrm{VIX}_{T}^{2}}^{2} T$ must converge, so $\sigma_{\mathrm{VIX}_{T}^{2}}$ behaves like $T^{-1 / 2}$.
■ For large $k, \sigma_{\mathbf{V I X}_{T}^{2}} \sim \frac{\omega}{k^{3 / 2}}$.


## Two-factor Bergomi model

## Two-factor Bergomi model

■ In the one-factor Bergomi model, all forward variances are driven by a single Brownian motion $Z$.

- A positive move of the short end of the variance curve ( $d Z_{t}>0$ ) implies a positive move of the long end of the curve.
■ To allow for more flexibility for the dynamics of forward variances, at least 2 factors are needed.

■ 2 factors actually enough to mimic power-law-like decay of term-structure of vols of variance swap rates (Bergomi) as well as power-law-like decay of term-structure of ATM implied vols of equity indices.
■ In the two-factor Bergomi model (Bergomi 2005), the curve $\xi_{t}$ is driven by two Brownian motions $Z^{1}$ and $Z^{2}$ whose constant correlation is denoted by $\rho$ :

$$
\begin{aligned}
\frac{d \xi_{t}^{u}}{\xi_{t}^{u}} & =\omega \alpha_{\theta}\left\{\theta_{1} e^{-k_{1}(u-t)} d Z_{t}^{1}+\theta_{2} e^{-k_{2}(u-t)} d Z_{t}^{2}\right\} \\
\alpha_{\theta} & =\left(\theta_{1}^{2}+2 \rho \theta_{1} \theta_{2}+\theta_{2}^{2}\right)^{-\frac{1}{2}}, \quad k_{1}, k_{2}>0, \quad \theta_{1}, \theta_{2} \in[0,1], \quad \theta_{1}+\theta_{2}=1
\end{aligned}
$$

## Two-factor Bergomi model

$$
\begin{aligned}
\frac{d \xi_{t}^{u}}{\xi_{t}^{u}} & =\omega \alpha_{\theta}\left\{\theta_{1} e^{-k_{1}(u-t)} d Z_{t}^{1}+\theta_{2} e^{-k_{2}(u-t)} d Z_{t}^{2}\right\} \\
\alpha_{\theta} & =\left(\theta_{1}^{2}+2 \rho \theta_{1} \theta_{2}+\theta_{2}^{2}\right)^{-\frac{1}{2}}, \quad k_{1}, k_{2}>0, \quad \theta_{1}, \theta_{2} \in[0,1], \quad \theta_{1}+\theta_{2}=1
\end{aligned}
$$

■ Normalizing factor $\alpha_{\theta}$ s.t. $\omega$ is the inst vol of the inst variance $\xi_{t}^{t}$.

- For identification purposes, we assume that $k_{1}>k_{2}$ :
$Z^{1}$ drives short end of variance curve only (up to $u-t \approx 1 / k_{1}$ )
$Z^{2}$ drives both its short and long end (up to $u-t \approx 1 / k_{2}>1 / k_{1}$ ).
■ In the two-factor model, $\xi_{t}^{u}$ admits a two-dimensional Markov representation in terms of two Ornstein-Uhlenbeck processes $X^{1}$ and $X^{2}$


## Two-factor Bergomi model

$$
\left.\left.\begin{array}{rl}
\xi_{t}^{u} & =\xi_{0}^{u} f^{u}\left(t, x_{t}^{u}\right)=\xi_{0}^{u} g^{u}\left(t, X_{t}^{1}, X_{t}^{2}\right) \\
d X_{t}^{i} & =-k_{i} X_{t}^{i} d t+d Z_{t}^{i}, \quad X_{0}^{i}=0, \quad i \in\{1,2\} \\
x_{t}^{u} & :=\alpha_{\theta}\left\{\theta_{1} e^{-k_{1}(u-t)} X_{t}^{1}+\theta_{2} e^{-k_{2}(u-t)} X_{t}^{2}\right\} \\
f^{u}(t, x) & :=\exp \left(\omega x-\frac{\omega^{2}}{2} v_{t}(u)\right) \\
v_{t}(u) & :=\operatorname{Var}\left(x_{t}^{u}\right)=\alpha_{\theta}^{2}\left\{\theta_{1}^{2} e^{-2 k_{1}(u-t)} v_{t}^{1}+\theta_{2}^{2} e^{-2 k_{2}(u-t)} v_{t}^{2}\right. \\
v_{t}^{i} & :=\frac{1-e^{-2 k_{i} t}}{2 k_{i}}, \quad v_{t}^{1,2}:=\rho \frac{1-e^{-\left(k_{1}+k_{2}\right) t}}{k_{1}+k_{2}} \\
\left(X_{t}^{1}, X_{t}^{2}\right) & \sim \mathcal{N}\left(0,\left(k_{1}+k_{2}\right)(u-t) v_{t}^{1,2}\right\} \\
v_{t}^{1,2} & v_{t}^{1,2} \\
v_{t}^{2}
\end{array}\right)\right) .
$$

## Expansion of the price of VIX futures in small vol-of-vol

- For $(m, n) \in \mathbb{N}^{2}$, we define

$$
\Xi_{m, n}:=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} e^{-\left(m k_{1}+n k_{2}\right)(u-T)} d u>0, \quad I_{m, n}:=\frac{\Xi_{m, n}}{\Xi_{0,0}}
$$

- When $u \mapsto \xi_{0}^{u}$ is flat at level $\xi, \Xi_{m, n}=\xi I\left(\left(m k_{1}+n k_{2}\right) \tau\right)$ and $I_{m, n}=I\left(\left(m k_{1}+n k_{2}\right) \tau\right)$ are known in closed form.
■ For clarity, $T$ being fixed, we use the notations $v_{1}:=v_{T}^{1}, v_{2}:=v_{T}^{2}$, and $v_{1,2}:=v_{T}^{1,2}$.


## Expansion of the price of VIX futures in small vol-of-vol

## Proposition

In the two-factor Bergomi model, the price of a VIX future satisfies

$$
\begin{equation*}
\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\sqrt{\Xi_{0,0}}\left\{1+\gamma_{2}\left(\omega \alpha_{\theta}\right)^{2}+\gamma_{4}\left(\omega \alpha_{\theta}\right)^{4}+\gamma_{6}\left(\omega \alpha_{\theta}\right)^{6}\right\}+O\left(\omega^{7}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma_{2}= & -\frac{1}{8}\left(\theta_{1}^{2} I_{10}^{2} v_{1}+2 \theta_{1} \theta_{2} I_{10} I_{01} v_{1,2}+\theta_{2}^{2} I_{01}^{2} v_{2}\right), \\
\gamma_{4}= & \left(-\frac{1}{16} I_{20}^{2}+\frac{3}{16} I_{10}^{2} I_{20}-\frac{15}{128} I_{10}^{4}\right) \theta_{1}^{4} v_{1}^{2} \\
& +\left(-\frac{1}{4} I_{20} I_{11}+\frac{3}{8}\left(I_{10}^{2} I_{11}+I_{10} I_{20} I_{01}\right)-\frac{15}{32} I_{10}^{3} I_{01}\right) \theta_{1}^{3} \theta_{2} v_{1} v_{1,2} \\
& +\left(-\frac{1}{8} I_{11}^{2}+\frac{3}{8} I_{10} I_{11} I_{01}-\frac{15}{64} I_{10}^{2} I_{01}^{2}\right) \theta_{1}^{2} \theta_{2}^{2} v_{1} v_{2} \\
& +\left(-\frac{1}{8}\left(I_{11}^{2}+I_{20} I_{02}\right)+\frac{3}{16}\left(I_{10}^{2} I_{02}+I_{20} I_{01}^{2}\right)+\frac{3}{8} I_{10} I_{11} I_{01}-\frac{15}{32} I_{10}^{2} I_{01}^{2}\right) \theta_{1}^{2} \theta_{2}^{2} v_{1,2}^{2} \\
& +\left(-\frac{1}{4} I_{11} I_{02}+\frac{3}{8}\left(I_{11} I_{01}^{2}+I_{10} I_{01} I_{02}\right)-\frac{15}{32} I_{10} I_{01}^{3}\right) \theta_{1} \theta_{2}^{3} v_{1,2} v_{2} \\
& +\left(-\frac{1}{16} I_{02}^{2}+\frac{3}{16} I_{01}^{2} I_{02}-\frac{15}{128} I_{01}^{4}\right) \theta_{2}^{4} v_{2}^{2},
\end{aligned}
$$

## Expansion of the price of VIX futures in small vol-of-vol

## Proposition (cont'd)

## and $\gamma_{6}=\sum_{p=0}^{6} \gamma_{6-p, p}$ where

$$
\begin{aligned}
\gamma_{6,0}= & \left(-\frac{1}{48} I_{30}^{2}+\frac{1}{16} I_{20}^{3}+\frac{3}{16} I_{10} I_{20} I_{30}-\frac{75}{128} I_{10}^{2} I_{20}^{2}-\frac{5}{32} I_{10}^{3} I_{30}+\frac{105}{128} I_{10}^{4} I_{20}-\frac{315}{1024} I_{10}^{6}\right) \theta_{1}^{6} v_{1}^{3} \\
\gamma_{5,1}= & \left(-\frac{1}{8} I_{30} I_{21}+\frac{3}{8} I_{20}^{2} I_{11}+\frac{9}{16} I_{20} I_{10} I_{21}+\frac{3}{8} I_{30} I_{10} I_{11}-\frac{75}{32} I_{10}^{2} I_{20} I_{11}-\frac{15}{32} I_{10}^{3} I_{21}+\frac{105}{64} I_{10}^{4} I_{11}\right. \\
& \left.+\frac{3}{16} I_{20} I_{30} I_{01}-\frac{75}{64} I_{10} I_{20}^{2} I_{01}-\frac{15}{32} I_{10}^{2} I_{30} I_{01}+\frac{105}{32} I_{10}^{2} I_{20} I_{01}-\frac{945}{512} I_{10}^{5} I_{01}\right) \theta_{1}^{5} \theta_{2} v_{1}^{2} v_{1,2}
\end{aligned}
$$

$$
\gamma_{4,2}=\left(-\frac{945}{1024} I_{10}^{4} I_{01}^{2}+\frac{105}{128} I_{20} I_{10}^{2} I_{01}^{2}-\frac{15}{128} I_{20}^{2} I_{01}^{2}+\frac{105}{64} I_{10}^{3} I_{11} I_{01}-\frac{15}{32} I_{10}^{2} I_{21} I_{01}-\frac{15}{16} I_{10} I_{20} I_{11} I_{0}\right.
$$

$$
\left.+\frac{3}{16} I_{20} I_{21} I_{01}-\frac{45}{64} I_{10}^{2} I_{11}^{2}+\frac{3}{8} I_{10} I_{21} I_{11}+\frac{3}{16} I_{20} I_{11}^{2}-\frac{1}{16} I_{21}^{2}\right) \theta_{1}^{4} \theta_{2}^{2} v_{1}^{2} v_{2}
$$

$$
+\left(-\frac{945}{256} I_{10}^{4} I_{01}^{2}+\frac{525}{128} I_{20} I_{01}^{2} I_{10}^{2}-\frac{15}{32} I_{10} I_{01}^{2} I_{30}-\frac{15}{32} I_{20}^{2} I_{01}^{2}+\frac{315}{64} I_{10}^{3} I_{11} I_{01}-\frac{15}{16} I_{10}^{2} I_{21} I_{01}\right.
$$

$$
-\frac{15}{4} I_{10} I_{20} I_{11} I_{01}+\frac{3}{8} I_{30} I_{11} I_{01}+\frac{3}{8} I_{20} I_{21} I_{01}+\frac{105}{128} I_{10}^{4} I_{02}-\frac{75}{64} I_{10}^{2} I_{20} I_{02}+\frac{3}{16} I_{10} I_{30} I_{02}+
$$

$$
\left.-\frac{15}{32} I_{10}^{3} I_{12}-\frac{105}{64} I_{10}^{2} I_{11}^{2}+\frac{3}{4} I_{10} I_{11} I_{21}+\frac{9}{16} I_{10} I_{20} I_{12}+\frac{9}{16} I_{20} I_{11}^{2}-\frac{1}{8} I_{30} I_{12}-\frac{1}{8} I_{21}^{2}\right) \theta_{1}^{4} \theta_{2}^{2} v
$$

## Expansion of the price of VIX futures in small vol-of-vol

## Proposition (cont'd)

$$
\begin{aligned}
\gamma_{3,3}= & +\left(-\frac{945}{256} I_{10}^{3} I_{01}^{3}+\frac{105}{64} I_{10} I_{01}^{3} I_{20}+\frac{105}{16} I_{10}^{2} I_{11} I_{01}^{2}-\frac{15}{16} I_{10} I_{21} I_{01}^{2}-\frac{45}{32} I_{20} I_{11} I_{01}^{2}+\frac{105}{64} I_{10}^{3} I_{01} I\right. \\
& -\frac{15}{16} I_{10} I_{20} I_{01} I_{02}-\frac{15}{16} I_{10}^{2} I_{01} I_{12}-\frac{105}{32} I_{10} I_{11}^{2} I_{01}+\frac{3}{4} I_{21} I_{11} I_{01}+\frac{3}{8} I_{20} I_{01} I_{12}-\frac{45}{32} I_{10}^{2} I_{11} I_{0} \\
& \left.+\frac{3}{8} I_{10} I_{21} I_{02}+\frac{3}{8} I_{20} I_{11} I_{02}+\frac{3}{4} I_{10} I_{11} I_{12}+\frac{3}{8} I_{11}^{3}-\frac{1}{4} I_{12} I_{21}\right) \theta_{1}^{3} \theta_{2}^{3} v_{1} v_{12} v_{2} \\
& \left(-\frac{315}{128} I_{10}^{3} I_{01}^{3}+\frac{105}{64} I_{10} I_{20} I_{01}^{3}-\frac{5}{32} I_{30} I_{01}^{3}+\frac{105}{32} I_{10}^{2} I_{11} I_{01}^{2}-\frac{15}{32} I_{10} I_{21} I_{01}^{2}-\frac{15}{16} I_{20} I_{11} I_{01}^{2}\right. \\
& +\frac{105}{64} I_{10}^{3} I_{01} I_{02}-\frac{45}{32} I_{10} I_{20} I_{01} I_{02}+\frac{3}{16} I_{30} I_{01} I_{02}-\frac{15}{32} I_{10}^{2} I_{12} I_{01}-\frac{45}{32} I_{10} I_{11}^{2} I_{01}+\frac{3}{8} I_{11} I_{21} I_{0} \\
& +\frac{3}{16} I_{20} I_{12} I_{01}-\frac{15}{16} I_{10}^{2} I_{11} I_{02}+\frac{3}{16} I_{10} I_{21} I_{02}+\frac{3}{8} I_{20} I_{11} I_{02}-\frac{5}{32} I_{10}^{3} I_{03}+\frac{3}{16} I_{10} I_{20} I_{03}-\frac{1}{24} \\
& \left.+\frac{3}{8} I_{10} I_{11} I_{12}+\frac{1}{8} I_{11}^{3}-\frac{1}{8} I_{21} I_{12}\right) \theta_{1}^{3} \theta_{2}^{3} v_{12}^{3}
\end{aligned}
$$

and $\gamma_{p, 6-p}$ is built from $\gamma_{6-p, p}$ by swapping $\theta_{1}$ and $\theta_{2}, v_{1}$ and $v_{2}$, and $I_{m, n}$ and $I_{n, m}$. In particular, the expansion provides a closed form expression of the prices of VIX futures in the two-factor Bergomi model at order 6 in small vol-of-vol when $u \mapsto \xi_{0}^{u}$ is flat.

## Expansion of the volatility of the squared VIX implied by VIX future prices

## Proposition

In the two-factor Bergomi model, the volatility $\sigma_{V I X_{T}^{2}}$ of the squared VIX implied by the VIX future price for maturity $T$ satisfies

$$
\begin{aligned}
& \sigma_{V I X_{T}^{2}}=\omega \alpha_{\theta} \sqrt{\theta_{1}^{2} I_{10}^{2} I\left(2 k_{1} T\right)+2 \rho \theta_{1} \theta_{2} I_{10} I_{01} I\left(\left(k_{1}+k_{2}\right) T\right)+\theta_{2}^{2} I_{01}^{2} I\left(2 k_{2} T\right)} \\
& \times\left\{1+\delta_{2}\left(\omega \alpha_{\theta}\right)^{2}+\delta_{4}\left(\omega \alpha_{\theta}\right)^{4}\right\}+O\left(\omega^{6}\right) \\
& \delta_{2}= \frac{1}{2}\left(\frac{\gamma_{4}}{\gamma_{2}}-\frac{\gamma_{2}}{2}\right), \quad \delta_{4}= \\
& \frac{1}{2}\left(\frac{\gamma_{6}}{\gamma_{2}}-\gamma_{4}+\frac{\gamma_{2}^{2}}{3}\right)-\frac{1}{8}\left(\frac{\gamma_{4}}{\gamma_{2}}-\frac{\gamma_{2}}{2}\right)^{2} .
\end{aligned}
$$

In particular, this provides a closed form expression of the implied volatility $\sigma_{V I X_{T}^{2}}$ in the two-factor Bergomi model at order 5 in small vol-of-vol when the initial curve $u \mapsto \xi_{0}^{u}$ is flat. At first order, this closed form expression reads

$$
\sigma_{V I X}^{2}=\omega \sqrt{\frac{\theta_{1}^{2} I\left(k_{1} \tau\right)^{2} I\left(2 k_{1} T\right)+2 \rho \theta_{1} \theta_{2} I\left(k_{1} \tau\right) I\left(k_{2} \tau\right) I\left(\left(k_{1}+k_{2}\right) T\right)+\theta_{2}^{2} I\left(k_{2} \tau\right)^{2} I\left(2 k_{2} T\right)}{\theta_{1}^{2}+2 \rho \theta_{1} \theta_{2}+\theta_{2}^{2}}}+O\left(\omega^{3}\right)
$$

## Numerical experiments: $\rho=0$



Figure: VIX future in the two-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion at orders 2,4 , and 6 with the exact quadrature for parameter set II of Bergomi (Stochastic Volatility Modeling, 2016)

Numerical experiments: $\rho=0$



Figure: Left: Implied volatility of the squared VIX. Right: VIX future computed using the implied volatility expansion at order one. Parameter set II of Bergomi (Stochastic Volatility Modeling, 2016)

## Numerical experiments: $\rho \neq 0$



Figure: Left: VIX future in the two-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact quadrature for parameter set III of Bergomi (Stochastic Volatility Modeling, 2016); $\rho=0.7$. Right: zoom on small $T$

## Numerical experiments: $\rho \neq 0$




Figure: Left: VIX future in the two-factor Bergomi model as a function of maturity (in years). Comparison of small vol-of-vol expansion at orders 2, 4, and 6 with the exact quadrature for parameter set III of Bergomi (Stochastic Volatility Modeling, 2016); $\rho=0.7$. Right: zoom on small $T$

## Proofs

## Proof: one-factor Bergomi model

- $\mathrm{VIX}_{T}^{2}=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{T}^{u} d u=f\left(T, X_{T}\right)$ with

$$
f(T, x)=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} \exp \left(\omega e^{-k(u-T)} x-\frac{\omega^{2}}{2} e^{-2 k(u-T)} v_{T}\right) d u .
$$

- The Hermite polynomials (of unit variance) $H_{n}$ satisfy for all $(\lambda, z) \in \mathbb{R}^{2}$

$$
e^{\lambda z-\frac{\lambda^{2}}{2}}=\sum_{n=0}^{\infty} H_{n}(z) \frac{\lambda^{n}}{n!} .
$$

- As a consequence, for all $(\lambda, z, v) \in \mathbb{R}^{3}$

$$
e^{\lambda z-\frac{\lambda^{2}}{2} v}=\exp \left(\lambda \sqrt{v} \frac{z}{\sqrt{v}}-\frac{(\lambda \sqrt{v})^{2}}{2}\right)=\sum_{n=0}^{\infty} H_{n}\left(\frac{z}{\sqrt{v}}\right) \frac{v^{n / 2} \lambda^{n}}{n!}=\sum_{n=0}^{\infty} H_{n}(z, v) \frac{\lambda^{n}}{n!}
$$

where

$$
\begin{equation*}
H_{n}(z, v):=v^{n / 2} H_{n}\left(\frac{z}{\sqrt{v}}\right)=\sum_{p=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{p} n!}{2^{p} p!(n-2 p)!} v^{p} z^{n-2 p} \tag{3.1}
\end{equation*}
$$

are the Hermite polynomials of variance $v$.

## Proof: one-factor Bergomi model

- The first seven polynomials $H_{n}(x, v)$ are

$$
\begin{array}{ll}
H_{0}(x, v)=1 & H_{4}(x, v)=x^{4}-6 v x^{2}+3 v^{2} \\
H_{1}(x, v)=x & H_{5}(x, v)=x^{5}-10 v x^{3}+15 v^{2} x \\
H_{2}(x, v)=x^{2}-v & H_{6}(x, v)=x^{6}-15 v x^{4}+45 v^{2} x^{2}-15 v^{3} .
\end{array}
$$

- In particular,

$$
\exp \left(\omega e^{-k(u-T)} x-\frac{\omega^{2}}{2} e^{-2 k(u-T)} v_{T}\right)=\sum_{n=0}^{\infty} H_{n}\left(x, v_{T}\right) e^{-n k(u-T)} \frac{\omega^{n}}{n!}
$$

- We get

$$
f(T, x)=\sum_{n=0}^{\infty} \Xi_{n} H_{n}\left(x, v_{T}\right) \frac{\omega^{n}}{n!}
$$

## Proof: one-factor Bergomi model

■ Denote $I_{n}:=\frac{\Xi_{n}}{\Xi_{0}}, P_{n}(x, v):=I_{n} H_{n}(x, v)$, and

$$
\begin{aligned}
& \varepsilon:=\frac{1}{\Xi_{0}} \sum_{n=1}^{\infty} \Xi_{n} H_{n}\left(x, v_{T}\right) \frac{\omega^{n}}{n!}=\sum_{n=1}^{\infty} P_{n}\left(x, v_{T}\right) \frac{\omega^{n}}{n!} . \text { Then } \\
& \quad \sqrt{f(T, x)}=\sqrt{\Xi_{0}} \sqrt{1+\varepsilon}=\sqrt{\Xi_{0}} \sum_{n=0}^{6} Q_{n}\left(x, v_{T}\right) \omega^{n}+O\left(\omega^{7}\right)
\end{aligned}
$$

where the polynomials $Q_{n}(x, v)$ are expressed in terms of the rescaled Hermite polynomials $P_{n}(x, v)$ :

## Lemma

Let $\varepsilon=\sum_{n=1}^{6} P_{n} \frac{\omega^{n}}{n!}+O\left(\omega^{7}\right)$. Then $\sqrt{1+\varepsilon}=\sum_{n=0}^{6} Q_{n} \omega^{n}+O\left(\omega^{7}\right)$ where

$$
\begin{aligned}
Q_{0} & =1 \\
Q_{1} & =\frac{1}{2} P_{1} \\
Q_{2} & =\frac{1}{4} P_{2}-\frac{1}{8} P_{1}^{2} \\
Q_{3} & =\frac{1}{12} P_{3}-\frac{1}{8} P_{1} P_{2}+\frac{1}{16} P_{1}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{4}=\frac{1}{48} P_{4}-\frac{1}{24} P_{1} P_{3}-\frac{1}{32} P_{2}^{2}+\frac{3}{32} P_{1}^{2} P_{2}-\frac{5}{128} P_{1}^{4} \\
& Q_{5}=\frac{P_{5}}{240}-\frac{P_{1} P_{4}}{96}-\frac{P_{2} P_{3}}{48}+\frac{P_{1}^{2} P_{3}}{32}+\frac{3}{64} P_{1} P_{2}^{2}-\frac{5}{64} P_{1}^{3} P_{2}+\frac{7}{256} P_{1}^{5} \\
& Q_{6}=\frac{1}{1440} P_{6}-\frac{1}{480} P_{1} P_{5}-\frac{1}{192} P_{2} P_{4}-\frac{1}{288} P_{3}^{2}+\frac{1}{128} P_{1}^{2} P_{4}
\end{aligned}
$$

$$
+\frac{1}{32} P_{1} P_{2} P_{3}+\frac{1}{128} P_{2}^{3}-\frac{5}{192} P_{1}^{3} P_{3}-\frac{15}{256} P_{1}^{2} P_{2}^{2}+\frac{35}{512} P_{1}^{4} P_{2}-\frac{63}{3072} P_{1}^{6}
$$

## Proof: one-factor Bergomi model

- To complete the proof, since

$$
\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\mathbb{E}\left[\sqrt{f\left(T, X_{T}\right)}\right]=\sqrt{\Xi_{0}} \sum_{n=0}^{6} \mathbb{E}\left[Q_{n}\left(X_{T}, v_{T}\right)\right] \omega^{n}+O\left(\omega^{7}\right)
$$

it is enough to compute $\mathbb{E}\left[Q_{n}\left(X_{T}, v_{T}\right)\right]$ for $n \in\{0,1, \ldots, 6\}$.

- $P_{2 n}$ (resp. $P_{2 n+1}$ ) being an even (resp. odd) polynomial in $x, Q_{1}, Q_{3}$ and $Q_{5}$ are odd polynomials in $x$. As $X_{T}$ is a symmetric random variable, this implies that $\mathbb{E}\left[Q_{n}\left(X_{T}, v_{T}\right)\right]=0$ for $n \in\{1,3,5\}$.
■ For the computation of $\mathbb{E}\left[Q_{n}\left(X_{T}, v_{T}\right)\right], n \in\{2,4,6\}$, remember that, from the orthogonality property of Hermite polynomials, $\mathbb{E}\left[P_{m} P_{n}\left(X_{T}, v_{T}\right)\right]=0$ whenever $m \neq n$ (in particular, $\mathbb{E}\left[P_{n}\left(X_{T}, v_{T}\right)\right]=0$ for $n \neq 0)$.
- The other terms can be computed using that $\mathbb{E}\left[X_{T}^{2 n}\right]=\frac{(2 n)!}{2^{n} n!} v_{T}^{n}$.


## Proof: two-factor Bergomi model

$$
\left.\left.\begin{array}{rl}
\xi_{t}^{u} & =\xi_{0}^{u} f^{u}\left(t, x_{t}^{u}\right)=\xi_{0}^{u} g^{u}\left(t, X_{t}^{1}, X_{t}^{2}\right) \\
d X_{t}^{i} & =-k_{i} X_{t}^{i} d t+d Z_{t}^{i}, \quad X_{0}^{i}=0, \quad i \in\{1,2\} \\
x_{t}^{u} & :=\alpha_{\theta}\left\{\theta_{1} e^{-k_{1}(u-t)} X_{t}^{1}+\theta_{2} e^{-k_{2}(u-t)} X_{t}^{2}\right\} \\
f^{u}(t, x) & :=\exp \left(\omega x-\frac{\omega^{2}}{2} v_{t}(u)\right) \\
v_{t}(u) & :=\operatorname{Var}\left(x_{t}^{u}\right)=\alpha_{\theta}^{2}\left\{\theta_{1}^{2} e^{-2 k_{1}(u-t)} v_{t}^{1}+\theta_{2}^{2} e^{-2 k_{2}(u-t)} v_{t}^{2}\right. \\
v_{t}^{i} & :=\frac{1-e^{-2 k_{i} t}}{2 k_{i}}, \quad v_{t}^{1,2}:=\rho \frac{1-e^{-\left(k_{1}+k_{2}\right) t}}{k_{1}+k_{2}} \\
\left(X_{t}^{1}, X_{t}^{2}\right) & \sim \mathcal{N}\left(0,\left(k_{1}+k_{2}\right)(u-t) v_{t}^{1,2}\right\} \\
v_{t}^{1,2} & v_{t}^{1,2} \\
v_{t}^{2}
\end{array}\right)\right) .
$$

## Proof: two-factor Bergomi model

■ Denote $\omega_{\theta}:=\omega \alpha_{\theta}$,

$$
X_{t}:=\binom{X_{t}^{1}}{X_{t}^{2}}, \quad V_{t}:=\operatorname{Cov}\left(X_{t}\right)=\left(\begin{array}{cc}
v_{t}^{1} & v_{t}^{1,2} \\
v_{t}^{1,2} & v_{t}^{2}
\end{array}\right), \quad \lambda(\delta):=\omega_{\theta}\binom{\theta_{1} e^{-k_{1} \delta}}{\theta_{2} e^{-k_{2} \delta}}
$$

- With these notations (prime $=$ transpose)

$$
\xi_{t}^{u}=\xi_{0}^{u} \exp \left(\lambda(u-t)^{\prime} X_{t}-\frac{1}{2} \lambda(u-t)^{\prime} V_{t} \lambda(u-t)\right)
$$

■ Then $\mathrm{VIX}_{T}^{2}=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{T}^{u} d u=f\left(T, X_{T}\right)$ with

$$
f(T, x):=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} \exp \left(\lambda(u-T)^{\prime} x-\frac{1}{2} \lambda(u-T)^{\prime} V_{T} \lambda(u-T)\right) d u, \quad x \in \mathbb{R}^{2}
$$

## Proof: two-factor Bergomi model

$$
f(T, x):=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} \exp \left(\lambda(u-T)^{\prime} x-\frac{1}{2} \lambda(u-T)^{\prime} V_{T} \lambda(u-T)\right) d u, \quad x \in \mathbb{R}^{2} .
$$

- For clarity, $T$ being fixed, denote

$$
X=\binom{X_{1}}{X_{2}}:=X_{T}, \quad V=\left(\begin{array}{cc}
v_{1} & v_{1,2} \\
v_{1,2} & v_{2}
\end{array}\right):=V_{T}, \quad \lambda_{u}:=\lambda(u-T) .
$$

- Expand the above exponential term in powers of $\lambda_{u}$ :

$$
\exp \left(\lambda_{u}^{\prime} x-\frac{1}{2} \lambda_{u}^{\prime} V \lambda_{u}\right)=\sum_{\nu \in \mathbb{N}^{2}} H_{\nu}(x, V) \frac{\lambda_{u}^{\nu}}{\nu!}
$$

where $\lambda^{\nu}:=\lambda_{1}^{\nu_{1}} \lambda_{2}^{\nu_{2}}, \nu!:=\nu_{1}!\nu_{2}!$, and the $H_{\nu}(x, V)$ are the dual bivariate Hermite polynomials (see Takemura and Takeuchi 1988).

## Proof: two-factor Bergomi model

■ The first $H_{\nu}(x, V)$ are given by

$$
\begin{array}{rlr}
H_{0,0}(x, V)=1 & H_{2,1}(x, V)=x_{1}^{2} x_{2}-2 v_{1,2} x_{1}-v_{1} x_{2} \\
H_{1,0}(x, V)=x_{1} & H_{4,0}(x, V)=x_{1}^{4}-6 v_{1} x_{1}^{2}+3 v_{1}^{2} \\
H_{2,0}(x, V)=x_{1}^{2}-v_{1} & H_{3,1}(x, V)=x_{1}^{3} x_{2}-3 v_{1,2} x_{1}^{2}-3 v_{1} x_{1} x_{2}+3 v_{1} v_{1,2} \\
H_{1,1}(x, V)= & x_{1} x_{2}-v_{1,2} & H_{2,2}(x, V)=x_{1}^{2} x_{2}^{2}-v_{2} x_{1}^{2}-4 v_{1,2} x_{1} x_{2}-v_{1} x_{2}^{2}+v_{1} v_{2}+2 \imath_{1} \\
H_{3,0}(x, V)= & x_{1}^{3}-3 v_{1} x_{1} & H_{5,0}(x, V)=x_{1}^{5}-10 v_{1} x_{1}^{3}+15 v_{1}^{2} x_{1} \\
H_{4,1}(x, V)= & x_{1}^{4} x_{2}-4 v_{1,2} x_{1}^{3}-6 v_{1} x_{1}^{2} x_{2}+12 v_{1} v_{1,2} x_{1}+3 v_{1}^{2} x_{2} \\
H_{3,2}(x, V)= & x_{1}^{3} x_{2}^{2}-v_{2} x_{1}^{3}-6 v_{1,2}^{2} x_{1}^{2} x_{2}-3 v_{1} x_{1} x_{2}^{2}+3\left(v_{1} v_{2}+2 v_{1,2}^{2}\right) x_{1}+6 v_{1} v_{1,2} x_{2} \\
H_{6,0}(x, V)= & x_{1}^{6}-15 v_{1} x_{1}^{4}+45 v_{1}^{2} x_{1}^{2}-15 v_{1}^{3} \\
H_{5,1}(x, V)= & x_{1}^{5} x_{2}-5 v_{1,2} x_{1}^{4}-10 v_{1} x_{1}^{3} x_{2}+30 v_{1} v_{1,2}^{2} x_{1}^{2}+15 v_{1}^{2} x_{1} x_{2}-15 v_{1}^{2} v_{1,2} \\
H_{4,2}(x, V)= & x_{1}^{4} x_{2}^{2}-v_{2} x_{1}^{4}-6 v_{1} x_{1}^{2} x_{2}^{2}+3 v_{1}^{2} x_{2}^{2}-8 v_{1,2} x_{1}^{3} x_{2}+6\left(v_{1} v_{2}+2 v_{1,2}^{2}\right) x_{1}^{2} \\
& +24 v_{1} v_{1,2} x_{1} x_{2}-3 v_{1}^{2} v_{2}-12 v_{1} v_{1,2}^{2} \\
H_{3,3}(x, V)= & x_{1}^{3} x_{2}^{3}-9 v_{1,2} x_{1}^{2} x_{2}^{2}-3 v_{2} x_{1}^{3} x_{2}-3 v_{1} x_{1} x_{2}^{3}+9\left(v_{1} v_{2}+2 v_{1,2}^{2}\right) x_{1} x_{2}+9 v_{1,2} v_{2} x_{1}^{2} \\
& +9 v_{1} v_{1,2} x_{2}^{2}-9 v_{1} v_{1,2} v_{2}-6 v_{1,2}^{3} .
\end{array}
$$

## Proof: two-factor Bergomi model

$$
\begin{gathered}
f(T, x):=\frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} \exp \left(\lambda_{u}^{\prime} x-\frac{1}{2} \lambda_{u}^{\prime} V \lambda_{u}\right) d u, \quad x \in \mathbb{R}^{2} \\
\exp \left(\lambda_{u}^{\prime} x-\frac{1}{2} \lambda_{u}^{\prime} V \lambda_{u}\right)=\sum_{\nu \in \mathbb{N}^{2}} H_{\nu}(x, V) \frac{\lambda_{u}^{\nu}}{\nu!} \\
f(T, x)=\sum_{\nu \in \mathbb{N}^{2}} H_{\nu}(x, V) \frac{1}{\nu!} \frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} \lambda_{u}^{\nu} d u \\
=\sum_{\nu \in \mathbb{N}^{2}} H_{\nu}(x, V) \omega_{\theta}^{\nu_{1}+\nu_{2}} \frac{\theta_{1}^{\nu_{1}} \theta_{2}^{\nu_{2}}}{\nu_{1}!\nu_{2}!} \frac{1}{\tau} \int_{T}^{T+\tau} \xi_{0}^{u} e^{-\left(\nu_{1} k_{1}+\nu_{2} k_{2}\right)(u-T)} d u \\
=\sum_{\nu \in \mathbb{N}^{2}} H_{\nu}(x, V) \omega_{\theta}^{\nu_{1}+\nu_{2}} \frac{\theta_{1}^{\nu_{1}} \theta_{2}^{\nu_{2}}}{\nu_{1}!\nu_{2}!} \Xi_{\nu_{1}, \nu_{2}} \\
=\sum_{n=0}^{\infty} \frac{\omega_{\theta}^{n}}{n!} \sum_{p=0}^{n} \frac{n!}{p!(n-p)!} \theta_{1}^{p} \theta_{2}^{n-p} \Xi_{p, n-p} H_{p, n-p}(x, V) .
\end{gathered}
$$

## Proof: two-factor Bergomi model

$$
f(T, x)=\sum_{n=0}^{\infty} \frac{\omega_{\theta}^{n}}{n!} \sum_{p=0}^{n} \frac{n!}{p!(n-p)!} \theta_{1}^{p} \theta_{2}^{n-p} \Xi_{p, n-p} H_{p, n-p}(x, V), \quad x \in \mathbb{R}^{2}
$$

- Let us denote $f(T, x)=\Xi_{0,0}(1+\varepsilon)$ with (recall $I_{m, n}:=\frac{\Xi_{m, n}}{\Xi_{0,0}}$ )

$$
\begin{aligned}
\varepsilon & :=\sum_{n=1}^{\infty} \frac{\omega_{\theta}^{n}}{n!} P_{n}(x, V) \\
P_{n}(x, V) & :=\sum_{p=0}^{n} \frac{n!}{p!(n-p)!} \theta_{1}^{p} \theta_{2}^{n-p} I_{p, n-p} H_{p, n-p}(x, V)
\end{aligned}
$$

■ Then

$$
\sqrt{f(T, x)}=\sqrt{\Xi_{0,0}} \sqrt{1+\varepsilon}=\sqrt{\Xi_{0,0}} \sum_{n=0}^{6} Q_{n}(x, V) \omega_{\theta}^{n}+O\left(\omega^{7}\right)
$$

where $Q_{n}(x, V)$ are built from $P_{n}(x, V)$ as seen in the one-factor case.

$$
\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\mathbb{E}[\sqrt{f(T, X)}]=\sqrt{\Xi_{0,0}} \sum_{n=0}^{6} \mathbb{E}\left[Q_{n}(X, V)\right] \omega_{\theta}^{n}+O\left(\omega^{7}\right)
$$

## Proof: two-factor Bergomi model

$$
\mathbb{E}\left[\mathrm{VIX}_{T}\right]=\mathbb{E}[\sqrt{f(T, X)}]=\sqrt{\Xi_{0,0}} \sum_{n=0}^{6} \mathbb{E}\left[Q_{n}(X, V)\right] \omega_{\theta}^{n}+O\left(\omega^{7}\right)
$$

- $H_{\nu}(x, V)$, as a polynomial in $x$, has same parity as $|\nu|:=\nu_{1}+\nu_{2}$ $\Longrightarrow P_{n}(x, V)$ has same parity as $n \Longrightarrow Q_{1}(x, V), Q_{3}(x, V)$ and $Q_{5}(x, V)$ are odd polynomials in $x$. Since $X$ is a centered random variable, $\mathbb{E}\left[Q_{n}(X, V)\right]=0$ for $n \in\{1,3,5\}$.
- To compute $\mathbb{E}\left[Q_{n}(X, V)\right], n \in\{2,4,6\}$, use the weak orthogonality property of Hermite polynomials: $\mathbb{E}\left[H_{\mu} H_{\nu}(X, V)\right]=0$ whenever $|\mu| \neq|\nu|$. In particular, $\mathbb{E}\left[P_{m} P_{n}(X, V)\right]=0$ whenever $m \neq n$, and $\mathbb{E}\left[P_{n}(X, V)\right]=0$ for $n \neq 0$. For the other terms use
$\mathbb{E}\left[X_{1}^{2}\right]=v_{1}, \quad \mathbb{E}\left[X_{1} X_{2}\right]=v_{1,2}, \quad \mathbb{E}\left[X_{1}^{4}\right]=3 v_{1}^{2}, \quad \mathbb{E}\left[X_{1}^{3} X_{2}\right]=3 v_{1} v_{1,2}, \quad \mathbb{E}\left[X_{1}^{2} X_{2}^{2}\right]=v_{1} v_{2}+2 v_{1,2}^{2}$,
$\mathbb{E}\left[X_{1}^{6}\right]=15 v_{1}^{3}, \quad \mathbb{E}\left[X_{1}^{5} X_{2}\right]=15 v_{1}^{2} v_{1,2}, \quad \mathbb{E}\left[X_{1}^{4} X_{2}^{2}\right]=3 v_{1} v_{2}+12 v_{1} v_{1,2}^{2}, \quad \mathbb{E}\left[X_{1}^{3} X_{2}^{3}\right]=9 v_{1} v_{1,2} v_{2}+6 v_{1,2}^{3}$

$$
\mathbb{E}\left[X_{1}^{2 m} X_{2}^{2 n}\right]=\frac{(2 n)!}{2^{m+n}} \sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{(-1)^{n-i-j}(2 m+2 i)!}{(2 i)!(m+i)!j!(n-i-j)!} v_{1}^{m-n+j} v_{2}^{j} v_{1,2}^{2(n-j)}, m \geq n
$$

$$
\mathbb{E}\left[X_{1}^{2 m+1} X_{2}^{2 n+1}\right]=\frac{(2 n+1)!}{2^{m+n+1}} \sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{(-1)^{n-i-j}(2 m+2 i+2)!}{(2 i+1)!(m+i+1)!j!(n-i-j)!} v_{1}^{m-n+j} v_{2}^{j} v_{1,2}^{2(n-j)+1}, m \geq n
$$

## Joint SPX/VIX smile calibration

## The joint SPX/VIX smile calibration puzzle

- It looks impossible to jointly calibrate the SPX and VIX smiles using continuous-time stochastic vol models with continuous SPX paths.
■ In those models, large ATM SPX skew $\Longrightarrow$ large vol-of-vol, inconsistent with the relatively low VIX implied vols, especially for short maturities.

■ However, mean-reversion also comes into play. Increasing mean-reversion means that ATM SPX skew flattens and VIX implied vol decreases. At different speeds?

- Objective: precisely pinpoint the roles of vol-of-vol and mean-reversion.

■ Bergomi-G. (2012): Expansion of SPX smile in small vol-of-vol in generic stochastic vol models.
■ This talk: Expansion of VIX futures in small vol-of-vol in Bergomi models.

- Putting together both expansions sheds light on the structural joint constraints on SPX and VIX imposed by stochastic vol models in general, using the example of Bergomi models.


## The joint SPX/VIX smile calibration puzzle

- In particular G. (2017) has shown that SPX/VIX market data shows inversion of convex ordering for short maturities $T$ :

$$
\mathrm{VIX}_{\mathrm{mkt}, T}^{2} \leq_{c} \mathrm{VIX}_{\mathrm{loc}, T}^{2}
$$

- G. (2018) has shown that in the Bergomi models inversion of convex ordering requires large mean-reversion and large vol-of-vol.

■ Here we directly use approximate formulas of SPX skew and VIX futures in the one-factor Bergomi model to prove that in the Bergomi models joint calibration requires large $k$ and $\omega$.

- Make this statement more precise: How big should $\frac{\omega}{k}$ be? $\frac{\omega^{2}}{k}$ ?

Reminder on the ergodic regime:

- The limiting regime where $k$ and $\omega$ tend to $+\infty$ while $\frac{\omega^{2}}{k}$ is kept constant corresponds to an ergodic limit where ( $\omega X_{t}$ ) quickly reaches its stationary distribution $\mathcal{N}\left(0, \frac{\omega^{2}}{2 k}\right)$. Cf Fouque, Papanicolaou and Sircar (2000).
- Only regime where $k, \omega$ are large and the variance of $\sigma_{t}^{2}$ has a finite limit, which is the natural regime in finance.


## The SPX smile in the one-factor Bergomi model

- Bergomi-G. expansion (2012) gives the smile of generic stochastic volatility models at order 2 in vol-of-vol:

$$
\widehat{\sigma}(T, K)=\widehat{\sigma}_{T}^{\mathrm{ATM}}+\mathcal{S}_{T} \ln \left(\frac{K}{S_{0}}\right)+\mathcal{C}_{T} \ln ^{2}\left(\frac{K}{S_{0}}\right)+O\left(\omega^{3}\right)
$$

- In the case of the one-factor Bergomi model with a flat initial term structure of variance swaps $\left(\xi_{0}^{u} \equiv \xi\right)$, coefficients are explicit functions of $\omega, k, \rho, \xi, T$. In particular, the ATM skew

$$
\mathcal{S}_{T}=\frac{\rho \omega}{2} \mathcal{J}(k T)+\frac{\rho^{2} \omega^{2} \sqrt{\xi} T}{8}\left(2 \mathcal{H}(k T)+4 \frac{\mathcal{J}(k T)-\mathcal{J}(2 k T)}{k T}-3 \mathcal{J}(k T)^{2}\right)
$$

where

$$
\begin{aligned}
\mathcal{I}(\alpha) & =\frac{1-e^{-\alpha}}{\alpha}, \quad \mathcal{J}(\alpha)=\frac{\alpha-1+e^{-\alpha}}{\alpha^{2}} \\
\mathcal{K}(\alpha) & =\frac{1-e^{-\alpha}-\alpha e^{-\alpha}}{\alpha^{2}}, \quad \mathcal{H}(\alpha)=\frac{\mathcal{J}(\alpha)-\mathcal{K}(\alpha)}{\alpha}
\end{aligned}
$$

## SPX skew and implied vol of VIX² at first order in $\omega$ (Bergomi1F)

$$
\begin{aligned}
\mathcal{S}_{T} & =\frac{\rho \omega}{2} \frac{k T-1+e^{-k T}}{(k T)^{2}}+O\left(\omega^{2}\right) \\
\sigma_{\mathrm{VIX}_{T}^{2}} & =\omega \frac{1-e^{-k \tau}}{k \tau} \sqrt{\frac{1-e^{-2 k T}}{2 k T}}+O\left(\omega^{3}\right)
\end{aligned}
$$

## Small mean-reversion: cannot jointly calibrate

■ $\mathcal{S}_{T} \approx \frac{\rho \omega}{4}$. Calibration to very short-term SPX smile: $\mathcal{S}_{T} \approx-1.5$ $\Longrightarrow \rho \omega \approx-6 \Longrightarrow \omega \geq 6$.

- $\sigma_{\mathrm{VIX}}^{T} 20 \geq 2:$ too large compared to market data $(\approx 3)$ !

■ Vol-of-vol implied by SPX skew $\approx 2 \times$ vol-of-vol implied by VIX futures!

## SPX skew and implied vol of $\mathrm{VIX}^{2}$ at first order in $\omega$ (Bergomi1F)

$$
\begin{aligned}
\mathcal{S}_{T} & =\frac{\rho \omega}{2} \frac{k T-1+e^{-k T}}{(k T)^{2}}+O\left(\omega^{2}\right) \\
\sigma_{\mathrm{VIX}_{T}^{2}} & =\omega \frac{1-e^{-k \tau}}{k \tau} \sqrt{\frac{1-e^{-2 k T}}{2 k T}}+O\left(\omega^{3}\right)
\end{aligned}
$$

## Large mean-reversion:

■ $\mathcal{S}_{T} \approx \frac{\rho \omega}{2 k T}, k T \gg 1$. Calibration to SPX smile, $T=\frac{1}{4}$ : $\frac{\rho \omega}{2 k T} \approx-0.6 \Longrightarrow 2 \frac{\rho \omega}{k} \approx-0.6 \Longrightarrow \frac{\omega}{k} \geq 0.3: \omega$ and $k$ are large. Numerical example: $k=20, \rho=-1 \Longrightarrow \omega \geq 6$

- $\sigma_{\mathrm{VIX}_{T}^{2}} \approx \frac{\omega}{k^{3 / 2} \tau \sqrt{2 T}} \approx \frac{\sqrt{2 T}}{\rho \tau \sqrt{k}} \mathcal{S}_{T}$ behaves like $\frac{\omega}{k^{3 / 2}} \ll \frac{\omega}{k}$ ! Because of mean-reversion, implied vol of $\mathrm{VIX}_{T}^{2}$ is much smaller. Numerical example with $\omega=6: \sigma_{\mathrm{VIX}_{T}^{2}} \approx 1$.
$\Longrightarrow$ Both $\omega$ and $k$ must be large, with $\omega \approx k$ so $\frac{\omega^{2}}{k}$ large! Large stationary standard deviation of instantaneous vol.


## Problems

- $\frac{\omega^{2}}{k}$ large $\Longrightarrow$ the small vol-of-vol expansions may be inaccurate, and the volatility is difficult to simulate (very large variance).
- Calibration only to VIX future, not to the full VIX smile. Use skewed Bergomi model (Bergomi 2008).
- Term-structure of SPX ATM skew requires at least two mean-reversion scales. The slow mean-reversion component ruins the $\frac{\omega}{k^{3 / 2}}$ behavior.


## Two-factor Bergomi model: varying all parameters


$\omega \in[3,8], k_{1} \in[20,100], k_{2} \in[8,20], \theta_{2} \in[0,0.3], \rho_{S 1}, \rho_{S 2} \in[-0.99,-0.5], T=0.1$

## Term-structure of SPX ATM skew

One-factor Bergomi model with large mean-reversion and vol-of-vol: $\mathcal{S}_{T} \sim \frac{1}{T}$. To mimic a power-law decay $\mathcal{S}_{T} \sim \frac{1}{T^{\alpha}}$ : 2-factor Bergomi model and rough volatility model.


## SPX ATM skew, May 7, 2018



## SPX ATM skew, May 7, 2018



## SPX ATM skew, May 7, 2018



However... SPX ATM skew, Jan 18, 2018


## Rough Bergomi model: Power-law kernel $K(\theta)=\nu \theta^{H-\frac{1}{2}}$

- No Markov representation for $\xi_{t}^{u}$.

■ Instantaneous variance $\sigma_{t}^{2}:=\xi_{t}^{t}$ is not a semimartingale. One cannot write Itô dynamics $d \xi_{t}^{t}=\cdots d t+\cdots d Z_{t}$ for the instantaneous variance. No notion of a dynamic volatility of instantaneous spot variance.

- However we can compare the values of $\operatorname{Var}\left(\ln \frac{\xi_{t}^{u}}{\xi_{0}^{u}}\right)$ in the power-law and exponential kernel models:

$$
\begin{align*}
\nu^{2} \frac{u^{2 H}-(u-t)^{2 H}}{2 H} & \longleftrightarrow \omega^{2} e^{-2 k(u-t)} \frac{1-e^{-2 k t}}{2 k}  \tag{4.1}\\
u=t \rightarrow 0: \quad \nu^{2} \frac{t^{2 H}}{2 H} & \longleftrightarrow \omega^{2} \frac{1-e^{-2 k t}}{2 k} \approx \omega^{2} t  \tag{4.2}\\
\nu \frac{t^{H-\frac{1}{2}}}{\sqrt{2 H}} & \longleftrightarrow \omega \tag{4.3}
\end{align*}
$$

- $\nu \frac{t^{H-\frac{1}{2}}}{\sqrt{2 H}}$ can be interpreted as a short term volatility of instantaneous spot variance.
$■[\nu]=\operatorname{time}^{-H} ;\left[\nu \theta^{H-\frac{1}{2}}\right]=\left[\nu \frac{t^{H-\frac{1}{2}}}{\sqrt{2 H}}\right]=$ vol.


## Rough Bergomi model: Power-law kernel $K(\theta)=\nu \theta^{H-\frac{1}{2}}$

■ Short-term ATM skew in SV models $\sim \rho \omega$. Explains why the ATM skew in such rough volatility models behaves like $T^{H-\frac{1}{2}}$ for short maturities $T$ (Alós, Fukasawa...), which is one of the reasons why this model has been introduced (Gatheral, Jaisson, Rosenbaum, Friz, Bayer).
■ In the limit $H \rightarrow 0$, for fixed $\nu, \nu^{2} \frac{t^{2 H}}{2 H} \rightarrow+\infty$ for any $t>0$.

- In order for $\operatorname{Var}\left(\sigma_{t}^{2}\right)$ to tend to a finite limit, we must impose that $\frac{\nu^{2}}{2 H}$ tend to a finite limit $\Longrightarrow$ A natural limiting regime, analogous to the ergodic regime described above for the exponential kernel, is $H, \nu \rightarrow 0$, with $\frac{\nu^{2}}{2 H}$ kept constant.
- However in this ergodic limit the SPX skew is $\sim \sqrt{H} T^{H-\frac{1}{2}} \ldots$


## Joint calibration with continuous SPX models? <br> Numerical tests

## Joint calibration: Calibrating first to VIX market

## Skewing the models on $\xi_{t}^{u}$ :

■ Following Bergomi (2008), we use a linear combination of two lognormal random variables to model the instantaneous variance $\sigma_{t}^{2}$ so as to generate positive VIX skew:
$\sigma_{t}^{2}=\xi_{0}^{t}\left((1-\lambda) \mathcal{E}\left(\omega_{0} \int_{0}^{t} e^{-k(t-s)} d Z_{s}\right)+\lambda \mathcal{E}\left(\omega_{1} \int_{0}^{t} e^{-k(t-s)} d Z_{s}\right)\right)$
or
$\sigma_{t}^{2}=\xi_{0}^{t}\left((1-\lambda) \mathcal{E}\left(\nu_{0} \int_{0}^{t}(t-s)^{H-\frac{1}{2}} d Z_{s}\right)+\lambda \mathcal{E}\left(\nu_{1} \int_{0}^{t}(t-s)^{H-1 / 2} d Z_{s}\right)\right)$
with $\lambda \in[0,1]$.

- $\mathcal{E}(X)$ is simply a shorthand notation for $\exp \left(X-\frac{1}{2} \operatorname{Var}(X)\right)$.

■ Also (independently) introduced by De Marco.

Skewed rough Bergomi: Calibration to VIX future and VIX options (March 21, 2018


Skewed rough Bergomi: Calibration to VIX future and VIX options (March 21, 2018


## Skewed rough Bergomi: Calibration to VIX future and VIX options



## Skewed rough Bergomi: Calibration to VIX future and VIX options



## Skewed rough Bergomi: Calibration to VIX future and VIX options



## Skewed rough Bergomi: Calibration to VIX future and VIX options (March 21, 2018

Time-dependent optimal parameters $\lambda, v_{0}, v_{1}$ as of March 21, 2018, $H=0.10$


Julien Guyon

## Skewed rough Bergomi: Calibration to VIX future and VIX options (March

 21, 2018Empirical average of $\sigma_{t}^{2}$ in skewed rough Bergomi model calibrated on March 21, 2018, $H=0.10, \mathrm{~N}=400000$


## Skewed rough Bergomi calibrated to VIX: SPX smile



## Skewed rough Bergomi calibrated to VIX: SPX smile



## Skewed rough Bergomi calibrated to VIX: SPX smile



## Skewed rough Bergomi calibrated to VIX: SPX smile



## Skewed rough Bergomi calibrated to VIX: SPX smile

■ Not enough ATM skew for SPX, despite pushing negative spot-vol correlation as much as possible.

■ I get similar results when I use the skewed 2-factor Bergomi model instead of the skewed rough Bergomi model.

## Joint calibration: Calibrating first to SPX market

Consider only continuous models on SPX that are calibrated to SPX smile:

$$
\frac{d S_{t}}{S_{t}}=\frac{a_{t}}{\sqrt{\mathbb{E}\left[a_{t}^{2} \mid S_{t}\right]}} \sigma_{\mathrm{lv}}\left(t, S_{t}\right) d W_{t}
$$

and optimize on $\left(a_{t}\right)$ so as to match VIX options - or compute the infimum of VIX implied vols within those models.

Natural candidates for $\left(a_{t}\right)$ : skewed rough or 2-factor Bergomi model. More generally: $a_{t}=\sigma_{i}\left(X_{t}\right), t \in\left[T_{i}, T_{i}+\tau\right]$

- The leverage function

$$
l\left(t, S_{t}\right)=\frac{\sigma_{\mathrm{loc}}\left(t, S_{t}\right)}{\sqrt{\mathbb{E}\left[a_{t}^{2} \mid S_{t}\right]}}
$$

does not mean revert; it fights against inversion of convex ordering.

- Numerically estimate

$$
\mathrm{VIX}_{T_{i}}^{2}=\frac{1}{\tau} \int_{T_{i}}^{T_{i}+\tau} \mathbb{E}\left[\left.\frac{\sigma_{i}\left(X_{t}\right)^{2}}{\mathbb{E}\left[\sigma_{i}\left(X_{t}\right)^{2} \mid S_{t}\right]} \sigma_{\mathrm{loc}}\left(t, S_{t}\right)^{2} \right\rvert\, \mathcal{F}_{T_{i}}\right] d t
$$

(use least squares Monte Carlo or neural networks)

## Joint calibration: Calibrating first to SPX market (Aug 1, 2018)



## Why jumps can help

■ For a continuous model to calibrate jointly to SPX and VIX options, the distribution of $\mathbb{E}\left[\left.\frac{1}{\tau} \int_{T}^{T+\tau} \sigma_{t}^{2} d t \right\rvert\, \mathcal{F}_{T}\right]$ should be as narrow as possible, but without killing the SPX skew. The problem of ergodic/stationary $\left(\sigma_{t}\right)$ is that they produce flat SPX skew.
■ Jump-Lévy processes are precisely examples of processes that can generate deterministic realized variance together with a smile on the underlying.
■ This explains why jumps have proved useful in this problem.

## Conjecture

■ Consider continuous models on SPX that are calibrated to SPX smile:

$$
\frac{d S_{t}}{S_{t}}=\frac{a_{t}}{\sqrt{\mathbb{E}\left[a_{t}^{2} \mid S_{t}\right]}} \sigma_{\mathrm{loc}}\left(t, S_{t}\right) d W_{t}
$$

- Define

$$
\mathrm{VIX}_{T}^{2}=\frac{1}{\tau} \int_{T}^{T+\tau} \mathbb{E}\left[\left.\frac{a_{t}^{2}}{\mathbb{E}\left[a_{t}^{2} \mid S_{t}\right]} \sigma_{\mathrm{loc}}^{2}\left(t, S_{t}\right) \right\rvert\, \mathcal{F}_{T}\right] d t
$$

- Conjecture: Continuous-time continuous-paths models for the SPX cannot fit VIX smile for small $T$ :

$$
\inf _{\left(a_{t}\right)} \mathbb{E}\left[\left(\mathrm{VIX}_{T}-K\right)_{+}\right]>C_{\mathrm{VIX}}^{\mathrm{mkt}}(T, K)
$$

■ Controlled singular Mc-Kean equation, mean-field HJB PDE.

## The joint SPX/VIX smile calibration puzzle solved

- Exact joint calibration of SPX and VIX smiles.

■ Completely different approach: instead of parametric continuous-time models we use nonparametric discrete-time models.

■ Discrete-time allows to decouple SPX skew and VIX implied vol.
■ Nonparametric gives flexibility to fit the whole smiles.

- The model is solution to a dispersion-constrained martingale transport problem.

■ Numerically built using the Sinkhorn algorithm.

## Talk tomorrow at 3:15pm.

## A few selected references

Bergomi, L.: Smile dynamics II, Risk, October, 2005.Bergomi, L.: Smile Dynamics III, Risk, March 2008.
Bergomi, L., Guyon, J.: Stochastic volatility's orderly smiles, Risk, May, 2012.
宣
De Marco, S., Henry-Labordere, P.: Linking vanillas and VIX options: A constrained martingale optimal transport problem, SIAM J. Finan. Math. 6:1171-1194, 2015.


Dupire, B.: Arbitrage pricing with stochastic volatility, preprint, 1993.Dupire, B.: Pricing with a smile, Risk, January, 1994.
Guyon, J.: On the joint calibration of SPX and VIX options, Conference in honor of Jim Gatheral's 60th birthday, NYU Courant, 2017.


Guyon, J.: On the joint calibration of SPX and VIX options, Finance and Stochastics seminar, Imperial College London, 2018.
$\square$ Guyon, J.: The VIX future in Bergomi models, in preparation, 2018.Jacquier, A., Martini, C., Muguruza, A.: On the VIX futures in the rough Bergomi model, preprint, 2017.

