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Outline

1 Why Path-Dependent Volatility (PDV)?

2 Is Volatility Path-Dependent? How much? How?

3 Continuous-time Markovian extension: the 4-Factor PDV model
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Path-Dependent Volatility

dSt
St

= σ(Su, u ≤ t) dWt

Zero rates, repos, dividends for simplicity

Volatility drives the dynamics of the asset price S

Feedback loop from prices to volatility

Pure feedback model: volatility is an endogenous factor

Main references:
Econometrics:
The whole GARCH literature
Derivatives research (macro, pricing models, calibration):
Hobson-Rogers ’98, JG ’14
Econophysics (micro, statistical models):
Zumbach ’09-10, Chicheportiche-Bouchaud ’14, Blanc-Donier-Bouchaud ’16
Recent models with a PDV component:
Gatheral-Jusselin-Rosenbaum ’20, Parent ’22
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Why Path-Dependent Volatility?
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A philosophical argument

-
past present future

available info -

The arrow of time

Markovian assumption: the future depends on the past only through the
present

Often made just for simplicity and ease of computation, not a fundamental
property

Example: assume that the price of an option depends only on current time
t and current asset price St: P (t, St)

In fact, often, the present does not capture all information from the
past −→ P (t, (Su, u ≤ t))
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An intuitive argument: a simple quizz

May 1, 2024 May 1, 2025

SPX 5,000 6,300
VIX ?

-
a5, 000

a 6, 300
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An intuitive argument: a simple quizz

May 1, 2024 April 1, 2025 May 1, 2025

SPX 5,000 7,000 6,300
VIX ?

-
a5, 000

a7, 000

a 6, 300
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An intuitive argument: a simple quizz

1000 2000 3000 4000 5000
SPX

20

40

60

80
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X
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Sep 2001

Jan 2008

May 2014

Sep 2020
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A financial and scaling argument

The two basic quantities that possess a natural scale are the volatility
levels and the asset returns

A good model should relate these two quantities: Path-dependent
volatility

volatility depends on asset

LV level level
SV returns returns

PDV level returns
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Path-dependent volatility vs Stochastic volatility

dSt
St

= σt dWt, σt = f(t, Yt)

dYt = µ(t, Yt) dt+ ν(t, Yt)
(
ρ dWt +

√
1− ρ2 dW⊥t

)
Yt = Y0 +

∫ t

0

µ(u, Yu) du+

∫ t

0

ν(u, Yu)

(
ρ

1

f(u, Yu)

dSu
Su

+
√

1− ρ2 dW⊥u

)
ρ = 0: SV is strictly path-independent

The asset price is a slave process with absolutely no feedback on volatility:

σt = ϕ(t, (dW⊥u )0≤u≤t) = ψ(t, (W⊥u )0≤u≤t)

ρ /∈ {−1, 0, 1}: SV is partially path-dependent
Partial feedback from asset price to volatility through spot-vol correl(s):

σt = ϕ

(
t,

(
dSu

Su

)
0≤u≤t

,
(
dW⊥u

)
0≤u≤t

)
= ψ

(
t, (Su)0≤u≤t ,

(
W⊥u

)
0≤u≤t

)
ρ = ±1: SV is fully path-dependent

Pure feedback but path-dependence ϕ,ψ is complicated, implicit:

σt = ϕ

(
t,

(
dSu

Su

)
0≤u≤t

)
= ψ(t, (Su)0≤u≤t)
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Joint calibration of SV models to SPX and VIX smiles

The joint calibration of classical parametric SV models to SPX and VIX smiles
leads to

Very large vol of vol

Very large mean-reversions (several time scales)

Correlations = ±1 =⇒ Path-dependent volatility

See:

Inversion of Convex Ordering in the VIX Market (JG, Quantitative
Finance, ’20)

The VIX Future in Bergomi Models: Fast Approximation Formulas and
Joint Calibration with S&P 500 Skew (JG, SIAM Journal on Financial
Mathematics, ’22)
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Joint calibration of SV models to SPX and VIX smiles

Figure: SPX smile as of January 22, 2020, T = 30 days
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Joint calibration of SV models to SPX and VIX smiles

Figure: VIX smile as of January 22, 2020, T = 28 days
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Joint calibration of SV models to SPX and VIX smiles

ATM skew:

Definition: ST =
dσBS(K,T )

dK
K

∣∣∣
K=FT

SPX, small T : ST ≈ −1.5

Classical one-factor SV model: ST −→
T→0

1

2
× spot-vol correl× vol of vol

Calibration to short-term ATM SPX skew =⇒
vol of vol ≥ 3 = 300%� short-term ATM VIX implied vol

=⇒ Use
very large vol of vol
very large mean-reversion(s) (so that VIX implied vol � vol of vol)
−1 spot-vol correlation(s)

S0 ≈ −1.5: see Does the Term-Structure of Equity At-the-Money Skew Really
Follow a Power Law? (El Amrani and JG, Risk, August ’23)
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An information-theoretical/financial economics argument

Contrary to SV models, PDV models do not require adding extra sources
of randomness to generate rich spot-vol dynamics: they explain volatility
in a purely endogenous way.

=⇒ Unlike SV models, PDV models are complete models: derivatives
have a unique, unambiguous price, independent of any preferences or
utility functions.

All the information exchanged by market participants is recorded in
the underlying asset prices, not just in current prices, but in the history
of all past prices.

Reality is a bit more complex, but we will show that it is actually quite
close to this, so it makes sense to start building a model by extracting
all the information that past asset prices contain about volatility.
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Path-dependent volatility is generic for option pricing

All SV models have an equivalent PDV model in the sense that all
path-dependent options (not only vanilla options) written on the
underlying asset have the same prices in both models.

Brunick and Shreve ’13: Given a general Itô process dSt = σtSt dWt,
there exists a PDV model dŜt = σ(t, (Ŝu)u≤t)Ŝt dŴt s.t. the distributions
of the processes (St)t≥0 and (Ŝt)t≥0 are equal:

σ(t, (Su)u≤t)
2 = E[σ2

t |(Su)u≤t]

=⇒ The law of a price process (St)t≥0 produced by any SV or stochastic
local volatility (SLV) model can be exactly reproduced by a PDV model.
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Empirical evidence
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Empirical evidence

Much of the GARCH literature

Time reversal asymmetry in finance: Zumbach-Lynch ’01, Zumbach ’09,
Chicheportiche-Bouchaud ’14...: “Financial time series are not statistically
symmetrical when past and future are interchanged” (BDB ’16)

Leverage effect:
“Past returns affect (negatively) future realized volatilities, but not the
other way round” (BDB ’16)
t→ −t and r → −r asymmetry

ZL ’01: time reversal asymmetry even in absence of leverage effect:
Weak Zumbach effect: “Past large-scale realized volatilities are more
correlated with future small-scale realized volatilities than vice versa” (BDB
’16). Most easily captured by PDV models.
t→ −t asymmetry, but r → −r symmetry

Strong Zumbach effect: “Conditional dynamics of volatility with respect
to the past depend not only on past volatility trajectory but also on the
historical price path” (GJR ’20) ⇐⇒ There is some price-path-
dependency in the volatility dynamics
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Empirical evidence

Our Machine Learning approach confirms those findings and moreover answer
two crucial questions:

1 How exactly does volatility depend on past price returns (price trends
and past squared returns)?

2 How much of volatility is path-dependent, i.e., purely endogenous?

That is, explain volatility as an endogenous factor as best as we can,
empirically.
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Objectives

(1) Learn path-dependent volatility empirically

Learn how much of volatility is path-dependent, and how it depends on
past asset returns.

Empirical study: learn implied volatility (VIX) and future Realized
Volatility (RV) from SPX path [+ other equity indexes].

Historical PDV or Empirical PDV or P-PDV.

(2) Build continuous-time Markovian version of empirical PDV model

Extremely realistic sample paths + SPX and VIX smiles.

(3) Jointly calibrate Model (2) to SPX and VIX smiles

Modify parameters of historical PDV model to fit market smiles: P 6= Q.

Implied PDV or Risk-neutral PDV or Q-PDV.

(4) Add SV to account for the (small) exogenous part: PDSV

SV component built from the analysis of residuals true vol
predicted PDV vol

≈ 1.
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Is Volatility Path-Dependent?
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Is volatility path-dependent? A Machine Learning approach

Objective: learn from data how much the volatility level depends on
past asset returns.

Learn Volatility (VIX or RV) from SPX path:

Volatilityt = f(Su, u ≤ t) + ε

−→ Historical PDV / Empirical PDV / P-PDV

Feature engineering: find relevant SPX path features.

Try various models: various sets of features and parametric forms for fθ.

Select the one(s) with the best validation score.

Check how the models perform on the test set.

Training set: 2000–18; test set: 2019–22.

A very challenging test set! Due to the Covid-19 pandemic, the test set
includes very different volatility regimes

As a result of this analysis, we propose a new, simple PDV model
that performs better than existing models.
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Feature engineering
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Price path features should be scale-invariant
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Feature engineering

[1] Trend features

to learn the leverage effect

most important example: a weighted sum of past daily returns

R1,t :=
∑
ti≤t

K1(t− ti) rti , rti :=
Sti − Sti−1

Sti−1

(scale invariance)

K1: convolution kernel that typically decreases towards zero; the impact
of a given daily return fades away over time

[2] Activity (volatility) features (regardless of trend)

to learn volatility clustering

most important example: a weighted sum of past squared daily returns

R2,t :=
∑
ti≤t

K2(t− ti) r2
ti

K2-weighted historical volatility: Σt :=
√
R2,t
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Our model

Volatilityt = β0 + β1R1,t + β2Σt

Volatilityt denotes either some implied volatility (e.g., the VIX) observed
at t, or the future realized volatility RVt (realized over day “t+ 1”).

Leverage effect: β1 < 0.

Volatility clustering, like in GARCH models: β2 ∈ (0, 1).

Importantly, both factors R1,t and Σt are needed to satisfactorily
explain the volatility.

We find that a simple linear model does the job, explaining a very
large part of the variability observed in the volatility.
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Kernels

0.0 0.2 0.4 0.6 0.8 1.0
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40 TSPL
Exponential
Convex combination of two exponentials
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Kernels

The two kernels K1 and K2 are distinct

Multivariate lasso =⇒ both K1 and K2 mix short and long memory

Choice 1: time-shifted power laws (TSPL, 2 params):

K(τ) = Kα,δ(τ) := Z−1
α,δ(τ + δ)−α, α > 1, δ > 0

The time shift δ means that Kα,δ(τ) may not blow up when the lag τ
vanishes.

If we force δ = 0, we recover the power-law kernel of rough volatility
models. However, fitting to data yields positive δ (one to a few weeks).

The power law aggregates the various time horizons of investors.

Choice 2: convex combinations of 2 exponentials (2-EXP, 3 params):

K(τ) = Kλ0,λ1,θ(τ) := (1− θ)λ0e
−λ0τ + θλ1e

−λ1τ , λ0 > λ1 > 0, θ ∈ [0, 1]
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Similar models

QARCH (Sentana ’95):

Volatility2
t = β0 + β1R1,t + β2R

Q
2,t, RQ

2,t :=
∑

ti,tj≤t

KQ
2 (t−ti, t−tj) rtirtj

Diagonal QARCH model (CB ’14, K2(τ) := KQ
2 (τ, τ)):

Volatility2
t = β0 + β1R1,t + β2R2,t (M1)

ZHawkes process (BDB ’16):

Volatility2
t = β0 + β1R

2
1,t + β2R2,t (M2)

Discrete-time version of the quadratic rough Heston model (GJR ’20,
θ0 = 0):

Volatility2
t = β0 + β1(R1,t − β2)2 (M3)

with Mittag-Leffler kernel K1.

Discrete-time version of the threshold EWMA Heston model (Parent ’21):

Volatilityt = β0 + β1(β2 −R1,t)+ (M4)

with K1 an exponential kernel, K1(τ) = λe−λτ .
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Our model differs in several ways

1 Models (M1)-(M3), like almost all ARCH models, model the square of the
volatility, the variance. Instead, we directly model the volatility itself.

2 We use the square root Σt of R2,t rather than R2,t itself as one of the
linear factors.

3 As a consequence, all the terms in our linear model are homogeneous to
a volatility (or asset return), whereas (M1) and (M3) mix heterogeneous
linear factors in volatility and variance (or return and squared return), and
all the terms in the linear model (M2) are homogeneous to a variance.

4 We use new, explicit parametric forms for the kernels K1 and K2,
capturing non-blowing-up power-law-like decays.

5 Compared with (M3) and (M4), we empirically prove the importance of
including the historical volatility factor Σt.

6 Compared with (M2), we argue that it is not necessary to include a
quadratic factor R2

1,t, as the quadratic-like dependence of the volatility
(resp. variance) on R1,t is already captured by the factor Σt (resp. R2,t).
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Results: Implied volatility

Volatilityt = β0 + β1R1,t + β2

√
R2,t

K1(τ) ∼ (τ + δ1)−α1

K2(τ) ∼ (τ + δ2)−α2

β0 α1 δ1 β1 α2 δ2 β2

VIX 0.057 1.06 0.020 -0.095 1.60 0.052 0.82
VIX9D 0.045 1.00 0.011 -0.12 1.25 0.011 0.88
VSTOXX 0.032 3.96 0.13 -0.036 1.90 0.089 0.97
IVI 0.022 2.26 0.081 -0.058 1.6 0.063 0.99
VDAX-NEW 0.036 5.54 0.16 -0.024 2.21 0.103 0.92
Nikkei 225 VI 0.055 0.78 0.008 -0.069 2.09 0.077 0.86

Table: Optimal parameters of our model for various implied volatility indexes
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Results: Implied volatility
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Results: Implied volatility

Train Test
RMSE r2 RMSE r2

VIX 0.020 0.946 0.035 0.855
VIX9D 0.023 0.876 0.034 0.914
VSTOXX 0.026 0.929 0.029 0.913
IVI 0.023 0.925 0.030 0.870
VDAX-NEW 0.025 0.934 0.027 0.918
Nikkei 225 VI 0.030 0.890 0.031 0.800

Table: RMSE and r2 scores for our model for various implied volatility indexes
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Results: Implied volatility
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Results: Implied volatility

2019-01
2019-05

2019-09
2020-01

2020-05
2020-09

2021-01
2021-05

2021-09
2022-01

2022-05
10

20

30

40

50

60

70

80

90

VI
X

VIX
Prediction: 
Test r2 = 0.855

2500

3000

3500

4000

4500

SP
X

Julien Guyon Ecole des Ponts ParisTech and NYU Tandon

Volatility Is (Mostly) Path-Dependent



Results: Implied volatility
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Figure: Predicted VIX vs true VIX on train/test set.
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Results: Implied volatility
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Results: Implied volatility
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Results: Realized volatility

Volatilityt = β0 + β1R1,t + β2

√
R2,t

K1(τ) ∼ (τ + δ1)−α1

K2(τ) ∼ (τ + δ2)−α2

β0 α1 δ1 β1 α2 δ2 β2

SPX 0.018 2.82 0.044 -0.042 1.86 0.025 0.71
STOXX 0.023 1.31 0.017 -0.062 1.79 0.024 0.70
FTSE 0.017 2.22 0.034 -0.043 1.84 0.031 0.76
DAX 0.001 2.87 0.045 -0.030 1.80 0.029 0.81
NIKKEI 0.032 6.30 0.063 -0.011 2.30 0.030 0.51

Table: Optimal parameters of our model for the daily realized volatility of various
indexes
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Results: Realized volatility
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Results: Realized volatility

Train Test
RMSE r2 RMSE r2

SPX 0.049 0.738 0.063 0.654
STOXX 0.060 0.672 0.064 0.682
FTSE 100 0.055 0.650 0.066 0.617
DAX 0.057 0.722 0.059 0.557
NIKKEI 0.051 0.563 0.051 0.504

Table: RMSE and r2 scores for our model for the daily realized volatility of various
indexes
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Results: Realized volatility
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Results: Realized volatility
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Results: Realized volatility
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Figure: Predicted VIX vs true VIX on train/test set.
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Results: Realized volatility
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Results: Realized volatility
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Results: 2-EXP vs 1-EXP
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Results: (2,2)-EXP vs (1,2)-EXP vs (2,1)-EXP vs (1,1)-EXP
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Results: Prediction of next-day implied volatility
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The 4-Factor Path-Dependent Volatility Model
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The Continuous-Time Empirical Path-Dependent Volatility Model

We now consider the continuous-time limit of our empirical PDV model,
where we identify Volatilityt as the instantaneous volatility σt:

dSt
St

= σt dWt,

σt = σ(R1,t, R2,t)

σ(R1, R2) = β0 + β1R1 + β2

√
R2 (1)

R1,t =

∫ t

−∞
K1(t− u)

dSu
Su

=

∫ t

−∞
K1(t− u)σu dWu,

R2,t =

∫ t

−∞
K2(t− u)

(
dSu
Su

)2

=

∫ t

−∞
K2(t− u)σ2

u du.

The dynamics of R1,t and R2,t are in general non-Markovian
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A (too) simple Markovian approximation: the 2-Factor PDV model

The simplest kernels yielding a Markovian model are the (normalized)
exponential kernels K1(τ) := λ1e

−λ1τ and K2(τ) := λ2e
−λ2τ , λ1, λ2 > 0.

Both (R1,t, R2,t) and (St, R1,t, R2,t) have Markovian dynamics:

dSt
St

= σ(R1,t, R2,t) dWt, σ(R1, R2) = β0 + β1R1 + β2

√
R2,

dR1,t = λ1

(
dSt
St
−R1,t dt

)
= λ1

(
σ(R1,t, R2,t) dWt −R1,t dt

)
,

dR2,t = λ2

((
dSt
St

)2

−R2,t dt

)
= λ2

(
σ(R1,t, R2,t)

2 −R2,t

)
dt.

We call this model the 2-Factor PDV model (2FPDV model).
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The 2-Factor PDV model

Dynamics of the volatility σt = β0 + β1R1,t + β2

√
R2,t reads

dσt =

(
−β1λ1R1,t +

β2λ2

2

σ2
t −R2,t√
R2,t

)
dt+ β1λ1σt dWt. (2)

Constant instantaneous vol of instantaneous vol but rich drift.

Volatility clustering via mean-reversion + explanation for
mean-reversion.

Price-path-dependence of volatility dynamics: strong Zumbach effect.

Nonnegativity of volatility guaranteed if λ2 < 2λ1.
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Drift of the instantaneous volatility in the 2-factor PDV model
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A better Markovian approximation: the 4-Factor PDV model

Choosing K1 and K2 to be single exponential kernels fails to capture the
mix of short and long memory in both R1 and R2 observed in the data.

We capture this mix of short and long memory in a Markovian way by
choosing K1 and K2 to be convex combinations of two exponential kernels

τ 7→ (1− θ)λ0e
−λ0τ + θλ1e

−λ1τ , λ0 > λ1 > 0, θ ∈ [0, 1].

Short memory: large λ0.

Long memory: small λ1.

θ is a mixing factor.
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TSPL vs convex combination of two exponentials
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The 4-Factor PDV model

Introduce parameters θ1, λ1,0, λ1,1 and θ2, λ2,0, λ2,1 for kernels K1,K2

For n ∈ {1, 2} and j ∈ {0, 1}, denote

Rn,j,t :=

∫ t

−∞
λn,je

−λn,j(t−u)

(
dSu
Su

)n
(R1,0,t, R1,1,t, R2,0,t, R2,1,t) has Markovian dynamics:

dSt
St

= σt dWt

σt = σ(R1,t, R2,t)

σ(R1, R2) = β0 + β1R1 + β2

√
R2

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t

dR1,j,t = λ1,j

(
dSt
St
−R1,j,t dt

)
= λ1,j

(
σ(R1,t, R2,t) dWt −R1,j,t dt

)
dR2,j,t = λ2,j

((
dSt
St

)2

−R2,j,t dt

)
= λ2,j

(
σ(R1,t, R2,t)

2 −R2,j,t

)
dt
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The 4-Factor PDV model

The dynamics of the instantaneous volatility reads

dσt =

(
−β1λ̄1R̄1,t +

β2λ̄2

2

σ2
t − R̄2,t√
R2,t

)
dt+ β1λ̄1σt dWt

λ̄n := (1− θn)λn,0 + θnλn,1,

R̄n,t :=
(1− θn)λn,0Rn,0,t + θnλn,1Rn,1,t

λ̄n
.

The drift of σt produces volatility clustering via a clear trend of mean
reversion of volatility.

The lognormal volatility of σt is constant.

The dynamics of (σt) are price-path-dependent: the drift of σt cannot
be written as a function of just the past values (σu)u≤t of the volatility; it
depends on the past asset returns through R1,0,t and R1,1,t.
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The 4-Factor PDV model: drift of the volatility
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Figure: Drift of σt vs σt for different maturities and for N = 10k paths, T = 1 year.
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The 4-Factor PDV model: sample paths
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Figure: SPX and VIX time series on a typical path of 20 years.
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The 4-Factor PDV model: sample paths
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The 4-Factor PDV model: scatter plots, implied volatility
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The 4-Factor PDV model: spurious roughness
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1

N
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| log(RVk∆)− log(RV(k−1)∆)|q

4FPDV model reproduces the “roughness” observed in data (Ĥ ' 0.15)
4FPDV model is Markovian (not rough), very easy and fast to simulate
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The 4-Factor PDV model: spurious roughness, RVk∆ → σk∆
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The 4-Factor PDV model: very realistic smiles
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The 4-Factor PDV model: joint SPX/VIX calibration (June 2, 2021)
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The 4-Factor PDV model: various sets of parameters

β0 β1 β1,2 λ1,0 λ1,1 θ1 β2 λ2,0 λ2,1 θ2
Empirical study RV SPX 0.020 -0.054 – 64.5 3.83 0.67 0.67 37.6 1.2 0.20
Empirical study RV STOXX 0.027 -0.062 – 57.1 2.3 0.67 0.66 34.8 1.6 0.2

Realistic sample paths 0.04 -0.11 – 55 10 0.25 0.65 20 3 0.5
Implied SPX/VIX 0.006 -0.157 0.078 70 30.5 0.21 0.683 10.6 5.2 0.7
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Wellposedness of the 4FPDV model

Due to the square and square-root terms in the dynamics of the 4FPDV
model, its wellposedness is not obvious.

Strong existence and uniqueness always hold up to a possible explosion
time. It is not clear if the system explodes in finite time.

Theorem (Nutz and Riveros Valdevenito, On the Guyon-Lekeufack Volatility
Model, 2023)

Suppose that β2
2θ2 < 1, β2

2(1− θ2) < 1, λ1,0β
2
1(1− θ1)2 < 2, λ1,1β

2
1θ

2
1 < 2.

Then the 4FPDV model has a unique strong solution.

The model has a unique strong (non-explosive) solution for realistic
parameter values.

Explosions do not happen for realistic parameters.
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Conclusion

Volatility is (mostly) path-dependent, endogenous: it is very well
explained by recent past asset returns only

A very simple path-dependent volatility model accurately explains the
current VIX or future daily RV by recent SPX returns:

Volatilityt = β0 + β1R1,t + β2

√
R2,t, β0 > 0, β1 < 0, β2 ∈ (0, 1)

It mixes recent past trend (R1) and recent past volatility (R2)

Multi-scale trading memory: different time scales of path-dependence are
needed ←→ various time horizons of investors/traders

−→ Volatility is “rough-like” and mostly path-dependent
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Conclusion

The 4-Factor PDV model is the natural Markovian continuous-time
version: 2 times scales for recording the past trend + 2 time scales for
recording the past volatility.

It captures the most important stylized facts of volatility: leverage effect,
volatility clustering, Zumbach effects, strong positive VIX skews,
roughness at the daily time scale...

...but the model is not rough! It is Markovian, so extremely easy and fast
to simulate.

Unlike in classical SV models, the 4 factors are observable: averages of
past returns and past squared returns, as opposed to averages of past dW .

The 9 parameters all have a clear financial interpretation.

The 4-Factor PDV model seems to be the first parametric Markovian
model to practically solve the joint calibration problem.

The model exhibits a jumpy behavior in the absence of actual jumps.
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Conclusion

Volatility is not purely path-dependent: unexpected news happen!

The (smaller) exogenous part can be incorporated using another source of
randomness, e.g.,

dSt
St

= at σ(Su, u ≤ t) dWt

where at is some stochastic volatility, for instance: PDSV

The ratio residuals true vol
predicted PDV vol

help define relevant stochastic dynamics

for (at).

We believe this is the right way of modeling volatility:
(1) Model the purely endogenous part of volatility as best as we can.
(2) Then add the exogenous part, if needed.

−→ A new paradigm for volatility modeling
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