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Abstract

We propose a scalable and efficient reinforcement learning framework as a strong
baseline for theorem proving with limited data. This baseline reaches performances
comparable to the current state-of-the-art in theorem proving, while only training on
a few hundred examples. This a first step toward an efficient and easily reproducible
combination of autoformalization, synthetic data generation and reinforcement
learning, which could unlock significant advancements in neural theorem proving.

1 Introduction

Mathematical reasoning constitutes a major challenge for deep-learning models, and now a very
active research area [35]. Formal languages such as Isabelle [26], Coq [4], and Lean [8, 24] have
been developed to enable automatic computer verification of proofs and can now serve as grounding
to prevent language model hallucinations. Several approaches relying on LLMs and formal proof
search environments have recently been proposed (App. A), but were limited by the scarcity of
formal training data (around 100k lemmas in Lean’s central theorem library Mathlib [23]) and
the data inefficiency of machine learning methods. For this reason, most of the works on neural
theorem proving have focused on obtaining more data, either from autoformalization or synthetic
data generation [37].

In this paper, we present ABEL, a scalable and compute efficient online reinforcement learning frame-
work for theorem proving. This serves as a strong baseline of what is achievable with very limited
data and as a first step toward a combination of online reinforcement learning and autoformalization.

We show that training on only several hundred maths exercises, one can reach performances com-
parable to the current state-of-the-art in theorem proving. Our model outperforms the cumulative
performances of [18] with 13 times less compute and no synthetic data. It also reaches a new
state-of-the-art on PutnamBench [33], a dataset of formidably challenging olympiad-like problems
from the Putnam competition in North America, by solving 8 problems overall, 4 more than the
previous best [34].

This suggests that combining our framework with autoformalization and synthetic data generation
could achieve much higher levels of performance and unlock significant advancements in neural
theorem proving.

2 Method

When approaching theorem proving as a problem of reinforcement learning, we must take care to
cast the problem in a way that allows for efficient exploration and recombination of learned features.
In this work, we follow the formulation of hypertree proof search (HTPS) [18] and opt for a two-fold
tree structure for proof searches. An individual complete Lean proof is naturally represented as a
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tree, where nodes correspond to proof goals and tactics like induction transform a proof goal into a
set of children, or subgoals, that jointly suffice to be shown instead (e.g. induction base and step).
Proof search, on the other hand, involves applying several tactics at each node, proof success of any
of which results in proof success for the parent node. Such a tree can be represented as an alternating
tree of AND-joined sets of subgoals and OR-joined sets of tactic attempts, making the overall tree an
AND/OR-tree or, equivalently, a “proof hypertree”1.

Our reinforcement learning system for formal theorem proving in Lean 4 [24] consists of three
components: a programming interface based on Aesop [19] to organize proof searches in Lean 4,
the HTPS proof search procedure inspired by the AlphaZero algorithm [31] and an online retraining
mechanism. We will explain each component in the following paragraphs.

AesopRepl: a proof search interface for Lean 4 Our Read-Eval-Print Loop (REPL), AesopRepl,
makes the infrastructure of Lean’s proof search automation tactic Aesop [19] available as a command
line interface. Aesop manages an AND/OR-proof tree and can receive tactic suggestions generated
by a language model via the interface. It executes the tactics in their respective contexts and updates
the tree, checking which goals have been resolved. Once the root node of the proof tree (i.e., the
initial goal) is proved, the REPL passes the resulting proof to Lean’s kernel. This guards against bugs
in the applied tactics. The main benefit of using Aesop’s proof tree implementation is that it allows
goals with shared metavariables to be processed semi-independently, improving on GPT-f [28] and
LeanDojo [40] and matching HTPS [18]. See App. J for details.

Proof search with HTPS Our proof search procedure uses the AlphaZero algorithm [31] with the
adaptations for hypertrees proposed by [18]. A proof search consists of several rounds, each of which
has three steps: node selection, expansion and value propagation. The proof search is terminated
when either a proof has been found during a round or a given node expansion budget is exceeded. In
the selection phase, the tree is traversed down until a solving set of leaf nodes is found, i.e. a set of
nodes which, if proven, would finish the overall proof. This means that at AND-nodes, all children
are selected while at OR-nodes, we select a tactic based on the established predictor upper confidence
bound for trees (PUCT) policy [17, 29, 32] given below. In the expansion phase, all selected nodes
are expanded simultaneously, i.e. a tactic model suggests tactics and a critic model evaluates the value
(likelihood of proof success) of the given proof goal. We execute the tactics eagerly in Lean in order
to return from successful proof searches as early as possible. The transition dynamics T (s, a) = s′ of
Lean, where s is a state/goal and a an action/tactic, i.e. the effect of a tactic execution, are sometimes
hard to model (tactics like simp involve a search procedure themselves), so we follow HTPS in using
a state value critic c(s′) as opposed to a state-action critic Q(s, a) in AlphaZero [31]. These critic
values of expanded nodes are then propagated up the tree: each edge (s, a) maintains a visit count
N(s, a) and a cumulative action value W (s, a). Each node s in the selected proof tree is assigned an
update value v(s) which is defined as follows:

v(s) =


1 if s is proved,
c(s) if s was just expanded,
γ
∏

c child of s v(c) otherwise,

where γ ∈ [0, 1] is a depth penalty factor and c(s) denotes the evaluation provided by the critic model.
The cumulative action value W (s, a) of each edge (s, a, s′) in the selected tree is then increased by
the update value v(s′) of its target node, and its visit count by 1. With these quantities, we can define
the PUCT selection policy:

PUCT(s) = argmax
a

Q̂(s, a) + cpuct · π(a | s)
√∑

a′ N(s, a′)

1 +N(s, a)
, Q̂(s, a) =

{
W (s,a)
N(s,a)

if N(s, a) > 0,

c(s) otherwise,

where cpuct is an exploration coefficient and π(a | s) is the prior of action a under our tactic model
π, for which we take the product of token probabilities of each tactic sequence, renormalized to sum
to one at any node. Note that in our choice of Q̂(s, a) = c(s) for unvisited nodes we depart from
[18] (who choose Q̂(s, a) = 1

2 ), leveraging the intuition that c(s) is trained to match the expected
proof success rate when performing tree search using π, and that a is a sample from π.

Following [18], instead of fixing proof search hyperparameters upfront, we sample them on a per
proof attempt basis (App H).

1when considering the set of children of a tactic’s child AND-node the collective target of a hyperedge
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Table 1: Performance of different models on MiniF2F-valid and MiniF2F-test. We compare
representative methods without reinforcement learning with recent expert iteration and online rein-
forcement learning approaches. Numbers on MiniF2F-test are with the indicated evaluation budget,
numbers on MiniF2F-valid are cumulative numbers over the course of the run (App. K).

Model Type test Budget valid Train time RL set size
eval. cumul. (A100-days)

Llemma-7b pretr. 26.2 1 × 600 s × 32 – (1000) –
ReProver SFT 26.5 1 × 600 s × 64 – 5 –
Lean automation alg. 27.5 1 26.6 eval – –

DeepSeek-Prover exp.it. 48.8 8192 60.2 ? 8M
DeepSeek-Prover-1.5 exp.it.+RL 55.0 1 × 3200 – ? 8M
GPT-f exp.it. 36.6 64 × 512 × 8 47.3 eval. 2000 327 + synth.
HTPS RL 41.0 64 × 5000 × 26 avg. 58.6 1360 244 + synth.
ABEL (ours) RL 41.3 1 × 128 × 64 59.8 96 244

Online reinforcement learning When a proof search is terminated (because a proof has been
found or the search budget is exhausted), we extract training samples for the policy and critic models
for retraining. We train the policy model with supervised training using standard causal language
modelling loss on all tactic samples that are part of a proof of their parent node – regardless of
whether they were part of a proof of the root node (All Solved setting in [18]). This makes the tactic
reinforcement learning loop a form of iterated rejection sampling.

The critic model is trained with supervised training using a binary cross-entropy loss of Bernoulli
variables for the classification task of provability. As the supervision target, we use Bernoulli(V (s))

with V (s) given by V (s) = W (s,a∗)
N(s,a∗) , for a node s and a∗ = PUCT(s). Unlike [18], we do not

threshold the visit counts
∑

a N(s, a) of a node to be selected.

Our distributed reinforcement learning setup comprises worker and trainer GPUs, prover threads
controlling Lean AesopRepl processes as well as a centralized replay buffer and a task dispenser
(App. D). We select proof tasks with hard negative sampling to favor exploration: if ni is the
number of successful proof searches for problem i so far, we use a weight proportional to (ni +1)−α

for sampling problem i as the next task, where α ≥ 0 is an upsampling coefficient for hard tasks2.
We postprocess tactics to induce a distribution shift from style aimed at efficient proof presentation
as pursued in Lean’s Mathlib [23] to effective proof search (App. E).

3 Results

We conduct experiments on challenging theorem proving datasets, showcasing the efficiency of our
theorem proving system. We use Llama 3.1 base 8B [11] as a starting point and finetune on proof
step data from Mathlib [23] extracted with LeanDojo [40] (App. F for details). We then apply the RL
training procedure described in Section 2. Our results are summarized in Table 1.

Our models’ cumulative performance, while below other approaches relying on large sets of data,
outperforms [18] despite using a much smaller compute budget and no synthetic data. Our models
also show high pass@1 performances on the test set, which are only surpassed by DeepSeek-Prover,
and achieve a new state-of-the-art on PutnamBench. This is detailed below.

Outperforming HTPS with 13x less compute Training with 256 GPUs on MiniF2F-valid, we
reach a cumulative solve rate of 59.8% after 3 hours of training time, outperforming HTPS’s 58.6%
trained with an additional synthetic supervised dataset of Lean problems and 54.9% without. These
results required HTPS 30240 A100-hours of compute, while we need 768 H100-hours ≈ 2304 A-100-
hours [6], approximately 13 times less. Halving the number of GPUs to 128, we reach a cumulative
solve rate of 57.4% after 5 hours, still competitive with HTPS.

2α = 0 reduces to uniform sampling, α = +∞ to uniform sampling among least often solved problems

3



0 50 100 150 200
time (k proofs)

1

2

3

4

5

av
g.

 p
ro

of
 le

ng
th

 (s
te

ps
)

0 1 2 3 4
time (h)

0

20

40

60

un
iq

ue
 ta

ct
ic

s 
(%

)

Figure 1: Evolution of average proof length (left) and tactic diversity (right) over the course of
training. Running average of the number of steps of the most recent proof per problem, indexed by
the total number of proofs found so far. Over the course of each of the five depicted runs, models
“golf” proofs to more compressed versions. At the same time, the policy loses diversity: the proportion
of unique tactics among the total number of tactics sampled at each expansion declines (two runs).

A new state of the art on PutnamBench When run on a 1:1:1 mix of problems from MiniF2F-
valid, MiniF2F-test and PutnamBench [33], we solve 7/640 problems in the setting with provided
solutions after only attempting each problem between 6 and 16 times (and with no improvements
thereafter with up to 590 attempts). This improves over the previous state of the art of 4/640 solved
problems [34] held by InternLM2-StepProver [36] and obtained with 4096 attempts per problem. In
a different run, our system solved another problem, bringing the total to 8/640. See App. B for the
proofs, a qualitative evaluation and the cumulative solve rates on the respective datasets.

Importance of online training We evaluate the performance of pure sampling, expert iteration [27],
and online reinforcement learning by comparing runs with model updates at different frequencies.
Our findings indicate that online reinforcement learning is crucial (App. C).

Stability and exploration Reinforcement learning on MiniF2F-valid – which comprises 244
problems only – presents challenges regarding stability and distributional collapse. In our online
training loop, this becomes exacerbated by the fact that at least 26.6% of problems in MiniF2F can
be solved by a single or a short sequence of automation tactics (among aesop, ring, linarith,
nlinarith). Such proofs will be found first and could quickly flood the trainers low-quality data
that lacks diversity. We remediate this issue in several ways: by setting a burn-in of 8000 training
samples to discard before training, by using supervised data for 10% of training samples, by using
hard negative sampling (Sect. 2) by using a large number of tactics per node and decoding parameters
that favor diversity as well as carefully tuning key hyperparameters (App. I). As shown in Fig. 1, the
policy continues to explore and optimizes solved problems to shorter proofs, but we still see a slow
decline in tactic diversity when problem solve rates eventually plateau.

4 Conclusion

We presented an online reinforcement learning method for Lean that reaches near state-of-the-art
performance on theorem proving while relying only on few hundred problems in its reinforcement
learning problem set. It is orders of magnitude more sample efficient than methods of comparable
performance that require extensive synthetic datasets with up to millions of additional data points
[37], and around 13 times more compute efficient than the current state-of-the-art RL method [18].

Online reinforcement learning can be tricky to stabilize but carefully tuned, complements and
empowers other recent techniques such as synthetic data from large-scale autoformalization [37],
bootstrapping chains-of-thought [20] or hybrid local-global tree search [38].

Harnessing reinforcement learning as a test-time inference technique could allow tackling challenging
problems such as the International Mathematics Olympiad [9] or autoformalizing mathematical
theories, where sample efficiency is the primary concern.
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Supplementary Material

A Related works

Mathematics is often seen as the culmination of reasoning tasks because of its intricacy and level
of abstraction. While deep-learning approaches enabled mathematical discoveries in the last few
years [7, 10, 5, 1], it was used merely as a tool where the reasoning is left to the human. In the recent
years many neural approaches have been proposed for neural theorem proving. These include, among
others, fine-tuning a language model used to guide a step-by-step proof search [28, 27, 3, 36] or
to generate whole proofs [12]; autoformalization of natural language data to either bridge the link
between language models and classical automated theorem proving tools [15] or increase the quantity
of available data for training a model [37]; combination of fine-tuned model and retriever to suggest
relevant context from a library [40]; reinforcement learning (RL) [18] inspired from AlphaZero [31].

B Proofs found on PutnamBench

1 theorem putnam_1986_a2
2 : (Nat.floor ((10 ^ 20000 : R) / (10 ^ 100 + 3)) % 10 = ((3) : N )) := by
3 norm_cast
4 rw [Nat.floor_div_nat] <;> simp
5
6 theorem putnam_1988_b1
7 : ∀ a ≥ 2, ∀ b ≥ 2, ∃ x y z : Z, x > 0 ∧ y > 0 ∧ z > 0 ∧
8 a * b = x * y + x * z + y * z + 1 := by
9 aesop

10 exact ⟨a - 1, by linarith, b - 1, by linarith, 1, by norm_num, by ring⟩
11
12 theorem putnam_1986_b1
13 (b h : R)
14 (hbh : b > 0 ∧ h > 0 ∧ b ^ 2 + h ^ 2 = 2 ^ 2)
15 (areaeq : b * h = 0.5 * b * (1 - h / 2))
16 : h = ((2 / 5) : R ) := by
17 ring_nf at * <;> aesop <;> nlinarith
18
19 theorem putnam_1986_a1
20 (S : Set R)
21 (hS : S = {x : R | x ^ 4 + 36 ≤ 13 * x ^ 2})
22 (f : R → R)
23 (hf : f = fun x 7→ x ^ 3 - 3 * x)
24 : (∀ x ∈ S, f x ≤ ((18) : R )) ∧ (∃ x ∈ S, f x = ((18) : R )) := by
25 norm_num <;> aesop
26 · cases le_total 3 x <;> nlinarith
27 · exact ⟨3, by norm_num⟩
28
29 theorem putnam_2001_a1
30 (S : Type*)
31 [Mul S]
32 (hS : ∀ a b : S, (a * b) * a = b)
33 : ∀ a b : S, a * (b * a) = b := by
34 intro a b
35 convert hS _ _ using 2 <;> simp <;> ring
36 rw [hS ]
37
38 theorem putnam_1977_a3
39 (f g h : R → R)
40 (hf : ∀ x, f x = (h (x + 1) + h (x - 1)) / 2)
41 (hg : ∀ x, g x = (h (x + 4) + h (x - 4)) / 2) :
42 h = ((fun f g x 7→ g x - f (x - 3) + f (x - 1) + f (x + 1) - f (x + 3))
43 : (R → R) → (R → R) → (R → R) ) f g := by
44 field_simp [hf, hg] <;> ring
45
46 theorem putnam_1988_b2
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47 : (∀ x y : R, (y ≥ 0 ∧ y * (y + 1) ≤ (x + 1) ^ 2) → (y * (y - 1) ≤ x ^ 2))
48 ↔ ((True) : Prop ) := by
49 aesop
50 cases le_total x y <;> cases le_total y x <;>
51 simp_all <;> nlinarith
52
53 -- Found in a different run:
54 -- This proof relies on a mistake in the problem formalization (distinctness missing in hS2).
55 theorem putnam_1996_a4
56 (A : Type*)
57 [Finite A]
58 (S : Set (A × A × A))
59 (hSdistinct : ∀ a b c : A, ⟨a, b, c⟩ ∈ S → a ̸= b ∧ b ̸= c ∧ a ̸= c)
60 (hS1 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨b, c, a⟩ ∈ S)
61 (hS2 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ /∈ S)
62 (hS3 : ∀ a b c d : A, (⟨a, b, c⟩ ∈ S ∧ ⟨c, d, a⟩ ∈ S) ↔ (⟨b,c,d⟩ ∈ S ∧ ⟨d,a,b⟩ ∈ S))
63 : ∃ g : A → R, Injective g ∧ (∀ a b c : A, g a < g b ∧ g b < g c → ⟨a,b,c⟩ ∈ S) := by
64 cases nonempty_fintype A
65 refine ⟨fun a => Fintype.card A * Fintype.card A - 1, ?_, ?_⟩
66 · intro a b hab
67 simp [Function.Embedding.coeFn_mk, sub_eq_zero] at hab
68 simpa [S.ground_eq] using hS2 a b a
69 · intros a b c
70 dsimp
71 norm_num

Qualitatively evaluating the last proofs found by the model, we observe: One statement had a
formalization mistake, rendering the problem trivial. Other problems were easy compared to other
Putnam problems because the solution was provided. In all cases, our model relies heavily on Lean’s
automation tools simp, ring, omega, nlinarith, linarith, but provides arguments and data
without which the automation would not succeed (a classic pattern in idiomatic Lean proofs).

Cumulative solve rates on the three datasets used in the runs are reported in Table 2.

Table 2: Results of runs with mixed reinforcement learning set. Cumulative solve rates on the
respective datasets after 7 hours runtime.

Dataset PutnamBench 1 PutnamBench 2

MiniF2F-valid 55.3 58.6
MiniF2F-curriculum 27.7 32.3
PutnamBench 7/640 6/640

C Importance of online training

We compare runs with online model updates every 50 training steps, to a setting resembling batch
reinforcement learning or expert iteration (as used in [27, 37]) with updates every 500 steps and
a pure supervised model solving benchmark problems without any retraining. Figure 2 shows the
cumulative proof rates on MiniF2F-valid for the respective runs each using 56 workers and 8 trainers
(if applicable). The online reinforcement run clearly outperforms the others. Note that in our final
runs, we update the weights even more frequently, namely every 10 steps.
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Figure 2: Importance of online training.

D Distributed reinforcement learning

Our distributed setup comprises worker GPUs for language model inference, trainer GPUs for
language model training and prover CPU threads orchestrating proof searches and controlling Lean
AesopRepl processes. In our experiments, we assign 10 prover threads to each worker GPU, enabling
stable generation inference workloads in our GPU-bound setup. A central service distributes proof
tasks according to the hard negative sampling policy described in Sect. 2. Workers send their tactic
and critic training samples to a centralized replay buffer which distributes them to the trainers,
prioritizing samples seen fewer times and from more recent model generations. Unlike [18], we do
not parallelize within individual tree searches but only at the level of proof attempts (i.e. we apply
node selection and expansion sequentially rather than asynchronously).

E Induced distribution shift via tactic post-processing

The optimal policy for proof search naturally differs from the compressed proofs found in supervised
finetuning data. For instance, proofs in Lean’s Mathlib [23] often need to specify the full set of
simplification lemmas used in the simp tactic without relying on standard configurations which are
prone to change over time, possibly breaking existing proofs. Since in this style, proofs are tedious to
find, Mathlib authors use automatic tooling to convert proofs using simp’s standard configuration
into maintainable, fully specified simp only proofs. Likewise, Mathlib authors “golf” sequences of
rewriting rules into a single rewrite tactic with multiple arguments.

To remediate this distribution discrepancy between proof search and proof presentation, we add
post-processing to the tactics generated by the policy model. This facilitates distribution shift toward
a better proof search policy: we turn simp only into simp, add a single-rule rewrite with the first
rule for each multi-rule rewrite and deduplicate simp lemmas to break model repetitions.

F Finetuning hyperparameters

For supervised finetuning on the proof step dataset extracted from Mathlib (see App. L), we train
with a peak learning rate of 10−4 and a total batch size of 16k tokens using a block-causal attention
mask that does not split sequences. We use the Adam optimizer [16] with decoupled weight decay
[22] with a peak learning rate of 10−4, β1 = 0.9, β2 = 0.95 and L2 weight decay coefficient 0.1. We
schedule the learning rate with cosine decay [21] over 5000 steps to a final learning rate of 10−6.

G Training format and inference techniques

Our supervised training on Mathlib data uses a format containing theorem name, Mathlib file path,
the theorem statement, the current proof goal, a placeholder for the critic, the tactic applied in the
proof and the outcome of the tactic application. In other words, we condition the tactic policy on the
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mentioned fileds and train with a tactic outcome prediction co-training task [13]. Example for the
format:

1 NAME: MvPolynomial.prod_X_add_C_coeff
2 FILE: Mathlib/RingTheory/Polynomial/Vieta.lean
3 STATEMENT: theorem MvPolynomial.prod_X_add_C_coeff (k : N) (h : k ≤ card σ) :
4 (

∏
i : σ, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =

5 MvPolynomial.esymm σ R (card σ - k)
6 STATE: R : Type u_1
7 σ : Type u_2
8 inst†1 : CommSemiring R
9 inst† : Fintype σ

10 k : N
11 s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
12 h : k ≤ Multiset.card s
13 this : Fintype.card σ = Multiset.card s
14 ⊢ (Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val).prod.coeff k =
15 (Multiset.map X univ.val).esymm (Multiset.card s - k)
16 PROVABLE: 1
17 TACTIC: convert Multiset.prod_X_add_C_coeff s h
18 RESULT: case h.e’_2.h.e’_3.h.e’_3
19 R : Type u_1
20 σ : Type u_2
21 inst†1 : CommSemiring R
22 inst† : Fintype σ
23 k : N
24 s : Multiset (MvPolynomial σ R) := Multiset.map (fun i => X i) univ.val
25 h : k ≤ Multiset.card s
26 this : Fintype.card σ = Multiset.card s
27 ⊢ Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val =
28 Multiset.map (fun r => Polynomial.X + Polynomial.C r) s

For inference, we use the same template up to “provable:” and apply joint critic and policy inference
from a shared model as follows: at the position after “provable:”, we restrict the output vocabulary to
two designated tokens and compute the critic value c(s) as the logit softmax

c(s) = sigmoid(x(s)1 − x(s)0),

where x(s) denotes the transformer’s output logits at the respective position, and “0” and “1” denote
the respective token indices. We then append a “1” at the critic’s position and continue with
autoregressive sampling to retrieve the policy’s tactic prediction. By sharing the model, we aim
to reap knowledge transfer between the critic and the policy task, following standard practice in
reinforcement learning [31]. With our joint inference mechanism, we can, moreover, leverage existing
autoregressive language model generation pipelines at the expense of a single additional token.

As an additional inference speed optimization, we compute the key-value cache of the (typically
long) prompt only once during the “pre-fill phase” before copying it as many times as we would like
to decode independent tactic suggestions. Using this method, we observed a 2-3x inference speedup.
We stop decoding at a special stop token between the “tactic:” and the “result:” field not shown
above.

H Proof search hyperparameters

Following (author?) [18] (HTPS), we sample the decoding and proof search hyperparameters before
each proof search as follows:

• temperature for nucleus sampling [14] with probability mass 0.9: uniform on [0.8, 2.4]
(HTPS uses [0.8, 2.0] and standard sampling),

• number of expansions (the maximum number of goals for which to decode tactics
during a proof search): log-uniform on [404, 4047] ≈ [128

√
10, 1280

√
10] (HTPS uses

[1000, 10000]),
• depth penalty γ: uniform from {0.8, 0.9, 0.95, 1.0},
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• PUCT exploration coefficient cpuct: log-uniform on [0.01, 100].

Unlike HTPS, we always sample 64 tactics per node expansion with the understanding that tactic
decoding is fast compared to the encoding (kv-cache pre-fill) of the proof state prompt.

I Reinforcement learning configuration

Table 3: Hyperparameters for the runs reported in Sect. 3.
Parameter 128 GPU run 256 GPU run PutnamBench 1 PutnamBench 2

workers 120 248 248 248
buffer max. sends 3 1 1 2
nucleus sampling mass 0.9 1.0 1.0 1.0
negative sampling coefficient α 0.3 0.5 0.5 0.5

All runs use 8 trainer GPUs, a learning rate of 4 · 10−5, batches of 4 sequences of 4096 tokens
per GPU, a maximum buffer size of 106, a rehearsal rate of 0.1, weight updates every 10 training
steps and 8000 burn-in samples discarded at the beginning of the run. All other hyperparameters are
detailed in Table 3.

The replay buffer uses the following selection and eviction policy: it sorts samples by the smallest
number of times they have already been sent to the trainers, then by the most recent model version
they come from, and randomly for ties, and sends them by increasing priority. Samples are evicted
from the buffer if they have been sent a certain maximum number of times or if the buffer has reached
its maximum capacity, the sample has been sent at least once and it is lowest in the buffer’s priority
ordering.

J Aesop and shared metavariables

Aesop’s proof tree implementation is very similar to that of (author?) [18] in HTPS, with one
exception concerning the handling of shared metavariables. These are Lean constructs representing
objects that will be filled in during the proof. For example, a transitivity tactic might reduce the goal
⊢ 1 < 3 to two goals ⊢ 1 < ?x and ⊢ ?x < 3, where the metavariable ?x stands for a number to be
determined later. Another tactic application could then solve the first goal for ?x = 2, at which point
?x is replaced with 2 in the second goal as well.

The example demonstrates the central issue with metavariables: If the proof of the first goal had
assigned ?x = 4, the second goal would have become unprovable. In other words, the possible proofs
of the second goal depend on which proof was chosen for the first goal (or vice versa); the goals are
no longer independent. But independence of goals is a central assumption underlying the hypertree
proof search model.

GPT-f [28] and LeanDojo [40] address this issue by operating on tactic states, i.e. lists of goals.
However, this reduces parallelism and leads to duplicate work since the same goal may have to be
proved in multiple tactic states. HTPS refines the GPT-f approach by using tactic states (with more
than one goal) only when goals are, in fact, coupled by a shared metavariable. Aesop goes even
further and treats coupled goals as independent, but when a metavariable is assigned, Aesop makes a
copy of any goals affected by this assignment [19, Sec. 4]. Hence, the doomed proof attempt that sets
?x = 4 does not prevent a later successful proof attempt with ?x = 2.

Compared with HTPS, Aesop’s approach may enable future optimisations that transfer a tactic
application from a goal to its copies if the tactic application is independent of any specific metavariable
assignment. This would reduce the amount of effort spent during proof search on applying the same
tactics to goals that differ only in their metavariable assignments. Unlike [18], we do not currently
attempt to merge duplicate goals.
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K Notes on model comparison

In Table 1, we include representative methods without reinforcement learning (classical solvers,
pretrained models with few-shot prompting, supervised finetuning) and recent reinforcement learning
approaches.

Lean automation refers to a small search using the following Lean tactics: aesop, ring, linarith
and nlinarith.

ReProver [40] is a language model coupled with a premise retrieval model which was trained on
supervised data extracted from Mathlib.

Llemma-7b [3] is a model based on CodeLlama [30] that was trained on formal and informal
mathematical data extacted from the web [25].

We do not include InternLM2-StepProver [36] which reaches 48.8% on MiniF2F-test with a bud-
get of 1 × 100 × 32 and 63.9% on MiniF2F-valid, but whose data collection raises concerns
about data contamination. For instance, the Lean 3 MiniF2F dataset at https://github.com/
facebookresearch/miniF2F contains solutions.

DeepSeek-Prover [37] and DeepSeek-Prover-1.5 [38] do not report the total amount of compute used
for developing their models. Based on the large numbers of problems in their reinforcement learning
set, expensive evaluation settings of up to pass@65536 and the large number of models and methods
reported in the publications , we expect it to be significantly larger than for the other models in the
comparison. We also note that while all other models in the comparison are sized between 600M
parameters (HTPS) and 8B parameters (ours), DeepSeek-Prover also uses sequence distillation from
a 236B parameter model.

DeepSeek-Prover uses 8M autoformalized problems in its reinforcement learning set. DeepSeek-
Prover-1.5 adds MiniF2F-valid (244 problems), ProofNet-valid [2] (185 problems) and Lean Work-
book [41] (57k problems, or 140k including “Workbook Plus”).

GPT-f [27] uses MiniF2F-curriculum instead of MiniF2F-valid in the reinforcement learning set.
The reported number on MiniF2F-valid is hence an evaluation number with the same budget as the
number on MiniF2F-test, not a cumulative one.

HTPS [18] samples the number of tactics sampled at each node uniformly from {8, 16, 32, 48}, with
an average of 26, which we report in the table. (Note however, that for pass@64, the maxmum may
be more relevant than the average.)

Both GPT-f and HTPS additionally use synthetically generated data. GPT-f generates 5600 problems
without proof as reinforcement learning tasks. HTPS generates problems including proofs, and uses
the data as an additional supervised dataset instead.

L Dataset versions

We used the following commits of the respective datasets:

• Mathlib [23] for Lean4 (https://github.com/leanprover-community/mathlib4/):
29dcec074de168ac2bf835a77ef68bbe069194c5 (corresponds to LeanDojo [40] v10),

• MiniF2F [42] for Lean4 [39] (https://github.com/yangky11/miniF2F-lean4):
6bcf0b4940fbf17a1ba83db4ed639fbcb26b1a27 (latest commit at the time of this pa-
per),

• PutnamBench [33] (https://github.com/trishullab/PutnamBench):
8aaccf8c40e0db1e69a3c808166d9d09b0109703 (latest commit at the time of
this paper).
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