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Abstract. We study the rapid stabilization of general linear systems, when the differential
operator A has a Riesz basis of eigenvectors. We find simple sufficient conditions for the rapid
stabilization and the construction of a relatively explicit feedback operator. We use an F -
equivalence (or Fredholm backstepping) approach to show a stronger result: under these sufficient
conditions the system is equivalent to a simple exponentially stable system, with arbitrarily large
decay rate. In particular, our conditions improve the existing conditions of rapid stabilization
for non-parabolic operators such as skew-adjoint systems.

1. Introduction

Stabilization is one of the three main problems in control theory, together with controllability
and optimal control. The goal is to drive a system of differential equations to a given long-term
behavior by acting on it with a control, with the specificity that the control has to be a function of
the state. This creates a feedback loop (the control influences the system which in turn influences
the control), which can make the achieved stability relatively robust. However, this feedback loop
makes the mathematical problem of finding a suitable control difficult and even the well-posedness
can be a challenge. From a practical point of view, stabilization has many applications [9], in
engineering [3], transportation [28, 37, 34], chemistry [68], biology [58], population dynamics [17],
fluid mechanics [9, 38], economics [42] etc.

From an abstract point of view, the stabilization problem in a linear framework is the following:
given a system

(1) ∂tu = Au+Bw(t),

where A is a differential operator and B is a given operator, we would like to find a control
feedback law w(t) = K(u(t, ·)) such that the system (1) is exponentially stable. That is, we want
all solutions of the system converge exponentially quickly to 0. A more ambitious problem is to
require that for any λ > 0 there exists a control feedback law w(t) = Kλ(u(t, ·)) such that all
solutions of the system converge exponentially quickly to 0 with decay rate at least λ > 0. This
is the so-called rapid stabilization (or complete stabilization). Solving this problem is all the more
challenging when w is finite dimensional (in particular this implies that w is not a function of
the space variable x) and B is unbounded. This is the case, for instance, when the control is
located at a boundary, or when the control is a distributed force where only the amplitude can
be controlled (see for instance [10, 24, 2, 23] for particular examples). This problem is studied
since (at least) the work of Slemrod in 1972 [60] and powerful results concerning the exponential
stabilization of generic linear systems were obtained using tools from optimal control and LQ
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theory by, among others, Lions, Barbu, Lasiecka and Triggiani [49, 8, 47, 48], and several of
these results can be extended to rapid stabilization and an unbounded operator B [65, 67, 62]
and semilinear systems [13, 8, 56]. Nevertheless, the control feedback laws obtained often rely
either on the knowledge of the semigroup eA

∗t, which makes it not always explicit, or on solving a
minimization problem and an algebraic Riccati equation, which can be sometimes complicated to
achieve [44]. For this reason, many works on the stabilization problem have focused on particular
systems, especially when B is unbounded, see for instance (such as [9, 44, 73]).

In the recent years, a new approach has been introduced to tackle this problem more generally:
the Fredholm backstepping or F -equivalence. Instead of trying directly to find a feedback K, this
method consists in solving a different mathematical problem: finding an isomorphism-feedback
pair (T,K) such that T maps the original system of interest to an exponentially stable target
system. If such a pair exists, then the original system with feedback K is exponentially stable,
thanks to the isomorphism property of T . In the particular case where T is a Volterra transform of
the second kind, this method corresponds to the well investigated backstepping method introduced
by Krstic and his collaborators in [6, 12, 46] (and inspired from the finite dimensional method
[16, 43, 63] and the adaptation [22]) which has known a large success in the last 20 years. For
this reason the F -equivalence1 can be seen as a generalized backstepping.

A first generalized backstepping relying on Fredholm transformations was introduced in [24]
for the special case of the Korteweg-de Vries equation and the Kuramoto-Sivashinsky equation
[25]. Since then several works in a similar spirit have successfully extended and formalized
the F-equivalence to many different frameworks: the (linear) Schroedinger equation in [18], a
degenerate parabolic equation [33, 50], the 1-d heat equation in [32], the transport equation in
[72], the linearized Saint-Venant equations in [23]. The hope that this approach could be used
in a general framework, rather than in specific cases, materialized in [31] where the authors
introduced a compactness-duality method to generalize the approach to any (linear) skew-adjoint
system when the differential operator has eigenvalues λn scaling as nα with α > 1. This impressive
result resulted from overcoming the structural limitations of the original method in [24] and as a
side result allowed to deal with systems like the capillary gravity water-wave equations that was an
open question presented in [21]. Nevertheless, these results are restricted to skew-adjoint systems
which enjoy very nice properties (such as a basis of orthonormal eigenvectors, pure imaginary
eigenvalues, generates a C0 group, etc.)

In this paper we generalize the F -equivalence to a much more generic class of systems: any
system where A generates a C0 semigroup, has a Riesz basis of eigenvectors with eigenvalues with
finite multiplicities and satisfying a growth assumption (see (6)–(7)). We illustrate these results
on several linear and nonlinear (semilinear) examples: Schroedinger equation, parabolic systems
and a general diffusion equation, burgers’ equation, and a Gribov system that is neither self nor
skew adjoint.

The main point of this approach is to give explicit feedback controls and conditions under
which the PDE system under consideration is equivalent to a simpler PDE system, rather than
trying to improve the sufficient conditions of stabilizability coming from the successful existing
abstract approaches (such as [47, 48, 62, 67, 52, 51, 56]). Nevertheless, in some cases, our method
results in very weak and generic sufficient conditions for rapid stabilization which, to the best
of our knowledge, were yet unknown. In particular, for skew-adjoint systems we show that the
system can be rapidly stabilized even if the control operator B is not admissible and the system
is not exactly null controllable. This is discussed in Section 3.1.

1F -equivalence also refers to a related method due to Brunosvky for finite dimensional systems [15]
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2. Notations and assumptions

Consider the control system described by (1). Let (H, ⟨·, ·⟩) be a Hilbert space. The operator
A : D(A) → H is assumed to be the generator of a C0 semigroup {eAt}t≥0 with finite growth
bound in D(A) where D(A) is defined as

D(A) := {f ∈ H, Af ∈ H}.
We assume the following

(A1) A is diagonalizable, i.e. there exists a Riesz basis of H consisting of eigenvectors of A
(see [70]), and the associated eigenvalues have bounded multiplicities.

Let us denote by m ∈ N∗ the highest multiplicity, one can decompose the space H into

(2) H = H1 + ...+Hm,

such that for any t ≥ 0, etAHi ⊂ Hi, and on which A has a spectral decomposition with simple
eigenvalues (see [31, Appendix G] for an explicit construction of such a decomposition2). In
other words, on each of the Hi, there exists a Riesz basis (of Hi) of eigenvectors (φi

n)n∈N∗ with
associated eigenvalues (λi

n)n∈N∗ such that λi
n ̸= λi

p for any n ̸= p, and (φi
n)(i,n)∈{1,...,m}×N∗ is a

Riesz basis of H. In what follow, we assume without loss of generality that any Hi is generated
by infinitely number of φi

n. Otherwise the spaces Hi generated by finite number of φi
n, can be

easily treated as finite dimension spaces [20] and the following works with a finite set I instead
of N∗. We define for any s ∈ R, the space

Hs := Hs
1 + ...+Hs

m,

where

Hs
i =

{
f =

∑
n∈N∗

f i
nφ

i
n,
∑
n∈N∗

n2s|f i
n|2 < ∞

}
.

These spaces can be endowed with a natural Hilbert space structure (the formal proof is given
in A.1):

LEMMA 2.1. For any s ∈ R, and i ∈ {1, ...,m} , the function

(3) ∥ · ∥Hs
i
: f → ∥f∥Hs

i
:=

(∑
n∈N∗

n2s|f i
n|2
)1/2

,

is a norm of Hs
i and (Hs

i ,∥ · ∥Hs
i
) is a Hilbert space, with inner product

(4) ⟨f, g⟩Hs
i
:=
∑
n∈N∗

n2sf i
ng

i
n, ∀f =

∑
n∈N∗

f i
nφ

i
n, g =

∑
n∈N∗

ginφ
i
n ∈ Hs

i .

As a consequence, for any s = (s1, ..., sm) ∈ Rm we can define the Hilbert space

Hs⃗ := Hs1
1 + ...+Hsm

m .

These spaces are intimately related to the operator A. Indeed, if the assumption 6 (see below)
holds, then Hα = D(A), and for any s ∈ Z, Hsα = D(As) (this can even be extended to s ∈ R
if A is sectorial, see [57, Section 2.6] for more details). These spaces also coincide with the
usual Sobolev spaces Hs whenever (φn)n∈N is an orthonormal basis of L2. Similarly to the usual
Sobolev spaces, these spaces satisfy the following embedding property

2the only difference being that (2) is not a direct sum when the basis of eigenvectors of A is not orthogonal
and the (φi+1

n ) are chosen outside Span((φi
n)n∈N∗) but not necessarily orthogonal
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LEMMA 2.2. For any s ∈ R and ε > 0,

Hs+ε is compactly embedded in Hs.

This actually holds for the Hs
i taken separately and the proof is identical to [31, Section 1.8.1].

Recall that if s = 0, Hs = H. Since (φn)n∈N is not necessarily an orthonormal basis of H with
the canonical norm ∥ · ∥H , then ∥ · ∥H is different from ∥ · ∥H0 . However, we have the following

LEMMA 2.3. If s = 0, then ∥ · ∥Hs and ∥ · ∥H are equivalent norms.

This is a direct consequence of the fact that φn is a Riesz basis. Indeed, by definition there
exists positive constants c and C such that for any (fn)n∈N∗ ∈ l2,

(5) c

(∑
n∈N

|fn|2
)1/2

≤ ∥
∑
n∈N

fnφn∥H ≤ C

(∑
n∈N

|fn|2
)1/2

.

Since ∥
∑
n∈N

fnφn∥H0 = (
∑
n∈N

|fn|2)1/2, Lemma 2.3 follows.

From [10], for each i ∈ {1, ...,m}, the family (φi
n)n∈N∗ admits a unique bi-orthonormal family

(φ̃n
i)n∈N∗ in Hi which forms a Riesz basis of Hi and corresponds to the family of eigenvectors of

the adjoint A∗ of A (with respect to the scalar product ⟨·, ·⟩ of H). Thus any f ∈ Hi admits a
unique decomposition in Hi as follows

f =
∑
n∈N∗

f i
nφ

i
n =

∑
n∈N∗

⟨f, φ̃n
i⟩φi

n,

and, as a consequence ⟨f, φ̃n
i⟩ = ⟨f, φi

n⟩H0
i

and this extends to any function f ∈ Hs
i for s ∈ R.

Assumptions Thorough the paper, we assume the following assumptions: there exists (α1, · · · , αm) ∈
(1,+∞)m, such that

•
nαi ≲ |λi

n|+ 1 ≲ nαi , ∀n ∈ N∗, i ∈ {1, · · · ,m}(6)

• there exists C > 0 such that for any n, p ∈ N∗, i ∈ {1, · · · ,m},
(7) |λi

n − λi
p| ≥ Cnαi−1|n− p|.

3. Main results

Our main result generates the exponential stabilization of system (1) for any operator A
satisfying (A1), (6)–(7).

THEOREM 3.1. Consider the control system (1) with operator A satisfying the assumptions
(A1), (6) and (7). If B = (B1, · · · , Bm) ∈ H−α1/2 × · · · × H−αm/2 is such that

c1 ≤ |⟨Bi, φ̃n
i⟩| ≤ c2n

γi , ∀n ∈ N∗, i ∈ {1, · · · ,m}(8)

for some constant c1, c2 > 0, and some γi ∈ [0, (αi − 1)/2) for i ∈ {1, ...,m} and set α := minαi

and γ := min γi. Then, for any λ0 > 0, there exist λ > λ0 and a bounded linear feedback
K ∈ L(Hα1/2 × · · · × Hαm/2,Cm) and a mapping T that is an isomorphism from Hr to itself for
any r ∈ (1/2− α+ γ, α− 1/2− γ) such that T maps the system

(9) ∂tu = Au+BK(u)

to the system

(10) ∂tv = Av − λv.
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In particular, for any µ > 0, λ0 can be chosen sufficiently large such that the closed loop system
(9) is exponentially stable with decay rate µ > 0 in Hr for any r ∈ (1/2− α+ γ, α− 1/2− γ).

REMARK 3.2 (Regularity of the feedback operator). While the linear feedback K belongs a
priori to L(Hα1/2 × ...×Hαm/2,Cm), the feedback we construct is actually more regular and can
actually be extended on L((H1/2+ε)m,Cm) for any ε > 0. (see (76) and Lemma 5.9)

REMARK 3.3 (Real-valued case). When the Riesz basis of eigenvectors (φn)n∈N can be chosen
real-valued and B is a real-valued function, then the constructed feedback K is also real-valued.
(see Corollary 3.10 and Remark 5.8).

In fact, Theorem 3.1 can be generalized as follows:

THEOREM 3.4. Consider the control system (1) with operator A satisfying the assumptions
(A1) (6) and (7). Let (β1, · · · , βm) ∈ Rm, (γ1, ..., γm) ∈ [0, (α1−1)/2)× ...× [0, (αm−1)/2), and
B = (B1, · · · , Bm) ∈ Hβ1−α1

2 × · · · × Hβm−αm
2 such that there exist c1, c2 > 0 satisfying

c1n
−βi ≤ |⟨Bi, φ̃n

i⟩| ≤ c2n
−βi+γi , ∀n ∈ N∗, i ∈ {1, · · · ,m}.(11)

Then, for any λ0 > 0 there exist λ > λ0 and a bounded linear feedback K ∈ L(Hβ1+
α1
2 × · · · ×

Hβm+αm
2 ,Cm) and a mapping T that is an isomorphism from Hr⃗ to itself with

(12) Hr⃗ = Hβ1+r1 + ...+Hβm+rm

for any

ri ∈ (1/2− αi + γi, αi − 1/2− γi).(13)

Moreover T maps the system
∂tu = Au+BK(u)

to the system
∂tv = Av − λv.

In particular, for any µ > 0, λ0 can be chosen sufficiently large such that the closed loop system
(9) is exponentially stable with decay rate µ in Hr⃗, for any r⃗ satisfying (13).

We give some illustrations from this Theorem in Sections 3.2–3.3: an application to the
Schroedinger equation considered and the water wave equations, and an extension of the lin-
ear Laplacian operator studied in [32].

In the particular case where A is skew-adjoint operator, we recover the result of [31] but our
conditions are strictly less restrictive. One can also recover the result on the linearized Schrodinger
equation of [18], here again with less restrictive conditions of stabilization since [18, Hypothesis
1.1] is not necessarily needed depending on the regularity of the control operator).

From Theorem 3.4 we deduce the following conditions for the rapid stabilization of system 1.

COROLLARY 3.5. Consider the control system (1) with operator A satisfying the assumptions
(A1) (6) and (7). Let (γ1, ..., γm) ∈ [0, (α1− 1)/2)× ...× [0, (αm− 1)/2), ri ∈ (1/2−αi+ γi, αi−
1/2− γi), and B = (B1, · · · , Bm) ∈ H−α1 × · · · ×H−αm such that there exist c1, c2 > 0 satisfying

(14) c1n
ri ≤ |⟨Bi, φ̃n

i⟩| ≤ c2n
ri+γi ,

then for any µ > 0 there exists a (constructive) bounded linear feedback Kγ ∈ L(Hα1/2−r1 × · · · ×
Hαm/2−rm ,Cm) such that Kγ ∈ L(H1/2−r1+ε×· · ·×H1/2−rm+ε,Cm) for any ε > 0 and the system
(9) is exponentially stable in H with decay rate µ.
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3.1. Link with controllability and existing conditions for stabilizability. Usually, a typ-
ical "good" condition for a generic rapid stabilization result (in H) would be exact null control-
lability (in H) and admissibility of the control operator B. These are the conditions typically
required when using Riccati methods for stabilization [65, 47, 48], or other methods such as the
one introduced by Komornik in [44]. The result of [62, Proposition 1] using an observability
approach to investigate rapid stabilizability in a general framework with also uses this as as-
sumption (see also [61, 56] in the case where A generates a C0 group and not only a semigroup).
In our case, because we require BK to shift all the spectrum3 of A our statement is stronger than
the sole rapid stabilization and we could expect to require a stronger condition4. Surprisingly,
our condition (14) can in fact be less restrictive: in our framework the system is not necessarily
exactly null controllable in H and B is not necessarily admissible. This is particularly striking
when the system is skew-adjoint: in this case our sufficient conditions (14) are less restrictive
than those of the existing results so far. In particular, the system (1) can be stabilized rapidly
in H even if it is not exactly (null) controllable in H and B is not admissible (in H).

To go more in detail, let us recall that being admissible (in H) means that there exists T > 0
and CT > 0 such that for every z ∈ D(A∗) (see [19, Section 2.3] or [64])

(15)
∫ T

0
|B∗S(t)∗z|2 ≤ CT ∥z∥2H , (admissibility condition)

where A∗ is the adjoint of A and S(t)∗ is the adjoint of S(t), where {S(t)}t≥0 is the C0 semigroup
generated by A. On the other-hand being exactly controllable in H at time T is equivalent to
the existence of cT such that

(16)
∫ T

0
|B∗S(t)∗z|2 ≥ cT ∥z∥2H , (exact controllability).

In the particular case of skew-adjoint systems, (16) is also equivalent to exact null controllability.
In our framework, since A has a Riesz basis of eigenvectors we have the following results from
[70] (see also [59])

LEMMA 3.6 ([70]). If B is admissible then there exists C > 0 such that

(17) |⟨Bi, φ
i
n⟩| ≤ C(1 + |Re(λi

n)|)1/2, ∀ (i, n) ∈ {1, ...,m} × N∗,

and if the system is in addition exactly controllable in H then there exists c > 0 such that

(18) |⟨Bi, φ
i
n⟩| ≥ c(1 + |Re(λi

n)|)1/2, ∀ (i, n) ∈ {1, ...,m} × N∗.

These conditions are necessary (and not necessarily sufficient [36] in general5) to admissibility
and exact controllability. Comparing with our condition (14) we see the following:

• If the λi
n have bounded real part (for instance if A is a skew-adjoint operator, but not

only).
– For ri = 0, γi = 0 we recover the conditions of admissibility and exact controllability

which coincide with the regularity and observability conditions of [44, 65, 67, 56]
(and [18, 55] for the bilinear Schroedinger equation).

3since the system should be mapped to ∂tv = (A− λId)v
4In fact our problem is closer to the pole placement problem in infinite dimension for which the conditions are

usually stronger than the condition of rapid stabilization.
5Note that following [70] (18) is necessary and sufficient for exact controllability if (λi

n)n,i are properly spaced
(see [70, Proposition 3.4]), but they are not always here.
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– For ri + γi ∈ (1/2, αi − 1/2), B is not necessarily admissible, in particular the
regularity condition required in [67, 65, 44, 56] is not satisfied.

– For ri−γi ∈ (1/2−αi, 0), then the exact controllability of the system is not satisfied.
This could seem surprising given the usual result according which rapid stabilizabil-
ity implies exact (null) controllability for skew-adjoint systems given in [71, Theorem
16.5] (see also [62]). In fact, since in these references, the definition of rapid stabiliz-
ability additionally requires that K ∈ L(X,Cm), which is helpful in the analysis, in
particular to ensure that the system is well-posed, but is not assumed here (compared
to the previous case ri ∈ (1/2, αi − 1/2)): we only require the weaker condition that
A+BK generates a C0 semigroup on H. This less restrictive and relaxed definition
can also be found in [51, 52] where the authors provide very nice necessary condi-
tions in terms of observability when A is a skew-adjoint operators (but under the
assumption that B is admissible, which is not the case here).

Note that both ri − γi ∈ (1/2− α, 0) and ri + γi ∈ (1/2, αi − 1/2) can be satisfied at the
same time. As a consequence, our sufficient condition for rapid stabilization (14) can hold
even in cases where the system is not exactly controllable in H and B is not admissible.

• If Re(λi
n) ≥ c|λn| for some constant c > 0 (for instance if A is a self-adjoint operator, but

not only)
– If ri + γi ∈ (α/2, α− 1/2) then B does not necessarily need to be admissible.

Of course, if B is admissible and the system exactly controllable, then our condition on B is
always satisfied, as one could expect.

3.2. Application to Schroedinger equation around the ground state. We consider the
bilinear Schroedinger equation linearized around the ground state studied in [18, 55] (see also
[10, 11] and [53, 27] for earlier works):

i∂tΨ = −∆Ψ− λ1Ψ+ u(t)µ(x)φ1(x),

Ψ(0) = Ψ(1) = 0,
(19)

where λ1 = π2 and φ1 =
√
2 sin(πx) are respectively the first eigenvalue and eigenvector of

the Laplace operator with Dirichlet boundary conditions. The total family of eigenvalues and
eigenvectors are the solution of

−∆φn = λnφn

φn(0) = φn(1) = 0,
(20)

and is given by

(21) λn = π2n2, φn(x) =
√
2 sin(nπx), ∀n ∈ N∗.

Here, the space under consideration is, as in [18, 55]

(22) H = {f ∈ H3((0, 1);C), f(0) = f(1) = f ′′(0) = f ′′(1) = 0, Re⟨f, φ1⟩L2(0,1) = 0},

One can easily check that the associated operator A = i(∆+ λ1Id) is diagonal with eigenvectors
φ̃n = (πn)−3φn associated to eigenvalues λ̃n = −i(λn − λ1), for n ∈ N∗ on H and satisfy (6)–(7)
with α = 2. H is naturally equipped with the following inner product and associated norm (see
[18]):

⟨f, g⟩H :=
∑
n∈N∗

λ3
n⟨f, φn⟩L2⟨g, φn⟩L2 ,(23)
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which, in fact, corresponds to the H3 norm (see [55, Section 1]).
One can check that (φ̃n)n∈N∗ is an orthonormal basis of H, indeed

(24) ⟨φ̃n, φ̃k⟩H =
∑
m∈N∗

λ3
mπ−6n−3k−3⟨φn, φm⟩L2⟨φk, φm⟩L2 ,= δn,kλ

3
nπ

−6n−6,

thus for k ̸= n, ⟨φ̃n, φ̃k⟩H = 0 and ∥φ̃n∥H = 1. Finally, let f ∈ H, since H ⊂ L2(0, 1) and
(φn)n∈N∗ is a basis of L2(0, 1) there exists (fn)n∈l2 such that

(25) f =
∑
n∈N∗

fnφn =
∑
n∈N∗

λ3/2
n fnφ̃n,

and since f ∈ H, (λ3/2
n fn)n∈N∗ ∈ l2.

In [18, 55] it was showed that the system is rapidly stabilizable –i.e. for any λ > 0 there exists
a feedback operator K such that the system (19) with u(t) = K(Ψ(t)) is exponentially stable
with decay rate λ– provided that the following sufficient condition is satisfied

µ belongs to H3(0, 1)

|⟨µφ1, φn⟩L2(0,1)| ≥ cn−3, ∀n ∈ N∗(26)

for some c > 0. This implies in particular (see [18, Remark 1.2]) that

(27) cn−3 ≤ |⟨µφ1, φn⟩L2(0,1)| ≤ Cn−3,

for some c, C > 0 (that might change between lines but are independent on n). The left equality
is equivalent to the exact (null) controlability of the system (19) [18]. Since (φ̃n)n∈N∗ is a Riesz
(and in fact orthonormal) basis of H this is also

(28) c ≤ |⟨µφ1, φ̃n⟩H | ≤ C,

which corresponds to our condition (14) with γ = β = 0. From Corollary 3.5 we can relax
the condition (26) of [18, 31] and show that the system (19) with u(t) = K(Ψ(t)) is rapidly
stabilizable as soon as there exists γ ∈ [0, 1/2) and r ∈ (−3/2 + γ, 3/2− γ) such that

(29) cnr ≤ |⟨µφ1, φ̃n⟩H | ≤ Cnr+γ .

In particular, a sufficient condition for rapid stabilization is

µ belongs to H3(0, 1)

|⟨µφ1, φn⟩L2(0,1)| ≥ cn−7/2+ε, ∀n ∈ N∗, for some ε > 0.
(30)

Stabilization in weaker spaces In [18, 55] the space considered is H ⊂ H3(0, 1) because the
system was shown to be exactly (null) controllable under the assumption (26) (see [10]) and it
was shown that if µ is regular the system cannot be exactly controllable in weaker spaces such
as H1

0 (0, 1;C) or H2(0, 1;C) ∩ H1
0 (0, 1;C) (see [5]). However, since with our result we do not

need anymore the exact controllability to be able to stabilize the system, we can consider the
stabilisation in weaker spaces. In particular, under the condition (26) of [10, 18, 55] the system
is rapidly stabilizable in H2(0, 1;C) ∩H1

0 (0, 1;C):

COROLLARY 3.7. Assume that (26) holds, then for any λ > 0 there exists K ∈ L(H7/2+ε(0, 1);C)
for any ε > 0 such that the system (19) is exponentially stable in Hr for any r ∈ (3/2, 9/2). In
particular it is exponentially stable in H2(0, 1;C) ∩H1

0 (0, 1;C) where

(31) Hs := {f ∈ Hs(0, 1;C) |
∑
n∈N∗

|⟨f, φn⟩L2(0,1)|2n2s < +∞}.
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Proof. It suffices to use Theorem 3.4 and to note that H2 = H2(0, 1;C) ∩ H1
0 (0, 1;C) (see [18,

Section 1.1] for this last point, noting that H2 in our case corresponds exactly to H2
(0) in [18]). □

In general we have

COROLLARY 3.8. Assume that there exists β ∈ R and γ ∈ [0, 1/2) such that

(32) cn−β ≤ |⟨µφ1, φn⟩L2(0,1)| ≤ Cn−β+γ , for any n ∈ N∗,

for some positive constants c, C > 0. Then for any λ > 0 there exists an (explicitly computable)
linear feedback K ∈ L(Hβ+1/2+ε,C) for any ε > 0 such that the system (19) is exponentially stable
in Hβ+r for any r ∈ (−3/2 + γ, 3/2− γ) with decay rate at least λ where Hs is given by (31)

REMARK 3.9. Note that in [55] the author uses a very different method and shows an impres-
sive quantitative estimate of K with respect to λ, which allows a finite-time stabilization of this
system. Since the F -equivalence constructs relatively explicitly the control K and the isomorphism
T , it would be interesting to see if it is possible to obtain in our case a quantitative estimate on
K and T and, in turn, a finite time stabilization.

3.3. Application to parabolic systems.

3.3.1. Heat equation. Let us first consider the heat equation on a torus T = R/2πZ with two
scalar controls

(33) ∂tu = ∆u+ ϕw(t),

where ϕ = (ϕ1, ϕ2)
T such that ϕ1 is even and ϕ2 is odd and w(t) ∈ R2 (the system is not

controllable in Hm(T) with a single control, see [32]) . The space of consideration is Hm(T) and
the eigenvectors and associated eigenvalues of the operator A = ∆ are

(34) λn = −n2, φ1
n(x) = n−mc1,n sin(nx), φ

2
n+1(x) = n−mc2,n cos(nx),∀n ∈ N∗,

and the constant function φ2
0(x) = (2π)−1 associated to the eigenvalue 0. Note that all eigenvalues

have multiplicity 2 except 0. In [32] it is shown that for arbitrarily large λ > 0 there exists a
feedback operator K ∈ L(Hm+1/2+ε;R2) for any ε > 0 such that this system with w(t) = K(u(t))
can be invertibly mapped to the exponentially stable system

(35) ∂tu = ∆u− λu,

in Hm+r(T) for any r ∈ (−1/2, 1/2) provided that the following sufficient condition holds:

(36) c ≤ |⟨ϕi, φ
i
n⟩Hm(T)| ≤ C, ∀(i, n) ∈ {1, 2} × N∗

We recover the same with our Theorem 3.4, but with a weaker condition:

COROLLARY 3.10. Let γ ∈ [0, 1/2), if

(37) c ≤ |⟨ϕi, φ
i
n⟩Hm(T)| ≤ Cnγ , ∀(i, n) ∈ {1, 2} × N∗,

then for arbitrarily large λ > 0 there exists a feedback operator K ∈ L(Hm+1/2+ε;R2) such that
the system with w(t) = K(u(t)) can be invertibly mapped to the exponentially stable system (35)
in Hm+r(T) and in particular it is exponentially stable for any r ∈ (−3/2 + γ, 3/2− γ).
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3.3.2. A nonlinear system: Burgers’ equation. Our result can in fact generalize to a nonlinear
(semilinear) system such as the Burgers’ equation. Let us consider

(38) ∂tu = ∆u+ ϕw(t) + u∂xu,

where ϕ = (ϕ1, ϕ2)
T is taken as in the previous example. The space of consideration is L2(T)

and we consider the functions (φi
n) defined in (34) and get the following

COROLLARY 3.11. Let γ ∈ [0, 1/2), and r ∈ (−1/4, 1/2− γ). If

(39) cnr ≤ |⟨ϕi, φ
i
n⟩L2(T)| ≤ Cnr+γ , ∀(i, n) ∈ {1, 2} × N∗,

then for any arbitrary large λ > 0 there exists a feedback operator K ∈ L(H3/4;R2) (and in fact
K ∈ L(H1/2−r+ε;R2) for any ε > 0) such that the nonlinear system (38) with w(t) = K(u(t)) is
locally exponentially stable in L2(T).

This can be shown leveraging the F -equivalence on the linear system and using the same on
the nonlinear system exactly as in [32]. We give a proof in Appendix A.7. To our knowledge this
stabilization result is new and is an improvement of the results of [32] (which correspond to the
particular case of Corollary 3.11 when r = γ = 0).

3.3.3. General diffusion equation. Our Theorem 3.4 also allows to generalize this to the classical
diffusion equation:

(40) ∂tu = ∂x(a∂xu) + bu+ ϕK(u), on [0,+∞)× [0, L],

c1u(t, 0) + c2∂xu(t, 0) = 0

c3u(t, L) + c4∂xu(t, L) = 0,
(41)

where a ∈ C2([0, L];R∗
+), b ∈ L2(0, L), and c21 + c22 > 0, c33 + c24 > 0. This framework could

not be considered with the F -equivalence until now, while stabilization results where known with
other approaches for some time: this system was for instance considered with Dirichlet boundary
condition and ϕ a bounded operator in the reference space H (here H = L2(0, L)) in [7] and the
authors obtained a stabilization with an optimal feedback using a Riccati approach. In particular,
the following holds

COROLLARY 3.12. If there exist c1, c2 > 0 and γ ∈ [0, 1/2) such that ϕ satisfies

(42) c1 ≤
∣∣∣∣∫ L

0
ϕ(x)un(x)dx

∣∣∣∣ ≤ c2n
γ , ∀n ∈ N∗,

where (un)n∈N∗ is the sequence of eigenvectors of the operator A := ∂x(a∂x) + b, then for any
λ ∈ (0,+∞), there exists a bounded linear feedback K ∈ L(H1/2+ε(0, L),C) for any ε > 0, such
that the diffusion equation (40)–(41) is exponentially stable in Hr(0, L) with decay rate λ, for any
r ∈ (−3/2 + γ, 3/2− γ).

REMARK 3.13 (Other boundary conditions). Depending on the boundary conditions that we
consider for the system (40), the eigenvalues of the operator A might have simple or double
multiplicity (see [45, 69, 54, 4]). Then, by adapting the space H (see (2)) depending on the
multiplicity of eigenvalues, we can apply our result to get stabilization condition of the system
(40) even if we consider different boundary conditions (41) (such as Dirichlet boundary conditions
for instance).
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3.4. Application to a Gribov operator in the Bargman space. The Hilbert space H
considered in this section is the following Bargmann space

H :=

{
f : C → C holomorphic |

∫
C
e−|z|2 |f(z)|2dz < ∞ and f(0) = 0

}
,

endowed with the scalar product:

⟨f, g⟩ :=
∫
C
e−|z|2f(z)ḡ(z)dz, ∀f, g ∈ H,

where dz denotes the 2−dimensional Lebesgue measure on C. Let us consider the operators U
and V defined as:

U : D(U) ⊂ H → H

f 7→ Uf = df
dz

D(U) = {f ∈ H | Uf ∈ H},
and


V : D(V ) ⊂ H → H

f 7→ V f = zf

D(V ) = {f ∈ H | V f ∈ H}.

The operator U is called the annihilation operator and V the creation operator. The nonself-
adjoint Gribov operator ([1], [39]) is constructed as a polynomial of the operators U and V defined
in the Bargmann space H as follows:

A := (V U)3 + εV (U + V )U + ε2(V U)3d2 + · · ·+ εk(V U)3dk + · · · ,(43)

where ε ∈ C and (dk)k∈N is a strictly decreasing sequence with strictly positive terms such
that d0 = 2d1 = 1. This operator appears in the Reggeon field theory which was introduced
by Gribov in [35] to study strong interactions between protons and neutrons amoung other less
stable particules. Notice that this operator is neither self-adjoint nor skew-adjoint operator. So
the stability analysis results stated in [31], [32] can not cover this class of operator. In view of
[29], this operator can be studied on the domain D defined as

D := D((V U)3d2) ∩D(V (U + V )U).

Consider now the following evolution equation associated to its:

∂tu = −Au+ ϕw(t)(44)

where ϕ is a given function and w is the control of the system. Based on [29, section 4.2], for
small value of ε, there exists a sequence (φi

n)n,i such that the system of eigenvectors of A forms
a Riesz basis in H which can be decomposed in entire serie as follows:

φn(z) =
zn

n!
+ p

zn√
n!

+

∞∑
i=1

εiφi
n(z),

for any p ∈ (0, 1√
n!
). So there exists a Riesz basis (φ̃n)n∈N∗ of H which is a bi-orthogonal family

of (φn)n∈N∗ . Applying our Corollary 3.5, the following holds:

COROLLARY 3.14. Let γ ∈ [0, 1), and r ∈ (−5/2 + γ, 5/2− γ). If ϕ is such that there exists
c1, c2 > 0 satisfying

c1n
r ≤

∣∣∣∣∫
C
e−|z|2ϕ(z)φ̃n(z)dz

∣∣∣∣ ≤ c2n
r+γ ,

then if ε is sufficiently small, for any λ ∈ (0,+∞), there exists a feedback law w(t) = K(u(t, ·))
with K ∈ L(H

3
2
−r,C) such that the system (44) is exponentially stable in the Bargman space H

with decay rate λ.
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Proof. All we need to show is that: the Gribov operator −A generates a C0 semigroup and the
eigenvalues of −A satisfy assumptions (6) and (7) and then concludes by Corollary 3.5. Based
on [29, Section 4.2, Theorem 3.2], there exists small ε and a sequence (λi

n)n,i such that the
eigenvalues of −A are simple and can be decomposed as follows:

λn = −n3 +Oε(1),

where Oε(1) :=
∑
i∈N∗

εiλi
n ≃ O(|ε|, 1/n). So the conditions (6) and (7) hold with α = 3. The fact

that −A generates a C0 semigroup is a consequence of this and the existence of a Riesz basis of
eigenvectors: one can easily check that there exists λ0 > 0 such that λn − ω < 0 and therefore
−A−ω is dissipative and similarly thanks to the Riesz basis of eigenvectors −A−λ0 is surjective
for any λ0 > ω and we can apply for instance Lumer-Phillips theorem to conclude to the existence
of a C0 semigroup.

□

4. Strategy and outline

To prove our main result, the main challenge is to show the F -equivalence in each of the spaces
Hi separately, more precisely:

PROPOSITION 4.1. Assume that A satisfies (A1), (6) and (7). Let β = (β1, ..., βm) ∈ Rm and
γ = (γ1, ..., γm) ∈ [0, (α1 − 1)/2)× ...× [0, (αm − 1)/2). For any i ∈ {1, ...,m}, assume that Bi ∈
Hβi−

αi
2

i satisfies (11). Then for any λ ∈ R+\N , where N = {λi
n−λi

p | (n, p) ∈ N∗, i ∈ {1, ...,m}},

there exists a bounded linear operator Ki ∈ L(Hβi+
αi
2

i ;C) such that Ki ∈ L(Hβi+
1
2
+ε

i ;C) for any
ε > 0 and a linear mapping Ti ∈ L(Hr

i ) which is an isomorphism from Hr
i to itself for any

r ∈ (βi + 1/2− αi + γi, βi + αi − 1/2− γi) and maps the system,

(45) ∂tu = Au+BiKi(u), u ∈ Hr
i ,

to the system,

(46) ∂tv = Av − λv, v ∈ Hr
i .

The idea is that if Proposition 4.1 holds, then a candidate feedback to obtain the exponential
stability with decay rate λ for the total system is K = (K1, ....,Km)T . To do so, the main step
is to show that the system with feedback K = (K1, ...,Km)T is well-posed, that is

PROPOSITION 4.2. Under the assumption of Theorem 3.4, and with K = (K1, ...,Km)T

where the Ki are given by Proposition 4.1, for any r⃗ satisfying (13), A+BK generates a semigroup
on Hr⃗ and in particular the system (9) has a unique solution u ∈ C0([0,+∞);Hr⃗).

If Propositions 4.1 and 4.2 hold, then Theorem 3.4 (and hence Theorem 3.1) follows by choos-
ing T = T1 + ... + Tm. This is detailed in Section 5.8, while the proof of Propositions 4.1 and
4.2 are done respectively in Sections 5.1–5.6 and Section 5.7. In the remaining of this section, we
present the strategy to show the main Proposition 4.1 and the spirit of the backstepping approach.

Principle of the approach. Formally, having Ti mapping the system (45) to the system (46)
with v = Tiu means that Ti is an isomorphism which satisfies the following operator equality

(47) Ti(A+BiKi) = (A− λ)Ti,

in some sense. Indeed, still formally, if (47) holds and v = Tiu, then

(48) ∂tv = Ti∂tu = Ti(A+BiKi)u = (A− λ)Tiu = (A− λ)v,
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and conversely, since Ti is an isomorphism. Because the operator equality (47) has no uniqueness
in the solutions (T,K) –note that if (T,K) is a solution, then (aT,K) is still a solution for any
a ̸= 0– it is tempting to add a kind of normalization on T which would simplify (47). In this
regards, a good approach is often to formally add a condition of the form

(49) TiBi = Bi,

again in a sense to be defined (note that since Bi can be unbounded and not belong to the spaces
Hr

i on which we consider Ti, this inequality may have to be considered in a weak sense). With
(49), the operator equality (47) becomes (formally)

(50) TiA+BiKi = (A− λ)Ti.

This operator equation is easier to solve than (47) since it is linear in (T,K). When H is finite
dimensional there exists a unique solution to (49)–(50) if (A, Bi) is controllable in Hi (see [20, 23])
which is an additional motivation to adding the condition (49). When H is infinite dimensional,
the situation is much less clear, but (50) can be translated in terms of actions of T on (φi

n)i∈N.
Indeed, projecting the operator equality (50) on the eigenvector φi

n of A, we get

λi
nTiφ

i
n +BiKi(φ

i
n) = (A− λI)Tiφ

i
n.(51)

We set hin := Tiφ
i
n; Ki

n := Ki(φ
i
n) and we project (51) on a bi-orthogonal family (φ̃p

i)p∈N∗

associated to (φi
n)n∈N∗ to obtain

λi
n⟨hin, φ̃p

i⟩+Ki
n⟨Bi, φ̃p

i⟩ = ⟨Ahin, φ̃p
i⟩ − λ⟨hin, φ̃p

i⟩

= λi
p⟨hin, φ̃p

i⟩ − λ⟨hin, φ̃p
i⟩

So we obtain, assuming that λ is chosen such that (λi
n − λi

p + λ) ̸= 0, for any (n, p) ∈ N∗,

⟨hin, φ̃p
i⟩ = −Ki

n

⟨Bi, φ̃p
i⟩

λi
n − λi

p + λ
.

This leads to the following

(52) Tiφ
i
n = hin :=

∑
p∈N∗

⟨hin, φ̃p
i⟩φi

p = −Ki
n

∑
p∈N∗

⟨Bi, φ̃p
i⟩

λi
n − λi

p + λ
φi
p.

Hence, if Ti is a solution to (50), it has to have the decomposition (52). In particular, as soon
as Ki is chosen, the candidate transform Ti is fixed and we aim to show that it is indeed an
isomorphism from Hr

i to itself and maps the system (45) to the system (46).

Outline of the proof of Proposition 4.1

The general strategy is the following
(1) Show that the operator

(53) Si : φ
i
n →

∑
p∈N∗

φi
p

λi
n − λi

p + λ

is a Fredholm operator of index 0 from Hr
i into itself for any r ∈ (1/2− αi, αi − 1/2).

(2) Show that ker(Si) = ker(S∗
i ) = {0} and consequently Si is an isomorphism from Hi into

itself.
(3) Show that Si is an isomorphism from Hr

i into itself for any r ∈ (1/2− αi, αi − 1/2)
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(4) Find an explicit candidate Ki ∈ L(H1/2+ε;C) for any ε > 0, such that TiBi = Bi holds
in H−αi/2

i with

(54) Ti : φ
i
n → −Ki(φ

i
n)
∑
p∈N∗

bipφ
i
p

λi
n − λi

p + λ

where bip := ⟨Bi, φ̃p
i⟩.

(5) Show that the linear operator Ti is bounded from Hri
i into itself for ri ∈ (1/2 − αi +

γi, αi − 1/2) and satisfies the operator equality (50) in L(Hαi/2+s
i ;H−α/2+s

i ) for any s ∈
(−(αi − 1)/2 + γi, (αi − 1)/2− γi).

(6) Show that Ti is an isomorphism from Hr
i into itself for any r ∈ (1/2−αi+γi, αi−1/2−γi).

Step 1, 4 and 5 are similar to [31], the main difference with the duality compactness method
introduced in [31] lies in the steps 2 and 3 where the duality argument used in [31] leverages
the skew-adjoint properties and does not hold anymore and in the Step 5 and 6, where the
boundedness of Ti is not straightforward when γi ̸= 0 while showing directly that Ti is an
isomorphism from H−α/2

i into itself as in [31] would be challenge. These steps are shown in
Section 5.1–5.6.

5. Proof of Theorem 3.4

We first prove Proposition 4.1, following the outline described in Section 4 and we then deduce
Theorem 3.4 (see Section 5.8) and hence Theorem 3.1. Since several of the arguments of the
proof (namely steps 1, 4, 5) are similar to [31], we just explicit the novelty and refer the reader
to [31] for the remaining.

Since Proposition 4.1 consist in showing the F -equivalence on each of the spaces Hi, we start by
fixing i ∈ {1, ...,m} and we will work in Hi (resp. Hs

i ). We also adopt the following convention:
when an operator on Hi (resp. Hs

i ) is defined by its action on (φi
n)n∈N, we extend it to H (resp.

Hs) by setting its image to {0} on (φj
n)n∈N for any j ̸= i. With this in mind, in the following, we

will drop the dependency in i for the different quantities Bi, Ki, Ti, βi, αi, γi, (φi
n)n∈N, (λi

n)n∈N,
for the reader’s convenience. We will also assume in the following that β = 0, the extension to
the case β ̸= 0 is given in Appendix A.5.

Let us set, for n ∈ N∗,

qn :=
∑
p∈N∗

φp

λn − λp + λ
= Sφn,(55)

5.1. Step 1: S is a Fredholm operator. We are going to show the following:

PROPOSITION 5.1. For any r ∈ (1/2 − α, α − 1/2), the operator S ∈ L(Hr) is a Fredholm
operator of index 0. More precisely there exists a compact operator Sc ∈ L(Hr) such that

(56) S = λ−1Id+ Sc.

Proof of Proposition 5.1. □

Let r ∈ (1/2 − α, α − 1/2). Showing that S is a Fredholm operator of order 0 in Hr can be
done essentially as in [31]. The first thing to observe is the following

LEMMA 5.2. For any λ ∈ R+\N , there exists C(λ) > 0 such that |λn−λp+λ| ≥ C(λ)|λn−λp|.
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Proof. For n = p the inequality is true for any constant C(λ). For n ̸= p

(57)
|λn − λp ± λ|
|λn − λp|

≥ 1− λ

|λn − λp|
.

From (7)

lim
n2+p2→+∞

λ

|λn − λp|
≤ lim

n2+p2→+∞

λ

Cmax(n, p)α−1
= 0.

Since λn − λp + λ ̸= 0 for any (n, p) ∈ N∗ by definition of N , there exists C(λ) > 0 such that

|λn − λp + λ| ≥ C(λ)|λn − λp|

□

With this in mind, the key of this step is to notice that [31, Lemma 4.6] can still apply despite
A not being skew-adjoint. Indeed, we have

LEMMA 5.3. For any s < α− 1 we have

(58)
∑

n∈N∗\{p}

ns

|λn − λp + λ|
≲ p1−α+s log(p) + p−α, ∀p ∈ N∗,

where ≲ means lower or equal up to a multiplicative constant that does not depend on p or n.

Proof. From Lemma 5.2 it is enough to show that

(59)
∑

n∈N∗\{p}

ns

|λn − λp|
≲ p1−α+s log(p) + p−α, ∀p ∈ N∗.

Since condition (6) and (7) hold, this is exactly given by [31, Lemma 4.2]. □

We can now perform as in [31, Lemma 4.7] to show that

(60) Sc :
∑
n∈N∗

ann
−rφn 7→

∑
n∈N∗

ann
−r

 ∑
p∈N∗\{n}

φp

λn − λp + λ

 ,

is a compact operator from Hr to itself:
let ε > 0 to be chosen, by using Fubini’s Theorem we have, for any a =

∑
n∈N∗

ann
−rφn ∈ Hr,

Sca =
∑
n∈N∗

ann
−r

 ∑
p∈N∗\{n}

φp

λn − λp + λ

 =
∑
p∈N∗

φp

 ∑
n∈N∗\{p}

ann
−r

λn − λp + λ

 .

Thus,

∥Sca∥2Hr+ε =

∥∥∥∥∥∥
∑
p∈N∗

φp

 ∑
n∈N∗\{p}

ann
−r

λn − λp + λ

∥∥∥∥∥∥
2

Hr+ε

=
∑
p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

.

(61)

Hence, we can use Lemma 5.3 and perform exactly as in [31, Lemma 4.7] to get the following
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LEMMA 5.4. Consider r ∈ (1/2− α, α− 1/2). For any ε ∈
(
0,min{α−1

2 , α+ r − 1
2}
)
, it holds

that

∑
p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

≲
∑
n∈N∗

|an|2.

Using any ε provided by this Lemma, the following holds:

(62) ∥Sca∥2Hr+ε ≲
∑
n∈N∗

|an|2.

Since

(63)
∑
n∈N∗

|an|2 =

∥∥∥∥∥∑
n∈N∗

an(n
−rφn)

∥∥∥∥∥
2

Hr

= ∥a∥2Hr ,

we conclude that

(64) ∥Sca∥Hr+ε ≲ ∥a∥Hr

and from the compact embedding of Hr+ε in Hr (see Lemma 2.2), this implies in particular that
Sc is a compact operator from Hr to itself. Finally, noting that

(65) S = λ−1Id+ Sc,

concludes the proof.

5.2. Step 2: S is an isomorphism from H0 to itself. Using the results of Step 1 for r = 0,
we deduce that S is a Fredholm operator of index 0 from H0 to itself. Then, S is an isomorphism
if and only if kerS = {0}. Since it is of index 0, this is also equivalent to (see [41, Chapter 4])

(66) ker S̃ = {0} where S̃ is the adjoint of S.

Let us introduce

(67) q̃n :=
∑
p∈N∗

φp

λp − λn + λ
.

We first claim the following

LEMMA 5.5. The adjoint of the operator S in H0 is

(68) S̃ : φn 7→ q̃n.

Proof. Indeed, consider any f =
∑
n∈N∗

fnφn,∈ H0 and g =
∑
n∈N∗

gnφn ∈ H0. The following holds

⟨Sf, g⟩H0 = ⟨
∑
n∈N∗

fnqn,
∑
n∈N∗

gnφn⟩H0

= ⟨
∑
n∈N∗

fn
∑
p∈N∗

φp

λn − λp + λ
,
∑
n∈N∗

gnφn⟩H0

= ⟨
∑
p∈N∗

φp

∑
n∈N∗

fn
λn − λp + λ

,
∑
n∈N∗

gnφn⟩H0

=
∑
p∈N∗

∑
n∈N∗

gpfn
λn − λp + λ

.
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In the same way, we have the following

⟨f, S̃g⟩H0 = ⟨
∑
n∈N∗

fnφn,
∑
n∈N∗

gnq̃n⟩H0

= ⟨
∑
n∈N∗

fnφn,
∑
p∈N∗

φp

∑
n∈N∗

gn

λp − λn + λ
⟩H0

=
∑
p∈N∗

∑
n∈N∗

fpgn
λp − λn + λ

Thus, we have ⟨Sf, g⟩ = ⟨f, S̃g⟩ for all f, g ∈ H0. □

In view of (65), (66), S is an isomorphism is equivalent to kerS = {0} or ker S̃ = {0}, which
in turn is equivalent to:

∀(fn)n ∈ l2,
∑
n∈N∗

fnqn = 0 ⇔ fn = 0 ∀n ∈ N∗, or ∀(fn)n ∈ l2
∑
n∈N∗

fnq̃n = 0 ⇔ fn = 0 ∀n ∈ N∗.

This means that S is an isomorphism from H0 to itself is equivalent to (qn)n∈N∗ is ω-independent
in H0 or (q̃n)n∈N∗ is ω-independent in H0. With a classical argument, one can show that (qn)n∈N∗

is either ω-independent in H0 or H0-dense for any λ ∈ N . This is done in Appendix A.2. So, the
conclusion follows from the following Lemma:

LEMMA 5.6. (qn)n∈N∗ is H0-dense ⇔ (q̃n)n∈N∗ is ω-independent in H0.

Proof. Assume that (qn)n∈N∗ is not H0-dense. Then there exists a non trivial (fn)n∈N∗ ∈ l2 such
that for any n ∈ N∗ ⟨qn, f⟩H0 = 0 where f =

∑
n∈N∗

fnφn.

⟨qn, f⟩H0 = 0 ⇔
∑
p∈N∗

fp
λn − λp + λ

= 0

⇔
∑
p∈N∗

fp

λn − λp + λ
= 0

Thus,
∑
p∈N∗

fpq̃p =
∑
p∈N∗

fp
∑
n∈N∗

φn

λn − λp + λ
=
∑
n∈N∗

φn

∑
p∈N∗

fp

λn − λp + λ
= 0, showing that (q̃n)n∈N∗

is not ω-independent. The converse is straightforward: let us assume that (q̃n)n∈N∗ is not ω-
independent. Then, there exists non trivial (fn)n∈N ∈ l2 such that

∑
p∈N∗

fpq̃p = 0.

∑
p∈N∗

fpq̃p = 0 ⇔
∑
n∈N∗

φn

∑
p∈N∗

fp

λn − λp + λ
= 0

⇔
∑
p∈N∗

fp

λn − λp + λ
= 0

Thus by setting f =
∑

n∈N∗ fnφn,∈ H0 it holds that ⟨f, qn⟩H0 =
∑

p∈N∗
fp

λn−λp+λ
= 0, meaning

that (qn)n∈N∗ is not H0-dense. □
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5.3. Step 3: S is an isomorphism from Hr to itself for any r ∈ (1/2−α, α− 1/2). Let us
now look the operators S, S̃ as their extension on Hr defined as

S : n−rφn 7→ n−rqn,

S̃ : n−rφn 7→ n−r q̃n.

Then, (n−rqn)n∈N∗ is a Riesz basis in Hr if and only if S is an isomorphism from Hr to itself.
Since S is a Fredholm operator of index 0, this is equivalent to kerS = {0}. As in the case r = 0
this is equivalent to show that for any (fn)n∈N∗ ∈ l2∑

n∈N∗

fnn
−rqn = 0 ⇔ fn = 0 ∀n ∈ N∗.(69)

Let us look at the different cases:

• r ∈ [0, α− 1/2),
Then (n−rfn)n∈N∗ ∈ l2. And, as (qn)n∈N∗ is a Riesz basis in H0, it holds that∑

n∈N∗

fnn
−rqn = 0 ⇔ n−rfn = 0 ∀n ∈ N∗ ⇔ fn = 0 ∀n ∈ N∗,

thus S is indeed an isomorphism from Hr to itself.

• r ∈ (1/2 − α, 0) Showing the property (69) is equivalent to show that (n−rqn)n∈N∗

is ω-independent in Hr. We assume here by contradiction that (n−rqn)n∈N∗ is not ω-
independent in Hr. Then, there exists a non trivial (fn)n∈N∗ ∈ l2 such that

∑
n∈N∗ fnn

−rqn =
0. Projecting this on the vector m−rφm, for any m ∈ N∗ we get

0 = ⟨
∑
n∈N∗

fnn
−rqn,m

−rφm⟩Hr

= ⟨
∑
p∈N∗

φp

∑
n∈N∗

fnn
−r

λn − λp + λ
,m−rφm⟩Hr

0 =
∑
n∈N∗

fnn
−rmr

λn − λm + λ
, ∀m ∈ N∗.(70)

Let us set f :=
∑

n∈N∗ fnn
rφn. As (fn)n∈N∗ ∈ l2, it holds that f ∈ H−r. Since

(nrφn)n∈N∗ is a Riesz basis of H−r and (fn)n∈N∗ is non trivial, we have that f ̸= 0.
Since we showed in the previous case that S is an isomorphism on Hr for r ∈ [0, α−1/2),

then S̃ is also an isomorphism from Hr to itself for r ∈ [0, α − 1/2), as the adjoint of S.
Thus, (n−r q̃n)n∈N∗ is a Riesz basis of Hr for r ∈ [0, α − 1/2). Then for r ∈ (1/2 − α, 0),
(nr q̃n)n∈N∗ is a Riesz basis of H−r. In particular (nr q̃n)n∈N∗ is H−r-dense. This ensures
that there exists m0 ∈ N∗ such that ⟨f,mr

0q̃m0⟩H−r ̸= 0. It follows that

⟨f,mr
0q̃m0⟩H−r =

∑
n∈N∗

fnn
−rmr

0

λn − λm0 + λ
̸= 0

which contradicts (70). So (n−rqn)n∈N∗ is ω-independent in Hr and we conclude that S
is an isomorphism from Hr to itself for any r ∈ (1/2− α, 0).

Therefore, S is an isomorphism from Hr to itself for any r ∈ (1/2− α, α− 1/2).
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5.4. Step 4: an explicit candidate for K. Consider r ∈ (1/2− α, α− 1/2). Let us set

(71) τ : n−rφn 7→ bnn
−rφn,

with bn := ⟨B, φ̃n⟩, and

K : φn 7→ K(φn) = Kn.(72)

For any r ∈ (1/2− α, α− 1/2), thanks to (8), we can see that the operator τ is an isomorphism
from Hr to τ(Hr). And notice that this last space is a priori not Hr when γ ̸= 0. Thus, by seeing
the expression of the operator T as follow

(73) T : n−rφn 7→ −Knn
−rτqn,

the boundedness by above and below of Kn does not suffice to conclude that T is an isomorphism
from Hr to itself as done in [31]. Here, we rather see the operator as follow

T : n−rφn 7→ −Knbn(
1

bn
n−rτqn).

In Section 5.6, we will show that, under our assumption on γ, the operator n−rφn 7→ b−1
n n−rτqn

is an isomorphism from Hr to itself and then (b−1
n n−rτqn)n∈N∗ forms a Riesz basis of Hr. Note

that the latter is not obvious a priori, since τ and S do not commute thus b−1
n n−rτqn ̸= n−rqn.

From this we will be able to deduce that the operator T is an isomorphism from Hr to itself if
(Knbn)n∈N∗ is uniformly bounded by above and below.

Recall that our goal is to have T that is a solution to (47) and (49). In this section we would
like to construct Kn such that the normalization (49) holds and such that (Knbn)n∈N is bounded
by above. The question of whether (Knbn)n∈N is bounded by below is the object of Steps (5)-(6).
We first state the following Lemma

LEMMA 5.7. There exists a unique sequence (Kn)n∈N∗ such that for any ε ∈ (0, α − 1) the
condition (49) holds in τ(H− 1

2
−ε) and (−Knbnn

−( 1
2
+ε))n∈N∗ ∈ l2.

Proof. Noticing that B =
∑

n∈N∗ bnφn ∈ H−α/2 with c1 ≤ bn ≤ c2n
γ , (recall that we assume

β = 0 to ease the notation, (see Appendix A.5) for β ̸= 0) it holds from definition (71) that τ is an
isomorphism from Hr to τ(Hr) for any r ∈ (1/2−α, α−1/2). Thus for any r ∈ (−1/2−α, α−1/2),
τ(n−rφn)n∈N∗ forms a Riesz basis of τ(Hr). Then the expression

B =
∑
n∈N∗

n− 1
2
−ετ(n

1
2
+εφn)(74)

makes sense in τ(H− 1
2
−ε) for any ε > 0, since

(
n− 1

2
−ε
)
n∈N∗

∈ l2. In particular, the equation (74)

shows that B ∈ τ(H− 1
2
−ε) for all ε > 0. The condition (49) can be expressed in a weak sense as∑

n∈N∗

−Knbnτqn =
∑
n∈N∗

bnφn,(75)

and we yet know that its right side belongs to τ(H− 1
2
−ε) for all ε > 0. This means, in particular,

that the left-hand side does too. As a consequence (−Knbnn
−( 1

2
+ε))n∈N∗ ∈ l2 for all ε ∈ (0, α−1).

Indeed, in view of step 5.2, (n
1
2
+εqn) is a Riesz basis of H− 1

2
−ε for any ε ∈ (0, α− 1), and since τ

is an isomorphism from H− 1
2
−ε to τ(H− 1

2
−ε), then τ(n

1
2
+εqn)n is a Riesz basis of τ(H− 1

2
−ε). □

REMARK 5.8. In view of (72), we can see that Kn will be real-valued whenever φn and bn are.
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The regularity given by Lemma 5.7 is not enough a priori. To tackle this, we proceed as in
[31] and exploit the special structure of (qn)n∈N and the fact that (qn)n∈N − λ−1 is more regular
than (qn)n∈N (see Lemma 5.3). We set

(76) kn := −(Knbn + λ) ∀n ∈ N∗.

LEMMA 5.9. Consider r ∈ (1/2 − α, α − 1/2). There exists ε̄ > 0 such that the sequence
(knn

ε)n∈N∗ is uniformly bounded for any ε ∈ (0, ε̄). In particular, the sequence (Knbn)n∈N∗ defined
by (76) is uniformly bounded.

Proof of Lemma 5.9. For any ε > 0, it holds that (n− 1
2
−ελ)n∈N∗ ∈ l2, thus using Lemma 5.7 and

(76), we have for all ε ∈ (0, α− 1) that (knn
− 1

2
−ε)n∈N∗ ∈ l2, and in particular

(knn
−r)n∈N∗ ∈ l2, ∀r ∈

(
1

2
, α− 1

2

)
.(77)

Still using Lemma 5.7, the equation (75) makes sense in τ(H− 1
2
−ε), and by expressing Knbn and

τqn it becomes ∑
n∈N∗

λ
∑
p∈N∗

bpφp

λn − λp + λ
+
∑
n∈N∗

knτqn =
∑
n∈N∗

bnφn.

This yields to the following∑
n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ
= −

∑
n∈N∗

knτqn(78)

which holds a priori in τ(H− 1
2
−ε) for any ε ∈ (0, α−1). Actually, the equality (78) is more regular

than τ(H− 1
2
−ε). Indeed, if α > 3/2, we can give a sense to (78) in τ(Hε) for 0 ≤ ε ≤ α− 3/2. To

prove that, let us first notice by Fubini’s Theorem in τ(H− 1
2
−ε) that∑

n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ
=
∑
p∈N∗

bpφpλ
∑

n∈N∗\{p}

1

λn − λp + λ
.

And it holds that∑
p∈N∗

bpφpλ
∑

n∈N∗\{p}

1

λn − λp + λ
=
∑
p∈N∗

τ(p−εφp)

pελ
∑

n∈N∗\{p}

1

λn − λp + λ

 .

Since τ(p−εφp)p∈N∗ is a Riesz basis of τ(Hε), it suffices to show thatpελ
∑

n∈N∗\{p}

1

λn − λp + λ


p∈N∗

∈ l2

to conclude that the left hand side of (78) belongs to τ(Hε). Using Lemma 5.2 and Lemma 5.3,
we have that∥∥∥∥∥∥

pελ
∑

n∈N∗\{p}

1

λn − λp + λ


p∈N∗

∥∥∥∥∥∥
2

l2

=
∑
p∈N∗

p2ελ2

∣∣∣∣∣∣
∑

n∈N∗\{p}

1

λn − λp + λ

∣∣∣∣∣∣
2

≤ λ2

C(λ)2

∑
p∈N∗

p2ε

 ∑
n∈N∗\{p}

1

|λn − λp|

2
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≲
∑
p∈N∗

p2ε+2(1−α) log2(p),

and this converges for ε ∈ (0, α − 3/2). So if α > 3/2, the left hand side of (78) holds in τ(Hε)
for ε ∈ (0, α− 3/2).

Consider now the right hand side of (78). We have that∑
n∈N∗

knτqn =
∑
n∈N∗

knn
ετ(n−εqn).(79)

Recalling that (n−εqn)n∈N∗ is a Riesz basis of Hε for ε ∈ (0, α−3/2), it holds by the isomorphism
property of τ that τ(n−εqn)n∈N∗ is a Riesz basis of τ(Hε). Thus in view of (78) and (79), for any
ε ∈ (0, α− 3/2),

(knn
ε)n∈N∗ ∈ l2.

In particular, we conclude that if α > 3/2, (kn)n∈N∗ ∈ l∞. In view of (76), we have Knbn =
−(λ+ kn) and since (kn)n∈N∗ belongs to l∞, we get that

(Knbn)n∈N∗ ∈ l∞ ∀α > 3/2.(80)

Consider now 1 < α ≤ 3/2. In this case the gain of regularity in (78) is not enough to deduce the
boundedness of Knbn. However we are able to show that the equality (78) holds in τ(H−ε), for
ε > 3/2− α. Indeed, similarly to the previous case, the following holds∥∥∥∥∥∥

p−ελ
∑

n∈N∗\{p}

1

λn − λp + λ


n∈N∗

∥∥∥∥∥∥
2

l2

=
∑
p∈N∗

p−2ελ2

∣∣∣∣∣∣
∑

n∈N∗\{p}

1

λn − λp + λ

∣∣∣∣∣∣
2

≤ λ2

C(λ)2

∑
p∈N∗

p−2ε

 ∑
n∈N∗\{p}

1

|λn − λp|

2

≲
∑
p∈N∗

p−2ε+2(1−α) log2(p).

This converges for ε > 3/2− α and then the left hand side of (78) belongs to τ(H−ε). Similarly
as before and in view of (78),

(knn
−ε)n∈N∗ ∈ l2 ∀ε ∈

(
3

2
− α, α− 1

2

)
.(81)

We can see that we obtain (α− 1) gain of regularity between (81) and (77). So in the following,
we will make an iterative principle to gain at each order this (α− 1) regularity in order to prove
Lemma 5.9. So let us go back to the equation (75) and expressing τqn∑

n∈N∗

−Knbn

bnφn

λ
+

∑
p∈N∗\{n}

bpφp

λn − λp + λ

 =
∑
n∈N∗

bnφn.

Replacing −Knbn by (λ+ kn) in the first term only and using Fubini’s Theorem in τ(H− 1
2
−ε) we

get: ∑
n∈N∗

knbn
λ

φn −
∑
p∈N∗

bpφp

∑
n∈N∗\{p}

Knbn
λn − λp + λ

= 0.
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Since (φn)n∈N∗ is a Riesz basis, we have by identification that
kmbm
λ

= bm
∑

n∈N∗\{m}

Knbn
λn − λm + λ

∀m ∈ N∗.

Thanks to the fact that bm ̸= 0 for all m ∈ N∗ and Knbn = −(λ+ kn), this implies that

km = −λ
∑

n∈N∗\{m}

λ+ kn
λn − λm + λ

∀m ∈ N∗.

Let us now set λ = e0n and kn = k0n. It holds that

km = −λ
∑

n∈N∗\{m}

e0n + k0n
λn − λm + λ

∀m ∈ N∗.(82)

Thus km can be rewritten as km = e1m + k1m where

e1m = −λ
∑

n∈N∗\{m}

e0n
λn − λm + λ

, k1m = −λ
∑

n∈N∗\{m}

k0n
λn − λm + λ

∀m ∈ N∗.

And using Lemma 5.3, we have that

|e1m| ≲ m1−α logm+m−α ≲ 1.(83)

So, we focus on the regularity of k1n. We define ε0 :=
3
2 − α and we have

∥(m−εk1m)m∥l2 ≲
∑
m∈N∗

m−2ε

 ∑
n∈N∗\{m}

k0n
λn − λm + λ

2

.

Using Cauchy-Schwartz inequality and Lemma 5.2, we get

∥(m−εk1m)m∥l2 ≲
∑
m∈N∗

m−2ε

 ∑
n∈N∗\{m}

|k0n|2

|λn − λm|

 ∑
n∈N∗\{m}

1

|λn − λm|

 .

Then applying Lemma (5.3) and Fubini’s equality, we have

∥(m−εk1m)m∥l2 ≲
∑
m∈N∗

m−2ε+1−α logm

 ∑
n∈N∗\{m}

|k0n|2

|λn − λm|


≲
∑
n∈N∗

|k0n|2
 ∑

m∈N∗\{n}

m−2ε+1−α logm

|λn − λm|


≲
∑
n∈N∗

|k0n|2n−2(ε−1+α)+σ,

for any σ > 0. As k0n = kn and in view of (81), for any ε − (1 − α) ∈ (3/2− α, α− 1/2) (i.e.
ε ∈ (5/2− 2α, 1/2)) there exists σ > 0 such that this converges. Thus for α ∈ (1, 3/2], the
following holds

(n−εk1n)n∈N∗ ∈ l2, ∀ε ∈
(
5

2
− 2α,

1

2

)
.(84)

If α > 5
4 , we have ε1 = 2α − 5

2 > 0 and then (nδk1n)n∈N∗ ∈ l2 for all δ ∈ [0, ε1). This ensures
that (k1n)n∈N∗ is uniformly bounded. And combining with (83), it ensures that (kn)n∈N∗ also is
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uniformly bounded. Therefore (Knbn)n∈N∗ is uniformly bounded because Knbn = −(λ+ kn).
If 1 < α ≤ 5

4 , the uniform boundedness of Knbn cannot be immediately deduced, but we need to
iterate again. So using the definition (82), we have from k0n = kn, that

km = −λ
∑

n∈N∗\{m}

e0n + k0n
λn − λm + λ

= −λ
∑

n∈N∗\{m}

e0n
λn − λm + λ

− λ
∑

n∈N∗\{m}

kn
λn − λm + λ

= −λ
∑

n∈N∗\{m}

e0n
λn − λm + λ

− λ
∑

n∈N∗\{m}

1

λn − λm + λ

−λ
∑

p∈N∗\{n}

e0p + k0p
λp − λn + λ

 .

Referring to the definitions of e1n and k1n, it holds that

km = e1m − λ
∑

n∈N∗\{m}

e1n
λn − λm + λ

− λ
∑

n∈N∗\{m}

k1n
λn − λm + λ

= e1m + e2m + k2m,(85)

where

e2m = −λ
∑

n∈N∗\{m}

e1n
λn − λm + λ

, k2m = −λ
∑

n∈N∗\{m}

k1n
λn − λm + λ

∀m ∈ N∗.

Since km = e1m + k1m, we have in view of (85) that k1m = e2m + k2m. This means that if (e2m)m∈N
and (k2m)m∈N are uniformly bounded, then (k1m)m∈N is and consequently (km)m∈N. Let us first
notice that combining (83) and Lemma 5.3, we have

|e2m| ≲ m1−α log n+m−α ≲ 1.

For the (km)m∈N, we use again Lemma (5.3) and Fubini’s Theorem to have, similarly as previously:

∥(m−εk2m)m∥l2 ≲
∑
m∈N∗

m−2ε

 ∑
n∈N∗\{m}

k1n
λn − λm + λ

2

≲
∑
n∈N∗

|k1n|2n−2(ε−1+α)+σ,

for any σ > 0. In view of (84), there exists σ > 0 such that this converges for any ε− (1− α) ∈(
5
2 − 2α, 12

)
meaning for ε ∈

(
7
2 − 3α, 32 − α

)
. Thus, for α ∈ (1, 3/2],

(n−εk2n)n∈N∗ ∈ l2, ∀ε ∈
(
7

2
− 3α,

3

2
− α

)
.

If α > 7/6, then ε2 = 3α − 7
2 > 0 and (nδk2n)n∈N∗ ∈ l2, for any δ ∈ [0, ε2). This ensures that

(k2n)n∈N∗ is uniformly bounded and then (k2n)n∈N∗ is. Thus,
(
Knbn = −(e0n + e1n + e2n + k2n)

)
n∈N∗

is uniformly bounded.
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If 1 < α ≤ 7
6 , we can continue the induction and have kin = ei+1

n + ki+1
n for all i ∈ N where

ei+1
n = −λ

∑
m∈N∗\{n}

eim
λm − λn + λ

, ki+1
n = −λ

∑
m∈N∗\{n}

kim
λm − λn + λ

∀n ∈ N∗, i ∈ N.

And for any n ∈ N∗,

Knbn = −

kin +
i∑

j=0

ejn

 , ∀i ∈ N

Thus, based on the previous computations, we obtain by induction the following:

|ein| ≲ n1−α log n+ n−α ≲ 1,(86)

∥(n−εki+1
n )n∈N∗∥l2 ≲

∑
n∈N∗

|kin|2n−2(ε−1+α)+σ log2 n(87)

for any σ > 0 and (87) converges for ε ∈ (−εi,−εi−2) with εi = (α − 1)i − ε0 for all i ≥ 2.
It is worth stressing that there exists a finite i0 ∈ N such that εi0 > 0. In this case we have
(nδki0+1

n )n∈N∗ ∈ l2 for any δ ∈ [0, εi0) meaning that (ki0+1
n )n∈N∗ ∈ l∞. Combining this with (86)

we conclude that Knbn = −

ki0n +

i0∑
j=0

ejn


n∈N∗

∈ l∞ ∀α ∈ (1, 3/2].(88)

Therefore we conclude Lemma 5.9 from (80) and (88). □

5.5. Step 5: T is bounded from Hr to Hr and satisfies the operator equality. In this
section, we would like to prove that the backstepping transformation T is bounded and the
operator equality (47) holds at least in some Hs space. More precisely, we prove the following
Lemma:

LEMMA 5.10. The operator T given by (54) is a bounded operator from Hr to Hr for any
r ∈ (1/2− α+ γ, α− 1/2). Moreover, we have the following operator equality,

T (A+BK) = (A− λI)T in L(Hα/2+s,H−α/2+s), ∀s ∈
(
−α− 1

2
+ γ,

α− 1

2
− γ

)
.(89)

Proof. We recall here that for any r ∈
(
1
2 − α, α− 1

2

)
–and therefore for any r ∈

(
1
2 − α+ γ, α− 1

2

)
–

the operator T is defined as T : n−rφn 7→ −n−rKnτqn with τ an isomorphism from Hr to τ(Hr)
and (Kn)n∈N∗ uniformly bounded. Since the space τ(Hr) is neither equal nor included in Hr a
priory, what we are able to say is that T is defined from Hr to τ(Hr). Here we will exploit the
regularity on Knbn to first show that T is well defined from Hr to itself and then deduce that it
is bounded.

Let r ∈
(
1
2 − α+ γ, α− 1

2

)
and a =

∑
n∈N∗

ann
−rφn ∈ Hr, the following holds

Ta = −
∑
n∈N∗

anKnn
−rτqn

= −
∑
n∈N∗

anKnn
−r
∑
p∈N∗

bpφp

λn − λp + λ
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= − 1

λ

∑
n∈N∗

anKnn
−rbnφn −

∑
n∈N∗

anKnn
−r

∑
p∈N∗\{n}

bpφp

λn − λp + λ

= − 1

λ

∑
n∈N∗

anKnbnn
−rφn −

∑
n∈N∗

anKnn
−rτSc(φn).

By setting

T1a = − 1

λ

∑
n∈N∗

anKnbnn
−rφn, T2a = −

∑
n∈N∗

anKnn
−rτSc(φn),

one has Ta = T1a + T2a. Notice that since (an)n∈N∗ ∈ l2 and (Knbn)n∈N∗ ∈ l∞, the term T1a
belongs to Hr and in particular we have:

∥T1a∥Hr ≲ ∥f∥Hr .(90)

So, it suffices to show that the second term T2a belongs to Hr to conclude that Ta ∈ Hr. We
have the following claim.

CLAIM 5.11. For any r ∈
(
1
2 − α, α− 1

2

)
and s ≥ γ, the space τ(Hr+s) endowed with the norm

(91) ∥f∥τ(Hr+s) := ∥τ−1f∥Hr+s

is a Hilbert space, continuously embedded in Hr.

Proof. For any q ∈ R, since τ is an isomorphism from the Hilbert space Hq into τ(Hq), the
space τ(Hr+s) is a Hilbert space with the norm (91). Consider g ∈ τ(Hr+s), there exists f =∑
n∈N∗

fnn
−r−sφn ∈ Hr+s such that g = τ(f), thus

g =
∑
n∈N∗

(fnbnn
−s)n−rφn.

From (11) (with β = 0) and the fact that γ ≤ s, we have bn ≤ c2n
s, and we observe that

∥g∥2Hr = ∥(fnbnn−s)n∈N∗∥2l2 =
∑
n∈N∗

|fnbnn−s|2 ≲
∑
n∈N∗

|fn|2 = ∥g∥2τ(Hr+s).

and this concludes the Claim 5.11. □

Going back to the norm of T2a now, we have based on Claim 5.11,

∥T2a∥Hr =

∥∥∥∥∥∑
n∈N∗

anKnn
−rτSc(φn)

∥∥∥∥∥
Hr

≲

∥∥∥∥∥∑
n∈N∗

anKnτSc(n
−rφn)

∥∥∥∥∥
τ(Hr+γ)

.

From (60) and Lemma 5.4, Sc is a continuous operator from Hr to Hr+ε for any ε ∈ [0,min{(α−
1)/2, α + r − 1/2}). Since r ∈ (1/2 − α + γ, α − 1/2) and γ ∈ (0, (α − 1)/2) by assumption, γ
belongs to [0,min{(α−1)/2, α+r−1/2}) and Sc is a continuous operator Hr to Hr+γ and, using
the isomorphism property of τ , one has∥∥∥∥∥∑

n∈N∗

anKnτSc(n
−rφn)

∥∥∥∥∥
τ(Hr+γ)

≲

∥∥∥∥∥∑
n∈N∗

anKnτ(n
−rφn)

∥∥∥∥∥
τ(Hr)

.

Using that τ(n−rφn)n∈N∗ is a Riesz basis in τ(Hr) and (Kn)n∈N∗ is uniformly bounded, we get∥∥∥∥∥∑
n∈N∗

anKnτ(n
−rφn)

∥∥∥∥∥
τ(Hr)

≲
∑
n∈N∗

|anKn|2 ≲
∑
n∈N∗

|an|2 = ∥a∥Hr .
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and combining this with (90), it holds that,

∥Ta∥Hr ≲ ∥a∥Hr ,

and thus T is a bounded operator from Hr to itself.
It remains now to prove the operator equality (89) to conclude the lemma. As, from Lemma

5.7, the equality (49) holds in τ(H−α/2+s+γ) for any s ∈ (−(α − 1)/2, (α − 1)/2 − γ), and in
particular, from Claim 5.11, it holds in H−α/2+s. Thus proving (89) amounts to show that

TA+BK = (A− λI)T in L(Hα/2+s,H−α/2+s), ∀s ∈
(
−α− 1

2
+ γ,

α− 1

2
− γ

)
.(92)

Observe first that all terms make sense : indeed, K : n−(α/2+s)φn 7→ n−(α/2+s)Kn is a bounded
operator from Hα/2+s to C for any s > −(α−1)/2. On the other hand, B ∈ H−α/2 by assumption
and in fact in H−α/2+s for any s < (α−1)/2−γ from (11) So B can be formally seen as an operator
from C to H−α/2+s for any s ∈ (−(α−1)/2, (α−1)/2−γ). Thus BK is a bounded operator from
Hα/2+s to H−α/2+s for any s ∈ (−(α−1)/2, (α−1)/2−γ). Similarly, one can show that AT and
TA are bounded operators from Hα/2+s to H−α/2+s for any s ∈ (−(α− 1)/2+ γ, (α− 1)/2− γ),
since T is a bounded operator from Hr into itself for any r ∈ (1/2− α+ γ, α− 1/2).

To show (92), it suffices to check that it holds against n−α/2−sφn for any n ∈ N∗ and s ∈
(−(α − 1)/2 + γ, (α − 1)/2− γ) which in turn amounts to show that it holds against any φn as
the operators are linear. From the definition of T (see (54)) we have (in H−α/2+s)

[TA+BK − (A− λI)T ]φn = λnTφn +BKn − (A− λI)Tφn

= λn(−Kn)
∑
p∈N∗

bpφp

λn − λp + λ
+BKn − (−Kn)

∑
p∈N∗

bp(λp − λ)φp

λn − λp + λ

= (−Kn)
∑
p∈N∗

bpφp +BKn

= 0.

□

5.6. Step 6: T is an isomorphism from Hr to itself. To show that T is an isomorphism
from Hr to itself, we first show that kerT = {0} in H−α/2, then we deduce that (Knbn)n∈N is
bounded by below and we deduce that an intermediary operator (τ̃ given below in Lemma 5.14)
is an isomorphism and further that T is an isomorphism from Hr into itself. In other words, we
first show the following Lemma

LEMMA 5.12. kerT ∗ = {0} in H−α/2.

Proof. For that aim, we will perform the proof originally used in [18] for the Schrodinger equation
and more recently in [32, 31]. The idea is to prove the following steps

• There exists ρ ∈ C such that A+BK + λI + ρI and A+ ρI are invertible operator from
Hα/2 to H−α/2.

• For such ρ, if kerT ∗ ̸= {0}, then (A+ρI)−1 has an eigenvector h which belongs to kerT ∗.
• No eigenvector of (A+ ρI)−1 belong to kerT ∗.

From the two last steps, it holds that kerT ∗ = {0} in H−α/2. The rigorous proof is provided in
Appendix A.3.

□
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Now we want to show the following Lemma:

LEMMA 5.13. For any r ∈ (1/2− α+ γ, α− 1/2), T is an isomorphism from Hr to itself.

Before proving this, let us first show the following:

LEMMA 5.14. For any r ∈ (1/2 − α + γ, α − 1/2), the operator τ̃ : n−rφn 7→ 1
bn
n−rτqn is a

Fredholm operator of index 0 and an isomorphism from Hr to Hr.

Proof of Lemma 5.14. Let r ∈ (1/2−α+ γ, α− 1/2), and f =
∑
n∈N∗

fnn
−rφn ∈ Hr. It holds that

τ̃(f) =
∑
n∈N∗

fn
bn

n−rτqn

=
∑
n∈N∗

fn
bn

n−r
∑
p∈N∗

bpφp

λn − λp + λ

=
1

λ

∑
n∈N∗

fnn
−rφn +

∑
n∈N∗

fn
bn

n−r
∑

p∈N∗\{n}

bpφp

λn − λp + λ

=
1

λ
f + τ̃c(f)

where

τ̃c(f) =
∑
n∈N∗

fn
bn

n−r
∑

p∈N∗\{p}

bpφp

λn − λp + λ
.

We first show that τ̃c is a compact operator on Hr. Using Fubini’s Theorem it holds that

∑
n∈N∗

fn
bn

n−r
∑

p∈N∗\{n}

bpφp

λn − λp + λ
=
∑
p∈N∗

φp

 ∑
n∈N∗\{p}

fn
bn

n−r bp
λn − λp + λ

 .

Let ε > 0 to be selected. So we have

∥τ̃c(f)∥2Hr+ε =

∥∥∥∥∥∥
∑
p∈N∗

φp

 ∑
n∈N∗\{p}

fn
bn

n−r bp
λn − λp + λ

∥∥∥∥∥∥
2

Hr+ε

=
∑
p∈N∗

p2r+2ε|bp|2
∣∣∣∣∣∣
∑

n∈N∗\{p}

fn
bn

n−r 1

λn − λp + λ

∣∣∣∣∣∣
2

.

Since (1/bn)n∈N∗ is uniformly bounded from (11) (recall that here β = 0), we get that

∥τ̃c(f)∥Hr+ε ≲
∑
p∈N∗

p2r+2ε|bp|2
∣∣∣∣∣∣
∑

n∈N∗\{p}

fnn
−r

λn − λp + λ

∣∣∣∣∣∣
2

.

As |bp| ≤ c2n
γ , still from (11) this yields

∥τ̃c(f)∥Hr+ε ≲
∑
p∈N∗

p2r+2ε+2γ

∣∣∣∣∣∣
∑

n∈N∗\{p}

fnn
−r

λn − λp + λ

∣∣∣∣∣∣
2

.
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Since r ∈ (1/2 − α + γ, α − 1/2), we have that γ < α + r − 1/2 and consequently γ < εr :=
min

{
α−1
2 , α+ r − 1

2

}
as γ < (α−1)/2 by assumption. So, considering for instance ε = (εr−γ)/2,

we obtain from Lemma 5.4 that

∑
p∈N∗

p2r+2ε+2γ

∣∣∣∣∣∣
∑

n∈N∗\{p}

fnn
−r

λn − λp + λ

∣∣∣∣∣∣
2

≲
∑
n∈N∗

|fn|2.

This ensures that

∥τ̃c(f)∥Hr+ε ≲ ∥f∥Hr ,

which in view of Lemma 2.2 concludes that τ̃c is compact from Hr to Hr. Consequently the
operator τ̃ is a Fredholm operator of index 0. Thus, τ̃ is an isomorphism from Hr to Hr if and
only if ker τ̃ = {0}. From the expression of τ̃ ,

f =
∑
n∈N∗

fnn
−rφn ∈ ker τ̃ ⇔

∑
n∈N∗

fn
bn

τ(n−rqn) = 0.

The equality at the right hand side holds in Hr and in particular in τ(Hr) since Hr ⊂ τ(Hr). So
using the fact that (τ(n−rqn))n∈N∗ is a Riesz basis of τ(Hr), we have∑

n∈N∗

fn
bn

τ(n−rqn) = 0 ⇔ fn
bn

= 0, ∀n ∈ N∗

⇔ fn = 0 ∀n ∈ N∗

Thus, we have shown that ker τ̃ = {0}, hence, τ̃ is an isomorphism from Hr to itself for any
r ∈ (1/2− α+ γ, α− 1/2). □

We are able to state the proof of Lemma 5.13 now.

Proof of Lemma 5.13. In view of (54) and Lemma 5.14, we may rewrite now T as follows

T : n−rφn 7→ −Knbnτ̃(n
−rφn).

Based on Lemma 5.14, τ̃ is an isomorphism from Hr to Hr. This ensures that (τ̃(n−rφn))n∈N∗

is a Riesz basis in Hr. Since (n−rφn)n∈N∗ is also a Riesz basis in Hr, and (Knbn)n∈N ∈ l∞ from
Lemma 5.9, we just have to prove that (Knbn)n∈N is uniformly bounded from below to conclude
that T is an isomorphism in Hr. From Lemma 5.12, kerT ∗ = {0} in H−α/2. In fact, from the
decomposition (76) and the fact that τ̃ is a Fredholm operator of order 0, we can deduce that
T is a Fredholm operator of order 0 from H−α/2 into itself (see Lemma A.1 in Appendix A.3).
Hence, kerT = {0} in H−α/2. Let us assume by contradiction that there exists n0 ∈ N∗ such
that Kn0bn0 = 0. We have

T (n−r
0 φn0) = Kn0bn0 τ̃(n

−r
0 φn0) = 0.

This means that n−r
0 φn0 ∈ kerT, and since kerT = {0}, n−r

0 φn0 = 0 which is a contradiction.
Therefore for any n ∈ N∗

Knbn ̸= 0.(93)

Recall that from Lemma (5.9),

|Knbn| = |λ+ kn|,
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and (knn
ε)n∈N∗ ∈ l∞ for some ε > 0, which means that kn → 0 when n → +∞. Then, there

exists N > 0 such that for any n ≥ N,

|Knbn| ≥
λ

2
> 0.(94)

Combining (93) with (94) it holds that for any n ∈ N∗,

|Knbn| ≥ min

{
λ

2
,min
n≤N

|Knbn|
}

> 0.

Therefore, Knbn is bounded from below and this concludes the proof of Lemma 5.13. □

5.7. Step7: Well-posedness and proof of Proposition 4.2. Since, we have built the isomor-
phism T and the feedback law K, for which (49) and (50) hold, we need to show the well-posedness
of the closed loop system (45). We will adapt the method given in [23] for the well-posedness
of closed loop water tank or in [31] for the well-posedness of closed loop systems described by
skew-adjoint operators.

Since, this method relies on the semigroup theory of the operator A+BK, we first provide a
description and some properties about its domain:

LEMMA 5.15. For any r ∈ (1/2− α + γ, α − 1/2− γ), the domain Dr(A+ BK) of A+ BK
is a Hilbert space, dense in Hr and

(95) Dr(A+BK) = T−1(Hr+α).

Proof. Recall that, what we call Dr(A+BK) for r ∈ (1/2−α+ γ, α− 1/2− γ) is the following:

Dr(A+BK) := {f ∈ Hr, (A+BK)f ∈ Hr}.

We start by showing (95). For any f ∈ Dr(A + BK) ⊂ Hr, we have Af ∈ Hr−α and then by
definition of Dr(A+BK) this implies that BKf ∈ Hr−α. As r < α− 1/2− γ, there exist ε > 0

such that BKf ∈ H−1/2−γ−ε. This shows that Kf ∈ C because B ∈ H−1/2−γ−ε for any ε > 0.
Since Kf ∈ C, it holds that BKf ∈ H−1/2−γ−ε for any ε > 0. Combining this with the definition
of Dr(A+BK) ensures that Af ∈ H−1/2−γ−ε, for any ε > 0. So we get f = A−1Af ∈ Hα−1/2−γ−ε

for any ε > 0. This shows that Dr(A+ BK) ⊂ Hα−1/2−γ−ε. So in view of the operator equality
(89), for any ε ∈ (0, (α−1)−2γ), α/2−1/2−γ− ε ∈ (γ− (α−1)/2, (α−1)/2−γ) and therefore
it holds that

T (A+BK)f = (A− λI)Tf ∈ H−1/2−γ−ε, ∀f ∈ Dr(A+BK).

Notice that by the property of T and the definition of Dr(A+BK), T (A+BK)f ∈ Hr for any
f ∈ Dr(A + BK), and hence (A− λI)Tf ∈ Hr. So the operator equality holds in the following
appropriate setting: for any r ∈ (1/2− α+ γ, α− 1/2− γ),

T (A+BK)f = (A− λI)Tf ∈ Hr, ∀f ∈ Dr(A+BK).(96)

Consider now f ∈ Dr(A+BK), we get from (96) that (A− λI)Tf ∈ Hr, and then Tf ∈ Hr+α.
This implies that f ∈ T−1(Hr+α), and thus show that Dr(A+BK) ⊂ T−1(Hr+α).
Conversely, let us consider f ∈ T−1(Hr+α) ⊂ Hr. Then, since r < α− 1/2− γ, there exists ε̄ > 0

such that for any ε ∈ (0, ε̄), f ∈ Hα−1/2−ε−γ . So by considering ε small enough we can apply the
operator equality (89) to f and get

T (A+BK)f = (A− λI)Tf.(97)

Notice that f ∈ T−1(Hr+α) implies that Tf ∈ Hr+α, and thus (A − λI)Tf ∈ Hr. This ensures
from (97) that T (A + BK)f ∈ Hr. Since T is an isomorphism from Hr to itself, it then holds
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that (A+BK)f ∈ Hr. Hence f ∈ Dr(A+BK), meaning that T−1(Hr+α) ⊂ Dr(A+BK). This
concludes the proof of (95).

Since T is an isomorphism from Hr to itself, and from the density of Hr+α in Hr, it immediately
holds based on (95) that Dr(A+BK) is dense in Hr.

It remains now to prove that Dr(A + BK) is a Hilbert space to conclude Lemma 5.15. For
that, we just need to prove that Dr(A + BK) is complete since Dr(A + BK) ⊂ Hr which is a
Hilbert space. So, let consider any Cauchy sequence (fn)n ⊂ Dr(A+BK). It holds that

∥fn − fp∥Dr(A+BK) −→
n,p→+∞

0.

Recall that ∥fn − fp∥Dr(A+BK) := ∥fn − fp∥Hr + ∥(A+BK)(fn − fp)∥Hr , we have

∥fn − fp∥Hr + ∥(A+BK)(fn − fp)∥Hr −→
n,p→+∞

0.(98)

Since (fn)n ⊂ Dr(A+BK), by using the operator equality (96), this implies that

∥(A− λI)(Tfn − Tfp)∥Hr = ∥T (A+BK)(fn − fp)∥Hr ≲ ∥(A+BK)(fn − fp)∥Hr −→
n,p→+∞

0.

This combining with (98), ensures that

∥A(Tfn − Tfp)∥Hr −→
n,p→+∞

0, and ∥Tfn − Tfp∥Hr −→
n,p→+∞

0.

Thus, we obtain

∥Tfn − Tfp∥Hr+α −→
n,p→+∞

0.

This shows that (Tfn)n is a Cauchy sequence in Hr+α. Then, since Hr+α is complete, there exists
g ∈ Hr+α such that Tfn −→ g in Hr+α. As T is an isomorphism on Hr, and Hr+α ⊂ Hr there
exists a unique f ∈ Hr such that Tf = g and ∥Tfn−Tf∥Hr+α −→ 0, which in turn implies, from
the compact embedding of Hr+α in Hr and the isomorphism property of T in Hr

∥fn − f∥Hr −→
n→+∞

0.(99)

We also have

∥(A+BK)(fn − f)∥Hr ≲ ∥T (A+BK)(fn − f)∥Hr

= ∥(A− λI)T (fn − f)∥Hr ≲ ∥Tfn − Tf∥Hr+α −→
n→+∞

0.(100)

Combining (99) and (100), it holds that:

∥fn − f∥Dr(A+BK) = ∥fn − f∥Hr + ∥(A+BK)(fn − f)∥Hr −→
n→+∞

0.

Hence, Dr(A+BK) is complete and therefore a Hilbert space. □

As we know now that the domain Dr(A+BK) is a Hilbert space and it is not an empty set,
we are able to state the following lemma:

LEMMA 5.16. The operator A+BK with domain Dr(A+BK) generates a C0 semigroup on
Hr.

Proof. Let us first notice that for any r ∈ (1/2 − α + γ, α − 1/2 − γ), Dr(A − λI) := {f ∈
Hr, (A− λI)f ∈ Hr} = Hr+α. Since A generates a C0 semigroup on Hr, then A− λI generates
also a C0 semigroup which we denote by et(A−λI). Let us now define the following C0 semigroup
on Hr,

S(t) := T−1et(A−λI)T, ∀t ≥ 0.(101)
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Since T is an isomorphism, Dr(A− λI) = Hr+α, and Lemma 5.15 it holds that{
f ∈ Hr, lim

t→0

S(t)f − f

t
exists in Hr

}
=

{
f ∈ Hr, lim

t→0
T−1

(
et(A−λI)Tf − Tf

t

)
exists in Hr

}

=

{
f = T−1g ∈ Hr, lim

t→0
T−1

(
et(A−λI)g − g

t

)
exists in Hr

}

=

{
f = T−1g ∈ Hr, lim

t→0

(
et(A−λI)g − g

t

)
exists in Hr

}
=
{
f = T−1g, g ∈ Dr(A− λI) = Hr+α

}
= T−1(Hr+α) = Dr(A+BK).

This shows that the domain of the operator which generates S(t) is Dr(A+BK).
Moreover, for any f ∈ Dr(A+BK), we have Tf ∈ Hr+α and then it holds that

lim
t→0

S(t)f − f

t
= lim

t→0
T−1

(
et(A−λI)Tf − Tf

t

)
= T−1(A− λI)Tf.

So using the operator equality (96) we get that

lim
t→0

S(t)f − f

t
= (A+BK)f.

Hence, the operator A + BK with domain Dr(A + BK) is the generator of C0 semigroup S(t)
and this concludes Lemma 5.16. □

Proof of Proposition 4.2. Based on Lemma 5.16, we know that for any i ∈ {1, · · · ,m}, the oper-
ator A+BiKi generates a C0 semigroup Si(t) on Hri for any ri ∈ (1/2− αi + γi, αi − 1/2− γi).
Note that (Si(t))t≥0 refers here to what was referred to as (S(t))t≥0 in the proof of Lemma A.2
since we do not drop the index i anymore for the proof of Proposition 4.2. Now, we would like to

show that the operator A+BK = A+

m∑
i=1

BiKi with domain Dr⃗(A+BK) :=

m∑
i=1

Dri(A+BiKi)

generates the C0 semigroup

(102) S(t) :=
m∑
i=1

Si(t)

on Hr⃗ := Hri + · · ·+Hrm . Recall that Si(t) = T−1
i et(A−λI)Ti, and since Tiφ

j
n = 0 for any i ̸= j,

it holds that Si(t)φ
j
n = 0 for any i ̸= j. So for any f j ∈ Hrj , we have that Si(t)f

j = 0 for any
i ̸= j. This ensures in particular that Si(t)Sj(s)f

k = 0 for any i ̸= j, k ∈ {1, ...,m} and s, t ≥ 0.
Combining this with the fact that (Si(t))t≥0 is a C0 semigroup on Hri , it holds that S(t) is a C0

semi-group of Hr⃗. Looking at its domain:f =
m∑
j=1

f j ∈ Hr⃗, lim
t→0

S(t)f − f

t
exists

 =

f =
m∑
j=1

f j ∈ Hr⃗, lim
t→0

∑m
i=1 Si(t)f − f

t
exists


=

f =
m∑
j=1

f j ∈ Hr⃗, lim
t→0

m∑
i=1

Si(t)f
i − f i

t
exists


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=

f =
m∑
j=1

f j ∈ Hr⃗, lim
t→0

Si(t)f
i − f i

t
exists ∀i ∈ {1, · · · ,m}


=

m∑
i=1

Dri(A+BiKi) = Dr⃗(A+BK).

This shows that Dr⃗(A+BK) is the domain of the corresponding generator to S(t). Moreover,
for any f ∈ Dr⃗(A + BK), there exists (f1, · · · , fm) ∈ Hr1 × · · · × Hrm such that f =

∑m
i=1 f

i,
and

lim
t→0

S(t)f − f

t
= lim

t→0

∑m
i=1 Si(t)f

i −
∑m

i=1 f
i

t

=

m∑
i=1

lim
t→0

Si(t)f
i − f i

t

=

m∑
i=1

(A+BiKi)f
i = (A+BK)f

Therefore, we conclude that the operator A + BK generates a C0 semigroup on Hr⃗ and this
concludes the proof of Proposition 4.2. □

5.8. Proof of Theorem 3.4. Theorem 3.1 follows from all the previous steps and the following
Lemma, which is an immediate consequence from the fact that N is countable.

LEMMA 5.17. For any λ0 > 0 there exists λ > λ0 such that λ ∈ R+ \ N .

Proof of Theorem 3.4. Let λ0 > 0, and λ > 0 given by Lemma 5.2. From Proposition 4.1 there
exists Ki ∈ L(Hβi+1/2+ε;C) and Ti ∈ L(Hri) such that Ti is an isomorphism from Hri into itself
for any ri ∈ (βi + 1/2− αi + γi, βi + αi − 1/2− γi) and maps the system (45) to (46). Setting

(103) K = (K1, ...,Km)T , T = T1 + ...+ Tm,

we know from Proposition 4.2 that the system (9) is well-posed in Hr⃗ (defined as (12)) for any r
satisfying (13). It remains to show that T is an isomorphism from Hr⃗ to itself which maps the
system (9) to (10) and that, as a consequence, the system (9) is exponentially stable. T belongs
clearly to L(Hr⃗). We define T−1 := (T−1

1 + ...+T−1
m ) ∈ L(Hr⃗). Recall that Tiφ

j
n = 0, T−1

i φj
n = 0

and Kiφ
j
n = 0 for any j ̸= i and n ∈ N∗. Thus, for any f =

m∑
i=1

∑
n∈N∗

f i
nφ

i
n ∈ Hr⃗,

(104) T−1Tf = T−1

(
m∑
i=1

∑
n∈N∗

f i
nTiφ

i
n

)
=

m∑
i=1

∑
n∈N∗

f i
nφ

i
n = f,

hence T is an isomorphism from Hr⃗ into itself with inverse T−1. To show that T maps (9) to (10) it
suffices to show that the operator equality (89) –which currently holds in L(Hαi/2+si

i ,H−αi/2+si
i )

with Ti, Bi and Ki for any i ∈ {1, ...,m}– in fact also holds in L(Hα/2+s,H−α/2+s) with T , B
and K where
(105)

α = (α1, ..., αm), s = (s1, ..., sm), γ = (γ1, ..., γm), si ∈
(
−(αi − 1)

2
+ γi,

αi − 1

2
− γi

)
.
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This is a consequence of the fact that, by definition, Tiφ
j
n = 0, Kiφ

j
n = 0 for any i ̸= j and

any n ∈ N∗: let f =
∑m

i=1 f
i with f i =

∑
n∈N f i

nφ
i
n and consider its smooth approximation

f̃ i =
∑N

n=1 f
i
nφ

i
n. Observe that Kf̃ = (K1f̃

1, ...,Kmf̃m)T and BKf̃ =
m∑
i=1

BiKif̃
i, thus we have

(106) T (A+BK)f̃ = T

(
m∑
i=1

Af̃ i +BiKif̃
i

)
=

m∑
i=1

TiAf̃ i +BiKif̃
i

where we used that, for any i ∈ {1, ...,m} and s ∈ R, we have A ∈ L(Hs+αi
i ,Hs

i ). Thus using
(89) for each i ∈ {1, ...,m},

(107) T (A+BK)f̃ =

m∑
i=1

Ti(A+BiKi)f̃
i =

m∑
i=1

(A− λ)Tif̃i = (A− λ)

m∑
i=1

Tif̃i = (A− λI)T f̃ .

Note that one can pass to the limit (in H−α/2+s) N → +∞ in each of this terms since f ∈ H−α/2+s

and the operator equality (89) holds in L(H−αi/2+s
i ,H−αi/2+s

i ) for any i ∈ {1, ...,m}. As a
consequence,

(108) T (A+BK) = (A− λI)T in L(Hα/2+s,H−α/2+s) with (105).

Finally it remains to show that for any µ > 0, λ0 can be chosen large enough such that the
system (9) is exponentially stable with decay rate µ. Since A generates a C0 semigroup with
finite growth bound on Hr⃗ (see Lemma A.2 in Appendix A.4), there exists M ≥ 1 and ω ∈ R
such that for any f ∈ Hr⃗,

(109) ∥etAf∥Hr⃗ ≤ Meωt∥f∥Hr⃗ , ∀ t ∈ [0,+∞),

and in particular for λ > λ0 > µ+ ω,

(110) ∥et(A−λI)f∥Hr⃗ ≤ Me−µt∥f∥Hr⃗ , ∀ t ∈ [0,+∞).

Let u0 ∈ Hr⃗, the (unique) solution in C0([0,+∞);Hr⃗) to the closed loop system (9) is u : t →
S(t)u0 and, using (101)

(111) ∥S(t)u0∥Hr⃗ = ∥T−1et(A−λI)Tu0∥Hr⃗ ≤ ∥T−1∥L(Hr⃗)∥T∥L(Hr⃗)Me−µt∥u0∥Hr⃗ , ∀ t ∈ [0,+∞).

This ends the proof of Theorem 3.1. □

6. Conclusion and perspectives

In this paper, we extended the F -equivalence approach (or generalized backstepping), to a
wide class of linear systems. This includes systems that are not necessarily skew-adjoint or self-
adjoint provided that the differential operator involved has a Riesz basis of eigenvectors (hence
not necessarily orthonormal) and is of order larger than one. We obtain conditions that are less
restrictive than the ones proposed in [31, 32] and we show that we can get nice rapid stabilization
properties even when the system is not exactly controllable and the control operator is not
admissible. We illustrate these results with the rapid stabilization of several examples such as
the Schroedinger equation, a general diffusion equation, burgers’ equation, and a system that is
neither self nor skew adjoint. For Schroedinger equation and burgers’ equation, in particular, we
obtain less restrictive conditions on the control operator than what was obtained in [18, 55, 32].
This result makes the F -equivalence one step closer to a general theory. Nevertheless, it is still a
young approach and there are many questions that remains open and that would be interesting
to consider
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• If A only has a generalized basis of eigenvectors (and not a Riesz basis of eigenvectors
which we assume here), is it still possible to extend this method? This is interesting in
particular for systems of PDE, where A does not always has a Riesz basis of eigenvectors.

• What happens if the eigenvalues λn are infinite dimensional? In particular, this could
be useful for multidimensional systems. While Theorem 3.1 and 3.4 are not limited to
1D systems, in several multidimensional systems the eigenvalues λn may have infinite
multiplicity (think of the heat equation for instance). What happens if α = 1 ? In this
case, only a few F -equivalence results exist and only in particular cases [72, 23], while
there is a large literature on the controllability and stabilization of several such systems,
for instance the wave equations [40, 66].

• Can these linear results be extended to (very) nonlinear (i.e. quasilinear) systems? This is
all the more important that for infinite dimensional system the stability of the linearized
system does not necessarily imply the stability of the nonlinear system, even locally [26]
when they are at least quasilinear, and there is so far no general method to stabilizing
these systems.

• Is it possible to further relax the conditions on B?
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Appendix A. Appendix

A.1. Proof of Lemma 2.1. We start by proving that ∥ · ∥Hr is a norm on Hr. Let f ∈ Hr,
by definition there exists (fn)n∈N∗ ∈ l2 such that f =

∑
n∈N∗

fnφn and therefore ∥f∥Hr is well-

defined. Besides, since (φn)n∈N is a Riesz basis, f = 0 is equivalent to fn = 0 for any n ∈ N∗ and
consequently to ∥f∥Hr = 0. Also for any µ ∈ C

(112) ∥µf∥Hr = ∥
∑
n∈N∗

µfnφn∥Hr = |µ|

(∑
n∈N∗

n2r|fn|2
)2

= |µ|∥f∥Hr .

Finally, since (
∑

n n
2r|fn + gn|2)1/2 ≤ (

∑
n n

2r|fn|2)1/2 + (
∑

n n
2r|gn|2)1/2 for any (gn)n∈N∗ ∈ l2,

∥ · ∥Hr is indeed a norm. One can easily check that it derives from the inner product given by
(4). Since there is an isomorphism between l2(N∗) and Hr given by

(113) ι : (fn)n∈N∗ 7→
∑
n∈N∗

fnn
−rφn,

such that for any (fn)n∈N∗ ∥ι(fn)n∈N∗∥Hr = ∥fn∥l2 , then Hr is also complete and hence a Banach
space. Finally, since ∥ · ∥Hr is associated to the inner product ⟨·, ·⟩Hr it is a Hilbert space.

A.2. (qn)n∈N∗ is either H0-dense or ω independent in H0. The following argument is clas-
sical. It was first provided in [18] for the Schroedinger equation, and recently in [32] and [31] for
the heat equation and skew-adjoint operators respectively. We detail it here for completeness.
We assume that λn ̸= 0. The proof can be easily adapted to the case where λ1 = 0, since the
resolvent Aλ defined below is well defined and invertible on H0.
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Recall that qn ∈ Hα−1/2−ε for any ε > 0. We define rn := (λn + λ/2)−1 and we obtain by
definition of qn in (55) that

(A− λ− λn)qn = −
∑
p∈N∗

φp = h, in Hα−1/2−ε

which becomes by assuming without loss of generality that λ/2 belongs to the resolvent set of A,

Aλqn = rnqn − rnAλh in Hα−1/2−ε

where

Aλ := (A+ λ/2)−1.

Let us now assume that the family (qn)n∈N∗ is not ω independent in H0. Then, there exists non
trivial (cn)n∈N∗ ∈ l2 such that ∑

n∈N∗

cnqn = 0 in H0.

By applying Aλ to this equation, we get∑
n∈N∗

cnrnqn =

(∑
n∈N∗

cnrn

)
Aλh in H0

which is well defined since (rn)n ∈ l2. Applying again Aλ, we get∑
n∈N∗

cnr
2
nqn =

(∑
n∈N∗

cnr
2
n

)
Aλh+

(∑
n∈N∗

cnrn

)
A2

λh in H0

By induction, it holds that∑
n∈N∗

cnr
m
n qn =

m∑
i=1

(∑
n∈N∗

cnr
m+1−i
n

)
Ai

λh =
m∑
i=1

Cm+1−iAi
λh in H0,(114)

where

Cj :=
∑
n∈N∗

cnr
j
n < +∞, j ∈ N∗.

Let us now distinguish two cases:
• The {Cm} are identically zero. Then we define the complex variable function

G(z) :=
∑
n∈N∗

cnrne
rnz.

This function is holomorphic and since {Cm} are identically zero, we have

G(m)(0) = 0, ∀m ∈ N.

Thus G ≡ 0, and therefore cn = 0 for all n ∈ N∗. This is in contradiction with the
definition of (cn)n∈N∗ . Hence, (qn)n∈N∗ is ω independent in H0.

• The {Cm} are not identically zero. Let us denote m0 := inf{n ∈ N∗, Cn ̸= 0}. Then,
starting with m = m0, we have based on (114) by induction

Am
λ ∈ span{qn}n∈N∗ , ∀m ∈ N∗.(115)
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Suppose that the family (qn)n∈N∗ is not H0-dense. Then there exists a nonzero d =∑
n∈N∗

dnφn ∈ H0 such that

⟨g, d⟩H0 = 0, ∀g ∈ span{qn}n∈N∗

which in particular yields,

⟨Am
λ h, d⟩H0 = 0, ∀m ∈ N∗.

Noticing that h = −
∑
n∈N∗

φn ∈ H−1, we get that

∑
n∈N∗

d̄nr
m
n = 0, ∀m ∈ N∗.(116)

We define the complex variable function,

G̃(z) :=
∑
n∈N∗

d̄nrne
rnz, ∀z ∈ C.

This function is holomorphic and from (116), G̃(m)(0) = 0 for all m ∈ N∗. Thus G̃ ≡ 0,
and further dn = 0 for any n ∈ N∗ which is a contradiction. Therefore the family (qn)n∈N∗

is either H0-dense or ω independent.

A.3. Proof of Lemma 5.12. We proceed as presented in Section 5.6. Before doing that let us
first show that

LEMMA A.1. For any r ∈ (1/2 − α + γ, α − 1/2), the operator T is a Fredholm operator of
index 0 from Hr to itself.

Proof. Looking at the definition of T given by (73) and (76), we have for any n ∈ N∗

Tφn =
λ+ kn
bn

∑
p∈N∗

bpφp

λn − λp + λ

= λτ̃φn + k ◦ τ̃φn,(117)

where τ̃ is given by Lemma 5.14 and k is defined on Hr by k : n−r τ̃φn 7→ knn
−r τ̃φn. Notice

that the operator k is a compact operator. Indeed, let f ∈ Hr. Since, τ̃ is an isomorphism from
Hr to itself, it holds that (n−r τ̃φn)n∈N∗ is a Riesz basis of Hr and in particular there exists
(fn)n∈N∗ ∈ l2 such that f =

∑
n∈N∗

fnn
−r τ̃φn. Let ε > 0 to be chosen,

k(f) =
∑
n∈N∗

knfnn
−r τ̃φn =

∑
n∈N∗

knn
εfnn

−r−ετ̃φn.

Since from Lemma 5.9, there exists ε > 0 such that (knnε)n∈N∗ ∈ l∞ , we have that (fnknnε)n∈N∗ ∈
l2. And this ensures that k(f) ∈ Hr+ε and, in particular,

∥k(f)∥Hr+ε =

∥∥∥∥∥∑
n∈N∗

knn
εfnn

−r−ετ̃φn

∥∥∥∥∥
Hr+ε

≲ ∥knnεfn∥l2 ≲ ∥fn∥l2 ≲ ∥f∥Hr .

Thus, k is compact in Hr from Lemma 2.2. Combining this with the fact that τ̃ is a Fredholm
operator of index 0 (Lemma 5.14) and thanks to the expression (117), T is a Fredholm operator
of index 0 in Hr thanks to [14, p. 169]. □
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• Let us define z := λ + ρ, where ρ ∈ C. We assume without loss of generality that
the operator A is invertible. Otherwise, since its spectrum is countable, there exists
sufficiently small δ ̸= 0 such that A + δI is invertible. So showing that A + BK + zI is
invertible amounts to show that I +A−1BK + zA−1 is invertible. We now consider the
following two distinct cases:
(a) K(A−1B) ̸= −1.

We can check that for any f ∈ Hα/2, the function φ ∈ Hα/2 defined by

φ := f − A−1B(Kf)

1 +K(A−1B)

is the unique solution to

(I +A−1BK)φ = f.

Thus, the operator I + A−1BK is invertible. Since A is a differential operator,
then A−1 is a continuous operator. And then, thanks to the openness of invertible
operators, there exists ε > 0 such that for any |z| < ε

I +A−1BK + zA−1(118)

is invertible in H−α/2.
(b) K(A−1B) = −1.

For any v ∈ Hα/2, it holds that

(I +A−1BK)v = 0 ⇔ v = −A−1B(Kv) ∈ span{A−1B}.

This ensures that 0 is an eigenvalue of I + A−1BK with multiplicity 1 and the
corresponding eigenspace is generated by A−1B. Thus, there exist small open neigh-
borhoods Ω and Ω̃ of 0 in C satisfying:

(I +A−1BK + zA−1)y(z) = λ(z)y(z)(119)

y : z 7→ y(z) ∈ Hα/2, is holomorphic(120)

λ : z 7→ λ(z) ∈ Ω̃, is holomorphic(121)

λ(0) = 0, y0 := y(0) = A−1B(122)

in such fashion that for any z ∈ Ω, λ(z) is the unique eigenvalue inside Ω̃. Since
λ(0) = 0, either λ is identically 0 in Ω or there exists small neighborhood ω such
that λ(z) ̸= 0 for any z ∈ ω ∖ {0}. Let us show that λ is not identically 0. For that,
we assume by contradiction that it is. From the holomorphy property of y, there
exists a sequence (yk)k∈N∗ ∈ Hα/2 such that

y(z) =
∑
k∈N∗

ykz
k,

with y0 = A−1B. Then, in view of (119) and from assumption that λ ≡ 0, it holds
that

(I +A−1BK + zA−1)
∑
k∈N∗

ykz
k = 0, in Hα/2

which ensures by the unicity of the development in entire function that

(I + y0K)yk +A−1yk−1 = 0, in Hα/2, ∀k ∈ N∗.(123)
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By applying K to this equation and noticing that Ky0 = −1, we get

K(A−1yk−1) = 0, ∀k ∈ N∗ ⇔ K(A−1yk) = 0, ∀k ∈ N

Applying now KA−1 to the same equation (123), we get

K(A−1yk) +K(A−1y0)(Kyk) +K(A−2yk−1) = 0, ∀k ∈ N∗

and then

K(A−2yk−1) = 0, ∀k ∈ N∗ ⇔ K(A−2yk) = 0, ∀k ∈ N

By induction, applying KA−(n−1) to (123), we get that

K(A−nyk) = 0, ∀k ∈ N, n ∈ N∗.

In particular

K(A−ny0) = 0, ∀n ∈ N∗,

which implies that ∑
m∈N∗

bmKm

λl
m

= 0, ∀l ≥ 2.

Using the holomorphic function technique in Appendix A.2, we get that bmKm = 0,
which is a contradiction. Therefore, there exists ε > 0 such that λ(z) ̸= 0 for any
z ∈ Ω and |z| < ε. Since λ(z) is the unique eigenvalue inside Ω̃, I +A−1BK + zA−1

is invertible.
In the two cases, there exists at least a sequence of (zk)k∈N converging to 0 such that
I + A−1BK + zkA−1 is invertible from Hα/2 to H−α/2. Since the spectrum of A + ρI
is discrete, we can find ρ := zk − λ such that both A + ρI and A + BK + λI + ρI =
A(I +A−1BK + zkA−1) are invertible operators from Hα/2 to H−α/2.

• We assume here that kerT ∗ ̸= {0} and we want to show that (A∗ + ρ̄I)−1 has an eigen-
vector h in kerT ∗ with ρ defined above. Recall the operator equality

T (A+BK) = (A− λI)T.

Based on Lemma 5.10, this equality holds at least where the operator are seen as acting
on Hα/2 to H−α/2. Then, for any ρ as in above, the following holds:

T (A+BK + λI + ρI) = (A+ ρI)T.

Since, A+BK + λI + ρI and A+ ρI are invertible, we get

(A+ ρI)−1T = T (A+BK + λI + ρI)−1.(124)

As kerT ∗ ̸= {0}, we can select h ̸= 0 such that h ∈ kerT ∗ and h ∈ H−α/2. So, from (124),
for any φ ∈ H−α/2, it holds that

0 = ⟨(A+ ρI)−1Tφ− T (A+BK + λI + ρI)−1φ, h⟩H−α/2

= ⟨φ, T ∗(A∗ + ρ̄I)−1h⟩H−α/2 − ⟨(A+BK + λI + ρI)−1φ, T ∗h⟩H−α/2

= ⟨φ, T ∗(A∗ + ρ̄I)−1h⟩H−α/2 .

This ensures that T ∗(A∗ + ρ̄I)−1h = 0 in H−α/2, and thus (A∗ + ρ̄I)−1h ∈ kerT ∗. We
have then shown that for any f ∈ kerT ∗, (A∗ + ρ̄I)−1f ∈ kerT ∗.
Because kerT ∗ is of finite dimension (recall that T is Fredholm, hence T ∗ is) and not
reduced to {0} therefore the restriction of (A∗ + ρ̄I)−1 to kerT ∗ belongs to L(kerT ∗)
and is an operator on a space of finite-dimension, therefore there exists an eigenfunction
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h ∈ kerT ∗ of (A∗+ρ̄I)−1, associated to an eigenvalue µ ̸= 0 (since the operator (A+ρ̄I)−1

is invertible). Then we have

(A+ ρ̄I)−1h = µh,

which in particular implies that

A∗h =
1− ρ̄µ

µ
h,(125)

and h ∈ Hα/2. This ensures that h is an eigenfunction of A∗ associated to the eigenvalue
(1 − ρ̄µ)/µ. As the subspaces of H−α/2 which are the eigenspaces of A∗ have dimension
1, the dimension of eigenspace associated to (1− ρ̄µ)/µ is one. Since (nα/2φn)n∈N∗ forms
a Riesz basis of H−α/2, there exists n0 ∈ N∗ such that Eig((1− ρ̄µ)/µ) = span{nα/2

0 φn0}.
In view of (125), h ∈ Eig((1− ρ̄µ)/µ), then there exists C > 0 such that h = Cn

α/2
0 φn0 .

So, we have finally shown that if kerT ∗ ̸= {0}, there exist n0 ∈ N∗, C > 0 such that
Cn

α/2
0 φn0 ∈ kerT ∗ and Cn

α/2
0 φn0 is an eigenfunction of (A∗ + ρ̄I).

• From what is done above, if kerT ∗ ̸= {0}, there exist n0 ∈ N∗, C > 0 such that
Cn

α/2
0 φn0 ∈ kerT ∗. So for any φ ∈ H−α/2,

0 = ⟨Tφ, nα/2
0 φn0⟩H−α/2 = ⟨φ, T ∗(n

α/2
0 φn0)⟩H−α/2

In particular for φ = B =
∑
n∈N∗

bnφn we have

0 = ⟨TB, n
α/2
0 φn0⟩H−α/2

which combining with the fact that TB = B in H−α/2, ensures that

0 = ⟨B,n
α/2
0 φn0⟩H−α/2 =

bn0

n
α/2
0

.

This is a contradiction due to assumption (8). Hence, kerT ∗ = {0}.

A.4. A generates a semigroup on Hr⃗. We show the following

LEMMA A.2. Under the assumption of Theorem 3.4, A generates a C0 semigroup on Hr⃗ for
any r = (r1, ..., rm) ∈ Rm.

This is due to the intrinsic link between the definition of the spaces Hr⃗ and A (see Section 2).
We explicit this below. Given the definition of Hr⃗ it suffices to show that for any i ∈ {1, ...,m}
and r ∈ R, A generates a C0 semigroup on Hr

i . We define for any t ≥ 0

Hr
i → Hr

i

Si,r(t) :
∑
n∈N∗

fnφ
i
n 7→

∑
n∈N∗

eλ
i
ntfnφ

i
n.

(126)

Since A generates a C0 semigroup with finite growth bound, there exists ω > 0 such that
|eλi

nt| ≤ eωt for any n ∈ N∗ and therefore Si,r(t) ∈ L(Hr) for any t ≥ 0. Clearly, Si,r(0) = Id
and for (t, s) ∈ R+, Si,r(t+ s) = Si,r(t)Si,r(s). Finally, using the fact that τr : φi

n → n−rφi
n is an

isomorphism from H0
i to Hr

i which commutes with A and satisfies

(127) Si,rτr = τrSi,0,
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and the fact that A is the infinitesimal generator of Si,0 on H0
i , we deduce directly that Si,r is a C0

semigroup and that A is the infinitesimal generator of Si,r with domain Dr(A) := τr(D0(A)) =

Hr+αi
i .

A.5. Extension to the case β ̸= 0. Suppose that Proposition 4.1 holds for β = 0, then it
also holds for β ̸= 0 exactly as in [31]. To do so, it suffices to define B̃ =

∑
n n

βbnφn, apply
Proposition 4.1 with B̃ to obtain a feedback operator K̃ and an isomorphism T̃ . Then Proposition
4.1 holds for β ̸= 0 with T := M−1T̃M , and K = K̃M where M is the isomorphism from Hβ+s

to Hs for any s ∈ R defined by

(128) M : n−βφn 7→ φn.

We refer to [31] for more details.

A.6. Proof of Corollary 3.12.

Proof. The corresponding operator A for the system (40) is the following Sturm-Liouville operator

A := ∂x(a∂x) + b,

defined on the domain

(129) D(A) = {f ∈ H2([0, L]) | c1f(0) = −c2f
′(0), c3f(L) = −c4f

′(L)}.
This is classically a self-adjoint operator and the family (un)n∈N∗ of its eigenvectors forms an

orthonormal basis in L2(0, L) and its eigenvalues (λn)n∈N∗ are simple, real, discrete and forms a
non-decreasing sequence [30].

We choose H = L2(0, L). Since the eigenvalues are simple H1 = H := L2.
Let us now determine the eigenvalues of the operator A and show that they verify the assump-

tions (6) and (7). For any eigenpair (λn, un) of A, it holds that

Aun = λnun ⇔ ∂x(a∂xun) + bun = λnun

⇔ ∂x(a∂xun) + (b− λn)un = 0.

By the following change of variables

y(x) :=

∫ x

0

1√
a(s)

ds, φn(y) := a(x)1/4un(x), ∀x ∈ [0, L],(130)

we get that

∂x(a(x)∂xun(x)) + (b(x)− λn)un(x) = 0, ∀x ∈ [0, L] ⇔ ∂2
yφn(y) +Q(y)φn(y) = λnφn(y),

∀y ∈ [0,M ],

where

Q(y) := b(x(y))−
∂2
y [a(x(y))

1/4]

a(x(y))1/4
, M :=

∫ L

0

1√
a(s)

ds.(131)

With the change of variables (130) and (41), we have the following boundary conditions on φn:

c̃1φn(0) + c̃2∂yφn(0) = 0

c̃3φn(M) + c̃4∂yφn(M) = 0,
(132)

where

c̃1 := c1a(0)
−1/4 − c2a

′(0)

4a(0)5/4
, c̃2 :=

c2

a(0)3/4
, c̃3 := c3a(L)

−1/4 − c4a
′(L)

4a(L)5/4
, c̃4 :=

c4

a(L)3/4
.
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Note that since a has only positive values, c̃21+ c̃22 > 0 and c̃23+ c̃24 > 0. Let us define the following
operator

Ã := ∂2
y +Q

on the domain

D(Ã) := {f ∈ H2([0,M ]) | c̃1f(0) + c̃2∂yf(0) = 0, c̃3f(M) + c̃4∂yf(M) = 0}.

The eigenvalues λn are invariant under the change of variables (130). In order words, any eigen-
value λn of A is also an eigenvalue of the operator Ã and conversely, only the eigenfunctions
change. Thus, it suffices to know the eigenvalues of Ã to know the ones of A. From [30], the
eigenvalues satisfy the following asymptotic estimate

λn = −cn2 +O(1) ∀n ∈ N∗,(133)

where c is a positive constant independent of n. Thus, the assumption (6) immediately holds for
αi = α = 2.

Notice that the assumption (7) holds for any n = p ∈ N∗.
Then, we consider now, n ̸= p ∈ N∗, and we have

|λn − λp| = |cn2 − cp2 +O(1)|.
Since

(134) lim
p2+n2→+∞,p ̸=n

|n2 − p2| ≥ lim
p2+n2→+∞

|p+ n| = +∞,

there exists η > 0 such that

(135) |λn − λp| ≥ η|n2 − p2|,∀n, p ≥ 1.

This ensures that

∀n, p ≥ 1, |λn − λp| ≥ η|(n+ p)(n− p)|
≥ ηn|n− p|,

which makes (7) fulfilled for αi = α = 2.
□

A.7. Proof of Corollary 3.11. Corollary 3.11 follows from using the same transformation and
feedback as in the linear system and dealing with the nonlinearities as in [32]. Let consider first
the system (38) without its nonlinear part u∂xu. Then, it becomes exactly the heat equation
(33) and in view of Corollary 3.5 (αi = α = 2, Bi = ϕi, ri = r, γi = γ) since (39) holds, there
exist an invertible operator T ∈ L(L2(T), L2(T)) and feedback operator K ∈ L(H3/4,R2) which
transform the linear system (33) to (35) and then make it exponentially stable in L2(T). Due to
(39), ϕ = (ϕ1, ϕ2) ∈ H−1. This combining with the fact that K ∈ L(H3/4,R2), allows to apply
[32, Lemma 5.5], to the nonlinear closed loop system

∂tu−∆u+ u∂xu = ϕK(u),(136)

and then concludes that it has a unique solution u for any initial condition u0 in L2(T). In
particular there exists ω ∈ R such that,

u ∈ C0([0,+∞);L2(T)) ∩ L2
loc((0,+∞), H1) ∩H1

loc((0,+∞);H−1),

and

∥u(t, ·)∥L2(T) ≤ eωt∥u0∥L2(T), ∀t ≥ 0.(137)
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Let τ > 0 and u0 ∈ L2(T) with ∥u0∥L2(T ≤ δ, (δ will be chosen later). Applying the transformation
T to (136) yields

∂tTu− T∆u+ T (u∂xu) = TϕK(u).(138)

As (39) holds, ϕ ∈ H−1, and by construction the operators T and K satisfy the operator equality
(89) as

T∆+ TϕK = (∆− λI)T.

At least, this equality holds in L(H1(T), H−1(T)). Since u ∈ C0([0, τ);L2(T))∩L2([0, τ);H1(T))
then the following equality makes sense in L2([0, τ);H−1(T))

T∆u+ TϕK(u) = ∆Tu− λTu.

Then, it follows from (138) that for almost every t ∈ (0, τ),

∂tTu(t, ·)−∆Tu(t, ·) + λTu(t, ·) + T (u(t, ·)∂xu(t, ·)) = 0 in H−1(T).

By setting z(t, ·) := Tu(t, ·) ∈ H1(T), we get for almost every t ∈ (0, τ) that

∂tz(t, ·)−∆z(t, ·) + λz(t, ·) + T (T−1z(t, ·)∂xT−1z(t, ·)) = 0 in H−1(T).
Thus, we have

1

2
∂t∥z(t, ·)∥2L2(T) = ⟨z(t, ·), ∂tz(t, ·)⟩

= ⟨z,∆z − λz − T (T−1z∂xT
−1z)⟩

Since ⟨z,∆z⟩ = −⟨∇z,∇z⟩ = −∥∇z∥2L2(T) = ∥z∥2L2(T) − ∥z∥2H1(T), it follows that

1

2
∂t∥z(t, ·)∥2L2(T) = ∥z∥2L2(T) − ∥z∥2H1(T) − λ∥z∥L2(T) − ⟨z, T (T−1z∂xT

−1z)⟩

≤ −(λ− 1)∥z∥2L2(T) − ∥z∥2H1(T) + C∥z∥L2(T)∥T−1z∂xT
−1z∥L2(T)

≤ −(λ− 1)∥z∥2L2(T) − ∥z∥2H1(T) +
C

2
∥z∥L2(T)∥∂x((T−1z)2)∥L2(T)

≤ −(λ− 1)∥z∥2L2(T) − ∥z∥2H1(T) +
C

2
∥z∥L2(T)∥(T−1z)2∥H1(T)

≤ −(λ− 1)∥z∥2L2(T) − ∥z∥2H1(T) +
C

2
∥z∥L2(T)∥z∥2H1(T),

where C is a constant that can change between lines but does not depend on z or t. Thus,
considering ∥z∥L2(T) small enough on [0, τ) (for instance if sup[0,τ) ∥z(t, ·)∥L2(T) ≤ 1/C), we get
that

1

2
∂t∥z(t, ·)∥2L2(T) ≤ −(λ− 1)∥z(t, ·)∥2L2(T),

and in particular

∥z(t, ·)∥L2(T) ≤ e−(λ−1)t∥z0∥L2(T), ∀t ∈ [0, τ)

with ∥z∥L2(T) small enough. Using the isomorphism property of T, we get,

∥u(t, ·)∥L2(T) ≲ e−(λ−1)t∥u0∥L2(T), ∀t ∈ [0, τ)(139)

with ∥u∥L2(T) small enough. Since the solution u is unique and satifies (137), it suffices to consider
∥u0∥ sufficiently small to have ∥u∥L2(T) small enough. Thus, there exists δ0(τ, λ) such that for any
δ ∈ (0, δ0), we have ∥u0∥L2(T) and the solution of (136) satisfies the exponential stability estimate
(139). Actually, using a classical argument (see for instance [32, Section 6.2]), the estimate (139)
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can be extended to [0,+∞) in the following sense: there exists small δ1(λ) > 0 such that for any
δ ∈ [0, δ1), if ∥u0∥L2(T) ≤ δ then

∥u(t, ·)∥L2(T) ≲ e−(λ−1)t∥u0∥L2(T), ∀t ∈ [0,+∞).

This concludes the proof.
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