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Abstract

We present a novel approach to feedback control design by leveraging the
power of deep reinforcement learning (RL). We blend the RL methodol-
ogy with mathematical analysis to extract an explicit feedback control for
a dynamical system modeling biological pest control using the Sterile Insect
Technique (SIT).

While SIT has traditionally been used in agriculture and is currently
a method for combating vector-borne diseases carried by mosquitoes, the
practical implementation of feedback controls derived from classical control
theory is limited by the need for continuous and often impractical measure-
ments. Finding a feedback control that ensures the global stability of the
system with only practical measurements is a complicated mathematical
problem. To overcome this, our approach focuses on utilizing deep RL to
suggest and construct feedback laws that only depends on these measure-
ments, namely the adult mosquito population, which can be measured using
pheromone traps.

Many dynamical systems arising from practical applications are subject
to measurement constraints, which render the stabilization problem complex
from a mathematical perspective. We believe that this approach could help
in finding new solutions to these problems.

Keywords: Asymptotic stability; global stabilisation; Reinforcement
Learning; Robust control; Sterile Insect Technique
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1. Introduction

Sterile Insect Technique (SIT) is a method of biological pest control that
consists of releasing sterilized insects to reduce or eliminate a target popula-
tion. Initially used in agriculture to control insect pests, it is now employed
in the vector-born disease fight against mosquitoes that carry illnesses such
as malaria and arboviruses [1, 2] and there is a great interest both in research
and in practice to understand which control to use for releasing the sterilized
insects [3, 4, 5].

In this paper we introduce an approach that employs deep reinforcement
learning (RL) to suggest mathematical control strategies for dynamical sys-
tems. We illustrate it on a mathematical model of SIT applied on mosquitoes
population, namely (2.1)-(2.4) below.

Several mathematical approaches have already been used in the literature
to treat the SIT control problem applied to mosquitoes either for the complete
system or for reduced models. Two reduced models have been considered:
a two dimensional (2D) model obtained by assuming that the dynamics of
males and eggs are fast so that these two populations can be assumed to be at
equilibrium (see [5, (S1), page 231-232] or [6, (2)]); and a three dimensional
(3D) model obtained by overlooking the non-adult stages (see [7, (7a)-(7b)-
(7c)]). These mathematical approaches have led to the following stabilizing
feedback controls:

• Stabilization using impulsive feedback controls for the 3D model: [7,
Theorem 6] and [7, Theorem 7] for the case of sparse measurements.
The case of vector migration is also considered in [8].

• Stabilization using optimal feedback control for the 2D model: [5, Re-
mark 4].

• Stabilization using the backstepping method: [6] considers the 2D
model while [9, Section 3.1] considers the complete model. See, for
example, [10, Section I.2.2], [11, Pages 242–246] or [12, Section 12.5]
for tutorial presentations of the backstepping method.

• Stabilization using simple linear feedback laws: [9] proves stabiliza-
tion for positively invariant subsets and conjectures it for the complete
model.
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These feedback controls above are constructed using classical tools in control
theory such as control Lyapunov functions, the LaSalle invariance principle,
the maximum principle, monotone dynamical systems, barrier functions, or
the backstepping method. Although these feedback controls provide evidence
in terms of robustness, their applications requires continuously measuring
the different states of the model, which is difficult or impossible in practice.
Thank to our approach, we are able to provide a control only based on the
most accessible data to be measured: the adult population (adult females
and adult males) using pheromone traps, which are already used in practice.

Our approach differs from these classical methods and uses deep reinforce-
ment learning (RL) to construct control feedback laws. Over the past few
years, RL has emerged as a powerful approach for control, with its ability
to learn near-optimal decision-making strategies through interactions with
an environment, and has demonstrated remarkable successes across a wide
range of domains and applications with long-term horizons, high-dimensional
partially-observable states. In robotics, RL has enabled machines to learn
complex tasks such as locomotion, manipulation, and dexterous object han-
dling [13, 14, 15]. In the realm of games, RL algorithms have achieved super-
human performance in challenging domains like Go, Chess, StarCraft [16, 17],
as well as in classical Atari games [18]. These remarkable achievements high-
light the versatility and potential of RL as a general-purpose approach for
solving complex practical control problems in diverse domains.

RL techniques, while powerful for decision-making, inherently provide
control mechanisms that are discrete and numerical in nature. However,
from a more rigorous mathematical point of view, these mechanisms often
don’t translate directly into analytical feedback control formulas. Recogniz-
ing this limitation, in our work, we blend RL methodologies with mathemat-
ical analysis to extract an explicit mathematical control. Importantly, in our
approach we apply RL to solve the mathematical problem, rather than solely
applying RL to the discretized system, a more conventional application of
RL. This allows us to employ deep RL to architect control feedback laws
which can be juxtaposed with existing controls that have been derived from
more traditional methodologies.
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2. Context and problem studied

The SIT model in mosquitoes population is given by the following system
of equations:

Ė = βEF

(
1− E

K

)
−
(
νE + δE

)
E, (2.1)

Ṁ = (1− ν)νEE − δMM, (2.2)

Ḟ = ννEE
M

M +Ms

− δFF, (2.3)

Ṁs = u− δsMs, (2.4)

where, at time t, E(t) ≥ 0 is the mosquito density in aquatic phase,M(t) ≥ 0
is the wild adult male density, F (t) ≥ 0 is the density of adult females which
have been fertilized, Ms(t) ≥ 0 is the sterilized adult male density, and
u(t) ≥ 0, the control, is the density of sterilized males released at time t.

In system (2.1)–(2.4) we assume that all females mate as soon as they
emerge from the pupal stage. The density of unfertilized females, i.e. the
density of females that have mated with sterilized males, is denoted by Fs(t).
One has Fs(t) = F (t)Ms(t)/M(t). Besides, we also assume that δs ≥ δM ,
which is usually considered to be a biologically relevant assumption [5]. The
interpretation of the parameters are given below [5]:

• βE > 0 is the oviposition rate,

• δE, δM , δF > 0 are the death rates for eggs, wild adult males and fertil-
ized females respectively,

• νE > 0 is the hatching rate for eggs,

• ν ∈ (0, 1) the probability that a pupa gives rise to a female (and (1−ν)
is, therefore, the probability to give rise to a male),

• δs > 0 is the death rate of sterilized adults,

• K > 0 is the environmental capacity for eggs. It can be interpreted
as the maximum density of eggs that females can lay in breeding sites.
Since here the larval and pupal compartments are not present, it can
be interpreted as E representing all the aquatic compartments and this
term K representing a logistic law’s carrying capacity for the aquatic
phase (that also includes the effects of competition between larvae).
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Typical values for these parameters as well as the values used in this work
are given in Table .4.

For the parameters given in Table .4, when u(t) = Ms(t) = 0 for any
t ≥ 0, the system (2.1)–(2.3) has a unique globally asymptotically stable
equilibrium (E(t),M(t), F (t)) ≡ (E∗,M∗, F ∗) where E∗, M∗ and F ∗ are
large constant values. This corresponds to the situation where mosquitoes
reproduce freely. The state (E(t),M(t), F (t)) ≡ (0, 0, 0) is also an equilib-
rium, albeit an unstable one. The mathematical problem is to find u(t) of
the form

u(t) = f(M(t) +Ms(t), F (t) + Fs(t)), (2.5)

where f ∈ L∞(R2), such that the zero equilibrium (0, 0, 0) is globally asymp-
totically stable and Ms is asymptotically small, meaning there exists c ∈ R+

such that
lim

t→+∞
∥u(t)∥ = c < U∗ (2.6)

where

U∗ :=
KβEν(1− ν)ν2Eδs
4(δE + νE)δF δM

(
1− δF (νE + δE)

βEννE

)2

, (2.7)

and the equilibrium (0, 0, 0, c/δs) of the system (2.1)–(2.4) is globally asymp-
totically stable (see Definition 2.1 below, where the notion of solutions of the
closed-loop system is understood in the Fillipov sense [9, Section 2.2]). Ide-
ally, one would even like to be able to find, for any ε > 0, a control feedback
law fε such that

lim
t→+∞

u(t) = ε. (2.8)

Definition 2.1. The equilibrium (0, 0, 0, c/δs) of the system (2.1)–(2.4) with
the feedback law (2.5) is globally asymptotically stable if, for any initial
condition (E0,M0, F0,Ms,0), the (forward maximal) solutions (E,M,F,Ms)
to the system (2.1)–(2.4) with the feedback law (2.5) are defined on [0,+∞)
and for any ε > 0 there exists δ > 0 such that

∥(E0,M0, F0,Ms,0 − c/δs)∥ ≤ δ =⇒
∥(E(t),M(t), F (t),Ms(t)− c/δs)∥ ≤ ε, ∀t ∈ [0,+∞),

(2.9)

lim
t→+∞

∥(E(t),M(t), F (t),Ms(t)− c/δs)∥ = 0, (2.10)

The form constraint (2.5) corresponds to a practical limitation: M +Ms

and F + Fs are the total number of males and females which are typically
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what can be measured in practice (see [1]), although we consider different
variants in this work.

Remark 2.1 (Constant control). The rationale behind the definition of
(2.6) is that this is the critical value above which a constant control can
stabilize the state (E∗,M∗, F ∗) = (0, 0, 0). Indeed, for a constant control
u(t) ≡ Ū , if Ū > U∗ then the equilibrium (E∗,M∗, F ∗,M∗

s ) = (0, 0, 0, U∗/δs)
is globally asymptotically stable (see [5]).

Remark 2.2 (Optimal decay rate). Assume that E(0) ≤ K. Then, for
any control u(t) ≥ 0 is, for every time t ≥ 0, we have E(t) ≤ K and

E(t) ≥ Ẽ(t), M(t) ≥ M̃(t), F (t) ≥ F̃ (t), (2.11)

where (Ẽ, M̃ , F̃ ) is the solution to the Cauchy problem

˙̃E = βEF̃

(
1− Ẽ

K

)
−
(
νE + δE

)
Ẽ, (2.12)

˙̃M = (1− ν)νEẼ − δMM̃, (2.13)

˙̃F = −δF F̃ , (2.14)

(Ẽ(0), M̃(0), F̃ (0)) = (E(0),M(0), F (0)). (2.15)

It would be interesting to see if one can get with suitable output feedback laws
(vanishing or small at the origin) a decay rate close to the one imposed by
(2.11), i.e.

E(t) ≃ Ẽ(t), M(t) ≃ M̃(t), F (t) ≃ F̃ (t). (2.16)

(Note that it is possible to get (2.16) by taking u constant and large, depending
on (E(0),M(0), F (0)).) This would be particularly useful in the case where
the insect under study reproduces both sexually and asexually: indeed, this
would give the best way to reduce the sexual reproduction part as much as
possible by output feedback laws (vanishing or small at the origin).

In [9] a backstepping feedback control was built to stabilize this specific
system at the origin. It is defined by

u((xT ,Ms)
T ) := max

(
0, G((xT ,Ms)

T )
)
. (2.17)
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where G : D′ := [0,+∞)4 → R, (xT ,Ms)
T 7→ G((xT ,Ms)

T ) is given by

G((xT ,Ms)
T ) :=

ψE(θM +Ms)
2

α(M +Ms)(3θM +Ms)

+
((1− ν)νEθE − θδMM)(θM + 3Ms)

3θM +Ms

+ δsMs +
1

α
(θM −Ms) if M +Ms ̸= 0, (2.18)

G((xT ,Ms)
T ) := 0 if M +Ms = 0. (2.19)

ψ :=
2βEννE

δF (1−R(θ))(1 + θ)
, (2.20)

and θ > 0 is a regulation constant.
However, this control depends on the three variables (E,M,Ms) and not

only on the feasibly observable quantities M +Ms and F + Fs. As of now,
there is no known control depending only on M +Ms and F + Fs.

2.1. Contributions of this paper

In this work we use a deep Reinforcement Learning (RL) approach to
construct control feedback laws and compare them with the existing feed-
back controls that were deduced in previous work.

Our approach works in three steps:

1. We discretize the equations in a numerical scheme,

2. We train an RL model to obtain a numerical control feedback based on
this numerical scheme,

3. We recover from the numerical control feedback an explicit mathemat-
ical control. We then perform several tests to ensure that the explicit
control is efficient.

This is detailed in Section 3. We use this approach to construct three types
of control feedback laws:

• A feedback control depending on M only,
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• A feedback control depending onM+Ms (total number of males) only,

• A feedback control depending on M +Ms and F +Fs (total number of
males and of females).

These different types of controls are studied in Sections 4, 5 and 6 respec-
tively.

3. Reinforcement learning based control

Reinforcement Learning (RL) is a subfield of machine learning concerned
with training agents to make decisions in an environment to maximize a
long-term reward function. From a control perspective this can equivalently
be seen as finding an optimal control for a cost function over the trajectories.
We first define these concepts more formally and discuss the RL algorithm we
use in Section 3.1, then explain how we apply this formalism to our specific
problem in Section 3.2. After that, we discuss our approach in Section 3.3
and finally go through experiment details in Section 3.4.

3.1. RL Background

We model the environment using the common formalism of a Partially-
Observable Markov Decision Process (POMDP) [19]M = (S,A, T, R, γ, µ,Ω,O)
where S ⊆ Rn is a set of states, A ⊆ Rm a set of actions, T : S ×A → ∆S is
the state transition function (ie. T (s′|s, a) is the probability of transitioning
to state s′ given state s and action a), R : S×A → R is the reward function,
γ ∈ [0, 1) is the discount factor, µ ∈ ∆(S) is the initial state distribution,
Ω ⊆ Rp is a set of observations of the hidden state, and O : S → ∆(Ω) is the
observation distribution (ie. O(o|s) is the probability of getting observation
o given current state s). Note that given a set X, ∆(X) denotes the set of
probability distributions over X.

The goal for the agent is to learn a policy πθ : Ω → ∆(A) (stochastic
in our case) mapping observations to actions, where θ are the parameters of
the policy (typically the weights of a neural network in the case of deep RL),
which maximizes the expected discounted sum of rewards

J(πθ) = Eτ∼(πθ,M)

[
∞∑
t=0

γtrt

]
(3.1)

8



where the expectation is taken over all trajectories τ = (st, at, rt)t≥0 gener-
ated by the current policy πθ acting in the POMDP M. Note that maximiz-
ing this objective J(πθ) is analogous to the standard minimizing of the cost
function −J(πθ) in control theory.

One common way to minimize this cost is to use policy gradient methods,
which directly optimize the policy parameters by estimating the gradient of
the expected cumulative reward. The basic policy gradient algorithm updates
the policy parameters in the direction of the estimated gradient to increase
the likelihood of actions that lead to higher rewards. To improve stability
and convergence, several techniques have been developed, such as Trust Re-
gion Policy Optimization (TRPO) [20] and Proximal Policy Optimization
(PPO) [21]. TRPO limits the policy update step size by constraining the
divergence between the new policy and the old policy. PPO introduces a
simple surrogate objective function that includes a clipping mechanism to
prevent large policy updates and improve sample efficiency.

3.2. Defining the POMDP

In this section, we define the specific POMDP problem formulation that
we consider in this work: states, observations, actions and rewards, as well
as the initial state distribution and state transition function that model the
system. We present all the variants that we have considered, and the specific
settings used for each controller will be specified in the respective feedback
law parts in Sections 4, 5 and 6.

State space The states for the POMDP are exactly the states of the SIT
model, that is, E(t), M(t), F (t) and Ms(t), all nonnegative and intro-
duced in Section. 2. Thus our state space can be formally written as
S = R4

≥0.

Observation space and distribution To account for real-world partial
observability constraints, the control does not have access to the full
state, but only to some partial observation of it. In this work, we
consider three different types of observations which we analyze and
compare in their respective sections:

• Section 4 considers an observation consisting of only the number
of wild males. Formally, the observation space is Ω = R≥0 and
the function mapping states to observations (which in this work
is deterministic) is O(E(t),M(t), F (t),Ms(t)) =M(t).
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• Section 5 considers an observation consisting of the total number
of males. Formally, Ω = R≥0 and O(E(t),M(t), F (t),Ms(t)) =
M(t) +Ms(t).

• Section 6 considers an observation consisting of the total number
of males and the total number of females. Formally, Ω = R2

≥0 and
O(E(t),M(t), F (t),Ms(t)) = (M(t) +Ms(t), F (t) + Fs(t)), where
Fs(t) = F (t)Ms(t)/M(t) was defined in Section 2.

All of the observations that we consider are quantities that we are able
to measure in the real world. This is in contrast to the backstepping
control (2.17), which requires measurements of E, M and Ms, which
is currently not possible in the real world. Besides, these observations
may grow very large and thus can span quite a large range. As such,
to enable the neural network to observe large values while still being
able to discriminate between smaller values, we input each observation
into the control at different orders of magnitude. For instance, M +
Ms is inputted at several scales, namely M +Ms becomes min(M +
Ms, k) for k ranging from 5 to 100K, and similarly for F + Fs. We
normalize all observations so that they lie within [0, 1]. This has proved
important to help with convergence during training: normalizing inputs
is a common preprocessing technique, and inputting each observation
at several scales further helps with training stability without technically
adding more inputs to the control. We also consider adding memory
of the past observations as an input to the control to enable the neural
network to internally build a kind of observer, although it makes it
significantly more complex to convert into an explicit feedback.

Action space Our action space A = [−1, 1] corresponds to a single action
a(t) ∈ A that is remapped to the range [0, 10K] and then directly
inputted into the model equations (2.1)-(2.4) through u(t) = 5K(a(t)+
1). Having the neural network model output a normalized action is a
common technique for more robust training, akin to normalization of
the inputs (here we output a normalized action, then scale it up).

Initial state distribution We sample the initial state uniformly between 0
and 10K, which corresponds to physically-realistic values for the states.
Namely, (E(0),M(0), F (0),Ms(0)) ∼ µ = U([0, 10K]4).

State transition function The state transition function T , that maps a
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current state and action to a next state, is deterministic in this work
and implicitly defined by the ODE system (2.1)–(2.4): we discretize
the state xt = (E(t),M(t), F (t),Ms(t)), and at each time step compute
the next state through a simple Euler update xt+1 = xt + ẋt dt (with
an abuse of notation, since the update is technically done on each of
the four individual states), where the action ut = u(t) comes in the
definition of Ṁs. The value for dt is indicated in Section 3.4. Thus, the
transition function can be written as T (xt, ut) = xt+1.

Reward function The optimization criterion is usually the most crucial
part of the RL learning process. Our reward function, which we aim to
maximize over time as per Eq. (3.1), takes the following form at time
step t:

rt = c1 (∥E(t)∥2 + ∥M(t)∥2 + ∥F (t)∥2) + c2(t)∥Ms(t)∥2 (3.2)

with

c2(t) =

{
c3 if t < 0.9T,

c3 + c4 otherwise,
(3.3)

where T is the simulation horizon. In a continuous control framework
this would correspond to maximizing the functional

J(u) =

∫ T

0

c1∥E(t),M(t), F (t)∥2 + c2(t)∥Ms(t)∥2dt. (3.4)

The specific values we use for c1, c3 and c4 are indicated in Section 3.4,
and are derived empirically and heuristically through hyperparame-
ter tuning. The reason for the specific shape of this reward function
Eq. (3.2) is as follows: ideally, we would simply penalize all the states
equally and have rt = C (∥E(t)∥2 + ∥M(t)∥2 + ∥F (t)∥2 + ∥Ms(t)∥2) in
order to drive all the states to zero. This is what we initially tried;
however, for practical reasons, we found this objective to be harder to
minimize due to the fact that Ms can typically take much larger values
than the 3 other states. Indeed, one of the difficulties of this control
problem is that Ms should necessarily take high values to be able to
bring M , F and E closer to 0, given (2.1)–(2.4), and this results in a
delay between the control action its effect on the mosquito population.
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A practical interpretation is that the females have no preferences be-
tween sterile males and fertile males, hence Ms should be larger than
M to have an influence.

As a result, our choice of c2(t) corresponds to penalizing Ms with less
amplitude than we penalize the other 3 states; nevertheless around
the end of the simulation we increase the penalty on Ms to encourage
convergence to 0. This allows for a high action at the start to grow
Ms without excessive penalty, which in turn makes the other states
decrease, then a slowly decreasing action so that Ms converges 0. The
main challenge is to not decrease Ms too quickly, or the other states
would increase again. We empirically found that this reward design
led to increased training stability: it is designed in a way to guide the
controller’s, which is initially random, to a reasonable behavior more
quickly. We note that the rewards are also normalized by K to lie
within a reasonable range.

Additionally, in order to artificially reduce the horizon and make training
more robust (RL usually suffers from overly long simulations, as it makes
optimization a reward over time much more complex), we repeat each ac-
tion several times, meaning that for each environment step we use the same
action to run nsims simulation steps. Finally, the value for γ is indicated in
Section 3.4.

3.3. Method

In our work, we aim to train control policies using RL to regulate a
dynamic system described by ordinary differential equations. To do that,
we design an environment that simulates the behavior of the ODE system,
allowing us to interact with it in a controlled manner. Our approach is
summarized in Fig. 1. We start by discretizing our system of equations
(2.1)-(2.4), and use those dynamics to create a simulation of our model. We
use it to create an environment by implementing the observations, actions
and rewards described in Section 3.2. Using this code, we train an RL agent
that learns to maximize the objective function we assign it through many
simulations, using the PPO algorithm mentioned in Section 3.1. Once the
policy has converged, we can evaluate it on any simulation, in particular we
can query a control u for any current state [E,M,F,Ms]. Since we only
trained policies with 1 or 2 observations, we can plot the action as a function
of the input in 1D or 2D space. This allows us to perform a regression and
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empirically write a simple explicit control that has the same general shape
as the neural network control (see Sections 4 and 6). Finally, we simulate
this explicit control to ensure that it still stabilizes the system, and analyze
its properties and robustness.

3.4. Experiment details

Here we present the experiment details in greater details. To implement
the PPO algorithm we use to train our RL policies, we use Stable Baselines
3 [22] (version 1.6.2 in Python 3.8), a popular RL library that provides a
collection of state-of-the-art algorithm implementations, as well as various
tools for RL research. The models in Sections 4, 5 and 6 are trained for 10
million environment timesteps (or 7 billion simulation timesteps) on 12 CPUs,
which takes about 7 hours. During each iteration, we collect 12288 (1024 per
CPU) environment steps, then run 5 epochs of optimization with a batch
size of 1024. The agent’s policy is a fully-connected neural network with 2
hidden layers of 256 neurons each, with tanh non-linearities between each
layer, outputting the mean and standard deviation of a normal distribution
that is then used to sample the action. More formally, for a given observation
vector ot, the neural network policy outputs (µt, σt) = πθ(ot) and the action
is sampled as at ∼ N (µt, σt). We train with a learning rate of 3 × 10−4,
discount coefficient of γ = 0.99, and all other hyperparameters are left to
their default values.

We run each simulation for T = 1000 days, with a timestep dt = 0.01
days, and each action is repeated nsims = 500 times, meaning that the envi-
ronment horizon is 200 steps. For each simulation, the initial condition is uni-
formly sampled between 0 and 10K: E(0),M(0), F (0),Ms(0) ∼ U(0, 10K).
For our reward function, we use coefficients c1 = 0.1, c3 = 0.001 and
c4 = 0.01. For the model, we use the parameters given in Table .4.

4. Feedback RL control using M

In the literature, one of the previous approaches consist in using a linear
feedback control that only depends on M(t) [9], that is u(t) = f(M) where
f is linear instead of the control law (2.5). They observe that the following
linear control feedback law

u(t) = αM(t), (4.1)
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System of equations

Environment
(Simulation)

Control agent
at = πθ(st)

(Neural Network)

Optimization
argmaxθ

∑
t rt

(Gradient Ascent)

action
at ∈ A

st+1

rt+1

state
st ∈ S

reward
rt ∈ R

Discretization

Explicit control

Regression

Figure 1: Diagram representing the (simplified) procedure by which we simulate our model
in an environment that is used to train an RL agent, whose policy we then convert into an
explicit control. The policy πθ is modeled by a neural network with parameters θ, which
takes a state as an input and outputs an action (or a distribution over actions in the
stochastic case). The neural network is then optimized to maximize the sum of rewards
it obtains over simulations.
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seems to stabilize the system as long as

α >
(βEννE − (νE + δE)δF )δs

(νE + δE)δF
. (4.2)

In this section, we use our RL procedure to deduce a potentially nonlinear
feedback law that similarly only depends on M(t).

We force the feedback control to go to 0 when the number of wild male
goes to 0 by searching the control under the form

u(t) = min

(
min

(
fRL

(
M(t)

K

)
, αM

)
M(t), uM

)
, (4.3)

where αM is a chosen constant, uM is the maximal value of the control allowed
which is dictated by physical constraints, and fRL is the function searched
by the RL model. This fRL is searched using the procedure described in
Section 3 and using the cost function

J(u) =

∫ T

0

rt dt

rt =
∥E(t),M(t), F (t)∥

K

+ q1

(
MS(t)

K
+max(0, (

MS(t)

K
− 30))2

) (4.4)

where q1 is a chosen constant, typically much smaller than 1, and T is a
chosen horizon. After training, the RL model converges and the optimal
numerical fRL obtained has a relatively simple form, shown in Figure 2,
which happens to be exactly piecewise linear. This allows us to deduce the
following nonlinear control feedback law for the system

u(t) = min (ū(t), uM) (4.5)

with

ū(t) = min

[
max

(
α1 − α2

M(t)

K
, 0

)
, αM

]
M(t), (4.6)

where α1 and α2 are positive constants. For the values in Table .4 with
αM = 15, α1 ≈ 16 and α2 ≈ 12.

Remark 4.1. The RL control (4.5) tends to be linear when K → +∞.
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Figure 2: Value of fRL as a function of M(t)/K when αM = 15 and parameters as in
Table .4.

200 days 400 days 800 days 2000 days
average |E|+ |M |+ |F | 8.7 104 3.3 104 1.3 103 1.5 10−2

variance |E|+ |M |+ |F | 3.6 107 1.4 107 3.7 104 5.5 10−6

average |Ms| 1.6 106 1.5 106 8.4 104 1.0
variance |Ms| 8.2 109 1.3 1010 1.6 108 2.5 10−3

maximum |E|+ |M |+ |F | 9.3 104 3.8 104 1.5 103 1.8 10−2

Table 1: Average, variance and maximum of the different components over 100 simulations,
with αM > α1 = 13, q1 = 0.004, uM = 10K and the parameters of Table .4.

In Figure 3 we present 100 numerical simulations of the closed-loop system
when using this explicit control. Each simulation has a different initial condi-
tion taken uniformly at random with each state having values in [0, 10K]. We
can see that all the components of the state of the system converge quickly
to 0 after 800 days, while the main components of the system (not sterile
males M , females F and eggs E) converge much faster to 0.

In Table 1 we show the average and variance of the states E, M , F and
Ms at different times over 10000 numerical simulations as well as the maximal
absolute value of each state.

5. RL control using M + Ms

In practice, measuringM is a challenge. In a wild population of mosquitoes,
synthetic versions of female insect pheromones are released to attract and
capture male insects. This allows for measuringM+Ms, however there is no
easy way to distinguish between the wild male mosquitoes and the released
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Figure 3: Representation of the state in a 100 simulations, with αM = 15, q1 = 0.004,
T = 2000 days, uM = 10K, and the parameters of Table .4. Each simulation corresponds
to one color.

sterilized male. Another possible measurement can be done by placing simple
traps for adult mosquitoes in the wild, then differentiating them based on
physical attributes such as their size to separately count total males M +Ms

and total females F + Fs.
This motivates the search, in practice, for a control that would only de-

pend on M +Ms and F + Fs. In this section, we consider using only total
males M +Ms, since this quantity is more easily measured. In [9], it was
conjectured that a linearly dependent feedback of M +Ms stabilizes the dy-
namics at the origin. However this control lacks robustness (see Figure 4)
with respect to the parameters of the model or of the controller. Indeed the
control has the linear form

u(t) = β(M(t) +Ms(t)), (5.1)

and can only work if β satisfy(
βEννE − (νE + δE)δF

βEννE

)
δs ≤ β < δs. (5.2)
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With the parameters set in the Table .4, this condition becomes

0.118 ≤ β < 0.12, (5.3)

which means that even a tiny imprecision on the model parameters ren-
ders the control inefficient.

Figure 4: Evolution of the sterilized male population as a function of time when applying
the feedback law u(t) = β(M(t)+Ms(t)) with β = 0.118 (top) or with β = 0.116 (bottom),
over 3000 days.

We tested our RL control procedure in this framework, having only access
to M +Ms at the current time t. Even when allowed a nonlinear control,
the model does not converge to an efficient control after 1000 iterations of
training, with the same setup used to train the other controls. Figure 5 illus-
trates the behavior of the trained control, which outputs an approximately
constant control u(t) ≈ 200000 yielding a stabilization of the populations of
mosquitoes, except for the released sterilized male mosquitoes Ms which the
control does not manage to reduce with the limited information it has about
the state of the system. This demonstrates the lack of robustness mentioned
earlier.

Nevertheless, when allowing the control to depend not only on M +Ms

at the given time t but also on previous times s ≤ t, that is to say enabling
the control with memory of past values of M +Ms, the RL policy converges
to what seems to be a robust numerical control. The rationale behind giving
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Figure 5: Evolution of the population of mosquitoes, represented as E(t) +M(t) + E(t)
and Ms(t), and of the control u(t), as a function of time, over 10 simulations with random
initial conditions, using an RL control that only has access to M +Ms(t) at the current
time t.
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the model access to a memory of the measurements is to allow it to construct
internally a kind of observer. We train the model by allowing it to measure
the state of the system every 7 days and to keep the memory of the 26 most
recent measurements (so 6 months of measurements). This measurement
frequency corresponds to what is possible in practice [23]. Besides, the control
also takes a single action every 7 days. Since this control has strictly more
information than the control with only M +Ms at time t, we expect it to
perform better as long as the training procedure is stable. It is however not
obvious that adding this memory of past observations would be enough to
stabilize the system, but Figure 6 shows numerically that it appears to be
sufficient, across 100 numerical simulations of the closed-loop system using
this numerical control with initial conditions chosen at random in [0, 5K]4.

6. RL control using M + Ms and F + Fs

Using past states can be a challenge to find a mathematical formula from
the numerical control. Indeed, when the control depends on the past state,
the feedback that is searched is not anymore a function of a finite-dimensional
vector but a functional on an infinite dimensional space containing portions
of the trajectories (e.g. (M + Ms(s))s∈[t−τ,t]). This makes the symbolic
regression a challenge. For this reason we try to find a control usingM +MS

and F+FS only at the current time, that is a control of the form (2.5). These
two quantities can be measured in real life, and lead to a much simpler model
than the model with memory that has 26 inputs.

A first control. In this framework, the RL model is trained as described in
Section 3 and converges to a numerical control that we represent in Figure 7
as a function of M +Ms and F + Fs. We see that the plot of the control in
linear scale is not really informative (see Fig. 7 left). However in log scale
the expression of the control seems clearer (see Fig. 7 right) and clearly has
two parts. In each of them the control seems to be close to a bang-bang
control with a thin transition. With a simple regression we approximate this
numerical control with

ureg(M +Ms, F + Fs) =

{
uleftreg if M +Ms < 200,

urightreg otherwise,
(6.1)
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Figure 6: Evolution of the population of mosquitoes, represented as E(t) +M(t) + E(t)
and Ms(t), and of the control u(t), as a function of time, over 100 simulations with random
initial conditions, using an RL control that only has access to measurements of M +Ms

over the past 6 months, and every week obtains a new measurement and take a new action.
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Figure 7: Heatmap of the model’s action u(M +MS , F + Fs) as a function of total males
and total females, in linear scale (left) and logarithmic scale (right).

for M +Ms, F + Fs > 0, where

uleftreg =


umin if log 200

F+Fs
> 4,

umax

(
4− log 200

F+Fs

)
if 4 ≥ log 200

F+Fs
> 3,

umax otherwise, and

(6.2)

urightreg =


umin if log M+Ms

F+Fs
> 4,

umax

(
4− log M+Ms

F+Fs

)
if 4 ≥ log M+Ms

F+Fs
> 3,

umax otherwise.

(6.3)

Table 2 shows that this explicit control is still able to quickly stabilize the
state over a wide range of initial conditions.

During training and testing, the numerical control feedback law includes
by default a small noise. This ensures some robustness of the control and a
good exploration. We tested the mathematical control we derived (given in
(6.1)) with and without noise. To our surprise, the control with a small noise
does seem to ensure the asymptotic stability, whereas the control without
any noise does not seem to. Indeed, without noise, the control seems to have
a cyclic behavior and never converges (see Figure 8 (left)). When adding
a small noise, however, the stability is restored (see Figure 8 (right)). The
explication to this apparent paradox is that having exactly umin = 0 in one of
the branches of the control given in (6.1) is seemingly too strong to allow the
model to converge completely. Replacing this value with umin > 0 for a small
umin (typically umin = 5) allows to stabilize the system without noise. In the
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Figure 8: Heatmap of the regression model’s action ureg(M +Ms, F + Fs) as a function
of total males and total females. A state-space trajectory is plotted in red, with the dot
indicating initial state and the cross final state, comparing the no-noise case (left) with
the case when a small noise µ ∼ N (0, 5) is added on top of the action (right).

system with noise, because the control u has to be positive, the noise has the
effect of increasing in average the effective value of umin of the control (6.1),
which explains the apparent stabilization. Of course when setting umin to a
small value, the equilibrium that is stabilized is not anymore (0, 0, 0, 0) but
(0, 0, 0, umin/δs) which is very close to it, remains very acceptable in practice
compared to the uncontrolled attraction point (especially as only the density
of the sterile male mosquitoes does not converge to 0 and, moreover, this
density converges to a small value) and answers the mathematical problem
described in Section 2.

A simpler control. We decided to simplify the control found by the RL algo-
rithm. We wanted to see if there is really a need for a different regime when
there is only very few mosquitoes. The motivation behind this is that this
region does not influence much the cost function that the RL algorithm tries
to optimize and the control might be less precise on this part. This leads to
the following simplified formula for the feedback control:

vreg(M +Ms, F + Fs) =

{
umin if log M+Ms

F+Fs
> α2,

umax otherwise,
(6.4)

for M +Ms, F + Fs > 0, where α2 = 4 is a constant found by regression.
In this case again, the control with umin = 0 and no noise does not

seem to ever lead to the convergence of the state (E(t),M(t), F (t),Ms(t)),
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Figure 9: Norm of the states ∥E(t),M(t), F (t)∥2 (blue) and control vreg (red) as a function
of time for different values of umin (0, 0.001, 1, and 5 respectively from top to bottom) and
umax = 300000, over 2000 days and with the same initial condition. When the minimum
control umin is 0, the control occasionally (more and more rarely) outputs the maximum
action (corresponding to the spikes) to prevent the states from going back up. However,
when umin > 0, after some time this minimal action is sufficient to stabilize the state
around 0 and no more spikes are observed.

with a notable difference however: there is no purely cyclic behavior and
(E(t),M(t), F (t)) convergences rapidly to (0, 0, 0). The obstacle to the con-
vergence manifests in large peaks that appear in the control feedback and are
increasingly spaced in time, as evidenced in Figure 9. When choosing again
a small umin > 0 the convergence to the equilibrium is recovered and seems
to work for arbitrarily small umin > 0 (see Figure 9).

We numerically demonstrate that this simplified control seems stabilizing
over a wide range of initial conditions. Figure 10 shows the evolution of
the control and states for randomly sampled initial conditions. The control
appears robust, quickly stabilizing the state in every simulation. Table 3
shows corresponding statistics, illustrating that the state rapidly converges
to 0 (with the exception of Ms which takes longer to converge to ensure the
other states don’t regrow) with very small variance. Besides, we can notice
by comparing Table 2 and Table 3 that the simplified control leads to quicker
convergence of the state than the control defined in (6.1)–(6.3).
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Figure 10: States and control vreg with umin = 5 and umax = 300000 over a duration
of 1000 days for 100 simulations with random initial conditions in [0, 10K]4. Each color
correspond to a simulation.
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200 days 400 days 600 days 800 days
average |E|+ |M |+ |F | 50,801.64 8,020.47 96.25 0.60
variance |E|+ |M |+ |F | 45,422,159 4,012,119 1,394 0.02
maximum |E|+ |M |+ |F | 59,026.78 10,455.31 149.03 0.80
average |Ms| 2,207,795.88 693,675.84 16,743.12 50.27
variance |Ms| 53,101,242,728 13,102,504,436 41,355,608 81.24
maximum |Ms| 2,473,954.23 822,154.59 25,783.57 70.59

Table 2: Statistics over 100 simulations with random initial conditions in [0, 10K]4 using
control ureg (see (6.1)) with umin = 5 and umax = 300000 over a duration of 800 days.

200 days 400 days 600 days 800 days
average |E|+ |M |+ |F | 48,806.91 688.68 2.47 0.002
variance |E|+ |M |+ |F | 75,826,146 78,547.67 1.31 1.61× 10−6

maximum |E|+ |M |+ |F | 59,079.04 1,130.92 4.37 0.006
average |Ms| 2,500,000 129,308.46 2,204.39 41.67
variance |Ms| 3.07× 10−11 2,949,520,902 5,197,430.54 2.17× 10−7

maximum |Ms| 2,500,000 248,387.02 10,757.19 41.67

Table 3: Statistics over 100 simulations with random initial conditions in [0, 10K]4 using
control vreg (see (6.4)) with umin = 5 and umax = 300000 over a duration of 800 days.
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7. Conclusion

In this paper, we have explored various feedback control strategies for a
population control problem involving mosquitoes. We have investigated the
use of nonlinear feedback control strategies that depend only on measure-
ments. We have first considered the case where only the wild male mosquito
density is measured, then the case where the male mosquito density is mea-
sured, and finally the case where both the male and female mosquito densities
are measured.

In particular, we have used reinforcement learning to develop a con-
trol strategy that depends only on the total number of male and sterile
male mosquitoes, as well as the total number of female and sterile female
mosquitoes, at a given time. This control strategy appears to be robust and
effective, and has the potential to be applied in practice to control mosquito
populations and prevent the spread of diseases.

Our results highlight the usefulness of machine learning and control the-
ory in developing effective control strategies for complex biological systems.
Further research in this field could lead to even more powerful techniques for
controlling populations of pests and disease vectors.
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