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A B S T R A C T
In this work, we consider the boundary stabilization of a star-shaped water flow network
composed by 𝑛 (𝑛 ≥ 3) channels. Each channel is modeled by Saint-Venant equations with
arbitrary friction and slope. Among which, two channels are in supercritical regime, while the
remaining 𝑛− 2 channels are in subcritical regime. We show that in this case, one only needs to
apply a static feedback control at the inlet of a supercritical channel to achieve the exponential
stability of the non-uniform steady-states in the 𝐻2 norm. The main tool we employ is the
Lyapunov approach. To validate our theoretical results, a numerical illustration is also given.

1. Introduction
Saint-Venant equations are first order quasilinear hyperbolic systems that describe the flow of shallow water in

open channels. They are widely used in hydraulic engineering about rivers, canals, and other waterways (see [11]). In
order to improve the authenticity of the model and expand the application scope of the Saint-Venant equations, more
and more scientists are interested in problems related to the dynamics of the water flows in networks.

The research about water flows in network usually builds upon the existing results developed in a single channel
framework. The initial researches on the static feedback control for the exponential stability of the Saint-Venant
equations were based on the simplest model, without considering friction and slope (known as equations without
source terms). Among others, one can look at [6, 7, 8] in which Coron et al. discovered a generic 𝐻2-Lyapunov
function that can handle feedback control problems in such hyperbolic systems with no source term. Then Bastin et al.
in [1] proposed a sufficient condition for the existence of a Lyapunov function for hyperbolic systems with source terms
and provided in [3] a new explicit Lyapunov function for the exponential stability of 2 × 2 density-velocity systems
with dissipative source terms representing friction effects, including the Saint-Venant equations without slope. Later
on, Hayat et al. in [17] extended the Lyapunov approach to the case of arbitrary slope and friction, and they further
apply this theory to more general density-velocity systems in [18], including isentropic Euler equations, traffic flow,
etc.

Regarding the boundary stabilization of networks, most of the literature focus on cascade case. In [10], Halleux et
al. considered two cascade channels without source terms. Then in [4], Bastin et al. addressed the exponential stability
of the linearized Saint-Venant equations for a sloping channel in the 𝐿2 norm. To ensure uniform steady states, they
consider a special case where the friction and the slope “compensate" each other and the analysis was also extended to
the case of 𝑛 cascade channels. In the field of PI control, Trinh et al. studied in [23] the output regulation for a cascaded
network of Saint-Venant equations without source terms and Hayat et al. in [16] with source terms. For the study of the
controllability and stability of star-shaped models, Leugering et al. in [20] developed a star-shaped model, but study the
stabilization only for a single channel. Trinh et al. designed in [22] a PI controller for Saint-Venant equations without
source terms. Gugat et al. in [13] demonstrated the exponential decay of the flows of the gas networks in the 𝐿2 norm
for arbitrarily long pipes. Concerning the boundary controllability of networks, one can refer to [12] and the references
therein.

The above works focus on the case where all the channels are in subcritical regime. When subcritical channels
and supercritical channels are combined, Gugat et al. constructed in [14] a star-shaped gas pipeline transportation
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model combining supersonic and subsonic flows, and addressed the well-posedness problem with designed coupling
conditions at the junction.

In this paper, we explore the use of boundary feedback controls for the stabilization of a star-shaped network with
arbitrary slope and friction. This model includes 𝑛 channels connected by one junction. In this system, two channels
are supposed to be in supercritical regime, while the other 𝑛 − 2 channels are in subcritical regime. At the junction,
there is no control and the boundary conditions are given by the physic of the problem: the conservation of mass and
continuity of the water head (see [9, 19]). Surprisingly, in the case where the branches converge to the main stream, the
system can be completely stabilized without control at the junction. The only requirement is to apply a single control
at the inlet of the supercritical branch. We give explicit conditions on this control. To do so, we derive an efficient
Lyapunov function inspired from [1, 17] and obtained the local exponential stability in the sense of 𝐻2 norm.

The structure of the article is the following. In Section 2, we present the problem and our main results. In Section
3, we first deal with the linearized system around any given non-uniform steady states. Here, we construct an efficient
Lyapunov function to analyze the global stabilization of the linearized system. Based on this, in Section 4, we explore
the local exponential stability for the nonlinear case using a similar Lyapunov function. A numerical illustration is
presented to validate our theoretical results in Section 5. Finally, the Appendix contains some technical results and
computations

2. The Statement of the Problem and Main Results
We consider the star-shaped network depicted in Figure 1, composed of two channels in the supercritical regime

and 𝑛 − 2 channels in the subcritical regime. Specifically, Channel 1 and Channel 2 are in supercritical regime, while
Channels 𝑗 (here and hereafter, 𝑗 ∈ {3,⋯ , 𝑛}) are in subcritical regime. The 𝑛 − 1 branches converge to the main
Channel 1. Note that as soon as Channel 2 is in supercritical regime, then Channel 1 has to be in supercritical regime,
unless a hydraulic jump (i.e., a shock) occurs at the junction or within a channel (see (2.2)).

Figure 1: Star-shaped network with all branches converging to the main stream

Each channel is described by Saint-Venant equations with (possibly different) friction and slope defined on
[0,+∞) × [0, 𝐿𝑖], (here and hereafter, 𝑖 ∈ {1,⋯ , 𝑛}) as follows

𝜕𝑡𝐻𝑖 + 𝜕𝑥(𝐻𝑖𝑉𝑖) = 0,

𝜕𝑡𝑉𝑖 + 𝑉𝑖𝜕𝑥𝑉𝑖 + 𝑔𝜕𝑥𝐻𝑖 + 𝑔

(

𝐶𝑖𝑉 2
𝑖

𝐻𝑖
− 𝑆𝑖(𝑥)

)

= 0,
(2.1)

where 𝐿𝑖 is the length of Channel 𝑖, 𝐻𝑖 = 𝐻𝑖(𝑡, 𝑥) is the height of the water, 𝑉𝑖 = 𝑉𝑖(𝑡, 𝑥) is the horizontal water
velocity, 𝐶𝑖 is the friction coefficient, 𝑔 is the gravitational acceleration and 𝑆𝑖(𝑥) ∈ 𝐶2([0, 𝐿𝑖]) is the source term
corresponding to the slope. The model includes one junction 𝐵 and 𝑛 single nodes 𝐴, 𝐶 and 𝐷𝑗 . In practice, it is
difficult and cumbersome to apply any controls at the junction of a star-shaped network. In this work, we will show
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that the system (2.1) can still be stabilized in the case where the inflows of 𝐷𝑗 are constants and the control is only
applied at node 𝐶 , i.e., the inlet of Channel 2. We consider the following boundary conditions at different nodes

𝐶 ∶𝑉2(𝑡, 0) = 𝒢 (𝐻2(𝑡, 0)), 𝐻2(𝑡, 0) = ℬ(𝐻2(𝑡, 𝐿2)),

𝐵 ∶𝐻2(𝑡, 𝐿2)𝑉2(𝑡, 𝐿2) +
𝑛
∑

𝑗=3
𝐻𝑗(𝑡, 𝐿𝑗)𝑉𝑗(𝑡, 𝐿𝑗) = 𝐻1(𝑡, 0)𝑉1(𝑡, 0),

𝐻1(𝑡, 0) = 𝐻2(𝑡, 𝐿2) = 𝐻𝑗(𝑡, 𝐿𝑗),
𝐷𝑗 ∶𝐻𝑗(𝑡, 0)𝑉𝑗(𝑡, 0) = 𝑄𝑗 ,

(2.2)

where the functions 𝒢 ,ℬ:ℝ → ℝ are of class 𝐶2, and 𝑄𝑗 are positive constants. The boundary conditions at junction
𝐵 are respectively the conservation of mass and the continuity of the water head [9, 19].
Remark 2.1. The first boundary condition at node 𝐶: 𝑉2(𝑡, 0) = 𝒢 (𝐻2(𝑡, 0)) is imposed by the physics of the system,
for instance the Torricelli law if the water is coming from a larger basin upstream, in which case 𝒢 ∶ 𝑥 →

√

2𝑔𝑥. In
the following we will not assume any knowledge on 𝒢 . For the practical implementation of the control, we refer to [5].
Remark 2.2. Due to the consideration of supercritical flow in the system, the feedback control 𝐻2(𝑡, 0) = ℬ(𝐻2(𝑡, 𝐿2))at node 𝐶 is a non-collocated control. Other boundary conditions at node 𝐶 would also work, such as

𝑉2(𝑡, 0) = ℬ1(𝑉2(𝑡, 𝐿2)), 𝐻2(𝑡, 0) = ℬ2(𝐻2(𝑡, 𝐿2)). (2.3)
However, the first condition would be less physical as it would be nonlocal.

The steady states of this system are a couple of time-invariant non-uniform state (𝐻∗
𝑖 (𝑥), 𝑉

∗
𝑖 (𝑥)) which satisfy

(𝐻∗
𝑖 𝑉

∗
𝑖 )𝑥 = 0,

(𝑉 ∗2
𝑖
2

+ 𝑔𝐻∗
𝑖

)

𝑥
+ 𝑔

(

𝐶𝑖𝑉 ∗2
𝑖

𝐻∗
𝑖

− 𝑆𝑖

)

= 0,
(2.4)

together with
𝑉 ∗
2 (0) = 𝒢 (𝐻∗

2 (0)),

𝐻∗
2 (𝐿2)𝑉 ∗

2 (𝐿2) +
𝑛
∑

𝑗=3
𝐻∗

𝑗 (𝐿𝑗)𝑉 ∗
𝑗 (𝐿𝑗) = 𝐻∗

1 (0)𝑉
∗
1 (0),

𝐻∗
1 (0) = 𝐻∗

2 (𝐿2) = 𝐻∗
𝑗 (𝐿𝑗),

𝐻∗
𝑗 (0)𝑉

∗
𝑗 (0) = 𝑄𝑗 .

(2.5)

This can be equivalently reformulated as

(𝑉 ∗2
𝑖 − 𝑔

𝑄𝑖
𝑉 ∗
𝑖
)(𝑉 ∗

𝑖 )𝑥 = −𝑉 ∗
𝑖 (

𝑔𝐶𝑖𝑉 ∗3
𝑖

𝑄𝑖
− 𝑔𝑆𝑖), (2.6a)

𝑉 ∗
2 (0) = 𝒢 (𝐻∗

2 (0)), (2.6b)
𝐻∗

1 (0) = 𝐻∗
2 (𝐿2) = 𝐻∗

𝑗 (𝐿𝑗), (2.6c)
𝐻∗

𝑗 (𝑥)𝑉
∗
𝑗 (𝑥) = 𝑄𝑗 , (2.6d)

𝐻∗
2 (𝑥)𝑉

∗
2 (𝑥) = 𝐻∗

2 (0)𝑉
∗
2 (0) =∶ 𝑄2, (2.6e)

𝐻∗
1 (𝑥)𝑉

∗
1 (𝑥) = 𝐻∗

2 (0)𝑉
∗
2 (0) +

𝑛
∑

𝑗=3
𝑄𝑗 =∶ 𝑄1. (2.6f)

Note that the first equation can be singular if there are points such that 𝑉 2
𝑖 − 𝑔𝑄𝑖∕𝑉𝑖 = 0 and lead to non-classical

solutions (such as hydraulic jumps, see [5]).
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In this paper, we focus on physical steady states which satisfy 𝐻∗
𝑖 (𝑥) > 0 , 𝑉 ∗

𝑖 (𝑥) > 0. Here and in the following,
𝑗 will always refer to the channels 3 to 𝑛 and 𝑙 to channels 1 and 2, and we will not repeat. Following these notations,
the systems are in the subcritical case for all 𝑥 ∈ [0, 𝐿𝑗] and in the supercritical case for 𝑥 ∈ [0, 𝐿𝑙], i.e., the following
conditions hold

𝑉 ∗2
𝑙 (𝑥) − 𝑔𝐻∗

𝑙 (𝑥) > 0, 𝑔𝐻∗
𝑗 (𝑥) − 𝑉 ∗2

𝑗 (𝑥) > 0. (2.7)
Subcritical flows (also called fluvial regime) are dominated by gravitational forces and are typically slower with waves
that can propagate in both directions, supercritical flows (also called torrential regime) are dominated by inertial forces
and behaves as rapid flows, in this case waves can only propagate forward. Supercritical and subcritical flow can be
described respectively by the two conditions (2.7). They can equivalently be described by the Froude number (one can
refer to the description in [21]). Thanks to the condition (2.7), the equations (2.4)–(2.5) satisfied by the steady states
can be rewritten as

(𝑉 ∗
𝑖 )𝑥 =

𝑉 ∗
𝑖 (

𝑔𝐶𝑖𝑉 ∗3
𝑖

𝑄𝑖
− 𝑔𝑆𝑖)

𝑔 𝑄𝑖
𝑉 ∗
𝑖
− 𝑉 ∗2

𝑖

(2.8)

together with (2.6b)–(2.6f).
Remark 2.3. One can note that these equations may have several solutions but, provided with given boundary data
𝐻∗

2 (0) = 𝐻∗
2,0 > 0 and 𝑄𝑗 > 0, 𝑗 ∈ {3, ..., 𝑁}, there is a unique solution (𝐻∗

𝑖 , 𝑉
∗
𝑖 ) (that is additionally 𝐶3) defined

respectively on [0, 𝐿𝑖] (possibly infinite but when the friction is stronger than the slope, this may imply a limit on
the lengths 𝐿𝑖, see [3, 17])). Indeed, from (2.6b), 𝑉 ∗

2 (0) is fixed (thus 𝑄2 is determined by (2.6e)) and using Cauchy-
Lipschitz theorem, there is a unique 𝑉 ∗

2 ∈ 𝐶3([0, 𝐿2]) (see [15]), as a consequence from (2.6e), one obtains a unique
𝐻∗

2 ∈ 𝐶3([0, 𝐿2]). From (2.6c), one obtains the value of 𝐻∗
1 (0) and𝐻∗

𝑗 (𝐿𝑗), which give the value of 𝑉 ∗
1 (0) and 𝑉 ∗

𝑗 (𝐿𝑗)
from (2.6d) and (2.6f). Solving (2.8) for 𝑉 ∗

1 and 𝑉 ∗
𝑗 , one can obtain 𝐻∗

1 and 𝐻∗
𝑗 from (2.6f) and (2.6d) again. We thus

have the existence and uniqueness of the steady state, one can also refer to [24] for more details. We will study the
stabilization around an arbitrary steady state in the following.

In order to facilitate our study, using a scaling, we can transfer the system (2.1)–(2.2) to a new one in which the
length of each channel is unit. To that end, we introduce for the 𝑖 th channel the new variable: �̄� ∶= 𝑥∕𝐿𝑖 and denote
by �̄�𝑖(𝑡, �̄�) ∶= 𝐻𝑖(𝑡, 𝐿𝑖�̄�), 𝑉𝑖(𝑡, �̄�) ∶= 𝑉𝑖(𝑡, 𝐿𝑖�̄�). Without ambiguity, we still denote by 𝑥 the space variable in the
following, then we obtain

𝜕𝑡�̄�𝑖 +
1
𝐿𝑖

𝜕𝑥(�̄�𝑖𝑉𝑖) = 0,

𝜕𝑡𝑉𝑖 +
1
𝐿𝑖

𝑉𝑖𝜕𝑥𝑉𝑖 +
𝑔
𝐿𝑖

𝜕𝑥�̄�𝑖 + 𝑔

(

𝐶𝑖𝑉 2
𝑖

�̄�𝑖
− 𝑆𝑖(𝐿𝑖𝑥)

)

= 0,
(2.9)

and the boundary conditions
𝐶 ∶𝑉2(𝑡, 0) = 𝒢 (�̄�2(𝑡, 0)), �̄�2(𝑡, 0) = ℬ(�̄�2(𝑡, 1)),

𝐵 ∶�̄�2(𝑡, 1)𝑉2(𝑡, 1) +
𝑛
∑

𝑗=3
�̄�𝑗(𝑡, 1)𝑉𝑗(𝑡, 1) = �̄�1(𝑡, 0)𝑉1(𝑡, 0),

�̄�1(𝑡, 0) = �̄�2(𝑡, 1) = �̄�𝑗(𝑡, 1),
𝐷𝑗 ∶�̄�𝑗(𝑡, 0)𝑉𝑗(𝑡, 0) = 𝑄𝑗 ,

(2.10)

Noticing that if we denote by (�̄�∗
𝑖 , 𝑉

∗
𝑖 ) the steady states of the new system (2.9)–(2.10), then

�̄�∗
𝑖 (𝑥) = 𝐻∗

𝑖 (𝐿𝑖𝑥), 𝑉 ∗
𝑖 (𝑥) = 𝑉 ∗

𝑖 (𝐿𝑖𝑥), 𝑥 ∈ [0, 1]. (2.11)
We give the definition of the local exponential stability of the steady states for the 𝐻2 norm. For any given initial data

𝐻𝑖(0, 𝑥) = 𝐻0
𝑖 (𝑥), 𝑉𝑖(0, 𝑥) = 𝑉 0

𝑖 (𝑥), 𝑥 ∈ [0, 𝐿𝑖] (2.12)
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with (𝐻0
𝑖 , 𝑉

0
𝑖 ) ∈ 𝐻2((0, 𝐿𝑖);ℝ2), we have

Definition 1. The steady state (𝐻∗
𝑖 (𝑥), 𝑉

∗
𝑖 (𝑥)) of the system (2.1), (2.2) and (2.12) is (locally) exponentially stable for

the 𝐻2 norm if there exist 𝛿 > 0, 𝜈 > 0 and 𝐶 > 0 such that, for any (𝐻0
𝑖 (𝑥), 𝑉

0
𝑖 (𝑥)) ∈ 𝐻2((0, 𝐿𝑖);ℝ2) satisfying

‖𝐻0
𝑖 −𝐻∗

𝑖 ‖𝐻2((0,𝐿𝑖);ℝ) + ‖𝑉 0
𝑖 − 𝑉 ∗

𝑖 ‖𝐻2((0,𝐿𝑖);ℝ) < 𝛿 (2.13)
and the first order compatibility conditions associated to the system (2.1)–(2.2) (see [2, Section 4.5.2]), there exists a
unique solution (𝐻𝑖(𝑡, ⋅), 𝑉𝑖(𝑡, ⋅)) to the Cauchy problem (2.1), (2.2) and (2.12) and it satisfies

𝑛
∑

𝑖=1

(

‖𝐻𝑖(𝑡, ⋅) −𝐻∗
𝑖 ‖𝐻2((0,𝐿𝑖);ℝ) + ‖𝑉𝑖(𝑡, ⋅) − 𝑉 ∗

𝑖 ‖𝐻2((0,𝐿𝑖);ℝ)

)

≤ 𝐶𝑒−𝜈𝑡
( 𝑛
∑

𝑖=1

(

‖𝐻0
𝑖 −𝐻∗

𝑖 ‖𝐻2((0,𝐿𝑖);ℝ) + ‖𝑉 0
𝑖 − 𝑉 ∗

𝑖 ‖𝐻2((0,𝐿𝑖);ℝ)

)

)

.

(2.14)

We have the main theorem
Theorem 2.1. For any boundary feedback control ℬ satisfying

ℬ′(𝐻∗
2 (𝐿2))

2 <

(

𝒢 ′(𝐻∗
2 (0))

2 +
𝑔

𝐻∗
2 (0)

)−1
2𝑔
𝐸

, (2.15)

where 𝐸 is a constant and

𝐸 = 𝐻∗
1 (0)𝑒

∫ 𝐿2
0

|

|

|

|

|

𝜑2(𝑥)𝛿12(𝑥)
𝜆12(𝑥)

+
𝜑−12 (𝑥)𝛾22(𝑥)

𝜆22(𝑥)

|

|

|

|

|

𝑑𝑠
(

𝑒
−2 ∫ 𝐿2

0
𝛾12(𝑠)
𝜆12(𝑠)

𝑑𝑠
+ 𝑒

−2 ∫ 𝐿2
0

𝛿22(𝑠)
𝜆22(𝑠)

𝑑𝑠
)

, (2.16)

here 𝛾12, 𝛾22, 𝛿12, 𝛿22, 𝜆12, 𝜆22 and 𝜑2(𝑥) are functions given below by (3.9), (3.10) and (3.11) depending only on the
physical parameters of the system for Channel 2, the nonlinear hyperbolic system (2.1), (2.2) and (2.12) is exponentially
stable for the 𝐻2 norm .

Remark 2.4 (Single control). Note that for any given physical constraint 𝒢 , there exists a range of control ℬ such that
condition (2.15) is satisfied.

In the following, we only need to consider the new system (2.9)–(2.10).

3. A Lyapunov Function for the Linearized System
We first focus on the stabilization of the linearization of the new system (2.9)–(2.10). To that end, we define the

perturbations ℎ𝑖 and 𝑣𝑖 as
ℎ𝑖(𝑡, 𝑥) = �̄�𝑖(𝑡, 𝑥) − �̄�∗

𝑖 (𝑥), 𝑣𝑖(𝑡, 𝑥) = 𝑉𝑖(𝑡, 𝑥) − 𝑉 ∗
𝑖 (𝑥), 𝑥 ∈ [0, 1]. (3.1)

Then the linearization of (2.9) around the steady state is

𝜕𝑡ℎ𝑖 +
1
𝐿𝑖

𝑉 ∗
𝑖 𝜕𝑥ℎ𝑖 +

1
𝐿𝑖

�̄�∗
𝑖 𝜕𝑥𝑣𝑖 +

1
𝐿𝑖

(𝜕𝑥𝑉 ∗
𝑖 )ℎ𝑖 +

1
𝐿𝑖

(𝜕𝑥�̄�∗
𝑖 )𝑣𝑖 = 0,

𝜕𝑡�̄�𝑖 +
1
𝐿𝑖

𝑔𝜕𝑥ℎ𝑖 +
1
𝐿𝑖

𝑉 ∗
𝑖 𝜕𝑥𝑣𝑖 − 𝑔𝐶𝑖

𝑉 ∗2
𝑖

�̄�∗2
𝑖

ℎ𝑖 +

(

1
𝐿𝑖

𝜕𝑥𝑉
∗
𝑖 + 2𝑔𝐶𝑖

𝑉 ∗
𝑖

�̄�∗
𝑖

)

𝑣𝑖 = 0.
(3.2)
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The boundary conditions (2.2) become
𝐶 ∶𝑣2(𝑡, 0) = 𝑘1ℎ2(𝑡, 0), ℎ2(𝑡, 0) = 𝑘2ℎ2(𝑡, 1),

𝐵 ∶𝑣1(𝑡, 0) = 𝑣2(𝑡, 1) +
𝑛
∑

𝑗=3
𝑣𝑗(𝑡, 1),

ℎ1(𝑡, 0) = ℎ2(𝑡, 1) = ℎ𝑗(𝑡, 1),

𝐷𝑗 ∶ℎ𝑗(𝑡, 0) = −
�̄�∗

𝑗 (0)

𝑉 ∗
𝑗 (0)

𝑣𝑗(𝑡, 0),

(3.3)

where 𝑘1 = 𝒢 ′(�̄�∗
2 (0)) is imposed, and 𝑘2 = ℬ′(�̄�∗

2 (1)) is the tuning parameter to be determined. We consider the
following initial condition for the linearized system (3.2)–(3.3)

ℎ𝑖(0, 𝑥) = ℎ0𝑖 (𝑥), 𝑣𝑖(0, 𝑥) = 𝑣0𝑖 (𝑥) (3.4)
satisfying

(ℎ0𝑖 (𝑥), 𝑣
0
𝑖 (𝑥)) ∈ 𝐿2((0, 1);ℝ2). (3.5)

As (�̄�∗
𝑖 , 𝑉

∗
𝑖 ) is 𝐶3 in [0, 1], the Cauchy problem (3.2)–(3.4) has a unique solution in 𝐶0([0,+∞);

𝑛
∏

𝑖=1
𝐿2((0, 1),ℝ2))

(see [2, Appendix A-B]). To further simplify the linearized system (3.2), we transform it into the following Riemann
coordinates representation with

𝜉1𝑖(𝑡, 𝑥) = 𝐿𝑖

(

𝑣𝑖(𝑡, 𝑥) + ℎ𝑖(𝑡, 𝑥)
√

𝑔
�̄�∗

𝑖 (𝑥)

)

,

𝜉2𝑖(𝑡, 𝑥) = 𝐿𝑖

(

𝑣𝑖(𝑡, 𝑥) − ℎ𝑖(𝑡, 𝑥)
√

𝑔
�̄�∗

𝑖 (𝑥)

)

.

(3.6)

which is an invertible transformation with inverse

ℎ𝑖(𝑡, 𝑥) =
𝜉1𝑖(𝑡, 𝑥) − 𝜉2𝑖(𝑡, 𝑥)

2𝐿𝑖

√

�̄�∗
𝑖 (𝑥)
𝑔

,

𝑣𝑖(𝑡, 𝑥) =
𝜉1𝑖(𝑡, 𝑥) + 𝜉2𝑖(𝑡, 𝑥)

2𝐿𝑖
.

(3.7)

The linearized system (3.2) can be rewritten in the following characteristic form as
𝜕𝑡𝜉1𝑙 + 𝜆1𝑙(𝑥)𝜕𝑥𝜉1𝑙 + 𝛾1𝑙(𝑥)𝜉1𝑙 + 𝛿1𝑙(𝑥)𝜉2𝑙 = 0,
𝜕𝑡𝜉2𝑙 + 𝜆2𝑙(𝑥)𝜕𝑥𝜉2𝑙 + 𝛾2𝑙(𝑥)𝜉1𝑙 + 𝛿2𝑙(𝑥)𝜉2𝑙 = 0,
𝜕𝑡𝜉1𝑗 + 𝜆1𝑗(𝑥)𝜕𝑥𝜉1𝑗 + 𝛾1𝑗(𝑥)𝜉1𝑗 + 𝛿1𝑗(𝑥)𝜉2𝑗 = 0,
𝜕𝑡𝜉2𝑗 − 𝜆2𝑗(𝑥)𝜕𝑥𝜉2𝑗 + 𝛾2𝑗(𝑥)𝜉1𝑗 + 𝛿2𝑗(𝑥)𝜉2𝑗 = 0,

(3.8)

where

𝜆1𝑖(𝑥) =
1
𝐿𝑖

(

𝑉 ∗
𝑖 (𝑥) +

√

𝑔�̄�∗
𝑖 (𝑥)

)

> 0,

𝜆2𝑙(𝑥) =
1
𝐿𝑙

(

𝑉 ∗
𝑙 (𝑥) −

√

𝑔�̄�∗
𝑙 (𝑥)

)

> 0,

𝜆2𝑗(𝑥) =
1
𝐿𝑗

(

−𝑉 ∗
𝑗 (𝑥) +

√

𝑔�̄�∗
𝑗 (𝑥)

)

> 0

(3.9)
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and

𝛾1𝑖(𝑥) = 𝑔
𝐶𝑖𝑉 ∗2

𝑖

�̄�∗
𝑖

⎡

⎢

⎢

⎢

⎣

− 3

4(
√

𝑔�̄�∗
𝑖 + 𝑉 ∗

𝑖 )
+ 1

𝑉 ∗
𝑖

− 1

2
√

𝑔�̄�∗
𝑖

⎤

⎥

⎥

⎥

⎦

+
3𝑔�̄�𝑖

4(
√

𝑔�̄�∗
𝑖 + 𝑉 ∗

𝑖 )
,

𝛿1𝑖(𝑥) = 𝑔
𝐶𝑖𝑉 ∗2

𝑖

�̄�∗
𝑖

⎡

⎢

⎢

⎢

⎣

− 1

4(
√

𝑔�̄�∗
𝑖 + 𝑉 ∗

𝑖 )
+ 1

𝑉 ∗
𝑖

+ 1

2
√

𝑔�̄�∗
𝑖

⎤

⎥

⎥

⎥

⎦

+
𝑔�̄�𝑖

4(
√

𝑔�̄�∗
𝑖 + 𝑉 ∗

𝑖 )
,

𝛾2𝑖(𝑥) = 𝑔
𝐶𝑖𝑉 ∗2

𝑖

�̄�∗
𝑖

⎡

⎢

⎢

⎢

⎣

1

4(
√

𝑔�̄�∗
𝑖 − 𝑉 ∗

𝑖 )
+ 1

𝑉 ∗
𝑖

− 1

2
√

𝑔�̄�∗
𝑖

⎤

⎥

⎥

⎥

⎦

−
𝑔�̄�𝑖

4(
√

𝑔�̄�∗
𝑖 − 𝑉 ∗

𝑖 )
,

𝛿2𝑖(𝑥) = 𝑔
𝐶𝑖𝑉 ∗2

𝑖

�̄�∗
𝑖

⎡

⎢

⎢

⎢

⎣

3

(
√

𝑔�̄�∗
𝑖 − 𝑉 ∗

𝑖 )
+ 1

𝑉 ∗
𝑖

+ 1

2
√

𝑔�̄�∗
𝑖

⎤

⎥

⎥

⎥

⎦

−
3𝑔�̄�𝑖

4(
√

𝑔�̄�∗
𝑖 − 𝑉 ∗

𝑖 )
.

(3.10)

Define furthermore

𝜑1𝑙(𝑥) = 𝑒
∫ 𝑥
0

𝛾1𝑙 (𝑠)
𝜆1𝑙 (𝑠)

𝑑𝑠
, 𝜑2𝑙(𝑥) = 𝑒

∫ 𝑥
0

𝛿2𝑙 (𝑠)
𝜆2𝑙 (𝑠)

𝑑𝑠
, 𝜑𝑙(𝑥) =

𝜑1𝑙(𝑥)
𝜑2𝑙(𝑥)

= 𝑒
∫ 𝑥
0

( 𝛾1𝑙 (𝑠)
𝜆1𝑙 (𝑠)

− 𝛿2𝑙 (𝑠)
𝜆2𝑙 (𝑠)

)

𝑑𝑠 (3.11)

and

𝜑1𝑗(𝑥) = 𝑒
∫ 𝑥
0

𝛾1𝑗 (𝑠)
𝜆1𝑗 (𝑠)

𝑑𝑠
, 𝜑2𝑗(𝑥) = 𝑒

− ∫ 𝑥
0

𝛿2𝑗 (𝑠)
𝜆2𝑗 (𝑠)

𝑑𝑠
, 𝜑𝑗(𝑥) =

𝜑1𝑗(𝑥)
𝜑2𝑗(𝑥)

= 𝑒
∫ 𝑥
0

(

𝛾1𝑗 (𝑠)
𝜆1𝑗 (𝑠)

+
𝛿2𝑗 (𝑠)
𝜆2𝑗 (𝑠)

)

𝑑𝑠
. (3.12)

We then introduce the new coordinates
(

𝑦1𝑖
𝑦2𝑖

)

=
(

𝜑1𝑖 0
0 𝜑2𝑖

)(

𝜉1𝑖
𝜉2𝑖

)

. (3.13)

The system (3.8) is transformed into the following system expressed in the new coordinates
𝜕𝑡𝑦1𝑙 + 𝜆1𝑙(𝑥)𝜕𝑥𝑦1𝑙 + 𝑎𝑙(𝑥)𝑦2𝑙 = 0,
𝜕𝑡𝑦2𝑙 + 𝜆2𝑙(𝑥)𝜕𝑥𝑦2𝑙 + 𝑏𝑙(𝑥)𝑦1𝑙 = 0,
𝜕𝑡𝑦1𝑗 + 𝜆1𝑗(𝑥)𝜕𝑥𝑦1𝑗 + 𝑎𝑗(𝑥)𝑦2𝑗 = 0,
𝜕𝑡𝑦2𝑗 − 𝜆2𝑗(𝑥)𝜕𝑥𝑦2𝑗 + 𝑏𝑗(𝑥)𝑦1𝑗 = 0

(3.14)

with
𝑎𝑖(𝑥) = 𝜑𝑖(𝑥)𝛿1𝑖(𝑥), 𝑏𝑖(𝑥) = 𝜑−1

𝑖 (𝑥)𝛾2𝑖(𝑥). (3.15)
We give the following definition of the exponential stability for the linearized system in the 𝐿2 norm.
Definition 2. The system (3.2)–(3.4) is exponentially stable in the 𝐿2 norm if there exist 𝜈 > 0 and 𝐶 > 0 such that
for every (ℎ0𝑖 , 𝑣

0
𝑖 ) ∈ 𝐿2((0, 1);ℝ2), the solution to the Cauchy problem (3.2)–(3.4) satisfies

𝑛
∑

𝑖=1
||(ℎ𝑖(𝑡, ⋅), 𝑣𝑖(𝑡, ⋅)||𝐿2((0,1);ℝ2) ≤ 𝐶𝑒−𝜈𝑡

𝑛
∑

𝑖=1
||(ℎ0𝑖 , 𝑣

0
𝑖 )||𝐿2((0,1);ℝ2), ∀𝑡 ∈ [0,+∞). (3.16)

Then we have
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Theorem 3.1. The system (3.2)–(3.4) is exponentially stable in the 𝐿2 norm provided that 𝑘1 and 𝑘2 satisfy

𝑘22

(

𝑘21 +
𝑔

𝐻∗
2 (0)

)

<
2𝑔

𝐻∗
1 (0)𝑒

∫ 1
0 𝑝(𝑠)𝑑𝑠

(

𝑒
−2 ∫ 1

0
𝛾12(𝑠)
𝜆12(𝑠)

𝑑𝑠
+ 𝑒

−2 ∫ 1
0

𝛿22(𝑠)
𝜆22(𝑠)

𝑑𝑠
) , (3.17)

where 𝑝, 𝛾12, 𝛿22, 𝜆12 and 𝜆22 are functions given by (3.9), (3.10) and (3.40).
Proof. To show the stabilization for the linearized system (3.2)–(3.4), we use the following Lyapunov function

𝑉 (𝑡) =
2
∑

𝑙=1
∫

1

0

(

𝑓1𝑙(𝑥)𝑦21𝑙(𝑡, 𝑥) + 𝑓2𝑙(𝑥)𝑦22𝑙(𝑡, 𝑥)
)

𝑑𝑥 +
𝑛
∑

𝑗=3
∫

1

0

(

𝑓1𝑗(𝑥)𝑦21𝑗(𝑡, 𝑥) + 𝑓2𝑗(𝑥)𝑦22𝑗(𝑡, 𝑥)
)

𝑑𝑥, (3.18)

where we define
𝑓1𝑙(𝑥) =

𝛼𝑙
𝜆1𝑙𝜂𝑙

, 𝑓2𝑙(𝑥) =
𝛼𝑙

𝜆2𝑙𝜂𝑙
(3.19)

and
𝑓1𝑗(𝑥) =

𝛼𝑗
𝜆1𝑗𝜂𝑗

, 𝑓2𝑗(𝑥) =
𝛼𝑗𝜂𝑗
𝜆2𝑗

, (3.20)

where 𝛼𝑙 and 𝛼𝑗 are positive constants to be chosen and 𝜂𝑙 is the solution to
⎧

⎪

⎨

⎪

⎩

𝜂′𝑙 =
|

|

|

|

𝑎𝑙
𝜆1𝑙

+
𝑏𝑙
𝜆2𝑙

|

|

|

|

𝜂𝑙 + 𝜀,

𝜂𝑙(0) =
1
𝜀
,

(3.21)

while 𝜂𝑗 is the solution to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜂′𝑗 =
|

|

|

|

|

𝑎𝑗
𝜆1𝑗

+
𝑏𝑗
𝜆2𝑗

𝜂2𝑗
|

|

|

|

|

+ 𝜀,

𝜂𝑗(0) =
𝜆2𝑗(0)
𝜆1𝑗(0)

+ 𝜀,
(3.22)

where the constant 𝜀 > 0 is sufficiently small and will be determined later on. Thanks to the fact that

𝜂0𝑗 =
𝜆2𝑗
𝜆1𝑗

𝜑𝑗 (3.23)

is a solution to (3.22) when 𝜀 = 0 (see [17, Lemma 5] for the details). Thus, the solution to (3.22) will exist on [0, 1]
for 𝜀 small enough.

Note that �̄�∗
𝑖 and 𝑉 ∗

𝑖 are positive and continuous in [0, 1], hence are uniformly bounded by below. Thus, the change
of coordinates (3.6) and its inverse (3.7) are all bounded transformations from 𝐿2(0, 1) to 𝐿2(0, 1), the same with the
change of variable (3.13) and its inverse. Then it is not difficult to check that there exists a constant 𝐶 > 0 such that

1
𝐶

𝑛
∑

𝑖=1
‖(ℎ𝑖(𝑡, ⋅), 𝑣𝑖(𝑡, ⋅))‖𝐿2((0,1);ℝ2) ≤ 𝑉 (𝑡) ≤ 𝐶

𝑛
∑

𝑖=1
‖(ℎ𝑖(𝑡, ⋅), 𝑣𝑖(𝑡, ⋅))‖𝐿2((0,1);ℝ2) (3.24)

for any 𝑡 ∈ [0,+∞).
Using similar density argument as in [2, Section 2.1.3], we only need to consider the case where the solutions of

(3.2)–(3.4) are 𝐶1 with respect to both 𝑡 and 𝑥. The time derivative of 𝑉 along the trajectories of (3.14) is
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�̇� (𝑡) =
2
∑

𝑙=1
∫

1

0

(

2𝑓1𝑙𝑦1𝑙(−𝜆1𝑙𝜕𝑥𝑦1𝑙 − 𝑎𝑙𝑦2𝑙) + 2𝑓2𝑙𝑦2𝑙(−𝜆2𝑙𝜕𝑥𝑦2𝑙 − 𝑏𝑙𝑦1𝑙)
)

𝑑𝑥

+
𝑛
∑

𝑗=3
∫

1

0

(

2𝑓1𝑗𝑦1𝑗(−𝜆1𝑗𝜕𝑥𝑦1𝑗 − 𝑎𝑗𝑦2𝑗) + 2𝑓2𝑗𝑦2𝑗(𝜆2𝑗𝜕𝑥𝑦2𝑗 − 𝑏𝑗𝑦1𝑗)
)

𝑑𝑥

= − 𝐵(𝑡) −
𝑛
∑

𝑖=1
∫

1

0

(

𝑦1𝑖
𝑦2𝑖

)𝑇
𝑁𝑖(𝑥)

(

𝑦1𝑖
𝑦2𝑖

)

𝑑𝑥,

(3.25)

where

𝐵(𝑡) =
2
∑

𝑙=1

(

𝑓1𝑙(1)𝜆1𝑙(1)𝑦21𝑙(𝑡, 1) + 𝑓2𝑙(1)𝜆2𝑙(1)𝑦22𝑙(𝑡, 1) − 𝑓1𝑙(0)𝜆1𝑙(0)𝑦21𝑙(𝑡, 0) − 𝑓2𝑙(0)𝜆2𝑙(0)𝑦22𝑙(𝑡, 0)
)

+
𝑛
∑

𝑗=3

(

𝑓1𝑗(1)𝜆1𝑗(1)𝑦21𝑗(𝑡, 1) − 𝑓2𝑗(1)𝜆2𝑗(1)𝑦22𝑗(𝑡, 1) − 𝑓1𝑗(0)𝜆1𝑗(0)𝑦21𝑗(𝑡, 0) + 𝑓2𝑗(0)𝜆2𝑗(0)𝑦22𝑗(𝑡, 0)
)

(3.26)

is the term including the information of the boundary condition and

𝑁𝑙(𝑥) =
(

−(𝑓1𝑙𝜆1𝑙)𝑥 𝑓1𝑙𝑎𝑙 + 𝑓2𝑙𝑏𝑙
𝑓1𝑙𝑎𝑙 + 𝑓2𝑙𝑏𝑙 −(𝑓2𝑙𝜆2𝑙)𝑥

)

, 𝑁𝑗(𝑥) =
(

−(𝑓1𝑗𝜆1𝑗)𝑥 𝑓1𝑗𝑎𝑗 + 𝑓2𝑗𝑏𝑗
𝑓1𝑗𝑎𝑗 + 𝑓2𝑗𝑏𝑗 (𝑓2𝑗𝜆2𝑗)𝑥

)

. (3.27)
One can easily check thanks to (3.19)–(3.22) that

−(𝑓1𝑙𝜆1𝑙)𝑥 > 0, −(𝑓1𝑗𝜆1𝑗)𝑥 > 0, det𝑁𝑖 > 0 (3.28)
showing that 𝑁𝑖 are positive definite.

Next, we analyze the boundary part 𝐵(𝑡). Observe that it is more convenient to use the physical boundary conditions
(3.3). We express (3.26) in physical coordinates, using (3.6) and (3.13). We obtain

𝐵(𝑡) =
2
∑

𝑙=1

[

𝑓1𝑙(1)𝜆1𝑙(1)𝜑2
1𝑙(1)

⎛

⎜

⎜

⎝

𝑣𝑙(𝑡, 1) + ℎ𝑙(𝑡, 1)
√

𝑔
�̄�∗

𝑙 (1)

⎞

⎟

⎟

⎠

2

+ 𝑓2𝑙(1)𝜆2𝑙(1)𝜑2
2𝑙(1)

⎛

⎜

⎜

⎝

𝑣𝑙(𝑡, 1) − ℎ𝑙(𝑡, 1)
√

𝑔
�̄�∗

𝑙 (1)

⎞

⎟

⎟

⎠

2

− 𝑓1𝑙(0)𝜆1𝑙(0)
⎛

⎜

⎜

⎝

𝑣𝑙(𝑡, 0) + ℎ𝑙(𝑡, 0)
√

𝑔
�̄�∗

𝑙 (0)

⎞

⎟

⎟

⎠

2

− 𝑓2𝑙(0)𝜆2𝑙(0)
⎛

⎜

⎜

⎝

𝑣𝑙(𝑡, 0) − ℎ𝑙(𝑡, 0)
√

𝑔
�̄�∗

𝑙 (0)

⎞

⎟

⎟

⎠

2
]

+
𝑛
∑

𝑗=3

[

𝑓1𝑗(1)𝜆1𝑗(1)𝜑2
1𝑗(1)

⎛

⎜

⎜

⎝

𝑣𝑗(𝑡, 1) + ℎ𝑗(𝑡, 1)
√

𝑔
�̄�∗

𝑗 (1)

⎞

⎟

⎟

⎠

2

− 𝑓2𝑗(1)𝜆2𝑗(1)𝜑2
2𝑗(1)

⎛

⎜

⎜

⎝

𝑣𝑗(𝑡, 1) − ℎ𝑗(𝑡, 1)
√

𝑔
�̄�∗

𝑗 (1)

⎞

⎟

⎟

⎠

2

− 𝑓1𝑗(0)𝜆1𝑗(0)
⎛

⎜

⎜

⎝

𝑣𝑗(𝑡, 0) + ℎ𝑗(𝑡, 0)
√

𝑔
�̄�∗

𝑗 (0)

⎞

⎟

⎟

⎠

2

+ 𝑓2𝑗(0)𝜆2𝑗(0)
⎛

⎜

⎜

⎝

𝑣𝑗(𝑡, 0) − ℎ𝑗(𝑡, 0)
√

𝑔
�̄�∗

𝑗 (0)

⎞

⎟

⎟

⎠

2
]

.

(3.29)

Denote by
𝑟 =

(

𝑣2(𝑡, 1), 𝑣3(𝑡, 1), ⋯ , 𝑣𝑛(𝑡, 1), ℎ1(𝑡, 0)
)𝑇 . (3.30)
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Substituting (3.3) into (3.29), we get

𝐵(𝑡) =𝑟𝑇𝑀(𝑥)𝑟 +
𝑛
∑

𝑗=3
𝐹𝑗𝑣

2
𝑗 (𝑡, 0) + 𝐺(𝑡), (3.31)

where 𝑀 is a 𝑛 × 𝑛 matrix defined in (3.36). It can be checked directly from (3.20) and (3.22) that

𝐹𝑗 =
1

𝑉 ∗2
𝑗 (0)

[

𝜆2𝑗(0)𝑓2𝑗(0)
(

√

𝑔�̄�∗
𝑗 (0) + 𝑉 ∗

𝑗 (0)
)2

− 𝜆1𝑗(0)𝑓1𝑗(0)
(

√

𝑔�̄�∗
𝑗 (0) − 𝑉 ∗

𝑗 (0)
)2

]

> 0 (3.32)

and

𝐺(𝑡) =𝑓11(1)𝜆11(1)𝜑2
11(1)

⎛

⎜

⎜

⎝

𝑣1(𝑡, 1) + ℎ1(𝑡, 1)
√

𝑔
�̄�∗

1 (1)

⎞

⎟

⎟

⎠

2

+ 𝑓21(1)𝜆21(1)𝜑2
21(1)

⎛

⎜

⎜

⎝

𝑣1(𝑡, 1) − ℎ1(𝑡, 1)
√

𝑔
�̄�∗

1 (1)

⎞

⎟

⎟

⎠

2

> 0.

(3.33)

Denote by
𝜆1𝑖(𝑥)𝑓1𝑖(𝑥)𝜑2

1𝑖(𝑥) − 𝜆2𝑖(𝑥)𝑓2𝑖(𝑥)𝜑2
2𝑖(𝑥) =∶ 𝑍𝑖(𝑥) =∶ 𝛼𝑖𝑍𝑖(𝑥),

𝜆1𝑖(𝑥)𝑓1𝑖(𝑥)𝜑2
1𝑖(𝑥) + 𝜆2𝑖(𝑥)𝑓2𝑖(𝑥)𝜑2

2𝑖(𝑥) =∶ 𝑊𝑖(𝑥) =∶ 𝛼𝑖𝑊𝑖(𝑥).
(3.34)

Using (3.19)–(3.22), one has
𝑊𝑙(0) = 2𝛼𝑙𝜀, 𝑍𝑙(0) = 0. (3.35)

Then, noting additionally that �̄�∗
𝑗 (1) = �̄�∗

2 (1) = �̄�∗
1 (0) thanks to the boundary conditions (2.2), we have

𝑀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜃1 −𝑊1(0) −𝑊1(0) ⋯ −𝑊1(0)
√

𝑔�̄�∗
1 (0)𝑍2(1)

�̄�∗
1 (0)

−𝑊1(0) 𝑍3(1) −𝑊1(0) −𝑊1(0) ⋯ −𝑊1(0)
√

𝑔�̄�∗
1 (0)𝑊3(1)

�̄�∗
1 (0)

−𝑊1(0) −𝑊1(0) 𝑍4(1) −𝑊1(0) ⋯ −𝑊1(0)
√

𝑔�̄�∗
1 (0)𝑊4(1)

�̄�∗
1 (0)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

−𝑊1(0) −𝑊1(0) −𝑊1(0) ⋯ 𝑍𝑛(1) −𝑊1(0)
√

𝑔�̄�∗
1 (0)𝑊𝑛(1)

�̄�∗
1 (0)

√

𝑔�̄�∗
1 (0)𝑍2(1)

�̄�∗
1 (0)

√

𝑔�̄�∗
1 (0)𝑊3(1)

�̄�∗
1 (0)

√

𝑔�̄�∗
1 (0)𝑊4(1)

�̄�∗
1 (0)

⋯

√

𝑔�̄�∗
1 (0)𝑊𝑛(1)

�̄�∗
1 (0)

𝜃2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.36)

where
𝜃1 =𝑊2(1) −𝑊1(0),

𝜃2 =
𝑔

�̄�∗
1 (0)

(

𝑊2(1) −
�̄�∗

1 (0)
𝑔

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

𝑊2(0) −𝑊1(0) +
𝑛
∑

𝑗=3
𝑍𝑗(1)

)

.
(3.37)

We can check that under condition (3.17), the matrix 𝑀 is positive definite which is crucial but the proof is quite
technical, we thus give it as a lemma below. Above all, we have proved that 𝐵(𝑡) > 0, this together with (3.24), (3.25)
and the positive definiteness of 𝑁𝑖 completes the proof of Theorem 3.1.
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Lemma 3.1. The 𝑛 × 𝑛 matrix 𝑀 defined in (3.36) is positive definite.

Proof. Since from (3.19) and (3.34), one has

𝑍2(1) =
𝛼2

𝜂2(1)
(𝜑2

12(1) − 𝜑2
22(1)), 𝑊2(1) =

𝛼2
𝜂2(1)

(𝜑2
12(1) + 𝜑2

22(1)), (3.38)

where

𝜂2(𝑥) =
1
𝜀
𝑒∫

𝑥
0 𝑝(𝑡) 𝑑𝑡 + 𝜀∫

𝑥

0
𝑒∫

𝑥
𝑠 𝑝(𝑡) 𝑑𝑡 𝑑𝑠 (3.39)

with

𝑝(𝑥)∶=
|

|

|

|

𝑎2(𝑥)
𝜆12(𝑥)

+
𝑏2(𝑥)
𝜆22(𝑥)

|

|

|

|

> 0 (3.40)

is solution to (3.21). It follows from (3.35), (3.38) and (3.39) that
𝜃1 =

𝛼2
𝜂2(1)

(𝜑2
12(1) + 𝜑2

22(1)) − 2𝛼1𝜀

=
𝛼2(𝜑2

12(1) + 𝜑2
22(1)) − 2𝛼1

(

𝑒∫
1
0 𝑝(𝑡) 𝑑𝑡 + 𝜀2 ∫ 1

0 𝑒∫
1
𝑠 𝑝(𝑡) 𝑑𝑡 𝑑𝑠

)

𝜂2(1)
. (3.41)

From now on, we fix 𝛼2 = 1, which is not very limiting since a Lyapunov function is always defined up to a
multiplicative constant. From the expression (3.41) we see that for any 𝜀 > 0, there exists 𝛿1 such that if 𝛼1 ∈ (0, 𝛿1),then 𝜃1 > 0.

Let us first prove that det𝑀 > 0, to that end, we perform sequentially the following five steps to matrix 𝑀 that
will not change the value of det𝑀 :

Step1: The rows 2 to 𝑛 − 1 of matrix 𝑀 minus the first row;
Step2: The first row is added sequentially by the product of 𝑊1(0)

𝑍𝑗 (1)
with the rows from 2 to 𝑛 − 1 respectively;

Step3: The last row is subtracted sequentially by the product of 𝑊𝑗 (1)
√

𝑔�̄�∗
1 (0)

𝑍𝑗 (1)�̄�∗
1 (0)

with the rows from 2 to 𝑛−1 respectively;

Step4: The first column is added sequentially by the product of 𝑊2(1)
𝑍𝑗 (1)

with the columns from 2 to 𝑛 − 1 respectively;

Step5: The last column is subtracted sequentially by the product of
(

𝑊𝑗 (1)−𝑍2(1)
)

√

𝑔�̄�∗
1 (0)

𝑍𝑗 (1)�̄�∗
1 (0)

with the columns from 2 to
𝑛 − 1 respectively;

We can obtain the following simplified matrix

𝑀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽1 0 0 ⋯ 0 𝛽2
0 𝑍3(1) 0 ⋯ 0 0
0 0 𝑍4(1) ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑍𝑛(1) 0
𝛽3 0 0 ⋯ 0 𝛽4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.42)
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with (recall that 𝜃1 +𝑊1(0) = 𝑊2(1) from (3.37))

𝛽1 = 𝑊2(1) −𝑊1(0) −𝑊1(0)𝑊2(1)
𝑛
∑

𝑗=3

1
𝑍𝑗(1)

,

𝛽2 =

√

𝑔�̄�∗
1 (0)

�̄�∗
1 (0)

(

𝑍2(1) +𝑊1(0)
𝑛
∑

𝑗=3

𝑊𝑗(1) −𝑍2(1)
𝑍𝑗(1)

)

,

𝛽3 =

√

𝑔�̄�∗
1 (0)

�̄�∗
1 (0)

(

𝑍2(1) +𝑊2(1)
𝑛
∑

𝑗=3

𝑊𝑗(1)
𝑍𝑗(1)

)

,

𝛽4 =
𝑔

�̄�∗
1 (0)

(

𝑊2(1) −
�̄�∗

1 (0)
𝑔

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

𝑊2(0) −𝑊1(0) +
𝑛
∑

𝑗=3
𝑍𝑗(1) −

𝑛
∑

𝑗=3

(𝑊𝑗(1) −𝑍2(1))𝑊𝑗(1)
𝑍𝑗(1)

)

.

(3.43)
Noticing the expression of (3.23), we obtain that

𝜑2
1𝑗(1)

𝜂0𝑗 (1)
− 𝜑2

2𝑗(1)𝜂
0
𝑗 (1) =

𝜑1𝑗(1)𝜑2𝑗(1)(𝜆1𝑗(1) − 𝜆2𝑗(1))
𝜆2𝑗(1)

> 0. (3.44)

It then follows from (3.20) and (3.34) that for 𝜀 small enough

𝑍𝑗(1) = 𝛼𝑗

(

𝜑2
1𝑗(1)

𝜂𝑗(1)
− 𝜑2

2𝑗(1)𝜂𝑗(1)

)

> 0. (3.45)

On the other hand, from (3.41)

𝛽1 =
𝛼2(𝜑2

12(1) + 𝜑2
22(1)) − 2𝛼1

(

𝑒∫
1
0 𝑝(𝑡) 𝑑𝑡 + 𝜀2 ∫ 1

0 𝑒∫
1
𝑠 𝑝(𝑡) 𝑑𝑡 𝑑𝑠

)

𝜂2(1)

−
𝑛
∑

𝑗=3

2𝛼1𝛼2𝜀
𝑍𝑗(1)

(𝜑2
12(1) + 𝜑2

22(1))
𝜂2(1)

. (3.46)

Thus, there exists 𝛿2 < 𝛿1 (depending on 𝜀 > 0) such that if 𝛼1 ∈ (0, 𝛿2), then 𝛽1 > 0 is guaranteed. We can now check
the determinant of 𝑀 . Direct computation gives

det𝑀 =
𝑛
∏

𝑗=3
𝑍𝑗(1)(𝛽1𝛽4 − 𝛽2𝛽3)

=
𝑛
∏

𝑗=3
𝑍𝑗(1)

(

𝑔
�̄�∗

1 (0)
𝛼22

(

𝑊 2
2 (1) −𝑍2

2 (1) +𝑊2(1)
𝑛
∑

𝑗=3

𝛼𝑗
𝛼2

⎛

⎜

⎜

⎝

𝑍𝑗(1) −
𝑊𝑗

2
(1)

𝑍𝑗(1)

⎞

⎟

⎟

⎠

−𝑊2(0)

(

�̄�∗
1 (0)
𝑔

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

𝑊2(1)

))

+ 𝑂(𝛼1)

)

,

(3.47)

where the computation of det𝑀 as well as the explicit expression of 𝑂(𝛼1) is given in the Appendix. For fixed 𝛼2 = 1
and 𝜀, one can check that 𝑂(𝛼1) can be made sufficiently small by requiring 𝛼1 small enough (see the Appendix for the
details).

From (3.38), it is easy to check that
𝑊 2

2 (1) −𝑍2
2 (1) > 0. (3.48)
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Above all, to ensure that det𝑀 > 0, we first need to ensure that for given 𝑘1, there always exists 𝑘2 such that

𝑊 2
2 (1) −𝑍2

2 (1) −𝑊2(0)

(

�̄�∗
1 (0)
𝑔

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

𝑊2(1)

)

> 0. (3.49)

Since (3.17) holds and is a strict inequality, there exists 𝜀 > 0 sufficiently small such that the following holds

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

<
2𝑔

�̄�∗
1 (0)

(

𝑒∫
1
0 𝑝(𝑠)𝑑𝑠 + 𝜀2 ∫ 1

0 𝑒∫
1
𝑠 𝑝(𝑡)𝑑𝑡𝑑𝑠

)

(

𝑒
−2 ∫ 1

0
𝛾12(𝑠)
𝜆12(𝑠)

𝑑𝑠
+ 𝑒

−2 ∫ 1
0

𝛿22(𝑠)
𝜆22(𝑠)

𝑑𝑠
)

=
𝑔

�̄�∗
1 (0)

2𝜑2
12(1)𝜑

2
22(1)

𝜀𝜂2(1)
(

𝜑2
12(1) + 𝜑2

22(1)
) .

(3.50)

Noticing (3.34) and (3.38), this is exactly condition (3.49). From (3.50), one can see that once the parameter 𝑘1 is
imposed, the requirements for the tuning parameter 𝑘2 depends only on the steady state (�̄�∗

𝑖 (𝑥), 𝑉
∗
𝑖 (𝑥)), 𝑥 ∈ [0, 1].

From (3.20) and (3.34), one obtains

𝑍𝑗(1) =
𝜑2
1𝑗(1)

𝜂𝑗(1)
− 𝜑2

2𝑗(1)𝜂𝑗(1), (3.51)

𝑊𝑗(1) =
𝜑2
1𝑗(1)

𝜂𝑗(1)
+ 𝜑2

2𝑗(1)𝜂𝑗(1), (3.52)

thus are bounded. Then, given that the remaining term of det𝑀 depends on 𝛼𝑗∕𝛼2, there exists 𝛿3 < 𝛿2 (potentially
depending on 𝜀) such that for any 𝛼1, 𝛼𝑗 ∈ (0, 𝛿3), det𝑀 > 0 and therefore det𝑀 > 0.

Next, since we have proved that the first order principal minor determinant of 𝑀 , i.e., 𝜃1 > 0 and all the remaining
𝑘-th (𝑘 = 2,⋯ , 𝑛 − 1) order principal minor determinant det𝑀𝑘 of 𝑀 can be computed using the transformations
Step 1 and Step 2 as for 𝑀 and expressed as

det𝑀𝑘 =
𝑘+1
∏

𝑗=3
𝑍𝑗(1)

(

𝑊2(1) −𝑊1(0) −𝑊1(0)𝑊2(1)
𝑘+1
∑

𝑗=3

1
𝑍𝑗(1)

)

=
𝑘+1
∏

𝑗=3
𝑍𝑗(1)

(

𝛼2𝑊2(1) − 𝛼1𝑊1(0) − 𝛼2𝑊1(0)𝑊2(1)
𝑘+1
∑

𝑗=3

𝛼1
𝛼𝑗

1
𝑍𝑗(1)

)

. (3.53)

Similarly, there exists 𝛿4 < 𝛿3 (depending on 𝜀) such that if we let 𝛼1 and 𝛼1∕𝛼𝑗 ∈ (0, 𝛿4) sequentially, then
det𝑀𝑘 > 0 (𝑘 = 2,⋯ , 𝑛 − 1) can be guaranteed. Above all, when 𝛼1, 𝛼𝑗 and 𝛼1∕𝛼𝑗 ∈ (0, 𝛿4), the matrix 𝑀 is
positive definite.

4. Proof for Theorem 2.1
Now we consider the nonlinear system (2.9), we use the same series of changes of variables as (3.6) and (3.13) on

(ℎ𝑖, 𝑣𝑖) that are still defined by (3.1) so that we keep the nonlinear terms of the equations. We obtain
𝜕𝑡𝐲 + 𝐴(𝐲, 𝑥)𝜕𝑥𝐲 + 𝐵(𝐲, 𝑥) = 0, 𝑥 ∈ [0, 1] (4.1)

where
𝐲 = (𝑦11, 𝑦21, 𝑦12, 𝑦22, ..., 𝑦1𝑛, 𝑦2𝑛)𝑇 (4.2)
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and
𝐴(𝐲, 𝑥) = diag(Λ1(𝑦11, 𝑦21, 𝑥), ...,Λ𝑛(𝑦1𝑛, 𝑦2𝑛, 𝑥)) (4.3)

with
Λ𝑙(0, 0, 𝑥) = diag{𝜆1𝑙(𝑥), 𝜆2𝑙(𝑥)}𝑙∈{1,2} and Λ𝑗(0, 0, 𝑥) = diag{𝜆1𝑗(𝑥),−𝜆2𝑗(𝑥)}𝑗∈{3,...,𝑛}. (4.4)

At the same time, we have

𝐵(0, 𝑥) = 0, 𝜕𝐵
𝜕𝐲

(0, 𝑥) = diag
(

𝐵𝑖(𝑥)
)

𝑖∈{1,2,⋯,𝑛} , 𝐵𝑖(𝑥) =
(

0 𝑎𝑖(𝑥)
𝑏𝑖(𝑥) 0

)

. (4.5)

Denote by
𝐲𝑖𝑛(𝑡) = (𝑦11(𝑡, 0), 𝑦21(𝑡, 0), 𝑦12(𝑡, 0), 𝑦22(𝑡, 0), 𝑦13(𝑡, 0), 𝑦23(𝑡, 1), ..., 𝑦1𝑛(𝑡, 0), 𝑦2𝑛(𝑡, 1)),
𝐲𝑜𝑢𝑡(𝑡) = (𝑦11(𝑡, 1), 𝑦12(𝑡, 1), 𝑦21(𝑡, 1), 𝑦22(𝑡, 1), 𝑦13(𝑡, 1), 𝑦23(𝑡, 0), ..., 𝑦1𝑛(𝑡, 1), 𝑦2𝑛(𝑡, 0)),

(4.6)

the nonlinear boundary conditions (2.10) can be written in the following form
𝐲𝑖𝑛(𝑡) = (𝐲𝑜𝑢𝑡(𝑡)) (4.7)

with
(0) = 0. (4.8)

For the sake of simplicity, we omit the explicit expression  here, which follows directly from the change of variables
(3.6) and (3.13). Very similar to dealing with the linearized system in Section 3, we use the following Lyapunov
function to analyze the local exponential stability of the nonlinear system:

𝑉 =
2
∑

𝑘=0

𝑛
∑

𝑖=1
∫

1

0

(

𝜕𝑘𝑡 𝑦1𝑖
𝜕𝑘𝑡 𝑦2𝑖

)𝑇
𝐸(𝑦1𝑖, 𝑦2𝑖, 𝑥)𝑇

(

𝑓1𝑖(𝑥) 0
0 𝑓2𝑖(𝑥)

)

𝐸(𝑦1𝑖, 𝑦2𝑖, 𝑥)
(

𝜕𝑘𝑡 𝑦1𝑖
𝜕𝑘𝑡 𝑦2𝑖

)

𝑑𝑥, (4.9)

where 𝐸(𝑦1𝑖, 𝑦2𝑖, 𝑥) is such that
𝐸(𝑦1𝑖, 𝑦2𝑖, 𝑥)Λ𝑖(𝑦1𝑖, 𝑦2𝑖, 𝑥)𝐸(𝑦1𝑖, 𝑦2𝑖, 𝑥)−1 is diagonal, (4.10)

and consequently 𝐸(0, 0, 𝑥) = 𝐼𝑑 , where 𝐼𝑑 is the identity matrix.
Noticing the invertibility of transformations (3.6) and (3.13), to prove Theorem 2.1, we only need to prove the

following theorem
Theorem 4.1. Denote 𝑘1 = 𝒢 ′(�̄�∗

2 (0)) and 𝑘2 = ℬ′(�̄�∗
2 (1)). For any 𝑘1 and 𝑘2 satisfying (3.17), the nonlinear

system (4.1) and (4.7) is (locally) exponentially stable for the 𝐻2 norm, i.e., there exist 𝛿 > 0, 𝜈 > 0 and
𝐶0 > 0 such that, for every initial condition (𝑦1𝑖(0, 𝑥), 𝑦2𝑖(0, 𝑥)) ∈ 𝐻2((0, 1);ℝ2), 𝑖 ∈ {1,⋯ , 𝑛} satisfying
‖(𝑦1𝑖(0, 𝑥), 𝑦2𝑖(0, 𝑥))‖𝐻2((0,1);ℝ2) < 𝛿 and the first-order compatibility conditions associated to (4.1) (see [2]), there
exists a unique solution to the Cauchy problem (4.1) and (4.7) defined on [0,+∞) × [0, 1] and it satisfies

𝑛
∑

𝑖=1
‖(𝑦1𝑖(𝑡, ⋅), 𝑦2𝑖(𝑡, ⋅))‖𝐻2((0,1);ℝ2) ≤ 𝐶0𝑒

−𝜈𝑡

( 𝑛
∑

𝑖=1
‖(𝑦1𝑖(0, 𝑥), 𝑦2𝑖(0, 𝑥))‖𝐻2((0,1);ℝ2)

)

, ∀𝑡 ∈ [0,+∞). (4.11)

The proof is essentially the same as in the linearized case, thanks to the robustness of basic Lyapunov functions
such as (4.9). We can use for instance [2, Theorem 6.10] which states that Theorem 4.1 holds provided that

• The matrix
−(Λ(𝟎, 𝑥)𝑄(𝑥))′ +𝑄(𝑥)𝑀𝑇

1 (𝟎, 𝑥) +𝑀1(𝟎, 𝑥)𝑄(𝑥) (4.12)
is positive definite, where 𝑄 = diag(𝑓1𝑖(𝑥), 𝑓2𝑖(𝑥))𝑖∈{1,2,⋯,𝑛}, Λ(𝟎, 𝑥) = diag(Λ1(0, 0, 𝑥), ...,Λ𝑛(0, 0, 𝑥)) and
𝑀1(𝟎, 𝑥) =

𝜕𝐵
𝜕𝐲 (𝟎, 𝑥).
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• The matrices 𝑀 and 𝐹 = diag(𝐹𝑗), given respectively by (3.36), (3.32) and the symmetric matrix
⎛

⎜

⎜

⎝

𝑓11(1)𝜆11(1)𝜑2
11(1) + 𝑓21(1)𝜆21(1)𝜑2

21(1)
√ 𝑔

�̄�∗
1 (1)

[

𝑓11(1)𝜆11(1)𝜑2
11(1) − 𝑓21(1)𝜆21(1)𝜑2

21(1)
]

⋆ 𝑔
�̄�∗

1 (1)

[

𝑓11(1)𝜆11(1)𝜑2
11(1) + 𝑓21(1)𝜆21(1)𝜑2

21(1)
]

⎞

⎟

⎟

⎠

are all positive definite thanks to (3.33).
Remark 4.1. The first condition is a consequence of the definition of the 𝑓1𝑖 and 𝑓2𝑖 given by (3.19)–(3.20) (see (3.27)).
Notice that for simplicity, we give directly the sufficient conditions for the boundary part in the framework of physical
coordinates.
Proof of Theorem 4.1. For clarity, we give here a sketch of proof similar to the one used in [2, Theorem 6.10].
Differentiating 𝑉 along the smooth solutions of (4.1), then we get

𝑑𝑉
𝑑𝑡

= −𝐵(𝑡) − 𝐼(𝑡) (4.13)

with

𝐵(𝑡) =
2
∑

𝑘=0
𝜕𝑘𝑡 𝑟

𝑇𝑀(𝑥)𝜕𝑘𝑡 𝑟 +
⎡

⎢

⎢

⎣

𝑛
∑

𝑖=1

( 2
∑

𝑘=0
|𝜕𝑘𝑡 𝑦𝑖(𝑡, 1)| + |𝜕𝑘𝑡 𝑦𝑖(𝑡, 0)|

)2
⎤

⎥

⎥

⎦

𝑂

( 𝑛
∑

𝑖=1
‖𝑦𝑖(𝑡, ⋅)‖𝐶1([0,1];ℝ2)

)

+
2
∑

𝑘=0

𝑛
∑

𝑗=3

[

𝐹𝑗
(

𝜕𝑘𝑡 𝑣𝑗(𝑡, 0)
)2] +

2
∑

𝑘=0

[

𝑓11(𝐿1)𝜆11(1)(𝜕𝑘𝑡 𝑦11(𝑡, 1))
2 + 𝑓21(1)𝜆21(1)(𝜕𝑘𝑡 𝑦21(𝑡, 1))

2] ,

𝐼(𝑡) =
2
∑

𝑘=0

𝑛
∑

𝑖=1
∫

1

0
𝜕𝑘𝑡 𝑦

𝑇
𝑖 𝑁𝑖(𝑥)𝜕𝑘𝑡 𝑦𝑖𝑑𝑥 + 𝑂

( 𝑛
∑

𝑖=1
‖𝑦𝑖(𝑡, ⋅)‖3𝐻2((0,1);ℝ2)

)

,

(4.14)

where 𝑟 is still defined as in (3.30) and
𝑦𝑖 = (𝑦1𝑖, 𝑦2𝑖)𝑇

and 𝑂(𝑥) refers to a function such that 𝑂(𝑥)∕|𝑥| is bounded when |𝑥| → 0.
In (4.14), 𝑁𝑖, 𝑀 are defined as in (3.27) and (3.36) respectively that are all positive definite and 𝐹𝑗 > 0 by (3.32).
From Sobolev inequality one has ‖𝑦𝑖(𝑡, ⋅)‖𝐶1([0,1];ℝ2) ≤ 𝐶‖𝑦𝑖(𝑡, ⋅)‖2𝐻2((0,1);ℝ2)

. Hence, there exists 𝜇 > 0 and 𝛿0 > 0

independent of (𝑦𝑖)𝑖 such that if
𝑛
∑

𝑖=1
‖𝑦𝑖(0, ⋅)‖𝐻2((0,1);ℝ2) < 𝛿0 then

𝑑𝑉
𝑑𝑡

≤ −𝜇𝑉 + 𝑂

( 𝑛
∑

𝑖=1
‖𝑦𝑖(𝑡, ⋅)‖3𝐻2((0,1);ℝ2)

)

.

Since 𝑉 is equivalent to
𝑛
∑

𝑖=1
‖𝑦𝑖(𝑡, ⋅)‖2𝐻2((0,1);ℝ2)

when
𝑛
∑

𝑖=1
‖𝑦𝑖(0, ⋅)‖𝐻2((0,1);ℝ2) is sufficiently small (see (4.9)), there

exists 𝛿 > 0 such that if ‖𝑦𝑖(0, ⋅)‖𝐻2((0,1);ℝ2) < 𝛿, then
𝑑𝑉
𝑑𝑡

≤ −
𝜇
2
𝑉 . (4.15)

The proof of Theorem 4.1 is complete.
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5. Numerical Illustration
In this section, we illustrate Theorem 2.1 by providing numerical simulations of the 𝐻2 norm of the solutions to the

nonlinear system (2.1)–(2.2) (see Figure 2). Here, we consider three channels where Channel 1 and Channel 2 are in
supercritical regime and Channel 3 is in subcritical regime (see Figure 1). We also provide the evolution of the velocity
at the end point of each channel (see Figure 3). The steady states are chosen with initial condition 𝑄3 = 1𝑚3.𝑠−1 and
𝐻∗

2 (0) = 2𝑚 (see Remark 2.3). The friction coefficients are chosen as 𝐶1 = 0.3, 𝐶2 = 0.2, 𝐶3 = 0.01; the lengths
of the three channels are 𝐿1 = 1500𝑚, 𝐿2 = 1100𝑚, 𝐿3 = 1000𝑚; the control parameters are chosen as 𝑘1 = 0.1,
𝑘2 = 0.01; the slope functions are 𝑆𝑖(𝑥) = 1.2𝐶𝑖𝑉 ∗2

𝑖 (0)
𝐻∗

𝑖 (0)
(here 𝑖 ∈ {1, 2, 3}) and the acceleration of gravity is 9.81𝑚∕𝑠2.

Figure 2: The variations of the norm over time

Figure 3: The evolution of the value for the velocity at the end of each channel

6. Conclusion
In this paper, our main contribution is to exhibit an explicit Lyapunov function for studying the exponential stability

of the Saint-Venant system in a star-shaped network. The network is composed of both subcritical and supercritical
channels connected by one junction. Surprisingly enough, we found that without applying any control at the junction
but only a control at the inlet of the supercritical branch, the stability can be achieved. An intriguing question would be
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to consider the case where the network is only composed of subcritical channels, and to know whether the star-shaped
model still achieves stability without any control at the junction.
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Appendix A The specific expression for 𝑂(𝛼1)
From (3.43), we have
𝛽1𝛽4 − 𝛽2𝛽3

=
𝑔

�̄�∗
1 (0)

[

(𝑊2(1) −𝑊1(0) − 𝑠1𝑊1(0)𝑊2(1))
]

[

𝑊2(1) −
�̄�∗

1 (0)
𝑔

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

𝑊2(0) −𝑊1(0) + 𝑠3 + 𝑠2𝑍2(1)

]

−
𝑔

�̄�∗
1 (0)

(

𝑍2(1) + (𝑠2 − 𝑠1𝑍2(1))𝑊1(0)
)

×
(

𝑍2(1) + 𝑠2𝑊2(1)
)

=
𝑔

�̄�∗
1 (0)

(

𝛼22

(

𝑊 2
2 (1) −𝑍2

2 (1) +𝑊2(1)
𝑛
∑

𝑗=3

𝛼𝑗
𝛼2

⎛

⎜

⎜

⎝

𝑍𝑗 −
𝑊𝑗

2
(1)

𝑍𝑗(1)

⎞

⎟

⎟

⎠

−𝑊2(0)

(

�̄�∗
1 (0)
𝑔

𝑘22(𝑘
2
1 +

𝑔
�̄�∗

2 (0)
)𝑊2(1)

))

+ 𝑂(𝛼1)

)

,

(A.1)
where

𝑠1 =
𝑛
∑

𝑗=3

1
𝑍𝑗(1)

, 𝑠2 =
𝑛
∑

𝑗=3

𝑊𝑗(1)
𝑍𝑗(1)

, 𝑠3 =
𝑛
∑

𝑗=3

𝑍2
𝑗 (1) −𝑊 2

𝑗 (1)

𝑍𝑗(1)
, (A.2)

and

𝑂(𝛼1) =𝑊 2
1 (0)(1 + 𝑠1𝑊2(1)) +𝑊1(0)𝑊2(0)

(

�̄�∗
1 (0)
𝑔

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

(1 + 𝑠1𝑊2(1))

)

−𝑊1(0)
(

𝑠3 + 2𝑠2𝑍2(1) + (2 + 𝑠22 + 𝑠1𝑠3 + 𝑠1𝑊2(1))𝑊2(1) − 𝑠1𝑍
2
2 (1)

)

.

(A.3)

By (3.35), we obtain
𝑂(𝛼1) = 𝛼1𝑔1(𝛼2, 𝜀) + 𝛼21𝑔2(𝛼2, 𝜀) (A.4)

where
𝑔1(𝛼2, 𝜀) = − 2𝜀

(

𝑠3 + 2𝑠2𝑍2(1) + (2 + 𝑠22 + 𝑠1𝑠3 + 𝑠1𝑊2(1))𝑊2(1) − 𝑠1𝑍
2
2 (1)

)

+ 4𝜀2𝛼2

(

�̄�∗
1 (0)
𝑔

𝑘22

(

𝑘21 +
𝑔

�̄�∗
2 (0)

)

(1 + 𝑠1𝑊2(1))

)

,

𝑔2(𝛼2, 𝜀) =4𝜀2(1 + 𝑠1𝑊2(1)).

(A.5)

Thus, from (A.4)–(A.5), for fixed 𝛼2 = 1 and fixed 𝜀, we can always choose 𝛼1 (depending on 𝜀) small enough to
guarantee that 𝑂(𝛼1) is sufficiently small.
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