Méthodes de Monte-Carlo par chaînes de Markov et algorithmes particulaires

Examen du mardi 23 avril 2024 9h00-12h00

Soit P un noyau markovien sur (E, \mathcal{E}) .

- 1. Soient $\mu, \sigma \in \mathcal{P}(E)$. On note $\xi_+ \xi_-$ la décomposition de Jordan-Hahn de $\mu \sigma$.
 - (a) Montrer que si μ est invariante par P, alors $d_{\text{TV}}(\sigma, \sigma P) \leq 2d_{\text{TV}}(\sigma, \mu)$ et en déduire que l'ensemble des probabilités invariantes par P est un fermé de $\mathcal{P}(E)$ muni de la distance en variation totale.
 - (b) Vérifier que $\xi_+ = \mu \mu \wedge \sigma$ et $\xi_- = \sigma \mu \wedge \sigma$.
 - (c) Si μ et σ sont toutes deux invariantes par P, montrer que les mesures $\mu \wedge \sigma, \xi_+$ et ξ_- sont également invariantes par P.
 - (d) Conclure que lorsque P admet deux probabilités invariantes distinctes, alors ce noyau admet deux probabilités invariantes $\tilde{\mu}$ et $\tilde{\sigma}$ mutuellement singulières au sens où il existe $B \in \mathcal{E}$ tel que $\tilde{\mu}(B^c) = 0 = \tilde{\sigma}(B)$.

Soit π une probabilité sur E invariante par P. Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de noyau P. Pour $n \in \mathbb{N}$, on pose $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$. Pour mettre en valeur le rôle joué par la loi μ de X_0 , on note \mathbb{P}_{μ} et \mathbb{E}_{μ} la probabilité et l'espérance sur l'espace sous-jacent. Dans le cas particulier $\mu = \delta_x$ où $x \in E$, on simplifie ces notations en $(\mathbb{P}_x, \mathbb{E}_x)$. Pour $C \in \mathcal{E}$, on note $\tau_C = \inf\{k \geq 1 : X_k \in C\}$ avec la convention $\inf \emptyset = +\infty$. Un ensemble $C \in \mathcal{E}$ est dit π -accessible si $\pi(dx)$ p.p., $\mathbb{P}_x(\tau_C < \infty) > 0$.

- 2. Soit $C \in \mathcal{E}$ et $A = \{(x_k)_{k \in \mathbb{N}} \in E^{\mathbb{N}} : \exists k \geq 1 \text{ t.q. } x_k \in C\} \in \mathcal{E}^{\otimes \mathbb{N}}$. On pose $\varphi(x) = \mathbb{P}_x((X_k)_{k \in \mathbb{N}} \in A) \text{ pour } x \in E$.
 - (a) Montrer que pour $x \in E$, $\varphi(x) = \mathbb{P}_x(\tau_C < \infty)$.
 - (b) Vérifier que pour $n \in \mathbb{N}^*$ et $(x_k)_{k \in \mathbb{N}} \in E^{\mathbb{N}}$, $1_A((x_k)_{k \geq n}) \leq 1_A((x_k)_{k \in \mathbb{N}})$ et en déduire que \mathbb{P}_{π} p.s., $1_A((X_k)_{k > n}) = 1_A((X_k)_{k \in \mathbb{N}})$.
 - (c) Montrer $(\varphi(X_n))_{n\in\mathbb{N}}$ est une \mathcal{F}_n -martingale sous \mathbb{P}_{π} . Préciser sa limite pour $n\to\infty$ et vérifier que pour tout $n\in\mathbb{N}$, $\varphi(X_n)$ lui est \mathbb{P}_{π} p.s. égale.
 - (d) En déduire que $\pi(dx)$ p.p., $\varphi(x) \in \{0, 1\}$.
 - (e) Conclure que si C est π -accessible, alors $\pi(dx)$ p.p., $\mathbb{P}_x(\tau_C < \infty) = 1$.
- 3. Soit $f: E \to \mathbb{R}_+$ mesurable bornée.
 - (a) Pour $n \in \mathbb{N}^*$, vérifier que $\{X_k \in C, X_{k+1} \notin C, X_{k+2} \notin C, \cdots, X_n \notin C\}_{1 \leq k \leq n-1}$ et $\{X_n \in C\}$ constituent une partition de l'événement $\{\tau_C \leq n\}$ et en déduire que

$$\pi(f) = \sum_{k=1}^{n} \mathbb{E}_{\pi} \left[1_{C}(X_{k}) \left(\prod_{\ell=k+1}^{n} 1_{C^{c}}(X_{\ell}) \right) f(X_{n}) \right] + \mathbb{E}_{\pi}[f(X_{n}) 1_{\{\tau_{C} > n\}}].$$
(1)

- (b) Vérifier que pour $k \in \{1, \dots, n\}$, $\mathbb{E}_{\pi} \left[\mathbb{1}_{C}(X_{k}) f(X_{n}) \prod_{\ell=k+1}^{n} \mathbb{1}_{C^{c}}(X_{\ell}) \right] = \int_{C} \mathbb{E}_{x} [f(X_{n-k}) \mathbb{1}_{\{\tau_{C} > n-k\}}] \pi(dx)$ et en déduire que le premier terme du second membre de (1) est égal à $\int_{C} \mathbb{E}_{x} \left[\sum_{j=0}^{(n-1) \wedge (\tau_{C} 1)} f(X_{j}) \right] \pi(dx)$.
- (c) En déduire que $\pi \geq \pi_C^0$ où π_C^0 est la mesure définie par $\pi_C^0(g) = \int_C \mathbb{E}_x \left[\sum_{j=0}^{\tau_C-1} g(X_j) \right] \pi(dx)$ pour $g: E \to \mathbb{R}$ mesurable bornée.

On suppose maintenant que C est π -accessible.

- (d) Quel est le comportement asymptotique pour $n \to \infty$ du second terme du second membre de (1)?
- (e) En déduire que $\pi = \pi_C^0$ puis que $\pi(C) > 0$.
- (f) En calculant $\pi_C^0(Pf)$, vérifier que π_C^1 définie par $\pi_C^1(g) = \int_C \mathbb{E}_x \left[\sum_{j=1}^{\tau_C} g(X_j) \right] \pi(dx)$ satisfait également $\pi_C^1 = \pi$.

On suppose désormais que π est l'unique probabilité invariante par P.

- 4. (a) Quel est le comportement asymptotique pour $n \to \infty$ de $\frac{1}{n} \sum_{k=0}^{n-1} 1_C(X_k)$ sous \mathbb{P}_{π} ?
 - (b) En déduire que si $\pi(C) > 0$ alors $\pi(dx)$ p.p., $\mathbb{P}_x(\tau_C < \infty) = 1$ et C est π -accessible.
 - (c) Conclure que si $\pi(C) > 0$ alors $\pi = \pi_C^0 = \pi_C^1$.
 - (d) Lorsque P satisfait les conditions de dérive (D1) et (D2), vérifier que si $\pi(C) > 0$, alors $\mathbb{P}_x(\tau_C < \infty) = 1$ pour tout $x \in E$.

On suppose que C est π -accessible et on note π_C la probabilité sur (E, \mathcal{E}) définie par $\pi_C(A) = \frac{\pi(A \cap C)}{\pi(C)}$ pour tout $A \in \mathcal{E}$. On se donne également un noyau markovien Q qui laisse π_C invariante. Partant d'un couple initial (Y_0, Z_0) à valeurs dans $E \times E$, on construit une chaîne de Markov $((Y_n, Z_n))_{n \in \mathbb{N}}$ en itérant le passage suivant de l'instant n à l'instant n+1:

$$(Y_{n+1},Z_{n+1})=1_{C^c}(W_{n+1})(W_{n+1},Z_n)+1_C(W_{n+1})(\zeta_{n+1},\zeta_{n+1})$$

où W_{n+1} et ζ_{n+1} sont choisis conditionnellement indépendants et respectivement distribués suivant $P(Y_n,\cdot)$ et $Q(Z_n,\cdot)$. On note également $\hat{\pi}$ la mesure sur $E\times E$ définie par $\hat{\pi}(g)=\int_C \mathbb{E}_x\left[\sum_{j=0}^{\tau_C-1}g(X_j,x)\right]\pi(dx)$ pour toute fonction $g:E\times E\to\mathbb{R}$ mesurable bornée.

- 5. Montrer que la première marginale de $\hat{\pi}$ est π (on pourra choisir g(y,z) = f(y) avec $f: E \to \mathbb{R}$ mesurable bornée) et en déduire que $\hat{\pi}$ est une probabilité.
- 6. Montrer que le noyau de la chaîne de Markov $((Y_n, Z_n))_{n \in \mathbb{N}}$ est

$$R((y,z),(ds,dt)) = 1_{C^c}(s)P(y,ds)\delta_z(dt) + P(y,C)Q(z,dt)\delta_t(ds).$$

7. Soit $g: E \times E \to \mathbb{R}_+$ mesurable.

On pose
$$T_1 = \int_{x \in C} \mathbb{E}_x \left[\sum_{k=0}^{\tau_C - 1} \int_{y \in C^c} g(y, x) P(X_k, dy) \right] \pi(dx)$$
 et $T_2 = \int_{(x,z) \in C \times C} \mathbb{E}_x \left[\sum_{k=0}^{\tau_C - 1} P(X_k, C) \right] g(z, z) \pi(dx) Q(x, dz)$.

- (a) Vérifier que $\hat{\pi}(Rg) = T_1 + T_2$.
- (b) Remarquer que $\mathbb{E}_{x}[1_{\{\tau_{C}>k\}}P(X_{k},C)] = \mathbb{E}_{x}[1_{\{\tau_{C}>k\}}1_{C}(X_{k+1})]$ et en déduire que $\pi(dx)$ p.p., $\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{C}-1}P(X_{k},C)\right] = 1$ puis que $T_{2} = \int_{x \in C}g(x,x)\pi(dx)$.
- (c) Vérifier que

$$\mathbb{E}_x \left[1_{\{\tau_C > k\}} \int_{y \in C^c} g(y, x) P(X_k, dy) \right] = \mathbb{E}_x [1_{\{\tau_C > k\}} g(X_{k+1}, x) 1_{C^c}(X_{k+1})]$$

et en déduire que $T_1 = \int_{x \in C} \mathbb{E}_x \left[\sum_{j=1}^{\tau_C - 1} g(X_j, x) \right] \pi(dx)$.

- (d) Conclure que $\hat{\pi}$ est invariante par R.
- 8. Supposons que π_C l'unique probabilité invariante par Q.
 - (a) Pour η probabilité sur $E \times E$, vérifier que pour $B \in \mathcal{E}$,

$$\eta R(E \times B) = \int_{(y,z) \in E \times B} P(y,C^c) \eta(dy,dz) + \int_{(y,z) \in E \times E} P(y,C) Q(z,B) \eta(dy,dz).$$

On suppose maintenant que η est invariante par R.

(b) Montrer que pour tout $B \in \mathcal{E}$,

$$\int_{(y,z)\in E\times E}P(y,C)Q(z,B)\eta(dy,dz)=\int_{(y,z)\in E\times B}P(y,C)\eta(dy,dz)$$

et en déduire que la seconde marginale $\check{\eta}(dz)$ de la mesure $P(y,C)\eta(dy,dz)$ vérifie $\check{\eta}=\check{\eta}(E)\pi_C$.

- (c) Si $\check{\eta}(E) = 0$, vérifier que pour $B \in \mathcal{E}$, $\int_{(y,z)\in E\times E} P(y,C\cap B)\eta(dy,dz) = 0$ et en déduire que $\eta(B\times E) = \int_{(y,z)\in E\times E} P(y,B)\eta(dy,dz)$ puis que la première marginale η_1 de η est égale à π et enfin que $\pi(C) = \int_{(y,z)\in E\times E} P(y,C)\eta(dy,dz)$. Conclure que $\check{\eta}(E) > 0$.
- (d) Pour $g: E \times E \to \mathbb{R}_+$ mesurable, vérifier que

$$\eta(1_{C \times C}g) = \int_{z \in E} \int_{t \in E} 1_C(t)g(t, t)Q(z, dt)\check{\eta}(dz)$$

et en déduire que $\eta(1_{C\times C}g) = \frac{\check{\eta}(E)}{\pi(C)} \int_{z\in C} g(z,z)\pi(dz)$ puis que $\eta(g) \geq \frac{\check{\eta}(E)}{\pi(C)} \int_{C} \mathbb{E}_{(z,z)} \left[\sum_{k=0}^{\tau_{C\times C}-1} g(Y_k,Z_k) \right] \pi(dz)$ où $\tau_{C\times C} = \inf\{k \geq 1 : (Y_k,Z_k) \in C \times C\}$. Conclure que $\eta(g) \geq \frac{\check{\eta}(E)}{\pi(C)} \hat{\pi}(g)$.

- (e) Avec la question 1d, en déduire que R admet $\hat{\pi}$ comme unique probabilité invariante.
- (f) Pour $g: E \times E \to \mathbb{R}$ mesurable et telle que $\hat{\pi}(|g|) < \infty$, justifiez que

$$\hat{\pi}(dy, dz) \ p.p., \ \mathbb{P}_{(y,z)} \left(\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} g(Y_k, Z_k) = \hat{\pi}(g) \right) = 1.$$