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Chapter 1

Optimal Transport

1.1 From Monge to Kantorovich

Let X and ) be two Polish spaces for the distances dy and dy. We denote by P(X') and
P(Y) the sets of probability measures on X' and ) respectively.

Definition 1.1. The image of the probability measure p € P(X) by T : X — Y measur-
able is the probability measure T#p € P(Y) defined by

VB € B(Y), T#u(B) = u(T~'(B)),
where T~Y(B) is the preimage of B by T.

The Monge formulation [13] of the optimal transport problem from p € P(X) to
v € P(Y) with cost ¢ : X x Y — R measurable is

yMonge(), 1)) = inf / clx, T(x dx).
o) = int | ol T@)ntdr)
This formulation has several drawbacks. First when X = Y = R, u = §y and v =
%(50 +61), there is no transport map 7" such that T#u = v since T# . = dp(). Moreover,
the set of transport maps is neither convex nor sequentially compact. Kantorovich [12]
introduced a relaxation of this problem by considering couplings instead of maps. Let

() = {w EPXxY): /yeyﬁ(d:v,dy) = u(dz) and / (dz, dy) = u(dy)} .

TeEX

denote the set of probability measures on X’ x Y with first marginal equal to 1 and second
marginal equal to v. The Kantorovich formulation is

Velp,v) = inf ().

Remark 1.2. o Letiy: X — X denote the identity function on X defined by iy (x) =
x forx € X. Since when T#p = v, then (ix, T)#p € I(p,v) and (ix, T)#u(c) =
[y c(x,T(z))p(dx), we have
VI (p,v) = Ve, v).

3
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o The set II(u,v) is never empty since p @ v(dz, dy) = p(dx)v(dy) € I(p, v). More-
over this set is conver and has nice compactness properties stated in Lemma 1.7
below.

Proposition 1.3. When p is atomless (i.e. u({x}) = 0 for all x € X ), then the
set of Monge couplings {(ix,T)#u: T : X — Y measurable} is dense in (u,v) and
VcMonge<:uv V) - V:?(:ua V)'

Proof: Let n(dz,dy) = p(dz)m,(dy) € II(i,v). By the fundamental theorem of simula-
tion, there exists S : X x [0, 1] — ) measurable such that S(x,-)#1p1(uw)du = 74, p(dz)
a.e.. Let py : X' x[0, 1] — X be defined by px(x,u) = z. Then (px, S)# (@11 (w)du) =
p®m, =m. Let (xm)meN be dense in X and for n € N*, By = B(xg, ) and for m > 1,

B = Bz, 1) n{Ui5, xk,n)}c.

Since p is atomless, we can find R™™ : B — B x [0,1] measurable such that
RY™#ulgn = pilpn & 1[0,1](u)du. We set

Zan an )

meN

When X ~ p, R*(X) ~ pu® lpqy(u)du and (px(R™(X)), S(R*(X))) ~ .

When z € B, dx(z,px(R"(2))) < dx(z,2m) + dx(zm, px(RE(2))) < 2. Hence
Vo € X, dx(z, px(R"(z))) < 2. Therefore for ¢ : X x Y — R Lipschitz continuous and
bounded

IE[p(X, S(R"(X)))] — 7(¢)| = [E[p(X, S(R™(X)))] — E[p(px(R"(X)), S(R™(X)))]]
< E[lp(X, S(R"(X))) ~ p(pa(R"(X)), S(R"(X))]] < Lip(e) x = "5 0.

By the Portmanteau theorem (see Theorem 5.2), we conclude that the law of
(X, S(R™(X))) converges weakly to m as n — 0. i

The following uniqueness criterion for optimal couplings will be used in the proof of
Brenier’s theorem.

Proposition 1.4. If any optimal coupling 7, € Il(p,v) for V.(u,v) is a Monge coupling,
then there is at most one optimal coupling.

Proof: Let w7, € II(u,v) be optimal. Then =, (dz,dy) = p(dr)dre)(dy) and
To(dx,dy) = p(dz)dg ) (dy) for some measurable maps T,T: X — Y. Since Vi(u,v) =

(3(m+72))(c), 3(7+7,) (dz, dy) = p(dz)i <5T(r + 05 ) (dy) also is optimal and therefore
a Monge coupling. As a consequence u(dz) a.e., T(z ) =T(x) and 7, = 7,. [ |

1.2 The case of finitely supported probability mea-
sures

In this case, the Kantorovich formulation of the optimal transport problem is a linear
programming problem with finitely many variables and can be solved efficiently by the
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simplex algorithm or the interior-point method.

H1 !
Let p = : € [0,1)F and v = : € [0,1)7 be such that >0 = 1 =
K1 vy

Zj:l v;. For ¢ = (Cij)1gi§1,1gjgj, we want to solve

IJ
minZZcijmj under the constraints V(i,5) € {1,--- , 1} x {1,---,J}, m; >0,

i=1 j=1

J 1
VZG{]_, ,]}, Z’ﬂ'z‘j:,ui andeE{l,--- ,J}, Z?Tij:l/i.
=1

J=1

Since the under the constraints, m = (m;;)1<i<1,1<j<s describes a closed and bounded and

IxJ IxJ _\ J : ;
therefore compact subset of R™” and R’ > m— cr =37, > 5, ¢;;m; is continuous,
there exists an optimizer 7*.

Let us now characterize the set of optimizers. Up to replacing c¢;; by c¢;; —
min; <x<s1<s<J Cke, We may suppose that the entries of ¢ are non-negative, which we write
¢ > 0. Then the optimization problem is equivalent to

W
(P) min c.m under the constraints Am > v ,

OI><J

with A = B ) € RUHIHINXI) and B € RUFDXIT giving the marginal constraints

Iy
that one should saturate since ¢ > 0. Let us extract from A the rows such that the

]
corresponding entries of Anr* and v are equal and in particular the I + J first

OI><J

rows. Let A € R with d > I + J denote the matrix with these rows. The next lemma
(see for instance Theorem 22.3 [15]) is a consequence of the separation of convexes and
therefore of the Hahn-Banach theorem.

Lemma 1.5 (Farkas). Either 3n € R such that An > 0 and c.n < 0 or 3h € R% such
that ATh = ¢ and h > 0.

Indeed, {flTh : h > 0} is the closed cone spanned by the columns of AT and when ¢
is not in this cone, we can separate {c} and the cone by the hyperplane directed by 7.
Because of the optimality of 7*,

vn € R such that An > 0 coordinate-wise, c.n > 0.

Otherwise, we could get a smaller value and still respect the constraints by adding en to
¢*

7 with € > 0 small enough. Therefore, by Farkas lemma, there exists h = | %" | with
h

¢* € R, ¢* € R’ and h € R&“U+D guch that ATh = ¢ and h > 0. In the row of AT

corresponding to ;;, we have coefficient 1 on the i-th column (constraint Zzzl i = i),
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on the I + j-th column (constraint S Tk = ;) and possibly on one of the d — (I +.J)
last columns when 77; = 0 while all the other entries are equal to 0. Therefore

- ¢; + 5 when 775 > 0
Y ¢+ ¥% + by when i = 0

Let us consider the dual problem

(D) max {Z Gifti + Z Y, 1/]} under the constraints

j=1
V(Z7])€{17"' 7I}X{]—7"' JJ}7 ¢z+¢]§cw

For 7 satisfying the constraints in the primal problem and ¢, satisfying those in the

dual problem,
I
> it ZWJ <3 Yot vy <o
i=1 = i=1 j=1
We deduce that (D) < (P). For 7, ¢, replaced by (7%, ¢*,¢¥*) both inequalities are
equalities so that (D) = (P).

Moreover, the complementary slackness property (propriété des écarts complémentaires
en frangais) holds : if 7* is optimal for (P) and (¢*,¢*) for (D), then ¢F + 95 = ¢;; for

each (i,7) such that «}, > 0. Last, the support {(i,j) : ©}; > 0} of 7* is c-cyclically

] ]

monotone in the sense that if (i1, j1),- -, (ix, jx) are in the support, then
k k k
Z Cigje = Z (blg + w]g Z(‘b; + w;ul) < Z Cigjoyrs
=1 =1 =1
under the convention jri1 = 71. We will next investigate the dual formulation, the

complementary slackness condition and the c-cyclical monotonicity for general probability
measures u € P(X) and v € P()).

1.3 Study of the primal Kantorovich formulation

Theorem 1.6. Letc: X xY — RU{+o0o} be lower semi-continuous bounded from below.
Then there exists m, € Il(u,v) such that m(c) = V.(u,v). Moreover, P(X) x P(Y) €
(u,v) = Vo(p,v) is lower semi-continuous and convet.

The proof relies on the next lemma.

Lemma 1.7. The set II(u,v) is compact for the weak convergence topology. Moreover
when p, — p and v, — v weakly as n — oo, then from any sequence m, € (un,v,) we
may eztract a subsequence converging weakly to mo, € Il(p,v).

Proof of Theorem 1.6: Let (7,)neny C II(p, ) be a minimizing sequence for V. (u, v).
By Lemma 1.7, we may extract a subsequence (7, )ren converging weakly to m, € II(p, v).
By the Portmanteau theorem (see Theorem 5.2 7)),

Ve(p,v) = li;n inf m,, (c) > m(c) > Vo(p, v).
—00
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Let o € P(X), v € P(Y), 7 € l(ji,v) be optimal for V.(i,7) and « € [0,1]. Then
am, + (1 — a)m, € H(ap+ (1 — a)ft, av + (1 — a)v) so that

Valap+ (1 = a)jit, av + (1 — a)) < (. + (1 — a)F.)(e) = aVa(p, v) + (1 - a)Viji, ).

Therefore V, is convex. Let us now suppose that u, — p and v, — v weakly as n — oo.
Let m, € II(pn,v,) be optimal for V.(u,,v,). By Lemma 1.7, from any subsequence
attaining liminf, o Ve(pn, ), we may extract a further subsequence (7, )ren converging
weakly to mo € II(u,v). Using the Portmanteau theorem (see Theorem 5.2 7)) for the
second inequality, we have

Ve(p, V) < () < klim T, (€) = liminf V. (u,, vy,)
— 00

n—o0

and V. is lower semi-continuous. [ |

Proof of Lemma 1.7: The first assertion is a consequence of the second for the choice
(tn, Vn) = (u,v) for each n. To prove the second assertion, we set ¢ € (0,1). Since X
(resp. V) is Polish, by the Prokhorov theorem (see Theorem 5.3), there exists a compact
subset Ky € X' (resp. Ky € )) such that sup, p,(K%) < 5 (resp. sup, vn(K5) < 5).
Since 7, € I(pn, vn),

T ({Kx X Ky}©) = m({Ky x Y} U{X x K3})
< (K% X V) + (X X K5) = pn(KS) 4+ v, (K5) < €.

By Tykhonov’s theorem, Ky x Ky is a compact subset of X x ). Using the other
direction in the Prokhorov theorem (see Theorem 5.3), we deduce that we can extract a
subsequence (7, )ren converging weakly to mo. Let po and v, denote the marginals of
Teo- By continuity of the projections X xY 5 (z,y) — x € X and X xY 3 (x,y) — y € ),
foo = My o0 fln, = p and voo = limg_yo0 vy, = v so that 7o € (p,v). [ |

1.4 Dual formulation

Theorem 1.8. Letc: X xY — RU{+o0o} be lower semi-continuous bounded from below.
Then

Ve(p,v) = sup  {u(¢) + ()}, where ¢ ©Y(x,y) = ¢(x) + P (y).

(6.9 ECH(X) X Cp (V)
PpBYP<c

Remark 1.9. For 7 € II(p,v) and (¢,v¢) € Cp(X) x Co(Y) such that ¢ & < ¢, we have

m(c) 2 m(d ) = u(9) + v (1),

Therefore the weak duality inequality Vo(p,v) > supw,wec,xc,on{(@) + v(¥)} holds.
pdY<c

The converse inequality is the main statement in the theorem.

The proof relies on the Fenchel-Moreau theorem (see Theorem 2.3.3 [16]).
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Theorem 1.10 (Fenchel-Moreau). Let V' be a Hausdorff topological vector space (2 dis-
tinct points in 'V have distinct neighbourhoods) with topological dual V' (space of contin-
uous linear forms on' V'), f:V — RU{+o0} and f*(v') = sup,c {v'(v) — f(v)}, v € V'
denote its convex conjugate. Then f is lower semi-continuous and convex iff

f(v) = sup {v'(v) = f*(v")} = f7(v), vEV.
v'eV’
Remark 1.11. The convex conjugate f* is convex lower semi-continuous on V' as the
supremum of linear (hence convex) continuous (hence lower semi-continuous) functions.

Exercise 1.12. Prove that the supremum of convex (resp. lower semi-continuous) R U
{+o00}-valued functions is convex (resp. lower semi-sontinuous). For the lower semi-
continuity, you may first check that f is lower semi-continuous iff its level sets {f <
a}, a € R are closed.

The next lemma ensures that a lower semi-continuous function bounded from below is
the non-decreasing limit of Lipschitz functions obtained by inf-convolution.

Lemma 1.13. A function ¢ : Z — RU {400} non constantly equal to +oo, lower semi-
continuous and bounded from below on a metric space Z with distance dz is the non-
decreasing limit as n — oo of the n-Lipschitz functions c,(z) = infzez{c(Z) + ndz(Z,2)}
which are bounded from below by the same constant as c.

Proof: Let zy € Z satisfy ¢(zy) < +00. Clearly, ¢, is bounded from below by the same
constant as ¢, non-decreasing with n and bounded from above by ¢ (choice Z = z) and by
c(z0) +ndz(-, 29) < 400 (choice Z = zy). Let z, 2 € Z be such that ¢,(z) < ¢,(2) and for
k € N*, 2, such that ¢,(2) > ¢(Zx) + ndz(Zn . 2) — % Then, by the definition of ¢, (2)
and the triangle inequality,

1 1
cn(2) — en(2) < c(Zng) +ndz(Zpg, 2) — (c(,%n,k) +ndz(Znk, z) — E) <ndz(z,z)+ T

By letting £ — oo, we deduce that ¢, is n-Lipschitz. We have
1 1
C(Z) Z Cn(z) Z C(gmn) + ndZ(gn,na Z) - Z inf ¢ + ndg(inm, Z) -
n n

If Z,, — 2 as n — oo, then, by the first two inequalities,

c(z) > lim ¢,(2) > liminf ¢(Z,,) > ¢(2)

n—oo n—oo

where the last inequality follows from the lower semi-continuity of c. Otherwise,

c(z) > limsup ¢, (z) > limsup (inf ¢ + ndz(Z, ,, 2)) = +00 > ¢(2).

n—oo n—o0

Lemma 1.14. Let f € X x Y — R be bounded from below and Lipschitz continuous in
its first variable. For each € > 0, there exists a measurable map S. : X — Y such that

Ve e X, f(x,S:(x)) < ;g'jf)f(x,y) +e.
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Proof: Let (x,)nen be dense in X. For each n € N; there exists y,, such that f(x,,y,) <
infyey f(zn,y)+ 5. Let L denote the Lipschitz constant of f in its first variable. If L = 0,
S:(x) = xy does the job. Let us suppose that L > 0. By the argument given in the
proof of Lemma 1.13, we can check that the function g(z) = inf,cy f(z,y) is Lipschitz
with constant L. For n € N, we set A, = B(zy,37) N {Uz;é B(zy, 3%]:)}C € B(X). By
density of (x,)neny in X, this set is the disjoint union of the (A,),en. Let us define
Se(z) = > ,en 14, (#)yn. For n € N and z € A,, we have

f(x,5:(7)) — g(z) = f(x, yn) - f(xmyn> + (@0, yn) — 9(z0) + g9(x0) — g(x)

19
<Lx o Lx S —¢
><3L+3+ 3L °

Proof of Theorem 1.8: When c is constantly equal to +00, then the conclusion holds
since V.(u,v) = 400 and the supremum of {u(¢) + v (1))} over constant functions ¢ and
1 such that o ® Y < c also is +0o. We now suppose that c is not constantly equal to 4oc.
We apply the Fenchel-Moreau theorem to V' equal to the space of bounded signed measures
on )Y endowed with the bounded Lipschitz norm :

laller = sup ()l
F YR
1— Lipschitz bounded by 1

By Theorem 5.2 3), this norm metricizes the weak convergence topology on P()). We
have V' = C,(Y) with g(q) = [, 9(y)a(dy) for (g,9) € Co(¥)x V. We fix p1 € P(X)
and set

~ JVe(wsq) it g € P(Y)
Fla) = {—l—oo ifgeV\PQ)

Since P()) is a closed convex subset of V' and P(Y) > v +— V.(u,v) is lower semi-
continuous and convex by Theorem 1.6, F' is lower semi-continuous and convex. Hence
by the Fenchel-Moreau theorem,

Vv e P(Y), Velp,v) = F(v) = sup {v(v)—F"(¢)}. (1.1)
PeCy(Y)

Case ¢ Lipschitz. For ¢ € Cy(Y), we define ¢°(z) = inf cy{c(z,y) —¢(y)}, = € X.
The function ¢ is bounded from below. By Lemma 1.14, there exists a measurable
map S. : X — Y such that Vo € X, ¢(x, Sc(x)) — ¥(Sc(x)) < ¢°(x) + . Setting
7. (dx, dy) = p(dr)ds. @) (dy), we have

p(@® = inf 7@W°®0)< inf w(c—0dY)
veP(Y) veP(Y)
mell(p,v) mell(p,v)

<m(c—00y) <. (W DO0+e) = u(w°) +e.

Letting e — 0, we deduce that inf m(c— 0@ ) = u(¢°). Using the definitions
veP(Y)
mell(p,v)
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of F and V, for the second equality, we deduce that

_F* (@) = —sup{g(e) — F(q)} = — sup {u<w>— inf w<c>}
)

qev veP(Y well(p,v)
=— sup 7(0®Y—c)= inf 7(lc—0d®Y)=pu(°.
veP(Y) veP(Y)
mell(p,v) mell(pv)

Plugging this equality in (1.1) and using the weak duality result in Remark 1.9, we
conclude that

VwePQ), Velwv) = sup {v(@)+u@)}<  sup  {u(d)+v()} < Vel(u,v).

»eCy(Y) (6,)ECH (X)X Cp (V)
¢pdyY<c

General case. We use the sequence (c¢;,),>1 of n-Lipschitz functions growing to ¢ given
by Lemma 1.13. Using the weak duality inequality in Remark 1.9 for the first
inequality and the previous case for the equality, we get that

Ve(p,v) > sup  {u(o) +r(¥)}

(6,9)€CL(X) X Cp (V)

pdY<c
>sup  sup  {u(d) +v(Y)} =supV, (1, v). (1.2)
n (¢,w>zg,l<;2cxcb<y) n

Let for n > 1, m, € II(u, v) be optimal for V. (u,v). By Lemma 1.7, we may extract
a sequence (7, )r which converges weakly to 7o € II(p, ). We have
sup V, (u,v) = lim 7 m,(c,) = lim 7, (cp,).
n n—00 k—o00
For fixed m € N*, when k is large enough, we have n, > m and ¢,, > ¢,. By
the Portmanteau theorem (see Theorem 5.2), liminfy_, 7, (¢;) > Too(cn). By the
monotone convergence theorem, sup,,s; Too(¢m) = Too(c). Therefore

sup Ve, (u,v) = klgg(} Ty, (Cny, ) = sup liminf 7, (¢,,) > SUP Moo (Cm) = Too(€) > Ve(p, v).

m>1 k—oo m>1

With (1.2), we conclude that Ve(u, v) = supe.vec,xc,on{m(@) + v(¥)}-
PpdY<c

1.5 c-cyclical monotonicity and the super-differential

For ¢, such that ¢ ¢ < ¢, we can always increase the dual value {u(¢) + v(v)} by
replacing ¢ (resp. 1) by the é-conjugate ¢ of ¥ (resp. the c-conjugate ¢¢ of ¢) defined
by
V(z) = inf{c(z,y) — ¢(y)} and ¢°(y) = inf {c(z,y) — d(2)}.
yey reX

For these definitions to make sense, we suppose that ¢ is real-valued (it cannot take
the value +o0 like in Theorems 1.6 and 1.8) and that ¢ : Y — {—oc0} UR (resp. ¢ : X —
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{—c0}UR). When ¢ : Y — {—o0} UR (resp. ¢ : X = {—o0} UR), then ¢)¢ (resp. ¢°) is
{—00} UR-valued iff ¢ (resp. ¢) is not constantly equal to —oc.

When )Y = X and the cost function ¢ is symmetric, the distinction between these ¢ and
the ¢ transforms is no longer needed.

Definition 1.15. o We say that ¢ : Y — {—o0} UR is c-concave if 1p = ¢¢ for some
¢: X — {—o0}UR.

o We say that ¢ : X — {—00}UR is é-concave if ¢ = ¢ for somep : Y — {—o00}UR.

Note that when ¢ : Y — {—oco} UR is c-concave (resp. ¢ : X — {—oco} UR is ¢
concave), then any function ¢ : X — {—oo} UR such that ¢ = ¢¢ (¢ : Y — {—oc0} UR
such that ¢ = ¢°) is non constantly equal to —oco. According to proof of the next lemma,
it is not useful to iterate the transform

Lemma 1.16. Let ¢ : X x Y — R. The function ¢ : X — {—oc} UR (resp. ¢ : Y —
{—=oc0}UR) non constantly equal to —oo is ¢-concave (resp. c-concave) iff ¢ = (¢°)¢ (resp.

= (¥°)).

Proof: We only deal with the statement concerning ¢ since the one concerning 1 is
proved in a symmetric way. Since ¢ is not constant equal to —oo, ¢¢ is {—oo} U R-valued
and ¢ = (¢°)° implies that ¢ is é-concave. To prove the converse implication, it is enough
to check that for ¢ : ) — {—oc} UR, ((¢°)¢)¢ = ¥°. Indeed, when ¢ is ¢-concave, then
there exists ¢ : Y — {—o00} UR such that ¢ = ¢ = ((¢°)°)¢ = (¢°)°. We have

(@) = ing et~ int {e@) - int (@) - v} }

yey TexX

= inf inf — o7 = ) — ()
inf sup inf {c(z,y) - (#,y) +c(&,7) = ¥(@)}
Restricting & to be equal to x, we deduce that ((¢°)°)°(z) < infjey {c(z,7) —¥(9)}
Ve(). Restricting y to be equal to 7, we also deduce that ((¢)¢)¢(x)
infzey {c(z,9) —¥(9)} = ¢°(x). Hence ((¢°)°)° = ¢".

m!V

Example 1.17. Let Y = X and c(x,y) = dx(z,y). Let ¢ : X — {—00}UR non constantly
equal to —oo. Let us check that ¢ is dxy-concave iff it is R-valued and 1-Lipschitz. If ¢
is dx-concave, then, by Lemma 1.16, ¢(x) = inf,eyp{dx(z,y) — &% (y)}. If d(z) < (%)
with ¢(2) > —oo, then choosing (yYn)nen such that ¢(x) = lim, oo{dx(x,yn) — &% (y,)}
and using that ¢(2) < dx(Z,yn) — 0% (yn), we obtain that

P(%) — ¢(r) < hgf_l)gjlf {d;((j:, Yn) — (bdX (Yn) — dx(z,yn) + ¢dx (ZM)} < dx(2,),

so that ¢ is R-valued and 1-Lipschitz. Conversely, ¢**(z) = inf ex{dx(x,y) — ¢(y)} <
dy(z,z) — ¢(x) = —p(x), and if ¢ : X — R is 1-Lipschitz, then

¢ (x) = ;g)f({dx(xa y) = (¢(x) + dx(z,y))} = —¢(x) so that = —¢™.

Since —¢ also is 1-Lipschitz, we deduce that —¢ = —(—¢)%* so that ¢ = (—¢)%** and ¢ is
dx-concave.
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Example 1.18. Let Y = X = R? and c(z,y) = —x.y. Then for ¢ : R? — {—cc} UR,

¢°(y) = inf {—2y — ¢(a)} = — sup {z.y — (=¢(x))} = =(=¢)"(¥).

z€R4

Let us moreover suppose that ¢ is not constantly equal to —oo. With Lemma 1.16, we
deduce that

6 c-concave & ¢ = (6°)° = (—(=)*)° = (=)™

Since —(—@)*™* is upper semi-continuous and concave, ¢ c-concave = ¢ upper Semi-
continuous and concave. Conversely, if ¢ is upper semi-continuous and concave, then
—¢ is lower semi-continuous and convex and, by Fenchel-Moreau duality (see Theorem
1.10), —¢ = (—¢)*™ so that ¢ = (¢°)¢ and ¢ is c-concave.

Example 1.19. Let Y = X = R? and c(z,y) = | — y|>. Let ¢ : R — {—c0} UR. We
set ¢(x) = % — ¢(x) with values in R U {+00}. We have

2 2
o) =2 it {1 - = o)} = - it v+ 600)

o 2 .
= sup (2.~ 0(2)} = () (0)

Therefore ¢¢(y) = g — (¢)*(y) and

07 = it { S = (- 67w} = 2 = sup fo - 07w}

Y

_ =P

-~ (@) (@),

With Lemma 1.16 and Fenchel-Moreau duality (see Theorem 1.10), we conclude that when
¢ 1s not constantly equal to —oo,

¢ c-concave < ¢ = (¢°)° & ¢ = (¢)™ < ¢ lower semi-continuous conver.

Let us now introduce the superdifferentials and the cyclic monotonicity.
Definition 1.20. Letc: X x Y — R.

o Let p: X — {—00} UR (resp. ¥ : Y — {—oc0} UR) be ¢-concave (resp. c-concave).
Its ¢-superdifferential (resp. c-superdifferential) is defined as

o= {(z,y) € X xV: ¢(z) + ¢(y) = c(z,9)}
(resp. 09 = {(z,y) € X x Y1 ¥(x) + ¥(y) = c(z,y)}).
We also set 0°¢(z) = {y € ¥ : ¢(z) + ¢°(y) = c(z,y)} for v € X and OY(y) =
{red: ¢v(z)+u(y) = clz,y)} fory €.

o A subset I' of X x Y is called c-cyclically monotone if for all N € N¥,
(513173/1), e 7(xN7yN) S Fz we have vazl c(xivyi) S sz\il C(xi7yi+1) with conven-
tion yny1 = y1-

o A coupling m € P(X x Y) is called c-cyclically monotone if there exists some c-
cyclically monotone set I' € B(X x V) such that 7([') = 1.
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Example 1.21. Let X =Y =R? ¢(z,y) = —2.y and ¢ : RY — {—00}UR non constantly
equal to —oo be c-concave. By Fxample 1.18, ¢ is upper semi-continuous and concave.
By definition of ¢“(y),
y € 90(x) & ¢°(y) = ~wy — ¢(z) & Inf {~T.y (@)} =~y — ()
& sup {9(7) + .5} = Blx) +y.x & VF €RY, 6(3) < B(x) — y.( — 2)
ZERY
and 0°¢(x) is minus the super-differential of the concave function ¢ at x.

Proposition 1.22. Letc: X x Y — R. The set ' C X x Y s c-cyclically monotone iff
' C 0% for some c-concave function ¢ : X — {—oco} UR.

Proof: To prove the sufficient condition, it is enough to check that if ¢ : X — {—oc0} UR
is ¢-concave, then 9°¢ is c-cyclically monotone. This follows from the fact that for N € N*
and (z1,m1), -, (TN, yn) € ¢,

N N N

D clai ) = 3o(00) + 0 = D {6lw) + 6Tuien)) < Vo) w5 006 <.

i=1 i=1 i=1
To show the necessary condition, we suppose that I" # ) is c-cyclically monotone. We fix
(x0,Y0) € I' and set

N—-1 N
¢(x):1nf{ C\T, YN +ZC xz—i—layz ZC%,% N€N7 (xlayl)f"?(‘r]\/'?yN)eF}‘
1=0 =0

(1.3)

Clearly, ¢ is {—oo} U R-valued. Moreover, we have xy,1 = xo in the constraints of the
minimization problem giving ¢(zy), so that, by c-cyclical monotony of I', the infimum is
taken on non-negative S°0  ¢(ir1, ¥i) — oo c(xi, y;). Hence ¢(zq) > 0. We also set

N-1 N

—¢(y) = inf { ZC<$i+hyi> =D _cxyy): NeN, (z,y1), ,(zn,yn) €T and yy = y}

=0 i=0

under the convention inf() = +oo (the existence of xy € X such that (zy,y) € T is
not guaranteed). Using that c¢(x,y) = c(x,yy) under the constraint yy = y for the
minimization problem for —(y), we get

inf {c(z,y) —¢¥(y)} = ¢(z)
yeY
Hence ¢ = 9)° and, since ¢(xg) > 0, ¢ is {—oc0} U R-valued so that ¢ is é-concave.

To show that ' C 0%, it is enough to check that ¢(x) + ¥ (y) > ¢(x,y) for (z,y) € T
since ¢° = (°)¢ > 1p and ¢ @ ¢° < c. Let (z,y) € I'. There exists a sequence (7, )nen C YV
such that ¢(z) = lim, o {c(z, 7)) — ¥(yn)}. Choosing N € N* and (xy,yn_1) = (2, 7n)
in the minimization problem giving —(y), we get

N-2 N-1

—w(?/) S inf {C($,gn) - C(%,y) + Z c xz+1ay1 Z c xzayz .

=0 1=0
N e N (z1,01), -+, (en—1,yn-1) €T and yn_1 = ﬂn}

= C($a gn) - C(l’, y) - ¢(gn) = —C(l’, y) + {C(l’, gn) - ¢(gn)}
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Taking the limit n — oo in the right-hand side, we conclude that —¢(y) < —c(x,y)+ ¢ ()
ie. ¢(x) +9(y) = c(z,y). n

Remark 1.23. e In (1.3) with x = xg, we get for the choice N = 1 and (x1,y1) =
(20, Yo), using x2 = o,

P(ro) < c(x1,90) + (22, 91) — (0, Yo) — c(x1,91)
= (0, Yo) + (0, o) — c(z0,Y0) — (20, yo) = 0.

Hence ¢(zq) = 0.

e The functions ¢ and ¢° constructed in the proof of Proposition 1.22 may not be
measurable. But when ¢ is measurable and I' € B(X x ), then ¢ and (resp. ¢°) is
universally measurable which means that for any u € P(X) (resp. v € P(Y)), there
exists a Borel function ¢: X = {—o0}UR (resp. ¥ :Y — {—00} UR) such that
¢(z) = d(x), p(dr) a.e. (resp. ¢°(y) =¥ (y), v(dy) a.e.).

Definition 1.24. The support supp(n) of a probability measure n on (Z,B(Z)) is the
smallest closed subset A of Z such that n(A) = 1.

Remark 1.25. This definition makes sense since an arbitrary intersection
of closed subsets remains closed. The complementary supp(n)® of supp(n)
is an open subset such that mn(supp(n)’) = 0. Therefore supp(n) C
{z € Z: 3 O open containing z such that n(O) =0}.  The converse inclusion holds
since when there is an open set O containing z with n(O) = 0 then supp(n) is included
in the closed set O° and therefore z € O C supp(n). Hence

supp(n) ={z € Z: V O open containing z, n(O) > 0} .

Theorem 1.26 (Fundamental Theorem of OT). Let u € P(X), v € P(Y),c: XxY —- R
be continuous and bounded from below and such that ¢ < a ®b for some (a,b) € L'(u) x
LY (v). For m, € I(p,v) the following assertions are equivalent :

(1) m, is optimal for V.(u,v),
(ii) the support of m, is c-cyclically monotone,

(iii) there exists a c-concave function ¢ : X — {—oc} UR such that ¢+ € L*(n) and the
support of w, is included in 0°¢.

Remark 1.27. Under the assumptions, if w, is optimal for V. (m.(dz x V), m (X X dy))
and m € II(p, v) such that supp(mw) C supp(m,), then 7 is optimal for V.(u,v) as soon as
there exists (a,b) € L'(u) x L'(v) such that ¢ < a @ b.

The proof relies on the next lemma.

Lemma 1.28. Let p € P(X), v € P(Y) andc: XxY — R be continuous. If m, € II(u,v)
is such m,(c) = Vo(u,v) < +00, then the support of m, is c-cyclically monotone.
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Proof of Theorem 1.26: By Lemma 1.28, we have (i) = (i7).

For (ii) = (éit), we remark that Proposition 1.22 ensures the existence of a ¢-concave
function ¢ such that supp (m,) C 9°¢. Moreover, the definition (1.3) of ¢ in its proof
together with the inequality ¢ < a @ b ensure that

Vo € X, ¢(x) < c(z,y0) — c(2o,Y0) < alz) + b(yo) — (0, Yo)

so that ¢ € L'(u) since a € L' (u).

To prove (iii) = (i), we are going to check that, under (iii), 7*(c¢) < 7(c) where 7 is
an arbitrary coupling in II(u, ). Note that since ¢ is bounded from below and such that
c < a®bwith (a,b) € L'(u) x L'(v), c € L'(r). By definition of ¢¢, ¢ & ¢° < ¢ so that
¢ @ ¢° is semi-integrable with respect to 7 and 7(¢ ® ¢°) < 7(c). Since supp(7*) C 9%,
we have 7*(c) = 7 (¢ @ ¢°). With the equality

(0 © ¢°) = p(d) + v(¢°) = m(¢ @ ¢°), (1.4)

which seems formally obvious but that we are next going establish rigorously, we conclude
that

T (c) = 7(¢ ® ¢°) = p(¢) + v(¢°) = (¢ ® ¢°) < 7(c).
Let I' = supp(n*) and for z € X, I', = {y € Y : (z,y) € I'}. For (x,y) € 0, we have

)
o(x) + ¢°(y) = ¢(x,y) and therefore ¢(x) > —oo and ¢°(y) > —oco. With I' C 0%, we
deduce that {v € X : 73(I';) > 0} C {x € R: ¢(x) > —oo0}. Therefore

*

p({reR:¢(r) > —oo}) > p({r e X m(ly) > 0}) = /X@(Fm)u(dl’) =7 () = L.

Hence there exists 2y € X such that both ¢(x) and a(xy) belong to R. With the definition
of ¢¢ and the inequality ¢ < a @ b, we deduce that

Yy e, (0°(y)" < (c(zo,y) — ¢(x0)) " < (alzo) + bly) — ¢(x0)) "

Since b € L'(v), we conclude that (¢¢)" € L'(v). In a symmetric way, we obtain that
¢t € L'(p) and deduce that ¢™ @ (¢)" € LY(w). For k € N, (¢ V —k) € L*(p),
(¢¢V —k) € L' (v) and (¢ V —k) @ (¢¢V —k) € L*(r) so that

T (¢t @ () = (0V —k) B (¢°V —k)) =7 (¢* @ (¢)") =7 (¢ V —k) & (¢° V —F))
(@) +v((09)") — u((o VvV —k)) — v((¢°V —k))
(et = (o V —k) +v((¢°)" = (¢°V —k)).

With the monotone convergence theorem, we conclude that
(0T @ (¢)") —m (@ ¢) =7 (0" @ (¢)" — @ ¢)
= lim 7 (67 & ()" — (0 V —k) & (¢° V —k))
= lim {1 (67 = (6V —k)) +v (6" = (¢°V —k))}

= (6" — ¢) + ()" — )
= j(67) — (@) + v((6°)F) — (")
— 7 (6% @ (6)") — u(6) — (o).
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Hence 7 (¢ ® ¢°) = u(¢) + v(¢°) and, since 7, also belongs to II(u,v), 7, (¢ ® ¢°) =
w() + v(¢°) so that (1.4) holds.

Proof of Lemma 1.28: Let us suppose that there exist N > 2 and

(x1,11), +, (zn,yn) € supp(m,) such that Zf;l c(xg,y;) > Zf\il c(x;, yiv1) With yyi1 =
y1. By continuity of ¢ there are open neighbourhoods U; of x; and V; of y; such that

N N
inf Z c(ug,v;) > sup Z c(uiy vip1) with vy = vy.
((“i’vi))lﬁiSNGHzl'Vzl UixV; i=1 ((ui,vi))lgiSNEHf\Ll UixVi =1
(1.5)
Since (x;,y;) € supp(my), by Remark 1.25, m; := 7 (U; x V;) > 0. Let u; and v; denote
the marginals of the probability measure m%_ﬂ* U;xv; and

N

minlgiSN m; 1
71—:71—*‘1‘—5 [1;1'®V1'+1__7T*
N — m;
1=

UiXVi) where VN4l = V1.

Since for each i € {1,--- N}, m, > 7,

U;xV;, We have

N

Ty 2> %Zm

i=1 =1

N .
1 ming <;<n MmM;
>
U;xV; — N — T%|U;xVy;

m;

Uixv; € P(XAXY), € P(XXD).

so that 7 is a non-negative measure. Since p; Qv; 1, %7@
1
The marginals of 7 are

. N 1 N
MZ(M—M):Mandy+w2(%+1—’ﬁ):”’

i=1 i=1

o+

so that 7 € II(u, v). Since

7T(C) < 77*(55)
ming<;<y m; - 3
| MMisicn M ( Sup ZC<UZ'7UZ'+1) - inf C(“i;“i)) )
(

N
N (uiwi))1<i<NENTN, Uix Vi =1 ((uivi))i<i<n €Iz, Uix Vi 524

the inequality (1.5) ensures that m, is not optimal for V.(u,v). By contraposition, we
conclude that supp(m,) is c-cyclically monotone. i

Theorem 1.29 (Stability of OT). Let p € P(X), v € P(Y), ¢: X xY — R be continuous
and bounded from below with ¢ < a ® b for some (a,b) € L'(u) x L*(v). If (7" )pen C
P(X) x P(Y) is a sequence of optimal couplings for Vo(m™(dx x V), n™"(X X dy)) which
converges weakly to m € (p,v), then V.(u,v) = w(c).

Corollary 1.30. If c € Cy(X x ), then V. is continuous on P(X) x P(}).

Proof of Corollary 1.30: By Theorem 1.6, V. is lower semi-continuous. Let (u,v) €
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P(X)xP(Y) and (fin, Vn)nen C P(X) x P(Y) such that p, (resp. v,) converges weakly to
p (resp. v) asn — 0o and limy, o0 Ve(pin, vn) = imsup; 5.0 Ve(it; 7). By Theorem 1.6,
for each n € N, there exists m, € II(p,, v,) optimal for Vo(pin,, v,) i.e. Vo(in, vn) = m(c).
By Lemma 1.7, we may extract a subsequence (7, )ren converging weakly to m € II(u,v)
as k — 0o. Using Theorem 1.29 for the first equality and the lower semi-continuity of V,
for the last inequality, we conclude that

Ve(p,v) =7(c) = lim m,, (c) = Um V.(un,,Vn,) = lmsup V.(i, D)

ko0 k=voo (7)= (1)
> liminf V.(@,7) > Vi(u,v).
(f,2) = ()

The proof of Theorem 1.29 relies on the next lemma

Lemma 1.31. For N € N*, supp(7®") = supp(7)".

Proof of Lemma 1.31: Let (21, -+, 2x) € supp(m)™. Any open neighbourhood B of
(21, -+, 2n) contains a product Hfil B; of open neighbourhoods B; of the z; which, by
Remark 1.25, are such that 7(B;) > 0 since z; € supp(w). Therefore

N(B) > 7N (H B,») = HW(BZ') >0

and supp(m)Y¥ C supp(7®Y). On the other hand, supp(m)" is closed and satisfies
7N (supp(m)N) = (7(supp(w))™ = 1. By definition of the support (see Definition 1.24),

we conclude that supp(7)Y = supp(7®V). [

Proof of Theorem 1.29: For N € N*, (X x V)V > ((z1,11), -, (N, yn)) —

en (i, Yi)1<isn) = Zfil (c(zi, yir1) — c(xs,y:)) (with the usual convention yni1 = y1)
is continuous. The support I',, of 7, is c-cyclically monotone by Lemma 1.28. Hence
'Y c {ey > 0} and

N ({ex 2 03) 2 o (TY) = (ma(Da))™ = 1.

Since {cy > 0} is closed by continuity of ¢y, using the Portmanteau theorem (see Theorem
5.2 4)), we deduce that

N ({ex > 0}) > limsup ™ ({ey > 0}) = 1.

n—oo

The closed set {cy > 0} has full 7Y measure and therefore contains the support of 7®V,
which, by Lemma 1.31, is equal to the product I'V of the support I' of . Hence I is
c-cyclical monotonic and, by Theorem 1.26, 7 is optimal for V,(u, v). | |
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1.6 Brenier’s theorem

Theorem 1.32. Let X = Y = RY, ¢(z,y) = 3|z — y* and p,v € P(R?) be such that
Jga [21Pp(dx) + [u lylPv(dy) < oo and i << X where X denotes the Lebesque measure on
R?. Then there is a unique optimal coupling 7, and it writes

Te(dz, dy) = p(dz)dvy@) (dy)

for some convex function ¢ : R? — R U {+oo} such that p({p < oo}) =
w({p differentiable}) = 1.

Definition 1.33. The domain of a convex function ¢ : R — R U {400} is the convex
set dom(p) = {zr € R?: p(x) < +00}.

The proof of Brenier’s theorem relies on the following properties of convex functions
from R? to R U {+o0}.

Proposition 1.34. Let ¢ : R? — R U {+00} be a convex function and
diff(¢) = {x € int(dom(p)) : ¢ is differentiable at x} .

Then we have

o A(dom(p) \ diff(¢)) =0,

o V(z,y) € diff(¢) x RY, (y) > ¢(z) + Vo(z).(y — x).

Remark 1.35. When z € diff(¢), then x € int(dom(y)) and for each y € RY, (1 — &)z +
ey € dom(yp) when e € [0,1) is small enough. The convezity then ensures that

0%~ (1 <)ple) +e(y) = (1~ &)z + ) = ~ ((2) — pl(1-<)a-+2y) — p(a)+ o(1)

™

and by taking the limit ¢ — 04, we conclude that 0 < —Vo(z).(y — ) — p(z) + ¢(y).
The fact that X (int(dom(p)) \ diff(¢)) = 0 is a standard result of conver analysis (see
for instance Theorem 25.5 [15]). To deduce that A(dom(y) \ diff(¢)) = 0, it is enough to
check that the Lebesgue measure of the boundary of dom(p) is 0 (see for instance Theorem

5.2 [11]).

Proof of Theorem 1.32: Since ¢(z,y) = 3|z — y|* is continuous and bounded from
below, there exists an optimal coupling 7, by Theorem 1.6. Since c(z,y) < |z|*+|y|? and
Jea [21Pp(da) + [ga lylPr(dy) < oo, according to Theorem 1.26, there exists a c-concave
function ¢ such that I' := supp(m,) C 0°. Moreover, ¢ > —oo on

Iy = {r € RY: Iy € R? such that (z,y) € T'}.

Since ' C Ty x R4, 1 = 7, (T") < 7, (Ty x RY) = pu(Ty). By Example 1.19, the function
p(r) = @ — ¢(x) is lower semi-continuous and convex. We are going to check that

T, = p(dr)dve @) (dy). Since this ensures that each optimal coupling is a Monge coupling,
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uniqueness follows from Proposition 1.4. Let # € RY be such that ¢(x) > —oo i.e.
x € dom(yp). We have

€ 0°0(a) & 0lo) + ) = o — o & int, {51~ ol = ) } = 5l o~ 60
S VzeRY p(2) —y.z > p(z) —yo < Ve e R o(2) > o(x) +y.(2 — ).

When z € diff(¢), then for w € R%, limy, o4 (p(z + hw) — ¢(z)) = Ve(z).w and we
deduce that
y € 0°(r) = Yw € RY, Vo(r)w > yw =y = Vo(r).

Hence for z € diff(y), 0°¢(x) C {Ve(z)}. In view of the previous equivalence and the
last assertion in Proposition 1.34, we even have

Ve € diff (@), 0°%(x) = {Ve(z)}. (1.6)
Since diff(¢) C dom(y), we have
R\ diff(p) € {R\ dom(ip)} U {dom(p) \ diff(¢)}.

By Proposition 1.34, A ({dom(y) \ diff(¢)}) = 0 so that p ({dom(y) \ diff(¢)}) = 0 since
p << A Since {R?\ dom(yp)} = {¢ = —oo} C R?\ I'y, u(R?\ dom(p)) = 0 and
therefore p(R?\ diff(¢)) = 0. Hence m,(dz,dy), x € diff(p). Since supp(m,) C 3¢,
m(dz,dy) a.e., y € 0°(x). With (1.6), we conclude that m,(dz,dy) a.e., y = Vip(z) ie.

7'('*(de‘, dy) = M(dw)(;Vgo(r (dy)

1.7 The Wasserstein distance

1.7.1 General case

Let ¢ > 1,
P,(X) = {77 e P(X): dxg € X, / (o, x)n(de) < } ,

1/p
and for p, v € P,(X), W,(p,v) = ( inf / d% (z,y)m(de, dy)) :
AxX

mell(p,v)

Since, by the triangle and Jensen inequalities, d% (1, z) < 2°71 (dp (21, 0) + d5%(x0, x)) for
xo,xl,x G X, [y d5 (w0, 2)n(dz) < 00 & ‘v’xl € X, [ _pdi(r,z)n(dr) < co. There-
fore P,(X) = {77 €P(X): Voo e X, [, d5(zo,x)n(dx) < co}. Moreover, df(z,y) <
201 (dp (a: xg) + df (xo,y)) implies that W (,u, v) < oo for p,v € P,(X).

Moreover, since X x X 3 (z,y) — dX(x,y) is bounded from below by 0 and 1-Lipshitz
and therefore lower semi-continuous, according to Theorem 1.6,

Y. € Py(), 3m € W), Wonw) = | dieyimildody) (L7
XXX
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When 1 < p < p, by Jensen’s inequality, we deduce that for p, v € P,(X),

1/p ; 1/p
W (1, ) = ( / d@(x,y>w*<dx,dy>) > ( / dg<x,y>w*<dx,dy>) > W)
XXX XXX
(1.8)
Theorem 1.36. For p > 1, W, is a metric on P,(X).

Proof: Since the image of m € TI(u,v) by X x X 3 (z,y) — (y,2) € X x X belongs to
(v, ), W, is symmetric : W,(u,v) = W,(v, ).

Since for the identity function iy introduced in Remark 1.2, (ix,ix)#u € (u, p), we
have W, (p, 1) < [, |z — z|Pu(dx) = 0. If conversely W,(u,v) = 0, then the optimal cou-
pling m, € II(p, v) given by (1.7) is such that dx(z,y) = 0 and therefore x = y, m.(dz, dy)
a.e.. Therefore, the image v of m, by X x X 5 (x,y) — y € & is equal to its image u by
AXxX3(v,y) »rel.

Let p,v,i € P,(X). By (1.7), there exist m € II(u,v) optimal for W,(u,v)
and 7(dy,dz) = v(dy)m,(dz) € II(v,fr) optimal for W,(u,v).  The coupling
fye » Ty(dZ)m(dx, dy) belongs to II(x, fi). Therefore, using the Minkowski inequality for
the second inequality, we have

el B) < ( | (o) + dely. 2 7y (dn)mld, dy)> v

) (/X dmyﬁy(d@ﬂ(d%’d”y/p " (/X dgf(y,iz)ﬁy(di)ﬂ(dx,dy))l/p

= (/X2 dﬁg(x,y)w(dx,dy)y/p + (/XZ dgf@?f)ﬁy(d:%)y(dy))l/p
= W, (11, v) + W, (v, ).

Proposition 1.37.
Vp,v € Pi(X), Wi(p,v) = sup {u(f) —v(f)}

f:X—R 1—Lipschitz

Proof: Let f : X — R be 1-Lipschitz. For z,y € X, fo f(x,y) = f(x)— f(y) < dx(z,).
Therefore,

V€ I, v), {u(f) —v(f)} =n(f e f) <m(c),
so that supp.x gk 1-Lipsehitz {#(f) — ¥(f)} < Wi(p,v). By (1.7), there exist . € Iy, v)
optimal for W (i, v). Since dy(z,y) < dx(z, xo)+dx(z0, y) with dx(zo, ) € L' (n)NL (v),
by the fundamental theorem of Optimal Transport (see Theorem 1.26), there exists ¢ :
X — {—00} UR dy-concave such that supp(r,) € 9% ¢ i.e. . (dv,dy) ae., dy(x,y) =
é(x) + ¢% (y). In particular ¢(x) > —oo for some z € X and, by Example 1.17, ¢ is
R-valued and 1-Lipschitz and ¢ = —¢. Therefore,
Wi(p,v) = m(c) = 1@ © ¢) = u(9) —v(¢) < sup  {u(f) —v(f)}-

f:X—R 1—Lipschitz
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Definition 1.38. We say that a sequence (fin)nen C P,(X) converges to p € P,(X) in

P,(X) and denote i, M) W when p, converges weakly to p as n — oo and

dzg € X, hm/ Lo (o, @ )/Ln(dl“):/ d% (o, v)p(dx).
zeX

Example 1.39. Let (X;);>1 be Re-valued random variables i.i.d. according to some el-
ement of Po(RY) and X, = %Z?:l X; for n € N*. By the central limit theorem, the
distribution , of \/n(X, — E[X1]) converges weakly to G ~ Ny(0,Cov(X1)), where
Cov(X,) € R¥4 denotes the covariance matriz of X1. Since

E[lvn(X, — E[Xi])]’] = ntr (Cov(X,,)) = tr (Cov(X1)) = E[|G[],

we have that un Nd(O Cov(X1)). In view of Proposition 1.41 below, we deduce that
Vf:RY = R continuous s.t. sup 1f(|$)||2 < oo, lim E [f(v/n(X, — E[X1]))] = E[f(G)].
z€ERI x n—00

Theorem 1.40. For p > 1, the metric W, metricizes the convergence in P,(X).

Proof of Theorem 1.40: Let (u,)nen C P(X) and € P(X). By (1.8) and Proposition

1.37,
W, (ks 1) = Wi (pn, v) > sup {1n(f) — n(f)}-
f:x—R 1-Lipschitz bounded by 1
With Theorem 5.2 3), we deduce that lim, oo W,(ttn,r) = 0 implies that pu,

converges weakly to g as m — oo. Moreover, since by the triangle inequality
W, (1, 025) — Wty 03 )| < Wo(ptn, ), it also implies that

[ o)) = Welion ) "5 Wi 6) = [ il o).
reX reX

Conversely, let us suppose that pu, converges weakly to u  and
lim,, o fxeé’( (o, ¥)pn(dz) = xedev(:L’o,x)u(da:). By Proposition 5.4, there ex-
ist X,, ~ p, and X ~ p such that lim, ,o, X, = X a.s. and lim,_, E[d% (20, X,,)] =
E[d%, (9, X)]. Since 0 < 207Y(d% (w0, X) + d5 (0, X)) — d% (X, X)) =3 20d%, (20, X) aus.,

by Fatou Lemma, we get

2°E[d4 (o, X)] < liminf E [2°7"(d% (z0, X) + d5 (30, X)) — d (X, Xon)]

n—oo

= 2PE[d% (zo, X)] — limsup E [d% (X, X,,)] .

n—oo

Since W0 (g, p) < E[d5 (X, X,)], we conclude that

lim sup W/ (g, pr) < limsup E [d (X, X,,)] = 0.

n—oo n—oo
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Proposition 1.41. The convergence i, %) W 1s equivalent to
Vi€ Cp(X), lim pn(f) = u(f),

where C,(X) denotes the set of functions f : X — R continuous such that

|/ ()]
SUPgzex 1+dp (z0,) < 0.

Proof: The sufficient condition is clear since sup,¢y Hyp(—alm) < 0o when f is bounded

and when f(z) = d%(zo,z) which is a continuous function.

To prove the necessary condition, we set v, = d%(zo, )#u, and v = d% (o, )#u
which are probability measures on R, such that v, converges weakly to v and
limy, o0 Jp 20 (d) = [ av(d).

By Lemmas 1.42 and 1.43 below we have that for U ~ U[0, 1], hm7HOO
a.s. and lim, o E[F, 1(U)] = E[Fy_l(U)]. Since (F,;'(U) — F,*(U)
Lebesgue’s theorem, lim,, o E[(F, 1 (U) — F, '(U))*] = 0. Since

v

W(U) = F(U)

Fyn v
)t < E7NU), by

[FHU) = FHO) = 2(F1(U) = FHU)T + FHU) = FYD),

v Un v

we deduce that lim,, ., E [|F;1(U) — FV_nl(U)H =0. Since for k e N, Ry — (|y| — k)t
is 1-Lipschitz,

sup [E[(|E,H(U)] = &)*] = E[(|F,H(U)] = k)T

<supE HIENO) = k)T = (1F(O) = k)] <E[IFN(U) - F,HU)]] == 0.

For € > 0, we may thus choose n. € N such that

_ £
sup sup [E[(|F, ' (U)] = k)] = E[(|F,/(U)| = B)"]| < 5
n>ne kEN
Since by Lebesgue’s theorem, limy o, E[(|F, 1 (U)| — k)] = 0, we may choose k,. € N
such that supys,, E[(|F, ' (U)] — k)] < § and therefore

sup sup E[(|F, " (U)| - k)*] <

£
k>kn, n>ne 2

On the other hand, for n € {0,---,n. — 1}, since by Lebesgue’s theorem,
limy e E[(| ;' (U)| — k)*] = 0, we may choose k, € N such that sup,-,, E[(|F,(U)| -
k)] < e. We then have SUDys max ko, Jon.) SUPnen E[(|F, (U)] = k)] < € and deduce that

lim sup E[(|F, "(U)| — k)*] =0
k—00 peN
Let now f € C,(X), C = SupxeXHyp(—(x)(')m) Xy ~ iy, X ~ pand fy(z) = (=C(1+k))V

)
f(@)AN(C(1+k)), for k € N. We have |f(X,)] < C(1+d%(xo, X)) and (| f(X,,)|—C(1+
k)Nt < C(d5%(zo, X)) — k)™ and therefore

sup B[(|/(X2) — C(1+ )] < Coup B[} )] = k)] =

neN neN
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Since |f(z) — fr(z)| < (|f(z)] — C(1 + k))T, we deduce that

sup |[E[f(X,)] — E[fu(X,)]] =3 0.

neN

Moreover, by Lebesgue’s theorem, limy_,o, E[fx(X)] = E[f(X)]. We deduce that for € > 0,
we may choose k. such that

sup B[ (X,)] — E[fe. (X,)]] < 5 and [E[f(X)] - E[fu. (X)]| <

neN

€
3
Since fg. is continuous and bounded, the weak convergence of p, to p ensures that

limy, o0 E[f3. (X0n)] = E[fi.(X)] so that In. € N, sup,,>, [E[f.(Xn)] — E[fi. (X)]| < 5.
We conclude that

vn > n., |E[f(X,)] — E[f(X)]| < [E[f(Xn)] — E[fe. (X)]] + |E[fr. (Xn)] — E[fe. (X)]]
+ |Elfi (X)] —E[f (X))l < = +

1.7.2 The real line case

We denote by F,(z) = n((—o0,z]), € R and F;'(u) = inf{z € R : F(z) > u}, u €
(0,1) the cumulative distribution function and the quantile function of a probability mea-
sure 77 € P(R). Let us recall the inverse sampling transform.

Lemma 1.42.
V(u,z) € (0,1) xR, F, ' (u) <z u < F(x).

Moreover, for U ~U[0,1], Fy ' (U) ~ 1.

Proof: The cumulative distribution function £}, is right-continuous and non-decreasing
and, by definition of " (u), we have Vo > F,"'(u), F,(z) > u. Therefore F)(F, ' (u)) > u.
As a consequence, with the monotonicity of F,, we obtain

Fn’l(u) <z= Fn(Fgl(u)) < Fy(z) = u < Fy(x).

Conversely, u < F,(x) = F;'(u) < x, by definition of ;" (u).
The equivalence implies that for U ~ U[0,1], P(F, 1 (U) < z) =P(U < F,(z)) = F,(z)

n
so that £~ 1(U) has the cumulative distribution function F), and therefore is distributed

according to 7. [ |

Lemma 1.43. Let (u,)nen be a sequence in P(R) which converges weakly to 1 as n — oc.
Then, for each continuity point u of F/* in (0,1), we have lim,_ o F, ' (u) = F ' (u).
In particular, for U ~U[0,1], F 1(U) converges a.s. to F,;'(U) as n — oo.
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Proof: Since the function F; ! is non-decreasing on (0, 1), it has at most countably many
discontinuity points in (0, 1). Therefore the second assertion is a consequence of the first.

By definition of F;! we have
Vu € (0,1), Vo < F, ' (u), Fu(z) < u. (1.9)

Moreover, F,(F;'(u)) > wu by definition of F,' and right-continuity of F,. If
Fu(Fu_l(u)) > u then Vo > Fu_l(u), F.(z) > F“(Fu_l(u)) > u. If F (F Y(u )) = u
and there exists some z > F,*(u) with F},(z) = u, then for each v € (u, 1) Fl(v) > x>

n
F.'(u) and F), is not right-continuous at u. We deduce that
Vu € (0,1), F, ' right-continuous at u = V& > F, ' (u), Fj(z) > u. (1.10)

Let u € (0,1) be a continuity point of F~ 1. Since the non-decreasing function F), has at
most countably many discontinuity points on R, for & € N* there exists ¢ € (0, %] such
that F), is continuous both at F,*(u) — x and F,*(u) + & so that, by Theorem 5.2 8),

lim Fun(Fu_l(u) —ep) = FM(F_l(u) —¢k) and lim Fun(Fu_l(u) +ep) = FM(Fu_l(u) +ex).
n—oo n—oo

w

Moreover, by (1.9), F,(F;'(u) — &) < u and by (1.10), F,,(F, " (u) 4+ ex) > u. We deduce
the existence of Ny < oo such that for n > Ny, F, (F, ' (u) —&x) < u < F,, (F, " (u) +¢c)
so that, by definition of F,'(u),

Vn > Ny, Fol(u) —

N (u)—5k<F;@l(u)gFljl(u)—i-eng;l(u)—i—

1
k;
FoNu) = F (u). i

We conclude that lim,, o
Proposition 1.44 (Hoeffding-Fréchet bounds). Let u,v € P(R) and m € II(p,v). Then

Vo,y €R, (F,(z)+ F,(y) — 1)" <7 ((—o00,2] X (—00,y]) < F,(z) A F,(y),

with the upper bound attained for the comonotonous coupling m = L(F,; Yo, FHU))
where U ~ U[0,1] and the lower bound for the anti- comonotonous couplmg ™
LFSU),FH(L-T)).

I

Proof: The function Fr(z,y) = 7 ((—o0, x| X (—00,y]) is non-decreasing in each of its
variables. Therefore

Fr(z,y) < Fr(z,+00) A Fr(400,y) = F,(x) A F,(y).
On the other hand,
(2, +00) X (y, +00)) = Fr(2,y) — Fr(x, +00) — Fr(+00,y) + Fr (400, +00),
which implies Fr(x,y) > Fr(x, +00) + Fr(4+00,y) — Fr(+00,+00) = F,(z) + F,(y) — 1.
(y) —1

Therefore Fy(z,y) > (F,(z) + F, )*. Finally, by Lemma 1.42, we have
P(F,'(U) <z, F,"(U) <y) =P(U < Fu(x),U < F,(y))
=P(U < Fu(x) N, (y)) = Fu(x) A F,(y) and
P(F,'(U) <@, F, (1-U) <y) =P(U < Fu(2),1 - U < F,(y))
=P(U < Fu(2),U 2 1= F,(y)) = (Fu(z) + F,(y) - 1)
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Proposition 1.45. Let p > 1.
1 1/p
Vi, v e Py(R), W,(u,v) = (/ \Fu_l(u) — F;l(u)\pdu) :
u=0

The proof relies on the next lemma.

Lemma 1.46. Let p > 1, p,v € P,(R) and m € II(p,v). Then

/R o=yl (r(de, dy)—u(de)v(dy) = plp—1) | |z=w]" (Fu()Fylw) = Fe(z,w)) dzduw.

RQ

Proof of Proposition 1.45:  According to Lemma 1.46, to minimize (resp. max-
imize) [po |x — y|Pw(dz,dy) over II(p,v), it is enough to choose 7 which maximizes

(resp. minimizes) Fy, i.e. 7 equal to the comonotonous coupling L(F,'(U), F, ' (U))
(resp. anti-comonotonous coupling L(F,'(U), F,/'(1 — U))) by Proposition 1.44. For
7 =L(ENU),E 1 (U)), we have

14

[ o= sprtde.dn) =B IFO) = O] = [ 1R w0 - B @

Remark 1.47. Since the two-dimensional cumulative distribution function F, character-
1zes the coupling m, the comonotonous coupling is the unique optimal coupling.

Proof of Lemma 1.46: The function R? 3 (z,w) — |z—w/|” is continuously differntiable
with 0]z — w|” = p(1iswy — Lws2y)|z — w|P~t. Moreover, R? 5 (z,w) — 0.|z — w|? is
differentiable on R?\ {(z,w) € R?: z = w} with 9% |z —w|’ = —p(p — 1)z — w|*~2. We
deduce that

w2

Vwy, wy € R, 0]z — ws|” — 0.]z — wi]” = —p(p — 1)/ |2 — w|’dw.

w=w1

As a consequence, for all z,y, 2,7 € R,

z g
o= g e ol = o=y~ e =g = —plo=1) [ [ |z upduds

w=y

=—plp—1) /2(1{:1:<z} — La<n) (Liy<wy — Lg<wy)|z — w|P 2dwdz
R
=plp—1) /2 (T gy + La<ay Ly<w) — La<ay<w) — La<agewy) 12 — w|~dwdz.
R
(1.11)

The equality between the second and last expressions ensures that the function R? >
(z,w) — (1{359}1{@3“)} + Lia<a liy<w) — l{a<zy<w} — 1{5;9,%,”}) has constant sign equal
to that of (z — %)(y — y). Therefore

plp—1) /2 | Le<a Lig<w) + La<ay liy<u) — Lazey<uw) — La<egew| 12 — w|’?dwdz
R

=17 =gl + e —yl" = |2 =yl = [z = gI°| <27 (|«]” + [y|” + [2]7 + [9]),
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where the right-hand side and thus each expression is integrable with respect to
m(dx,dy)m(dz,dy) for m € II(p,v). This permits to use Fubini’s theorem to check that
the integral of the right-hand side of (1.11) is equal to

2p(p—1) /]R? |2 — w|P2(Fu(2) F,(w) — Fr(z,w))dzdw.

Since the integral of the left-hand side of (1.11) is equal to 2 [g, [x — y|*(7(dz, dy) —
wu(dx)v(dy)), we conclude that the statement holds. i

Corollary 1.48.

Vv € Pu(R), Wi (jn,v) = /:0 F () — Fy (u)]du = / IF\(z) — F(2)|de.

z€R

Remark 1.49. The comonotonous coupling is optimal for Wy but there may also exist
other optimal couplings. For instance, if there exists a € R such that F,(a) = 1 and
F,(a) =0, then for each m € I(u,v),

7 ((a,+00) x R) = pu((a,+0)) =1—F,(a) =0=F,(a) =7 (R x (—00,qa]).

As a consequence, T ((—o0,a] X [a,+00)) =1 so that

[ e virtanan = [ @tz = [anan)~ [ i

does not depend on m € II(p, v).

Proof: By Lemma 1.42, F, ' (u) <z < F;'(u) & F,(z) <u < Fy(z) and F, ' (u) <2 <

F N u) & Fu(r) <u < F,(x). With Fubini’s theorem, we deduce that

1 1
—1 —1
/uO |F,u ('U,) - FI/ ('LL)|d'LL = /uO /@%R 1{Fﬁ(u)§a§<Fy_1(u)} + 1{F,}(u)§z<Fﬂ_1(u)}dxdu
1
= / / Lp, (2)<u<Fu(2)} T 1{F.(0)<u<p, @) duds
x€ER Ju=0

_ /GR \F(z) — F,(z)|da.

For n € N, let i, and v, denote the respective images of p and v by R 3 z +— (—n)VxAn.
We have F ! (u) = (—=n)VF, ' (u)An and F, ' (u) = (=n)VF,; ! (u) An so that, by monotone
convergence, fulzo |F N (u) = F,(u)|du converges to ful:o |F N (u) — F (u)|du as no— oc.
We have Wi (i, 1) < [o_o [Ft(u) = Fw)ldu = [0 1ot jom (1F ()] = n)du,
where the right-hand side goes to 0 when n — oo by Lebesgue’s theorem. In the same
way lim, oo Wi (v, v) = 0. By the triangle inequality, we deduce that

n—oo

Wi, v) = Wi, va)| < Wi, 1) + Wi(ve,v) — 0.

Therefore, to prove that Wi (u,v) = ful:() |F7H(u) — F7 ' (u)|du, it is enough to check that
the same equality holds with (u,v) replaced by (fin, v,). Let m, € II(pn, v,) be optimal

for Wi (pen, ). By Proposition 1.45,

1
Vp > 1, / |x — y|Pm,(dx, dy) > / |Fu_nl(u) — F,;Ll(u)|pdu.
R2 u=0
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The fact that |F, ! (u) — F, ' (u)| < 2n and |z —y| < 2n, m,(dz, dy) a.e., permits to apply
Lebesgue’s theorem to take the limit p — 1 in the inequality to conclude that

1
Wit ) = / & — ylma(de, dy) > / F () — Fo w)ldu > Wi (jtn, 1),
R2 u=0

1.7.3 Quadratic Wasserstein distance between Gaussian distri-
butions

Let S, (d) denote the set of symmetric positive semi-definite d x d matrices i.e. the set
of covariance matrices of d-dimensional square integrable random vectors. For ¥ € S, (d)
we denote by ¥'/2 the only element of S, (d) such that ©/2%Y/2 = ¥ i.e. the symmetric
square root of 3. When ¥ is non singular, we also denote by £~'/2 the inverse of £/2. For
m € RY Y € S.(d) let finally Ny(u,Y) denote the d-dimensional Gaussian distribution
with expectation m and covariance matrix .

Proposition 1.50.
W3 (Na(my, S), Na(my, £,)) = [my, — my|* + tr (8, + 5, — 2(8/25,81/%)12)

Remark 1.51. Since ¥, and ¥, play symmetric roles, we have tr ((2,1/22,,2,1/2)1/2) =
/25 x1/2
tr (22,12,

Let us denote by m, € R? and %, € 8, (d) the expectation and the covariance matrix

of n € Po(R%). For p,v € Po(R?) and 7 € M (u,v) C Po(R?*), we have m, = ( My )

m,
and ¥, = ( géﬁ ;)” ) for some ©, € R™? such that ¥, € S;(2d). Moreover, by bias

variance decomposition,
R
R4 xR4

+/ (’m_mﬂ‘2+’y_mu‘z_z(x_mu>'(y_mu)) W(dl’,dy)
R x R4
=m, —m, > +tr(X, + 5, — 20,).
Therefore
Wi (p,v) = |my, —my|* +tr(X,) + tr(X,) —2 sup  tr(0,).

mell(p,v)

The specificity of the Gaussian case pu Na(my,2,) and v = Nyg(m,,X,)

is that any © € R4 such that ST 2? ) € S.(2d) is attainable by the
Gaussian coupling Ny (( :}L" ) ,( )) As a consequence, to explicit

W3 (Na(my, 3,), Na(my,, $,)), it is enough to maximize tr(©) over such matrices ©.
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This was done in [14, 9, 10].

To prove Proposition 1.50, we are rather going to use the approach with more prob-
abilistic insight about correlation matrices introduced in [3]. Let C(d) = {C € S,(d) :
Vi € {1,---,d},C; = 1} denote the set of correlation matrices of d-dimensional square
integrable random vectors.

We say that the correlation matrix C' is associated with the covariance matrix X if

Eij = \/EMEJJCZ] for all Z,j € {1, N d} i.e.
¥ = dg(%)/*Cdg(2)"?

where dg(X) denotes the diagonal matrix with diagonal entries equal to those of X.

Note that denoting by D the diagonal matrix with diagonal entries D;; = 1{2ii>0}2i;1/ 2
for i € {1,--- ,d}, the correlation matrix DX D is associated with ¥ and, when ¥ is non
singular so that D = dg(X)~!/2, this is the only correlation matrix associated with ¥. Let
O(d) denote the set of d x d orthogonal matrices i.e. O(d) = {U € R™?: UUT = I,}.

The proof of Proposition 1.50 relies on the next lemma.

Lemma 1.52. For X,,%, € S;(d), there exists U € O(d) such that US,UT and UX,UT
share the same correlation matriz C.

Proof of Proposition 1.50: According to the above discussion, it is enough to check
that V(X,,X,) defined by

V(X,%,) = sup tr(©)
@eRdXd:( g% © )ES+(2d)

is equal to tr ((E}/QZVE}/?)UQ).

. U, Ut veuvt \ (U 0 2
For U € (’)(d), simce ( Ueryr UEZ,UT ) - ( 0O U ) ( ©

€S

o\N/U 0\
> 0 U ’
S O cson e ((USU USUT N (g on)
el 3, + vetur ux,UuT + ’
and, by the cyclicity of the trace, tr(UOUT) = tr(UTUO) = tr(0©). Therefore

YU € O(d), V(2,,%,) =V{US, U, UL, UT). (1.12)

We now use Lemma 1.52 to choose U € O(d) such that iu = UX,U"T and S, =U%,UT
share the correlation matrix C i.e.

5, = dg(2,)Y2Cdg(2,)"? and %, = dg(3,)2Cdg(S,) 2. (1.13)
For © € R¥? such that (g; gy) € S:(2d) and 4,5 € {1,---,d}, we have

< <%)M (gz; > € S:+(2) and therefore ©F; < (iu)“(iy)” We deduce that
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This inequality turns out to be an equality since © = dg(3,)"/2Cdg(%,)"/? attains the

_ . S \1/2
upper-bound and is such that < ST g > = (dg(Zu)l/z,dg(Eyﬁm) C < jig%jgl/Z ) €

S, (2d).

When ¥, is non singular, the matrix i}/zdg(iy)1/2dg(iu)*1/2§2/2 is equal to
ZL/2dg(Eu)_1/2dg(Eu)1/22,1/2 and therefore symmetric. Moreover, using (1.13) for the
second and third equalities, we have
SR a(5)1 e (5,) VS g ) (5, 25

= £)/2dg(%,)'2dg(E,) 7 *E,dg(E,) 2 dg(R,) PR = £dg(8,) *Cdg(,) 82
_ s S

Therefore, when >, is non singular, (iiﬂiuill/?)lﬁ = i,i/zdg(i )1/2dg(2 1/2)2,1/2 SO
that, by cyclicity of the trace,

d
tr (SFPES2)12) = tr (4g(S)2dg(S,) 7 25) = D0/ CiEaa
Replacing (£,,%,) by
((dg(2)'"? +ela)((1 = £)C + ela)(dg(8) " + ela), dg(%,)*((1 - £)C + £14)dg(%,)'?)

with € > 0 in this equality and using the continuity of the symmetric square root and of
the trace to take the limit ¢ — 0, we conclude with (1.12) that even when X, is singular,

((21/22 21/2 1/2) Z / )i (E)an ( ) —V(Z,.5).

For ¥ € S (d), (UXY2UT)(USY2UT) = USUT so that (UXUT)Y2 = UXY2UT. There-

fore,
=10 1o\ Y2 1/2 1/2
1/2 1/2 1/271T Trrs1/277T 1/2 1/2 T
(EmE) " = (syrutus,utusyfun) Y = o (sl s T
so that, by the cyclicity of the trace,

tr (SRS = tr (U(S25,3)/2) 207) =t (S5, 5))12)

Proof of Lemma 1.52: Let us first suppose that ¥, is non singular. We obtain U
by diagonalization of the matrix Sy (S5 *S, 5 %) V25,? which belongs to S, (d), i.e.
we choose U € O(d) such that US, (/5,525 *UT = D for some diagonal
matrix D with positive diagonal coefficients.

Note that for ¥ € S, (d), (USY2UT)(ULY2UT) = ULUT so that (USUT)Y?2 = yx/2u”T
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and, in the same way, (UXUT)"1/2 = UL~Y2U" when ¥ is moreover invertible. Setting
¥, =U3,U" and X, = UL, UT, we deduce that

(iiﬂiyitm) 1/2 _ (Uzl/QUTUEUUTUEI/QUT)1/2 —U (EL/QEVEL/Q)UQ UT
— UEl/QUTDUEI/QUT 21/2D21/2

i;ﬂiyi;ﬂ:(z;/?zyz;ﬂ)/ (z;/?zyz;ﬂ)/ _ S12pSIESI2 DS,

By multiplying the last equality to the left and to the right by E 1/2 , We con-
clude that ¥, = DZ D. Therefore 3, and Zu share the correlatlon matrix C' =

dg(iu)*lﬂiudg( w)” 112 where dg(X u) denotes the diagonal matrix with diagonal en-

tries equal to those of ¥,. When ¥, is singular, we choose a sequence (&, )nen of positive
numbers converging to 0 as n — co. By the previous case, for each n € N, there exists

(U, Cp) € O(d) x C(d) such that
Un(Sy + enl)UT = dg (Un(Sy + enI)UT) ' Crdg (Un(S, + enI)UT) 2
and U, %, U7 = dg (U,%,U7)"* C,dg (U,,U7)"*.
By compactness of the sets O(d) and C(d), we can extract from (U, Cy,)nen a subsequence

converging to (U,C) € O(d) x C(d) which does the job by taking the limit in the two
previous equalities. |



Chapter 2

Weak optimal transport

Let & and Y be two Polish spaces with respective metrics dy and dy and p € P(X),v €
P(Y). For n(dx,dy) = p(dz)m.(dy) € (p,v) and ¢ : X x Y — RU {400} bounded from
below, we have

w0 = [ ceapriandn = [ ( / c<m,y>m<dy>) ) = [ Clomutan)

where C(z,p) = [, c(z,y)p(dy) for (z,p) € X x P(Y). Weak Optimal transport is a
generalization of Optimal Transport concerned with cost functions C' : X x P(Y) —
R U {+00} :
Ve(u,v) = inf C(z, m) p(d).
mell(p,v) J

The Martingale Optimal Transport problem considered in Chapter 3 and the Entropic
Optimal Transport problem considered in Chapter 4 are particular cases of WOT. The
MOT problem is restricted to the case X = ) = R¢ and relies on the next definition.

Definition 2.1. o Letp= fRd xp(dx) denote the mean of a probability measure p €
P1(RY).

o For p,v € Pi(RY), a coupling m € M(p,v) is called a martingale coupling if u(dz)
a.e., Ty, = .

e The set of martingale couplings between p and v is denoted by Iy (1, v).

Since v = [, Typu(dx), anecessary condition for Iy (p1, v) # 0 is 7 = [i. Strassen’s theo-
rem (see Theorem 2.16 below) gives a necessary and sufficient condition for Iy, (p, v) # 0.
For ¢ : R? x R? — R U {+00}, measurable the value function of the martingale optimal
transport problem is

VM(u,v)= inf 7(c).

mellpr (p,7y)

Let C': R x P;(RY) be defined by

+00 otherwise

Cla.p) - {fw el (dy) if 7 = =

When ¢ is bounded from below, so that the use of Fubini’s theorem is justified, we have
VM(u,v) = Vo(u, v), which shows that MOT is a particular case of WOT. Let ¢ be lower

31
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semi-continuous and bounded from below. Then C' is bounded from below by the same
constant. Moreover, for € R%, p, ¢ € P, (R?) and a € (0,1), C(z,ap + (1 — aq) is equal
to

o +00 if ap+ (1 —aq) # x and, then, p # x or ¢ # z, so that aC(z,p) + (1 —
a)C(z,q) = +o0,

o [rac(z,y)(ap+ (1 —aq))(dy) < aC(z,p)+ (1 —a)C(z,q) otherwise.

We deduce that C' is convex in its measure (second) argument. Since {(x,p) € R¢ x
Pi(R?) : p # x} is open, it is enough to check that RY x Py (RY) 3 (z,p) — [pa c(z, y)p(dy)
is lower semi-continuous to conclude that so is C'. The case when c is constant equal to 400
is clear. Otherwise, by Lemma 1.13, ¢ is the non-decreasing limit of n-Lipschitz functions
¢, bounded from below by the same constant as c¢. Using the inequality (2.3) below with
X =Y =R?and f = ¢,, we obtain that R* x Pi(R?) 5 (z,p) — [puca(z, y)p(dy) is
continuous. By monotone convergence, R x P1(RY) 5 (z,p) — [pac(z,y)p(dy) is the
supremum of these continuous functions and it is thus lower semi-continuous.

The EOT problem writes
Veelp,v) = _inf (7(c) +eH(n|p @ v)),

WGH(MW«U)

where ¢ : X x Y — R is a cost function, ¢ > 0, u ® v(dz,dy) = p(dz)v(dy) and, for tow
probability measure 7,7 on the the same measurable set (Z,B(Z)),

[,In (%(z)) n(dz) if n << 7

+00 otherwise

H(nly) = {

If 7 € II(p,v) satisfies 7 << p ® v then writing 7(dz,dy) = u(dzr)m.(dy), we have

djg,,(%y) = %“”(y) so that

H(r|lp®v) :/

X

o (%) mlanntan) = [ Hmpoyutas).

Therefore V. . (u,v) = Ve (u, v) with

C(x,p)z/yC(w,y)p(dy)JreH(pIV)

The function P(Y) x P(Y) € (p,v) — H(p|v) is non-negative by (4.1) and jointly lower-
semi continuous and convex according to Lemma 4.2.

2.1 Properties of Weak Optimal Transport

Let p>1,C: X xP,(Y) = RU {+00} be lower semi-continuous bounded from below
and convex in the measure (i.e. second) argument. We set

V(p,v) € Pp(X) x Pp(V), Vol(u,v) = inf [ Clz,m)u(dr).
m€ll(w,v) Jx
The convexity in the measure argument is needed because of the lack of continuity of
P(X x V) > n(dz,dy) = p(dx)m,(dy) — (7z)zex. We want to prove the following main
results.
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Theorem 2.2. Let p > 1, C: X X P,(Y) — RU{+o0} be lower semi-continuous bounded
from below and convex in the measure argument Then for all (p,v) € P(X) x P,(Y),
there exists 7 € II(p,v) such that Vo(u,v) = [, C( w(dzx). Moreover, the function
Ve is lower semi-continuous on P,(X) x 77 () cmd convex in its second argument.

Definition 2.3. o Let M,(Y) denote the set of functions f : Y — R measurable and
such that sup,cy ng(—aty) < 0o where yg is any element of Y. Let C,(Y) denote the
y b
subset of M ,()) which consists in continuous functions.

o For C: X xP,(Y) = RU{+oc} and v € M,(Y), we define ¢ : X — RU{+o0}
by ¥°(2) = infyep, ) {C(w, p) — p(¥)}.

o Let CH(Y) ={v € C,(Y) : ¢ is bounded from above}.
Note that when C'is bounded from below and ¢ € C)(¥), then ¢¢ is bounded from

below and therefore semi-integrable with respect to u € P(X). The following dual for-
mulation is the second main result.

Theorem 2.4. Let p > 1, C: X X P,(Y) — RU{+00} be lower semi-continuous bounded
from below and convez in the measure argument. Then for (u,v) € P,(X) x P,(Y),

Vo(p,v) = sup {u@) +v()} = sup  {u(o) +v(¥)},
YeCp(Y) (6,0)ECT (X)X CH (V)
dPp()<C

where ¢ @ () < C stands for ¥(z,p) € X x P,(Y), ¢(x) + p(v) < C(z,p).

Remark 2.5. In the proof of Theorem 2.4, we will check that when C' s moreover Lips-
chitz continuous, then for € C,(Y), Y© is either constant and equal to —oo or R-valued
and Lipschitz continuous so that u(y°) makes and

Ve(p,v) = sup {pu(@) +v()}.
PeC,p ()

The proof of Theorem 2.2 relies on the next proposition.

Proposition 2.6. Let p > 1, C' : X x P,(Y) = RU {+o0} be lower semi-continuous
bounded fmm below and convex in the measure argument. Then P,(X x V) > m —
[y Cla, mp)m(dae x Py(Y)) is lower semi-continuous.

To prove the proposition, let us introduce

o J:P(X x)Y)— P(X xP(Y)) such that for 7 € P(X x V), J(m) is the image of 7
by X x Y 3 (z,y) — (x,7,). Note that J(m) also is the image of the first marginal
m(de xY)of mby X 3 x+— (z,m,).

e The intensity I : P(X x P(Y)) — P(X x V) defined for P(dz,dp) = P(dx x
P(Y))P,(dp) € P(X x P(Y)) b

Vi e My(X x V), I(P)(f) = /X oy P Pl )

- [ e ([ . P ) (d) Pl x PO

XxY
(2.1)
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Since, for f € My(X x ),

10N = [ fogym(dy)n(de x PY)) = /X £ (&, y)n(dz, dy) = 7(f),

XxY xYy

we have

Vr e P(X x V), I(J(x))
Lemma 2.7. The intensity P,(X x P,(Y)) 2 P I(P) € P,(X x Y) is continuous.

.

Proof: Let zyp € X, yo € Y. Since for p € P,(V), W/(dy,, D) fy (yo, y)p(dy), we have

VP € P,(X x P,(Y)), / . (d% (o, ) + W?0(8y,.p)) P(dx, dp)
X XPp(Y

= / (d% (w0, ) + d5)(yo, y)) p(dy) P(dz, dp)
XXP,(Y)xY

:/X | (@aa.2) + B(w.) (P dy). (22

Hence convergence of the p-th order moment of P, to that of P is equivalent to conver-
gence of the p-th order moment of I(F,) to that of I(P,). According to the Portmanteau
theorem (see Theorem 5.2 2)), the weak convergence is characterized by the convergence
of integrals for bounded and Lipschitz continuous test functions. Let f : X x )Y — R
be bounded and Lipschitz continuous. For z,z € X and p,p € P,()), we have, using
Proposition 1.37 for the second inequality and (1.8) for the third

/fxy (dy) — /fxy dy‘ /!fﬂcy f(Z,y)|p(dy)

/ffcy (dy) — /f ‘

<Lip(f) (lz — z[ + Wi(p, D)) (2.3)
<Lip(f) (lz — 2| + W,(p, D)) -

As a consequence, X x P,(¥) 2 (z,p) = [}, f(z,y)p(dy) is bounded and Lipschitz con-
tinuous with constant Lip(f). Since I(P)(f) = fXxP(y) (fy f(z,y)p(dy)) P(dz,dp), we
conclude that the weak convergence of P, to Py, implies that of I(F,) to I(Px). i

Remark 2.8. Replacing dy and dy by dy N1 and dy AN 1 in this proof ensures that
I:P(XxP(Y) — P(X xY) is continuous (for the weak convergence topology).

Lemma 2.9. A subset £ of P,(X x P,(Y)) is relatively compact iff its image 1(E) by I
is relatively compact in P,(X x V).

The proof relies on the next lemma.

Lemma 2.10. Let Y be a Polish space ECPPWY)) and I :P(P(Y)) = P(Y) be defined
by 1(Q) = fp(y) pQ(dp). Then, for the weak convergence topology,

E tight < & relatively compact < f(f:') relatively compact < f(f:') tight.
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Remark 2.11. We do not need P(Y) to be Polish, to ensure that the relative compactness
of € implies its tightness (this would be needed to apply Theorem 5.3).

Proof of Lemma 2.10: The implications
& tight = & relatively compact, and , I (é' ) relatively compact = I (c‘:' ) tight

follow from Theorem 5.3. Like in Remark 2.8, we can check that [ is continuous. Since
the image of a relatively compact set by a continuous function is relatively compact, this
ensures that

€ relatively compact = (&) relatively compact.

Let us finally check that the tightness of £ € P(P(Y)) follows from that of I(£). Let
e > 0. By the Prokhorov theorem (see Theorem 5.3), for each n € N there exists some
compact subset K, of ) such that SUD, 7 (¢) v(K¢) < an- Let

K = {p e P(Y) :VneN, p(K¢) < 2_}
For the weak convergence topology, this set is closed by Theorem 5.2 6) and relatively
compact by Theorem 5.3. Hence K is a compact subset of P(Y). For Q € &, we have,
using K¢ = .o {p € P(Y) : p(KE) > £} then the Markov inequality,

Q) < Y@ ({p e P) (K5 > Z - ] pne

neN

:Zi—”mm)ng sup v(K5) < 3 S =

9
neN neN vel(é) neN

Proof of Lemma 2.9: Since the image of a relatively compact set by a continuous
function is relatively compact, the necessary condition is a consequence of Lemma 2.7.

Let us suppose that [(€) is relatively compact in P,(X x V). Of course, this set is
relatively compact for the weak convergence topology and, by continuity of the projections,
so are the sets of the first and second marginals of the elements of I(£). Since X and ) are
Polish, by Prokhorov’s theorem (see Theorem 5.3), these two sets of marginals are tight.
As the first marginal of P and I(P) coincide, the set of first marginals of the elements of
& are tight. Since the second marginal of I(P) is the image of the second marginal of P
by I introduced in Lemma 2.9, this lemma ensures that the set of second marginals of the
elements of £ is tight. Using that a product of compact sets is compact by Tikhonov’s
theorem, we deduce that £ is tight and, in view of Theorem 5.3, relatively compact for
the weak convergence topology.

From any sequence (P,)nen of elements of £ we may extract a subsequence (P, )ken
such that P,, converges weakly to P, as k — oo and I(P,,) converges in P,(X x )) and
therefore weakly to some limit, which, by Remark 2.8, is I(Ps,). According to (2.2), the
convergence of the p-th order moment of I(P,, ) to that of I(P.) implies the convergence
of the p-th order moment of P, to that of P,,. We conclude that P,, converges to Px
in P,(X x P,())) and therefore £ is relatively compact.
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Lemma 2.12. Let C': X x P(Y) = RU {+o0o} be lower semi-continuous, bounded from
below and convex in the measure argument. Then

VP € P,(X x Py(Y /C:c[ )P(dz x P,(Y)).

Proof: Since, by (2.1), fP ) PPy (dp), P(dxxP())) a.e., we have, using Jensen’s
inequality,

C(z, I(P dr x P C| x, P,(d P(dx x P
| caaPrplae x P) - Af<lep(”)( @)
sApumwmmmmXPw»:mm.

To justify the use of Jensen’s inequality, let us prove that for Q@ € P,(P,(I)),

C (x,fpp(y) pQ(dp> fp o C(@,p)Q(dp). We approximate Q by LS 1 0p, where
the (pg)r>1 are ii.d. according to Q and choose some w in the underlying probability
space such that %Zzzl Opy(w) converges to @ in P,(P,(Y)) as n — oo, which is pos-
sible according to the strong law of large numbers. By the continuity of P,(P,(Y)) >
R — fpp(y) pR(dp) € P,(Y) which can be established like in the proof of Lemma 2.7,
%22:1 pr(w) converges to fpp(y) pQ(dp) in P,(Y). Then, by lower semi-continuity then
convexity of C' in its second argument and finally Theorem 5.2 7), we have

< — < _
C <x,/73p(y)pQ(dp)> lim inf <x Zm ) lggg.gfnZC , pr(w))

1 n
~ lim inf / Clr,p) =Y bty (dp) < / ', p)Qdp).
e JP(y) = P Pp(Y)

Proof of Proposition 2.6: Let (7"),en converge to m in P,(X x V). We denote by s,
(resp. p) the first marginal and by v, (resp. v) the second marginal of 7" (resp. 7). We
have

Lcmﬁmwwzﬁpwfu@ﬂﬂwam.

Since I(J(n™)) = ", the sequence (I(J(7")))nen is relatively compact in P,(X x V). B

Lemma 2.9, we deduce that (J(7"))nen is relatively compact in P,(X x P,(Y)). From
any subsequence along which lim inf,, ., [ APy () C(z,p)J(7")(dz, dp) is attained, we can
extract a further subsequence (J(7"*))ken such that J(7™) converges to P in P,(X x ))
as k — oo. The continuity of the intensity / stated in Lemma 2.7 ensures that I(J (7)) =
7™ converges to I(P) in P,(X xY). We deduce that I(P) = m and P(dxxP,(Y)) = p(dx).
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Using Theorem 5.2 7) for the first inequality and Lemma 2.12 for the second, we deduce
that

n—oo n—oQ

liminf/ Cz, 7)) pn(dx) :liminf/ C(z,p)J(r")(dz, dp)
X XxPp(Y)

= lim C(z,p)J (7"™)(dx, dp) 2/ C(z,p)P(dx,dp)
k=00 JaxP,(y) XX Pp(Y)

> /X O, 1(P),)uldz) = /X O, m)(da).

Proof of Theorem 2.2: Let (7"),en C II(p, ) be a minimizing sequence for Ve (p, v).
Since

d%(xo, ) + d% (Yo, y)) 7" (dx, dy) = | d5%(xo, x)p(dx d% (yo, y)v(d
/Mu( )+ @ (yo,y)) 7 (dr, dy) / (0, 2)pu( >+/ (0, 9)(dy)

X Yy

does not depend on n, Lemma 1.7 and Definition 1.38 ensure that we can extract a subse-
quence (7")ren converging to 7 in P,(X x ). By Proposition 2.6, [, C(z,7})u(dz) <
liminfy oo [, C(z, 7% )pu(dx) = Vo(p, v) so that the coupling 7* is optimal.

Let now (pn)nen and (vp)ner converge to p and v as n — oo respectively in P,(X)
and P,(Y) and 7" € II(u",v™) be optimal for Vi (p,,v,). By Lemma 1.7, from any
subsequence of (7"),en along which liminf, .« [, C(z, 77 )u,(dz) is attained, we can
extract a further subequence (7" )ien converging weakly to 7 € II(u, ). Since

/Xxy (d% (o, 2) + d% (yo, y)) 7™ (dz, dy) = /

&8, (20, @) 1m, (d) + / &, (4o, y) vy (dy)
X Yy

converges to
[ dten o) + [ diiunyidn) = [ (o) + dlan.) wlde. i)
x Y AxY

as k — oo, the sequence (7"*)en converges to 7 in P,(X x V). Using Proposition 2.6 for
the second inequality, we deduce that

Vo(p,v) < / Clx,mp)u(dr) < lim | C(z, 7% pin, (do) = Hminf Vo (i, vn).
x

k—oo [y n—00

Hence V¢ is lower semi-continuous on P,(X) x P,(Y).

Let finally € P,(X), v,v € P,(Y), m € H(p,v), 7 € II(i, 7) be optimal for Ve (u, v) and
Vo, o) respectively, and « € [0, 1]. Using the convexity of C' in the measure argument
for the first inequality and ar + (1 —a)7 € I(u, av + (1 — a)v) for the second, we obtain

Ve, ) + (1 — a)Velp, #) = /X (aC(z,m) + (1 — a)C(x, 7)) plde)

> /XC’(x, am, + (1 — )7, )u(dr) > Ve(p, av + (1 — a)p).
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Lemma 2.13. Let f € X x Z — R be Lipschitz continuous in its first variable with
constant L and g(z) = inf,cz f(z, 2) for x € X. Then

o cither g is R-valued, Lipschitz continuous with the same constant L and for each
e > 0, there exists a measurable map S, : X — Z such that

Ve e X, f(z,5:(z)) < g(x) +e,

e or g is constantly equal to —oo and for each € > 0, there exists a measurable map
S. : X — Z such that

Vi€ X, f(z, S.(x)) < —é.

Proof: When g(xy) > —oo for some zg, we can check that g is R-valued and Lipschitz
continuous with constant L as in the proof of Lemma 1.13. The existence of S, then follows
from the argument in the proof of Lemma 1.14. We now suppose that g is constantly
equal to —oo and prove the existence of S, for € > 0 in this case. Let (z,)n,en be dense
in X. For each n € N, there exists y, such that f(z,,y,) < —%. Since S.(x) = x
does the job when L = 0, we now suppose that L > 0. For n € N, we set A, =
B(xn, 22)N {Uz;é B(zg, ﬁ)}c € B(X). By density of (z,),en in X, this set is the disjoint
union of the (A, )nen. Let us define S.(z) = >, 14, (2)yn. For n € Nand z € A,, we
have, using the Lipschitz continuity of f in its first variable

2 1

ﬂ%&@Nme%J—ﬂ%wm+ﬂ%y@§Lxgz_g:_;

Proof of Theorem 2.4: Let
Vo(u,v) = inf{P(C) : P € P,(X x P,())) such that I(P) e I(y,v)}.

By Lemma 2.12, for P € P,(X x P,(Y)) such that I(P) € II(x,v), we have

P(O) 2 [ Clad(PLintde) = int | Clomutde) = Vi)

rell(u,v)

As a consequence, Ve (i, v) > Ve(u, v). The converse inequality holds since for 7* optimal
for Vo (u, v) (which exists by Theorem 2.2), J =[,C p(dz) = Ve(p, v) while
I(J(m*)) = «* € I(p,v). Moreover, J(m ) is an optlmlzer of VC(M, v) and, by Theorem
2.2, 170 is lower semi-continuous and convex in its measure argument.

Since the case when C' is constantly equal to +oo is obvious, we suppose that C' takes
finite values. We apply the Fenchel-Moreau theorem with V' equal to the space of bounded
signed measures ¢ on ) such that fy d5( yo, )]q|(dy) < oo where |g| is the total variation
of . We have V' = C,(Y) with g(q) = [y 9(y)a(dy) for (g,q) € Cp(Y) x V. We
fix p € P,(X) and set

Flq) = Ve(u,a) if ¢ € Py(Y)
V= Vrcifqe V\P,W)
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Since P,(Y) is a closed convex subset of V and P,()) > v — V.(u,v) is lower semi-
continuous and convex, F' is lower semi-continuous and convex. Hence by the Fenchel-
Moreau theorem (see Theorem 1.10),

Vv € Pp(V), Volp,v) = F(v) = sup {v(¥)) — F*(1)}. (2.4)
PeCp(Y)

Case C Lipschitz. Let ¢ € C,()). By Lemma 2.13, either ¢ is constantly equal to
—oo or it is R-valued and Lipschitz continuous with the same constant as C. Let
us first deal with the second case. For ¢ > 0, still by Lemma 2.13, there exists a
measurable map

S.: X — P,(Y) such that Vo € X, C(x,S-(z)) — ¥(S-(2)) < % (x) +¢,

where, by a small abuse of notation, ¥(p) = p(¢) for p € P,(Y). Setting P.(dx,dp) =
p(dx)ds. ) (dp), we have, using the definition of ¢ for the first inequality

p(wt) = inf P(“ ®0) < inf P(C=0& ()
vEPH(Y) vEPH(Y)
PePy(XXPy(Y)):I(P)E(,v) PePy(XXPyp(Y)):I(P)ell(p,v)

<P(C—-00v() < P-(p° @0+¢) = u(®) +e.

Letting ¢ — 0, we deduce that

inf P(C=0® () = u(ve).
u€73p(y)
PEPy(XxPp(¥)):I(P)EM(p,v)
This equality is preserved when ¢ is constantly equal to —oo by applying the same
reasoning with the measurable map

1
Se 1 X = P,(Y) such that Vo € X, C(z,5.(z)) —¥(S:(x)) < -
given by Lemma 2.13. Using the definitions of F' and Ve for the second equality
then that P(0 @ ¢(-)) = v(¢) for P € P,(X x P,())) such that I(P) € II(y,v), we
deduce that

—F* = —su - F = — su v — in P(C
@) qe\I/){q(w) (@)} vepy) { )T e xpo P ( )}
= — sup PO®Y(-)-C)
vEPp(Y)
PEP(XxPp(3):(P)El(1,0)
= inf P(C—=0@y(-) = ().
vePp(Y)

PeP,(XXxPyp(Y)):I(P)ell(p,v)

Plugging this equality in (2.4), we conclude that
Ve(uv) = sup {n(@) +v@)} > sup {u(t)+v(w)}. (2.5)

YEC,(Y) YeCH (V)

Let ¢ € C,(Y). For k e N, ¥ Ak € C)(Y) and (¢ A k)(x) decreases with k to

- - . B )
;ngeg(y){C(x,p) p(Y Ak} peg})(y)élelN{C(m,p) p( A k)}

= inf {C(z,p) — p(¥)} = v ().

pGPp (y)
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We have
(Y AR)Y(2) < C(z,80) — (0) Ak < Clx,6p) + (1(0)) 7,

where the right-hand side does not depend on k and is Lipschitz continuous with
respect to x and therefore integrable with respect to the probability measure p which
belongs to P,(X) C P;(X). By monotone convergence, we deduce that

1 (0 AR)Y) = pu(C(,00)) + (10(0)” = p (C(-, 8) + ((0))” — (¥ A K))

converges to (€, 0)) +(6(0))" — 1 (C(,6) + ($(0))~ — ¥€) = p (4°) as k - oo.
On the other hand, since v € P,(Y), by Lebesgue’s theorem, v (i) A k) converges to
v(¢) as k — oco. Hence

vy € Co(Y), lim {pu(( AR)Y) + (AR} = {n@) +v()}.
With (2.5), we deduce that

Volp,v) = sup {p(@9) +v(¥)},

VeCH(Y)

When ¢ € C)(Y), then ¢ is R valued and Lipschitz continuous and therefore
belongs to C1(Y) and satisfies ¥ (z) + p(¢) < C(z,p) for all (z,p) € X x P,(V).
On the other hand, when ¢ € C;(X) is such that ¢(x) + p(v)) < C(x,p) for all
(z,p) € X x P,(Y) (a condition which we abbreviate into ¢ @ ¢(-) < C) , then
¢ < ¥°. Therefore

sup  {p(@) +rW)} = sup {u@C) +v(®)} = Volu,v).

($,¥)ECL(X)XCH (V) YeCH (V)
pOY(-)<C

General case. We use the sequence (C),),>1 of n-Lipschitz functions growing to C' given
by Lemma 1.13. For P € P,(X x P,(Y)) such that I(P) € H(p,v) and (¢,v) €
C1(X) x C)(Y) such that ¢ @ ¥(-) < C, we have ¢ < ¢ where, by definition of
Yo, ¢C+¢() < (' so that

P(C) = P(v° @9() = n(W) + v(¥) = u(e) + v(¥).

Taking the infimum over P and the supremum over (¢,1) we deduce that

Vel v) > sup {p@C) +v(w)} > sup {u(9) +v(v)}

YeCH(Y) (¢, )ECT(X)XCH (V)
pOY(-)<C
> sup sup {u(¢) +v(¥)} = sup Ve, (1, v), (2.6)
neN (g.4)e0y (X)xCH (V) neN
d)@w(')SC’n

where we used the case when the cost function is Lipschitz for the last equality. Let
for n > 1, P, € P,(X x P,())) such that I(P) € II(u, ) be optimal for V¢, (, )
(the existence of P, was checked at the beginning of the proof). By Lemma 3.12
below, II(x, v) is compact in P,(X x )). Hence the sequence (I(P,)),>1 is relatively
compact in P,(X x V). By Lemma 2.9, we may extract a sequence (P, ); which
converges weakly to Py in P,(X x P,(})). Then, by the continuity of I stated in
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Lemma 2.7, I(P,,) converges in P,(X x )) to I(Ps) which belongs to II(j, v) since
this set is closed. We have

sup vcn(u,y) = lim  P,(C,) = lim P, (C,,).

neN n— 00 k

For fixed m € N*, when k is large enough, we have n; > m and C,, > C,,. By the
Portmanteau theorem (see Theorem 5.2), liminfy ., P, (C),) > Py (Cy,). By the
monotone convergence theorem, sup,,s; Po(Cm) = Too(C). Therefore

sup Ve, (11, v) = lim P, (C,,) > sup liminf P, (Cy) > sup Pao(Ch) = P(C) > Ve(p, v).

neN k—o0 m>1 k—oo m>1

With (2.6), we conclude that

Ve(p,v) = sup {p@C) +v(@)) = sup  {p(9) + v(v)}.
HeCH(Y) (¢,$)€CL (X)X CH (V)
DY (-)<C

2.2 Strassen’s theorem

Let us introduce the convex order on P (RY).

Definition 2.14. For u,v € Pi(R?), we say that pu is smaller than v for the conver order
and denote u <., v if
Vo : R = R conver, pu(p) < v(p).

Remark 2.15. When ¢ : R? — R is convez, then ¢ is bounded from below by the affine
functions R >z +— (%) + y.(x — ) where y is any element of the subdifferential of ¢
at & € R As a consequence, for each n € Py(R?), n(¢~) < oo, i.e. @ is semi-integrable
with respect to n and n(yp) makes sense in R U {+o0}.

Theorem 2.16. Let ju,v € Pi(RY). Then

HM(/LaV)#@@NScx v.

The necessary condition follows from Jensen’s inequality since for m € I (u, v) and
¢ : RY — R convex,

w(e) Z/Rdso(ﬁx)u(d:ﬂ) < /Rd /Rd o(y)me(dy) p(dz) :/Rd Rdw(y)ﬂ(dr,dy) = v(p).

The proof of the sufficient condition is more difficult and relies on the next lemma

Lemma 2.17. Let ¢ : RY — R be bounded from below by an affine function. Then the
largest lower semi-continuous convex function ¢** smaller than ¢ is given by

Ve € RY, ¢**(z) = inf {p(¢) : p € P1(R?) such that p=x}.
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Remark 2.18. The supremum of lower semi-continuous and conver functions is lower
semi-continuous and convex, which, together with the convexity and lower semi-continuity
of the affine lower bound, explains why ¢** exists.

Proof: Let
Y(z) = inf {p(gb) ip € Pl(Rd) such that p = x} , e R
For p € P1(R?) such that p = x, we have by Jensen’s inequality and ¢** < ¢,

¢ (x) = ¢ (p) < p(¢™) < p(¢).

We deduce that ¢** < ¢ and v is real valued. We have ¢(z) < ¢(z) for the choice p = 4.
On the other hand, for z,y € R? and € > 0, choosing p, and p, e-optimal for ¢(z) and
¥ (y) respectively, we get for « € [0, 1],

Ylax + (1 —a)y) < (ap: + (1 — a)py)(¢) < ap(z) + (1 — a)P(y) +e.

Letting ¢ — 0, we deduce that 1 is convex. It is therefore enough to check that 1 is lower
semi-continuous to conclude that v = ¢**. For this purpose, we let € R%, y1, -+, yay1 €
R? such that z is in the interior of the convex hull of ¥, - ,v411. Let (Zp)nen C R4
converge to z as n — oo and p,, be e-optimal for ¢(z,,). Up to removing the first terms of
the sequence, we may suppose that for each n € N, z,, + #=*= belongs to the convex hull
of y1,- -+ ,yas1 SO that there exists a probability measure g, supported in {y1, -, Yar1}
such that ¢, = z,, + =*=. Then (1 — &)p, + ¢, = (1 — &)z, + ex,, + © — x, = x so that

() < (1= e)pn(=0) +e¢n(¢) < (1 —&)(¥(wn) +€) + & max o(y;).

1<i<d+1

We deduce that ¢ (x) < (1 —¢) liminf, o ¥(x,) + (1 — e maxy<j<q+1 ¢(y;)) and conclude
that 1 is lower semi-continuous by letting ¢ — 0.

Proof: The obvious necessary condition was proved using Jensen’s inequality just after
the statement. To check the sufficient condition, we define

C:RYx Pi(RY) > (x,p) = |x — p| € R.

The function C' is continuous and convex in the measure argument as the composition of
a convex function with the linear function P;(R%) > p — p € R% By Theorem 2.2, there
exists 7 € II(u, v) such that Vo (u, v) = [ga |o—75|pu(dx). Since, when Ve (p, v) = 0, then
7r =, p(dr) a.e., ie. ™ € Uy (u,v), it is enough to check that p <., v = Vo (u,v) =0,
which we now do.

Let us check that when v € C;(R?) (continuous with affine growth), then ¢ < —¢¢ and
© is 1-Lipschitz convex. By Definition 2.3 and Lemma 2.17, we have

Y9 (x) = inf d){|x —p| —p)} = inf inf  {|z—p|+p(—v)}

peP1(R 2€R? pePy (R%):p=2

= inf {lo — 2| + (-9)" ()} (2.7)
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For the choice z = x, we deduce also using the definition of (—)** that ¥ < (=)™ <
—1p so that ¢ < —°.

If )% (x) < ¢%(Z), then choosing z, such that ¢ (z) > |z — z,| + (—¢)**(z,) — = and
Z, such that (&) > |z — Z,| + (=)™ (%,) — + for n € N*, we get

V@) = 0°(@) <1 = 2l + (0 (o) = (o =l + (<)) = 1) < Ja=al

Moreover, for a € [0, 1], by convexity of (—¢)**,

YO (ax+ (1 —a)i) < |az, + (1 — )2, — (ax + (1 — a)Z)| + (=)™ (az, + (1 — a)Z,)

<a(le = Zul + (=9)7(20) + (1= a) (|2 = 2| + (=) (%))

< au(a) + (1 - @) (@) + -

By taking the limit n — oo, we deduce that ¢ is 1-Lipschitz convex.

If ¢ is 1-Lipschitz concave, then —1 is 1-Lipschitz convex so that (—¢)™ = —. With
(2.7), we deduce that

Ve (x) = Inf {lo — 2| = ¥(2)} 2 Inf {]o — 2| = ¥(2) — |o — 2]} = —¥(2)

and ¢%(x) < —1(z) by the choice z = x in the first equality so that ¥¢ = —1).

When ¢ € C1(R?), then the inequality 1/ < — ensures that y is semi-integrable with
respect to p which belongs to P;(R?). Therefore u(¢¢) makes sense in {—oo} UR and so
does p(¢%) + v(¢p). With Theorem 2.4, we deduce that

Vo(uv) = sup {p) +v(W)} < sup {u(@) +v()}.
PECT (RY) YeC (RY)

Since the definition of ¢ (see Definition 2.3) ensures that V(z, p) € X x P,(Y), C(z,p) >
Y (x) + p(v), we have for ¢ € C1(R?Y) and 7 € (p, v),

[ Clamntan) = [ 10€(@) + ma(w)hutde) = n(u©) + ().

Taking the infimum over 7 € II(y, v) and the supremum over ¢ € C;(R?), we conclude
that
Vo(p,v) > sup {p(0) +v()} > Volp,v).
PeC (RY)
Using the inequality ¢ < —¢ for the first inequality, the fact that ¢ is 1-Lipschitz
convex for the second inequality, the fact that —1 = ¥ when 4 is 1-Lipschitz concave
for the third equality, we deduce that

Ve(pv) = sup {p@) +v(@)} < sup  {p@°) +v(—v°)}

YEC (RY) PECs (RY)

< sup {u(o) —v(o)} = sup {u(=¢) +v(¥)}
¢ 1-Lipschitz convex ¢ 1-Lipschitz concave

= sup {p@W) +v@)} < sup {p@) +v(¥)} = Vel v).

¢ 1-Lipschitz concave PeC1(RY)
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Hence Vo (p,v) = sup, T ipschitz convex {#(¢) — v(¢)} and

p < v = V¢ 1 — Lipschitz convex, u(¢) —v(¢) < 0= Vo(u,v)=0.

Remark 2.19. For the cost function C(z,p) = |x — p|,

Vo(p,v) = sup {u(eo) —v(e)}

¢ 1-Lipschitz convex

permits to measure in general the possible lack of convexr order between p and v. Note
that

Vo 1 — Lipschitz convez, pu(¢) < v(o) = Veo(u,v) =0 =y (p,v) #0 = p <. v.

Since the converse implication p <., v = V¢ 1— Lipschitz convezx, (o) < v(¢) is obvious,
we conclude that

p <ep v < Vo 1 — Lipschitz convex, u(¢p) < v(p),

1.e. Lipschitz convex functions are enough to characterize the convex order.



Chapter 3

Martingale Optimal Transport

3.1 From Finance to Robust Finance
We consider the evolution in discrete time ¢ € {0,1,2,--- ,T} of a market with 2 assets :

e one riskless asset with constant value 1 i.e. we assume zero interest rates, a simpli-
fying assumption which could be relaxed,

e one risky asset with successive values Sy, Sy, -+, Sr.

In a portfolio strategy, the amount H, of risky asset held on [¢,¢+1] is decided at time ¢ in
view of the information available on the market up to this time. Starting from the initial
wealth 0 and choosing a self-financing strategy, we get that the value of the portfolio at
0ift=0

S Ho(Sey1 — Ss) otherwise
setup (2, (F1)L,,P) Where the historical probability measure IP is a probability measure
on (Q, Fr) and ((S;, Hy))L, is adapted to the filtration (F;)_,. The mathematical formu-
lation of the Absence of Arbitrage Opportunities, which is a natural modeling assumption
saying that there is no possibility to earn money without taking risk is

time ¢ is (H.9); = . Let us introduce a probabilistic

(AAO) P((H.S)r > 0) = 1 = P((H.S)r = 0) = 1.

The first fundamental theorem of asset pricing [8] is that (AAO) is equivalent to the
existence of a probability measure Q equivalent to P under which, (S;)Z, is a martingale.
Such a probability measure Q is called an Equivalent Martingale Measure. When one
considers an option with payoff F' Fpr-measurable then

sup Q(F) = inf{a € R:3(H,)L, adapted self-financing s.t. P(a + (H.S)r > F) = 1}
Q EMM

QIEHREMQ( ) = sup{a € R : 3(H,)L, adapted self-financing s.t. P(a + (H.S)r < F) = 1}.

In the robust finance approach, rather than starting with the sensitive choice of the
historical probability P, one only takes into account informations given by the market.
Let for K > 0, C(t, K) be the initial market price of the Call option with payoff (S; — K)*
at time t. The following are consequences of the Absence of Arbitrage Opportunities :

45



46 CHAPTER 3. MARTINGALE OPTIMAL TRANSPORT

1) VK >0, O(t, K) >0,

2) by convexity of K — (S; — K)*, Ry 5 K — C(t, K) is convex,

3) C(t,0) = Sy since (S; —0)4 = S,

4) limg o, C(t, K) = 0 since limg . (S; — K)* =0,

5) for 0 < K < K, C(t,K) - C(t,K) < K — K since (S, — K)* — (S, - K)" < K — K.

The following result is due to Breeden and Lizenberger [6].

Lemma 3.1. Assume that Ry 3 K — C(t, K) satisfies 1)—5). Then there exists a unique
probability measure pp € Pr(Ry) such that fR+ zp(dr) = Sy and VK € Ry, C(t,K) =

Jo, (& — K)* p(da).

Proof: Let 0x.C(t, K) denote the right-hand derivative of the convex function K
C(t,K). Then K +— —0x.C(t,K) is right-continuous and non-increasing, such that
—0k+C(t,0) <1 by 5) and that limg_, 00 —0x+C(t, K) = 0 by 4). We set

1({01) = 1+ 95, C(t,0) and 1, (K, +00)) = —9x.C(t, K) for K > 0.

By 4) then Fubini’s theorem,

VKEQC@MZ—/ @ﬁmwwzf / ue(d)de
(K,+o0) (K,+o0) J (£,400)

- / /1{K<g<x}d€u(daj) = / (x — K)*py(do).
[0,+OO) R4
For K = 0, we deduce with 3) that [, zu(dx) = C(t,0) = So. |

For t < u, since (S, — K) = (S, — K)* — (K — S,)", the market price (S; — K) at time
t of the wealth (S, — K) at time u is equal to the market price Cy(u, K) at time t of the
Call option with strike K and maturity v minus the market price at time ¢ of the Put
option with strike K and maturity u. Hence Cy(u, K) > (S; — K)* and, still by Absence
of Arbitrage Opportunities, C'(u, K) > C(t, K). With Remark 3.7 below, we deduce that
for t < wu, pr <cp o

The extreme pricing values of an option with payoff f(S,---,Sr) are
inf / sup {Q(f) : () martingale measure on R? with marginals Q; = g, for t € {1, - ,T}} )

We will concentrate on the T' = 2 case, denote p = uy, v = pp and ¢(z,y) = f(z,y) even
if the results that we state have higher dimensional versions (sometimes more technical).
We set

VM(p,v)= inf w(c) (under the convention inf ) = 400).
m€llps (p,v)

The results that we derive for the infimum hold true for the supremum, up to replacing
the assumption ¢ lower semi-continuous bounded from below by ¢ upper semi-continuous
bounded from above. We even consider p, v € Py (R?), which correspond to d risky assets,
even if the joint distributions of these asset prices at times t € {1,2} cannot be fully
derived from the market prices of traded options.
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3.2 Existence of optimizers and duality

Remark 3.2. e Monge type couplings (iga, T)#1 are martingale couplings iff T'(x) =
x, p(dx) a.e.. Therefore, when u # v, wy(p,v) contains no Monge type coupling.

o For p € Pi(RY), Mp(p, i) = {(iga,iga)#u}. Indeed, clearly, (iga,igs)#p €
(e, ). On the other hand, the function o(x) = /1 + |x|?> with gradient Vp(z) =

T

JiE and Heassian matriz V*p(x) = W (14 |z[*) g — z2™) > W

is strictly convex and belongs to C1(RY). As a consequence, for m € y(u, i), by
Jensen’s inequality,

n(p) = / o(x)p(dr) = / () p(dzr) < / / e(y)me(dy)p(de) = / e(y)u(dy),
R R Rd JRd R
so that p(dzx) a.e., o(Ty) = [pa ©(y)m(dy) and, by strict convexity of ¢, m, = 0z, =
Oy
o The equivalent for MOT of Proposition 1.4 is the result of the next exercise.

Exercise 3.3. Check that if any optimal coupling for VM(u,v) writes
p(dz) (p(x)ds) + (1 — p(2))0r@)) (dy) for some measurable functions p : R* — [0,1] and
S, T : R — R? such that p(z)S(z)+ (1 —p(x))T(x) = z, p(dz) a.e., then there is at most
one optimal coupling. You may first remark that for given s,t € RY, there is at most one
probability measure with expectation x which writes qds + (1 — q)d; for some q € [0, 1].

According to Strassen’s theorem (see Theorem 2.16),
Vi, v € PrRY), mar(p,v) # 0 < p <ep 1.

Example 3.4. Let d =1, =1 (6_1401), v = 5 (0_4 4 0o + 04). There are uncountably
many martingale couplings with marginals p and v since for each o € [—%, %], the
coupling ©*(dz, dy) = 3 (6_1(dz)m™,(dy) + 61 (dz)7{(dy)) with

11 1
L= (ﬂ—a)é_zﬁ-(§+2a)50+<%—a)54 and
) 1 11
7'((1)‘: <ﬁ+a) 54-'-(5—206) (50"‘(%"’_@)547

belongs to M (p, v). Indeed,

() () £33 (o) (om)
and (3% Fa) x (F4) + (3 £2a) x 0+ (& Fa) x (£4) = FL1.

It is not so easy to check whether u < Xv when pu,v € P1(RY). Of course, a necessary
condition is the equality of the expectations i = v (take p(x) = £ in Definition 2.14 or
use that the marginals of a martingale coupling share the same expectation). Nevertheless,
in dimension d = 1, the convex order can be characterized through the potential functions.

Proposition 3.5. Let p,v € Pi(R). Then p <., v < Vo € R, w,(x) < u,(z) where for
n € Pi(R), un(x) = Jg |z — yln(dy).
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Remark 3.6. By convezity of R 3 x — |z — y|, the potential function u, of n € P(R)
is convez. Its right-hand derivative is equal to [; (1{z>yy — Liacyy) n(dy) = 2F,(z) — 1 so
that it characterizes the probability measure . Moreover, for x,z € R,

() — g (5)] < /Rum—m e~ ylin(dy) < | - 7,

and w, is 1-Lipschitz. Last, according to the proof of Proposition 3.5, lim,_, ;o |u, () —
x4+ 7 =lim, o |u,(x) + 2 — 7] = 0.

Proof: The necessary condition follows from the convexity of R 3 y — |z — y| for fixed
x € R. Let us prove the sufficient condition. Since |z —y| = 2(y — )T + 2z —y =
2(x —y)T + y — x, we have for n € P;(R)

Vo € R, ua) =2 [(y-a)'aldy) +a -7 =2 [@-p)nld) +a-o  BD

where [, (y—)™n(dy) goes to 0 as & — oo and [, (x —y)Tn(dy) goes to 0 as x — —co by
Lebesgue’s theorem. Therefore the inequality u,(z) < u,(z) yields —f < —7 in the limit
x — +oo and i < ¥ in the limit x — —o0, so that ji = v. Therefore u, < u, also implies

veeR, [ ud) < [-ayvidy) and [ (@) uidn) < [ (@) vl
(3.2)

" is a non-negative

For ¢ : R — R convex, the second order distribution derivative ¢
measure and

Yy € R, o(y) = (0) + ¢, (0)y + /

-2+ [ @), (33
(0,400)

(_0070]

where ¢, denotes the right-hand derivative of ¢. With i = 7 and (3.2), we conclude that
() < v(p). Let us finally check (3.3) for y > 0, the proof being analogous for y < 0.
The second integral in the right-hand side vanishes and we have, using Fubini’s theorem,

v
/ (y —x)T"(dx) = / / Lip<ocppdzg (da) = / / ¢ (dz)dz
(0,4-00) z€(0,400) J z€R 2=0 Jz2€(0,2]
Yy Yy
= [ 0Dz = [ (60 = 0z = (o)~ 9(0) = O
[
Remark 3.7. In view of Proposition 3.5 and (3.1), for p,v € P1(R),

f < V& i =0 and Vx €R, /(y — )" pu(dy) < /(y — ) v(dy)

& =10 and Vr € R, /R(x —y) T u(dy) < /R(x —y) " v(dy).

Proposition 3.8. Let pu,v € Pi(R) be such that jp <., v. The open set {u,(z) > u,(x)}
is the at most countable union of disjoint open intervals (I, )nen (with N C N). Moreover
any m € Hp(p, v) writes

m(dz, dy) = p(dz)m,(dy) = Z 1, (d2) 17,3 (V)T (dy) + La, (2)=u, (011 (d2) 65 (dy),
neN

where I,, denotes the closed interval equal to the closure of I,.
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Remark 3.9. This means that for each n € N, 1; (2)u(dx) a.e., m.(I,) = 1 and
1{uu(x):uy($)}/vc(dx) a.e., T, = 0. In particular, we recover that the only element of

ar(p, 1) 1s p(dx)d,(dy).

The proof of Proposition 3.8 relies on the next lemmas.

Lemma 3.10. Let n € Pi(R) and x € R be such that u,(x) = |z —n|. Then

Proof of Lemma 3.10: Let n € P;1(R) be such that n((—oo,x))n((z,+00)) > 0. Then

Nez(dy) = —1(*7](’(‘)(@&);7)()@) and 7, (dy) = —1(“7’]&(’;;3%2;7)()@) belong to P;(R) and satisfy 7o, < x

and 7>, > x. We then have 7 = n((—o0, z))<; +n({z})z + n((z, +00))7>; so that

|z =71 = [n((=00, 2))(z = N<x) + 1((x, +00))(z = 7>2)]-

Since the first term in the absolute value in the right-hand side is positive and the second
is negative,

1 — 7 < (00, 2))(& — 7z5) + (&, +00)) (757 — @ / 1 — yln(dy) = uy(a).

By contraposition, we conclude that u,(z) = |z — 7| = n((—o0, z))n((x, +00)) =0. N

Lemma 3.11. Let p,v € Pi(R) be such that pu <., v. Then
uu(2) = uy(2) = Vr € Iy (p, v), m((—00,2) X (2 +00)) =7 ((2 + 00) X (—00,2)) =0,

i.e. z 1s a barrier for the martingale couplings between p and v.

Proof of Lemma 3.11: Let us suppose that u,(z) = w,(z) and choose some 7 €
ITp (g, v). We then have, using the consequence [ |z — y|m,(dy) > |z — 7,| of Jensen’s
inequality then the martingale property of 7 that

w(o)= [ 1z slntdn.ay) = [ ( JERTX dy)mdx)z [ 12~ alutas)

= [ I = alutdn) = uy(2) = (o)

Therefore pu(dx) a.e. Jelz — ylme(dy) = |z — @] and, by Lemma 3.10,
To((—00, 2))m.((2,+00)) = 0. Since p(dx) a.e. T, = x, we conclude that 1. pu(dz) a.e.
72((2,400)) = 0 so that 7((—00,2) X (z,400)) = 0 and 1(z~.yp(dx) a.e. m,((—00,2)) =0
so that 7((z, +00) X (—00, 2)) = 0. We conclude that

m(=00,2) % (2 +00)) = [ (100 pcpilde) = 0= [ (=00, Loyl d)

=7 ((z,+00) X (=00, 2)).
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Proof of Proposition 3.8: Any open subset of the real line writes as an at most
countable union of disjoint open intervals. Moreover, when finite, the boundaries of these
intervals belong to the complementary of the open set. In particular, the boundaries
¢, < 1, of the intervals I, are such that ¢, > —oco = u,(¢,) = u,(¢,) and 1, < +00 =
wu(rn) = wy(ry,). With Lemma 3.11, this implies that for = € Iy (i, v), 17, (x)u(dx) a.e.,
7.(I,) = 1. For z € R such that z < £, and 7 € II;(p, ), we deduce that

[ 1z = el @utdn) = [ (@ = @ptdn) = [ m =21 utde)

= [ =i @) = [ |z = sl @ulde)

and, by symmetry, the equality between the extreme sides is preserved when z € R is
such that z > r,. We deduce that when z € R is such that u,(z) = u,(z) i.e. such that

2 € {U,en In}", then

Ll = ol rmmntda) = X [ 1z = st @u(da)

neN
= Z/ |2 = ylma(dy)1y, () p(dx) = / |2 = Yl (dy) L ju, (2)>up @)y (d)
neN R2 R?

so that
2 = 2| L, @) =un @3 p(dx) = wy(2) = | [2 = 2[ L, @)>u, @) (dT)
R R
= [ o= imatdnntan) = [ =yl o olde)

= /R2 2 = YT (dY) 1w, ()=up () 1(dT).
Therefore, when p({u, =u,}) > 0, m—jﬁ%}
between two probability measures sharing the same potential functions and therefore equal
by Remark 3.6. By the second point in Remark 3.2, we conclude that 1y, (2)=u, (@)} /4(d2)
a.e., Ty = Og. [ |

w(dz)m,(dy) is a martingale coupling

Lemma 3.12. Let p > 1 and p,v € P,(R?Y). Then U(u,v) is convex and compact in
P,(R? x RY).

When, moreover u <. v, then Iy (u,v) is convex and compact in P,(R* x RY).

Last, if for n € N, m, € Hp(pin, V) with p, < vp and py, (resp. v,) converges to
(resp. v) in Py(R?) as n — oo, then u <. v and we can extract a subsequence (mp, )ken
which converges to some m € Wy (p,v) in P,(RT x RY).

Proof: By the equivalence of norms on R? x R? and Proposition 1.41, the definition of
the convergence in P,(R? x R?) does not depend on the choice of the norm inducing the

1/p
distance dgayga. When we choose |(z,y)| = (Zle(]xi\p + \yi\p)> so that

d
d%dXRd ((jag)a (xay)) = Z ‘jl o milp + |gl - yi|p7
i=1
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we see that the convergence in P,(R? x R?) amounts to the weak convergence and the
respective convergence of the first and second marginals in P,(R?). With Lemma 1.7, we
deduce that when y,v € P,(RY), II(y, v) is compact in P,(R? x R?).

When p <., v and 7 € Iy (u, v), we have for each h : R? — R? measurable bounded,
/ hz).(y — z)n(dz, dy) = / h(x)/ (y — x)m(dy)pu(dz) = / h(z).(7, — z)pu(dz)
R4 x R4 R4 R4 R4
:/ h(z).0p(dx) = 0.
R4

Let us conversely suppose that this equality holds for each h : R? — R? continuous and
bounded. For i € {1,---,d}, the function R 3 @ — 1{z, >z — 1{(7.);<z;} belongs to
LY(|z — 74 |p(dx)). By density of Cy(R?) in L'(|z — 7,|u(dx)), we deduce that

/Rd Z |2 — (Tz)s| pu(dz) = 0

so that u(dz) a.e., T, =  and 7w € Il (p, v). Therefore

7 € My (p,v) < Vh: RT — R? continuous and bounded, / h(z).(y—z)m(dx,dy) =0

Rd xRd
) (3.4)
If PY(R? x RY) = {@(dx,dy) = i(dz)7,(dy) € P,(R? x RY) : [i(dzx) a.e., T, =2} de-
notes the subset of P,(R? x R?) consisting in martingale couplings, then we have

PYR'xRY) = [\ {reP,® xRY):7(H)=0}. (3.5)
her(Rde)

For h € Cy(R% R?), the function RY x RY 5 (x,y) — h(z).(y — ) is continuous with affine
growth i.e. belongs to C;(R? x R?) C C,(R? x R?). By Proposition 1.41, we deduce that
P,(R? x RY) > 7+ 7(H) is continuous. Therefore {7 € P,(R? x R?) : 7(H) =0} is a
closed and convex (the equality constraint involves P,(R? x RY) > 7 +— 7(H) which is
linear) subset of P,(R? x R?). With (3.5), we deduce that P)'(R? x R?) is a convex and
closed subset of P,(R? x R?). Moreover, Iy (u, v) = (g, v) NPy (R x RY), which is
non empty iff 4 <., v according to Strassen’s theorem (see Theorem 2.16) is convex and
compact in P,(R? x RY),

Let finally for n € N, 7, € s (pn, vn) with p, <. v, and p, (resp. v,) converging
to u (resp. v) in P,(R?) as n — oo. For ¢ : R? — R Lipschitz continuous and convex,
we have lim,, . pn (@) = p(e) and lim, o v,(¢) = v(p). By taking the limit n — oo
in the inequality p,(¢) < v,(¢) consequence of p, <. V,, we obtain u(y) < v(p)- With
Remark 2.19, we deduce that y <. v. By Lemma 1.7, we can extract a subsequence
(7, Jken converging weakly to some 7o, € II(u,v) as k — oo. Since the convergence in
P,(R? x R?) amounts to the weak convergence and the respective convergence of the first
and second marginals in P,(R?), 7, converges to 7 in P,(R? x R?). By closedness of
PY(R? x RY) in P,(R? x RY), moe € ps(pt, v). [

Corollary 3.13. Let ¢ be lower semi-continuous and bounded from below. Then for
p,v € Pr(RY) such that p <., v, there exists m, € y(u,v) such that VM (u,v) = m.(c).
Moreoever, VM is lower semi-continuous on {(u,v) € P1(R?) x Py(R?) : p <ep v}
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Remark 3.14.  According to the proof of Lemma 3.12,
{(,v) € Pi(RY) x Pi(RY) : p <o v} is a closed subset of Pi(R?) x Pi(RY). Since

VM s equal to +o0o on its open complementary, we deduce that VM is lower semi-

continuous on Pi(R?) x Py (RY).

Proof: Let u,v € P1(R?) be such that p <., v. Let (m,)nen C (i, ) be a minimizing
sequence for VM (pu,v). By Lemma 3.12, we can extract a subsequence (7, Jseny Which
converges weakly to some 7, € Il (u,v) as k — oo. By the Portmanteau theorem (see
Theorem 5.2 7)),

m(c) = liminf ,, (c) = VM (u,v),
k—o0

so that 7, is optimal for VM (u, v).

Let now (i,)nen and (v,)nen be sequences in Py (RY) with p, <. v, converging re-
spectively to p and v in P;(RY) as n — oo and such that

lim VM (pn, v,) = lim inf VM (p, o).
n—00 dyx d
N T

By Lemma 3.12, we can extract a subsequence (7, )reny Which converges in P;(R? x R?)
to m € Iy (i, v). By the Portmanteau theorem (see Theorem 5.2 7)), we conclude that
VM(p,v) < 7(e) = Jim () = lim inf VM (i, ).
— 00

P1(RY)x Py (RY)
=

(/7‘717) (Nv'j):ﬁgcz’;

Remark 3.15. Corollary 3.13 also is a consequence of Theorem 2.2 and the discussion at
the beginning of Chapter 2 explaining the the MOT problem is a special case of the WOT
problem.

Example 3.16. When d > 2, according to [7] VM may fail to be continuous on

{(n,v) € Pr(RY) x P1(RY) : pp <., v} even for continuous and bounded cost functions c.
Indeed, let d = 2,

1
=75 (o) +de0) and,
1
fOT’ e [07 7T)7 Vg = Zl (5(1+cosﬁ,sin9) + (5(1—coso9,— sin 0) + 5(2+cos€,sin6') + 6(2—6059,—sin9)) .
For 0 € (0,m),
1

1 (8((1,0),(1-4c05 0,5 8)) + O((1,0),(1—co56,— sin 8)) T 0((2,0),(2+c030,51n0)) F 0((2,0),(2—cos 6, sin6)))

is the only element of Ty (u,v) so that VM(u,ve) = 1 when c(z,y) = |v —y| A 1. For
9 = 0, vy = % ((5(0,0) -+ (5(170) + 5(2’0) + 5(3,0)) (l’de

1 1 1
1 Bao.ao +deo.eco) + 7 (B +e@oeon) + 15 ((wo.eo +5e@o.oo)
belongs to My (u, v9) so that
Vi) < = % (04 0)+ = x (14 1) + = x (242) = = < 1= Tim V" (4, )
A P0) = 6 12 T3S T A e W)



3.2. EXISTENCE OF OPTIMIZERS AND DUALITY 53

Remark 3.17. In dimension d = 1, according to [4], it is possible to approximate any
coupling m € Ty (u,v) by a sequence of couplings m, € Uy (fin, vn) and check the continu-
ity of VM on {(u,v) € Pi(R) X P1(R) : u <., v} when the cost function c is continuous
and bounded.

Let us now give a dual formulation of the MOT problem.

Theorem 3.18. Let ¢ : R x RY — R U {400} be lower semi-continuous and bounded
from below. Then for all p,v € Py(R?),

VM (nv) = sup{p(d) + v(¥) : 6,9 € C1(RY),
3h € Cy(RY,RY), (@) + ¥(y) + h(x).(y — 2) < c(z,y), V(z,y) € R x R},

Remark 3.19. e Note that the couples (¢,1) € Cy(R?) x Cy(R?) such that ¢ D < c
appearing in the dual formulation of the OT problem V.(u,v) given in Theorem 1.8
are admissible in the dual formulation of VM (u,v) so that VM (u,v) > Vi(u,v), an
equality obvious from the primal formulations and the inclusion Ty (pu, v) C II(p, v).

e Returning to the original financial motivation, we see that the triplets (¢, 1, h) which
appear in the dual formulation provide the following model-free sub-hedging strateqgy
for the option with exotic payoff ¢(S1,52) and maturity 2 :

— with the initial wealth p(p) + v(¥) buy at time 0 an option with payoff ¢(S1)
and maturity 1 and an option with payoff 1(S2) and maturity 2,

— buy at time 1, h(Sy) units of the risky assets and invest —h(S1).51 + ¢(S1) in
the risk-free asset,

— sell at time 2, the h(Sy) units of the risky assets.

Indeed, the terminal wealth is —h(S1).S1 + ¢(S1) + ¥(S2) + h(S1).S2 < (S, S2).

The proof relies on the following minimax result (see Theorem 2.4.1 [2]).

Theorem 3.20. Let K be a compact convex subset of a Hausdorff topological vector space,
Y be a convex subset of an arbitrary vector space and K XY > (x,y) — h(z,y) € R be
convex lower semi-continuous in x on K for each fired y € Y and concave iny on'Y for
each fized v € K. Then

min sup h(z,y) = sup min h(z,y

zeK yey ( ) yey zeK ( )

Remark 3.21. For fizred y € Y, the infimum on the compact set K of the lower semi-
continuous function x +— h(x,y) is attained. Since x + sup,cy h(x,y) also is lower semi-
continuous as the supremum of lower semi-continuous functions, its infimum over K also
is attained. Note that the inequality min,cx sup,cy h(7,y) > sup, ey Minger h(x,y) is
obvious.

Proof: Let p,v € Py(R?) and 7 € I(i,v) \ My (p,v). For « € Ry and i € {1,---,d},
approximating in L'(|z — 7,|u(dz)) the function R 3 @ — a (1{z,>(m0)) — Lwi<(ra)}) DY
functions in Cy(RY) we check that

sup /RdXRdh(x).(x— ) (dz, dy) >a/ Z\xl (72)ilu(d).

heC),(Rd,Rd)
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Letting @ — oo, we conclude that supjec,rapa) Jgayps 2(T)-(z — y)m(de,dy) = +oc.
On the other hand, when m € Iy (u,v), [ga, g M(2).-(y — 2)m(dz,dy) = 0 for each h €
Cy(R4, RY). Therefore, setting H(z,y) = h(z).(y — ), we have

V)= il suwp  w(e—H)
mell(1,v) ey (RE,RY)

Note that for 7 € P1(R? x R?) and h € Cy(R4 R?) so that H € C;(R? x R?), we
have H € L'(m). The cost function ¢ being bounded from below, it is semi-integrable
with respect to m and w(c — H) = n(c) — w(H). For fixed 7 € I(u,v), Cp(RY,RY) >
h w— w(c— H) = w(c) — m(H) is affine and therefore concave. On the other hand, by
Lemma 3.12, II(p,v) is a compact subset of P;(R¢ x RY) and, for fixed h € Cy(R?, RY),
P1(R? x RY) > 7+ 7(c) — w(H) is lower semi-continuous as the sum of the lower semi-
continuous function 7(c) (see Theorem 5.2 7)) and the continuous function —m(H) (see
Proposition 1.41). By Theorem 3.20, we deduce that

VM(p,v) = sup inf w(c— H).
heCy (R, Re) €I (1,v)

Let H(z,y) = |h|(Jz| + |y|) where |h| = sup,cga |h(2)|. We have

VM) = sup {inf w<c+ﬁ—H>—W<u<\-r>+v<|~r>>}.

heCy(Re,Rd) | 7€M (k)

The cost function ¢ = ¢+ H — H being lower semi-continuous and bounded from below
by the same constant as ¢, the duality Theorem for OT (see Theorem 1.8) ensures that

Va(u,v) = inf w(¢) = sup {u(o) +v(¥)}.
mell(p,v) (8,9)€Cy (RD) x Cp (RY)
@<

Therefore, using that Cy(R?) € Cy(R?) for the first inequality then that ¢ = ¢ — ||| -|
belongs to C1(RY) when ¢ € C1(R?), we obtain

VM(pv) = sup sup {u(o =Rl - )+ v — Al -]}
heCy(R4,R4) ) ) (&,;L)ecb(n@i)xcb(u@d)
(x)+(y)<c(z,y)+Ih|(|lz|+|y))—H(z,y)
< sup sup {u(o = [R|[-]) +v( —|n[|- D}
heCp(RERY) —  (§h)ecs ®)xCy(RY)
() —|hl|z|+P(y)—|hlly|<c(z,y)—H(z,y)
< sup sup {(d) +v()}.
heCy(RERY) (4,4)eC) (RY)x Oy (RY)
Dyp<c—H

Of course, these inequalities are equalities when VM (1, v) = +o0o. Otherwise ITM (u, v) #
0 and for m € M (u,v), h € Cp(R4,RY) and (¢, 1) € C1(R?) x C1(R?) such that ¢ @ <
c— H, then 7(c) = nm(c— H) > m(¢p ® ) = u(¢p) + v(¢). By taking the infimum over 7
and the supremum over (¢, ) in this inequality, we conclude that

VM(uv) = sup sup  {p(o) + ()}
heCy(RY,RY) (¢,)eC) (RY)x O (RY)
pDY<c—H



Chapter 4

Entropic Optimal Transport

The Entropic Optimal Transport problem consists in solving

Veelp,v) = _inf  (w(c) +eH(x|p @ v)),

el (nu)

where ¢ : X x Y — R is a cost function, £ > 0 and

_dm .
H(rlp®v) = {fxwln (du®u($’y>> m(de,dy) f T << p®v |

+00 otherwise

denotes the relative entropy of the coupling 7 with respect to p®@ v(dzx, dy) = p(dz)v(dy).
In this chapter, we will see that the Entropic Optimal Transport problem is an approxi-
mation of the classical Optimal Transport problem in the sense that V. (i, v) converges to
Veo(u,v) as € — 0 and present the Sinkhorn algorithm which permits to solve efficiently
this approximate problem.

4.1 Relative Entropy, primal and dual formulations

For pu,v € P(X), we say that u is absolutely continuous with respect to v and denote
p<<vifv(A) =0= u(A) =0 for each Borel subset A of X. The relative entropy of u
with respect to v is defined by

p(n () =v(En(p) ifu<<v
+00 otherwise

H(uly) = {

Note that for f(y) = yIn(y), f'(y) = In(y) + 1, f"(y) = ; and inf,>0 f(y) = f(1/e) =

—1/e. This ensures that when p << v, —1/e < 3—5 In ((‘j—’;) and the integral of the right-

hand side with respect to v makes sense. Moreover, if H(u|v) < oo, then by strict
convexity of f and Jensen’s inequality,

H(plv) = v (f (j—“)) > f ( (fl—”)) — (1) =0 (4.1)

with equality iff Z—ﬁ is v a.e. constant i.e. p = v.

95
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Proposition 4.1. Let ¢ € My(X x Y). Then for each € > 0, there exists a unique
7. € H(u, v) optimal for V. .(u,v).

The proof relies on the next lemma which gives a variational formulation of the relative
entropy.

Lemma 4.2.

Vv € PE), Hsb) = sup {p(f+1) = v(eh) (42)

and P(X) x P(X) 3 (u,v) — H(plv) is conver and lower semi-continuous for the product
of the weak convergence topology.

Proof of Proposition 4.1: Let R. € P(X x ) be defined by = = ¢ . The

dp®v uRu(e”€)
probability measure R, is equivalent to p ® v and 7 << p® v & 7™ << R.. When this

holds, ﬁ =pn®uvie c)egddé; so that

H(mlR) =10 (4@ v(e™9) + - (x(0) + cH(xln © ). (43)

The first term in the right-hand side is some constant not depending on the cou-
pling m. Hence m € II(u,v) is optimal for V..(u,v) if and only if it is optimal for
inf ey H(m|R:). Let us check that there is a unique 7. € II(u, v) optimal for the latter
problem. Note that inf e, H(7|R.) < H(u®v|R.) =In (@ v(e %)) +1u@v(c) < .
Lemma 1.7 ensures that from any minimizing sequence in II(u, v) for inf e, H(7|R:),
we may extract a subsequence (m,), converging weakly to some 7, € II(u,v). Since,
by Lemma 4.2, 7 — H(7|R.) is lower semi-continuous, we deduce that 7, is optimal
for infrengu) H (7| Re). For distinct 7w, 7 € II(u,v) such that H(w|R.) + H(7|R.) < o0

setting g = dd—” and g = we have, by strict convexity of R, 3 y — ylny,

dR’

i (T35 = v (G +am (3o a))

< 1. (Hlamte) + 310(@) ) = JHGIR + H(GIR)

Since # € II(u,v) by convexity of this set, this ensures uniqueness of optimizers for

infwen(u’y) H(’/T‘RE)

Proof of Lemma 4.2: Before proving (4.2), let us check that this variational for-
mulation implies the second assertion. For fixed f € Cy(X), P(X) x P(X) > (u,v) —
pu(f+1)—v(e’) is linear and continuous. We deduce that P(X)xP(X) > (u,v) — H(u|v)
is convex (resp. lower semi-continuous) as the supremum of convex (resp. lower semi-
continuous) functions. Let us now prove that

wp {u(f+ 1) v} = sup {u(f 1) — vl
FECH(X) FEM(X)
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Since Cp(X) C My(X), the right-hand side is not smaller than the left-hand side and
it is enough to check that for fixed f € M,(X) bounded by My, u(f + 1) — v(ef) <
SUD,ecy () 11(g + 1) —v(e?)}. By density of Cy(X) in L'(u + v), there exists a sequence
(fa)nen In Cy(X) converging to f in L'(p+ v). Since ||f — (=My) V fo A Myl 1) <
|f = fallL1(u4v), We may suppose that each function f, is bounded by M;. We extract a
subsequence (f,, Jken such that as k — oo, f,,, — f, u+v a.e.. By dominated convergence,

u(f +1) —v(el) = limg oo p( fr, +1) = v(e/™) < supyec, ) {(g + 1) = v(e)}.

e When p is not absolutely continuous with respect to v, then there exists A € B(&X)
such that p(A) > 0 and v(A) = 0. Choosing f = cla, we get u(f +1) — v(ef) =
ci(A) +1—0 and letting ¢ — oo, we deduce that

sup_ {(F +1) = v(el)} = oo = Hiply).
FEM(X)

e When p << v, we set g(x) = %(m). For y > 0, f,(z) = yx — €” is strictly concave

and maximal equal to f,(In(y)) = yIn(y) —y when f)(z) = 0 ie. y = € ie.
x = In(y). We deduce that for y > 0
yIn(y) = sup{yz — ¢’} +y, (4.4)

zeR

an equality which remains valid when y = 0. Hence for f € M,(X), gln(g) >
g+ fg— el so that

H(ulv) = v(gln(g)) 2 v(g + fg —e) = p(1+ f) — v(e).

We deduce that H(p|v) > Sup e, x) {u(f+1) —v(eh}.
On the other hand, let for n € N*, f, = In (% \/g/\n). By monotone con-

vergence, £t (1gs1yfn) — 1t (1g>131n(g)) = v (1gg>139In(g)) as n — oco. Since
-1 = infycoyIn(y) < ly<nngfn < 0, by Lebesgue’s theorem, ,u(l{ggl}fn) =

e

v (1{g§1}9fn) — v (1{g§1}gln(g)). We deduce that

1(fo) = 1t (Lgsayfn) + 1 (Lg<y fr) = v (Lgs1391n(9)) + v (1y<1391n(g))
=v(glng) = H(ulv).

Moreover, by Lebesgue’s theorem v(e/") = v(2 vV g An) — v(g) = 1. We deduce
that pu(fn +1) —v(ef) — H(plv) so that H(ulv) = supep, vy {n(f +1) —v(e)}.

Let us now give the dual formulation of the entropic optimal transport problem.

Proposition 4.3. Let p € P(X), v € P(Y) and R € P(X x )). Then

inf H(x|R) = sup {nevioy+1) - R(e*)},
Tell(p,v) (o 9)EL (u)x L (v)

where ¢ S Y(x,y) = ¢(x) + Y (y).
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Proof of Proposition 4.3: By Lemma 4.2,
inf H(m|R)= inf sup  {m(f+1)—R(e)}.

well(p,v) mell(pv) fec, (X xY)

Since II(u,v) is convex and compact by Lemma 1.7, 7+ m(f + 1) — R(e) is linear and
continuous in 7 for fixed f € Cy(X x V) and f + 7(f +1) — R(ef) is concave in f by
concavity of R 5 y — —e¥, by the above minimax theorem (Theorem 3.20),

inf H(w|R)= sup inf : {m(f+1)—R(e)}.

mell(p,v) FECH(XXY) well(p,v

For f € Cy(X x )), by the duality theorem for the Optimal Transport problem with cost
function f (see Theorem 1.8),

%_Inf {7T(f+1)—R(ef)} = sup {u(¢)+u(w)+1—R(ef)}.
mell(py) (¢»¢)E¢CEBEJJX<>}Cb(y)

Since ¢ ® 1 < f implies e?®¥ < e/ and ¢ Y € Cp(X x V) for (¢,9) € Cy(X) x Cy(Y),
we deduce that

inf H(w|R) < sup sup {p@v(p®y+1)— R(e*®¥)}
mell(p,v) FECH(XXY) (6.)ED
PeCy(X),YeCh(Y)
= sup {p@v(@ey+1)— R ()}
() ECH(X)xCp (V)
< sup {p@vie®y+1)— R(e?®)}. (4.5)

(@)L (u)x L (v)

For 7 € TI(u, v) such that 7 << R and (¢, ) € L'(u) x L'(v), by the equality yIn(y) =
sup,cr{yr — €} + y valid for y > 0, we have

dm dm dm dm
_ R — ey 4 T
Tk (dR> 2R’ T R

We deduce that

H(x|R) = R (d—”ln (d—”)) > (&) — RE) +7(1) = 7( &+ 1) — R(e*)

dR dR
so that
ettt A7) 2 L X L10) ero@v+1) - R}
With (4.5), we conclude that both sides are equal. i

4.2 Relative entropy and projections

Let us recall that the total variation distance is defined by

drv(p,v) = sup |u(A) —v(A)| for p,v € P(X).
AEB(X)
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Note that

dry (1, v) = sup [u(f) = v(f)], and (4.6)

FEM(X):| flloo<
1 < du  dv > (4.7)

p<<nandv<<n=dpr(pv)= U
The Pinsker inequality provides an estimation of the total variation distance in terms of
the relative entropy.

dn dn

Lemma 4.4 (Pinsker’s inequality).

1
V:uv Ve P(X)7 dTV(:ua V) < §H(M|V)

Proof: Since drvy(u,v) < 1, the conclusion is obvious when H(u|v) = oo and we now
suppose that H(pv) < oco. Let po, p1 € P(X) be such that H(uo|v) + H(mu|v) < oo,

e = (1=t)po+tug fort € [0,1], fi = d‘“ = (1—t) fot+tfi and h(t) = H(w|v) = v(fi In(fy)).
For t € (0,1), we have

O(filn fi) = (1 +In f)0: fr = (1 + In f;)(f1 — fo)
and

O fr (fi — fo)? f0+f1
i It

Using for the third inequality that for y € [0, 1], —1/6 < ylIn(y) < 0 so that y|In(y)| <
1/e < 2/e+ yln(y) then the convexity of Ry 3 y +— yln(y) for the fourth, we obtain for
€ (0,1)

Afi—fol
(=Y

O (filn fy) = —=(f — fo) = |f1— fol <

(=S fl < (o + WA < =7 ey gaim <ft>\——2/<61+ ]:f)li(ft)

1/e+ (1—=t)(1/e+ foln fo) +t(1/e+ fi lnfl)
(1—t)At

Since 8,(f;In f;) = (1 +1In f,)(fi — fo), we deduce that for € € (0, 3),

sup 10fln f)| < fot fy + LA U/et folnfo) + (1 =e)(l/e+ filn fi)

te(e,1—¢) €

where the right-hand side is integrable with respect to v. By Lebesgue’s theorem, we
deduce that h(t) is differentiable on (g,1 — €) and therefore on (0, 1) with derivative

W(t) = v ((1L+In(f)(fi = fo)) = (1 — po)(In(f))- (4.8)
Since sup;e(.1 o) |07 (fiIn fi)] < @, R is differentiable on (0, 1) with derivative

B(E) = <(f1 fth) ) _ ((fl fth) >

> (e (L2 2=(V(|f1—fo|))2=4d?fv(u1,uo),
= ( ("5))
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where we used (4.7) for the last equality. Therefore [0,1] > h(t) + 2¢t(1 — t)d%y (p1, po) is
convex and

vt € [0,1], ht) + 2601 — O (11, 10) < (1 = )R(0) + th(1)

so that d3(u1, po) < % + 2?1(3) for t € (0,1). Choosing py = p and p; = v so that

h(0) = H(plv) and h(1) = H(v|v) = 0 and letting ¢t — 1, we conclude that d3 (p1, o) <
sH(ulv).
2

Lemma 4.5. Let p,v,n € P(X) with up << n. If either H(v|n) < oo or H(v|p) < oo,

then H(v|n) — Hv|p) = v <ln (%))

and In (3—;‘) is semi-integrable with respect to v (meaning that its positive or its negative

part is integrable).

Proof: When H(v|n) < oo then v << n and when H(v|u) < oo, v << p << n. Let
f= ‘;—: and g = Z—Z.

e When v << pu, then j—: = g, n a.e. and therefore p a.e.. Moreover, H(v|u) =
v(In(f/g)) > 0 while H(v|n) = v(In(f)) > 0. When H(v|u) < oo, then In(f/g) €
L'(v) and since v(In(f)) > 0, (In(f))~ € L*(v). Moreover,

(In(g))™ = (In(f) —=In(f/9))” < (n(f))” + (=In(f/9))” < (In(f))” + [In(f/g)]

implies that (In(g))~ € L'(v). We deduce that
H(v|n) — H(v|p) = v(In f) —v(In(f/g)) = v (In f —In(f/g)) = v(Ing)

~(-()

When H(v|n) < oo, the equality still holds since In(f), (In(f/g))~ € L'(v). More-
over,
(In(g))™ = (In(f) = In(f/g))" < (In(f))" + (=In(f/9))" < [In(f)| + (In(f/g))"
implies that (In(g))* € L'(v).
e When v is not absolutely continuous with respect to u, then n({f > 0,9 =0}) >0
so that v({In(g) = —oo}) = n(1{g=0yf) > 0. Moreover, H(v|u) = 400 so that

H(vn) = n(fIn(f)) < oo and fIn(f) € L'(n). Using that In(y) <y — 1 for y > 0,
we have

Oif f=0o0rg<1
f(n(g/f) +In(f)) < g— f+ fIn(f) otherwise

so that f(In(g))* € L*(n) and (In(g))* € L'(v). Hence v(In(g)) = —oo = H(v|n) —
H(v|p).

0< f(In(g))" = {
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Proposition 4.6. Let £ C P(X) be conver and such that p € € and n € P(X) be such
that H(uln) < co. Then the following are equivalent

(i) H(pln) = infoee H(v|n),
(i1) Yv € € with H(v|n) < oo, v (1n (3—’;)) > H(uln),
(12i) Vv € &, H(vln) = H(v|w) + H(pln).
Remark 4.7. Under the equivalent conditions (i) — (i) — (iii),
o ifnef, then u=mn,
e if v e & satisfies H(vn) < oo, then H(v|u) < co and v << fi.

Proof: Since H(v|u) > 0, we have (iii) = (i).

Let us now check that (i7) = (d¢i7). When H(v|n) = oo then the inequality in (7i7)
holds. Otherwise, by Lemma 4.5 then (i),

)~ 1) =v (1 () = Huln

Let us finally check that (i) = (i7). Let v € & be such that H(v|n) < oo and let
vy = (1—t)u+tv for t € [0,1]. Like in the derivation of (4.8) in the proof of Lemma 4.4,
we obtain

Wt € (0,1), %H(wln) =(v—p) (m ((1 - t)fl—g + t%))

For all t € (0,1), since v, € £ by convexity of this set, H(v¢|n) > H(u|n). Hence there
exists a decreasing sequence (t,)nen in (0, 1) such that lim, . ¢, = 0 and

dp dv
Y N, 0 <(v — l 1—-t,)— +t,—
nel, 0=l “)(n(( S ¥ dn))

du du dv
<v (1{3};>2: In (d_'r])) —|—l/<1{fil;;<zlz7u’ In ((1—tn)%+tnd—n>)
— i (ln(l —t,) +1n (%)) :

Since lim, o t, = 0, the third term in the right-hand side converges to u <ln (%)) =
H(u|n) as n — oo.

By monotone convergence, v (1{di<£ <1n (?TZ) —1In <(1 —t ) +t, 3;))) converges to

v (1{%<% (ln (2—;) —In (Z—Z))) Since H(v|n) < oo 1mphes v (’ln (fl—;) )

deduce that the second term in the right-hand side converges to v <1 (oot In ‘;—’;) ) By

< o0, we

Lemma 4.5, In (iﬁ) is semi-integrable with respect to v so that v 1{ }ln (dn>> +
dn—dn

dn
v ( du v (d—“>> ( <—>> and we conclude that 0 < v <1n (j—’;)) — H(uln). 1
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Corollary 4.8. Let p € P(X), v € P(Y) and R € P(X x V). If there exists (¢x, V) €

L'(p) x L*(v) such that m, with density 2= = e« belongs to I1(p, v), then H(m,|R)

infreriqup) H(m|R) and (¢y,1y) is a pair of dual optimizers.

Proof: For 7 € II(u,v), we have

w(10(55)) = rl6.00) = po)+r(w) = m(o.00) = (1w (F2) ) = HGm )

Hence statement (ii) in Proposition 4.6 holds with (n,pu,v) = (R,m,7) and & =
II(p, v) which is convex. By this proposition, statement (i) also holds : H(m|R) =

infreri(uy) H(7|R). Moreover, since R(e?*®¥+) = R(%=) =1,

M®V(¢*EB¢*+1)—R(6¢*G§¢*> = H(T('*|R) = sup {,u ® V((b fany w + 1) _ R(e¢@¢>} ,
(p)EL (u)x L1 (v)

where the last equality follows from Proposition 4.3. | |

For i € P(X), we denote by II(x,-) = U,epy) (1, v) the subset of P(X x V) which
consists in probability measures with first marginal equal to pu.

Proposition 4.9. Let u,n € P(X) with p~n (i.e. p <<mn andn << p) and Z—’; =e% €
LY(u). For R € T1(n,-) with desintegration R(dx,dy) = n(dz)R.(dy),

Lt H(@|R) = p(6.,) = sup {u(¢+1)—R()}.

PEL (1)

In particular m(dz, dy) = u(dx)R,(dy) = Z—Z(m)R(dw, dy) is the primal optimizer and ¢,
a dual optimizer.

Remark 4.10. The fact that p ~ n implies that %% > 0, n a.e. (and therefore u a.e.)
and writes e®*.

Proof: For m € II(y, ) such that 7 << R,

H(r|R) = H(u(dx)m,(dy)|n(dz)R,(dy)) = /X

du dm,
(G ) ) utde)m. )

= H(pln) + ; yH(m\Rx)u(dx) > H(plv),

since H(m;|R;) > 0. As a consequence, infrer,.) H(n|R) > H(p|v). Since m, = R,
p(dx) a.e., H(m|R) = H(pln) = infren,) H(n|R) and 7, is a primal optimizer. The
uniquess of the primal optimizer is a consequence of the strict convexity of R, 3 y —
yIn(y) like in the proof of Corollary 4.1. Finally,

inf (x| R) = H(uln) = (m (j—;‘)) —u(6) = u(b A ) R(), (49)

WEH(;L,~)

where we used that R (e¢*) =7 (e¢*) = (3—‘;) = 1 for the last equality.

Reasoning like in the end of the proof of Proposition 4.3, we check that
infrenqy H(w|R) > supgerigy {mn(¢+1) —R(e?)}.  With (4.9), we conclude that

infreni(uy H(T|R) = w(gs + 1) — R (e?) = SUDge 11 () {m(¢+1) — R(e?)} and that ¢,
is a dual optimizer. | |
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4.3 Stability of the Entropic Optimal Transport
problem

Proposition 4.11. Let ¢ € Cy(X x V). Then lim. 0 V.- (1, v) = Ve(u,v). Moreover, if
(Tn)nen 5 a weakly convergent sequence of optimizers for V.., (i, v) with lim,_,. e, =0,
then its limit is optimal for V.(u,v).

Remark 4.12. From any sequence (1")nen of optimizers we can extract a weakly conver-
gent subsequence according to Lemma 1.7.

The proof relies on the data processing inequality :

Lemma 4.13 (Data processing inequality). Let k : X — P(Y) be a probability kernel.
For n € P(X), we denote by nk € P(Y) the probability measure defined by nr(dy) =

Jocx Ka(dy)n(dz). Then

Vu,v € P(X), H(pklve) < H(ulv).

Proof of Proposition 4.11:  Clearly, ¢ — V,.(u,v) is non-decreasing and bounded
from below by V.(u,v) so that lim._,o V. (p, V) exists and satisfies lim._,o V. o(p,v) >
Ve(p,v). Let m, be optimal for V.(u,v). To check that lim. o V..(u,v) = Vo(p,v), it is
enough to exhibit a sequence (m,),en in II(y, ) that converges weakly to m, and such
that H(m,|p ® v) < oo for each n € N. Indeed setting ¢, = L ; we have

n(H (7 |p@r)V1
limy, o0 €, = 0 = limy, o0 £, H (7, |0 @ v) and
lim Ve, (u,v) < lim {m,(c) + en H (mn|p @ v)} = me(c) = Ve(p, v).
n—oo n—oo

To construct ,, with H(m,|u®v) < oo, we rely on finitely supported probability measures.
Let (tn)nen and (v,)nen be sequences of finitely supported probability measures in P(X)
and P()) such that p, converges weakly to pu and v, converges weakly to v as n — oo
(existence follows for instance from the almost sure convergence of the empirical measure
of i.i.d. copies deduced from the strong law of large numbers). Let

o u®kK™ = p, ®E™! be some optimal coupling for Wy (p, pt,) with the distance dy A1,
o v®k™ = 1, ®K™? be some optimal coupling for W (v, 1,,) with the distance dy A1,

A

o 7, = m (k" ® k™?) € U(y, vp) and m, = 7, (R @ &™) € T(p, v).

The weak convergence is equivalent to convergence in W, for the distance capped by 1
so that limy, oo Wi (tin, pt) + Wi (v, v) = 1. When X x Y is equipped with the distance
(dx A1) @ (dy A1),

W70y, Tin) < / (dx(z, @) A1) + (dy(y, §) A V)m(de, dy) s (di) s (dg)
XXYXX XY

- /X (Al 3) A D) (@) + / (dy(y. 5) A Du(dy)a(dg)

yxy
= Wl(:ua ”n) + Wl(y7 Vn)'
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In a symmetric way, W (T, 7)) < Wi (in, ) + Wi (v, v) so that by the triangle inequality
Wl(ﬂ—*a 7Tn) S W1<7T*, ﬁn) + Wl(ﬁ—na 7Tn) S 2 (WI(M7 Mn) + WI(V7 Vn)) 7H—O>O O

and 7, converges weakly to 7, as n — oo. On the other hand, since 7, and u, ® v, are
finitely supported with the support of 7, included in the one of p, ® v,, T, << i, & Uy,
and since the relative entropy amounts to a finite sum, oo > H (7, |p, ® v,,). Since m, =
Tn(RM @R™?) and Qv = (fni™") @ (1, 5™?) = (pn @ vy ) (R™' @ £™2), the data processing
inequality stated in Lemma 4.13 ensures that H(m,|u ® v) < H(7, |y @ v,) < co. The
sequence (7, )nen has the desired properties and therefore lim._,o V. (11, v) = V(1. v).

Last, if (7,)nen is sequence of optimizers for V.. (u,v) with lim,,_, €, = 0 that con-
verges weakly to 7., then 7, € II(y,v) and taking the limit n — oo in the inequality
Tn(€) < Vee, (1, v), we get moo(c) < Vo(p1, V), so that 7y is optimal for V.(u, v). i

Proof of Lemma 4.13: It is enough to deal with the case when H(ul|r) < oo,
which implies ¢ << v. Using the desintegrations u(dz)r.(dy) = pr(dy)rt(dr) and
v(dz)k.(dy) = ve(dy)k; (dr), we have

dp,  dpr, _dpk drl)
dv (:C) - dl/ffx (SC, ) - dvk (y) X dff]; (Q}')

Then

dpm
H = H(uk.|ve,) = Y(d d
i) = Aoy = [ () ) (G260 ) st
H(uslon) + | HODpn(dy) = H (o).
where we used the non-negativity of the relative entropy for the inequality. |

Proposition 4.14. Let ¢ € My(X X V), p, i € P(X), v,v € P(Y). Then

Vee(p v) = Vee (i, ) < 2f|efloo (dv (1, ) + dy (v, 7)) -

Moreover, the optimizers m, € (u,v) and 7, € I1(f1, D) satisfy

dov (e, ) < drv (s 1) + dov (v, 9) + /2 o (dov (s, 1) + dov (v, 9)).

Proof: The coupling

(5 — A ) (d2) (s — A i) (d)
1= pAp(X)

is optimal for dry(u, ft). Let v(dy)k2(dy) defined similarly be optimal for dyv (v, 7). For

7 € M(p,v), 7 = n(k' @ k*) € (@1, 7). Let I(dw) = d,(dw) and & = n(x' @ I7).

By the triangle inequality, dpv(m,7) < dpy(m,7) + dry(7, 7). We have 7(dz,dy) =

f(dx)m,(dy) = v(dy)7,(dz). For f € My(X x Y) bounded by 1/2, the function g(z) =

fy f(z,y)m.(dy) also is bounded by 1/2 and, by (4.6),

7 (f) = 7()] = lulg) — ilg)| < drv(p, f1)-

() KA (dF) = A i(d2)5,(dF) + Lunpy<t)
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With (4.6), this implies that dpv(m,7) < dry(p, ). In a symmetric way, dry (7, 7) <
dry(v,7) and therefore dpvy(m, 7) < dry(u, i) + drv(v, 7). With (4.6), we deduce that

7(c) = m(e)| < 2lcllocdry (m, T) < 2[|c]loo (drv (s, 1) + drv (v, 7). (4.10)

Since it ® v = (uk1) @ (vk2) = (1 @ v)(k' @ k?), by the data processing inequality
stated in Lemma 4.13, H(7|p®@ 7) < H(7w|p ® 1/) Hence

T(c) = m(c) +eH(7|p @ D) — eH(m|p @ v) < 2[|elleo (drv (1, fi) + drv(v, 7)) .
For the choice m = m,, we deduce that

‘/c,z-:(ﬂv ﬂ) - ‘/c,s(/% V) < 2Hcl|oo (dT\/(,U/a ,l],) + dTV(Vv D)) :

m\o

The first inequality follows by symmetry. For R. € P(X x Y) such that dfl];fﬁ = u®j G )

7, minimizes H (7| R) over II(fi, #) and by Proposition 4.6, H(#|R) > H(#|%,) + H(#.|R)
for each 7@ € TI(ji,v). We choose 7 = 7, (k! ® k?) to deduce with (4.10), H(7|gp ® v) <
H(m|p ® v) (consequence of the data processing inequality stated in Lemma 4.13) and
the first assertion that

m\o

H(7|x,) < H(7|R) — H(7,|R)
=17(c) = 7u(c) +e (H(F|p @ D) — H(Tu|p @ D))
< mee) = mule) + 2[|ef|oo (drv (i, £) + drv (v, D)) + & (H(m|p @ v) — H(7| i ® 7))
= Vet v) = Veelfi, v) + 2||cl o (drv (s ) + drv(v, 7))
< Alclleo (drv (s 1) + drv (v, 7)) -

With Pinsker’s inequality stated in Lemma 4.4, we conclude that

. . _ o _ . 1 .
dry (e, Ti) < doy (14, T) + doy (7, T) < dov(p, ft) + dov (v, 7) + éH(ﬂ?T*)

< drpv(p, 1) + drev (v, 9) + V/2[|clloo (drv(p, 1) + dov (v, D).

4.4 'The Sinkhorn algorithm

c

Let ¢ € My(X x V), ¢ > 0 and R, € P(X x ) be defined by 4= = ¢ ° __ The

BV pu(e” <)
probability measure R, is equivalent to u®v and form € P(X x V), 7 << pQrv < 1 <<

R.. When this holds, ﬁ =pu@uv(e ¢)es dd“ so that

H(m|R.) = (n(c) +eH(mlp®@v)) +eln (p® V(e_g)) . (4.11)

Up to adding € In (u ® u(e’f)) to ¢ we suppose from now on that

dR .
c —efand Vi (u,v) = f H(r|R
ey ¢ ™ (1, v) e ot (7| R:).
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By Corollary 4.8, we deduce that if we find (¢,v) € L'(u) x L'(v) such that 7= with
density 7 = e?®¥ belongs to TI(y, ), then 7 is the minimizer of V.. (uniqueness is a
consequence of Corollary 4.1). Note that then

) = [ wldody) = [ om0 o))
e xe

so that
v(dy) a.e., ew(y)/ e?@ 2@y (dr) = 1

reX

and by symmetry,
p(dx) a.e., e‘b(m)/ ew(y)’g(‘”’y)y(dy) =1.

yey

Hence
v(dy) a.e., Y(y) = —In (/Z

and pu(dz) a.e., ¢p(x) = —1In (/ ew(y)_g(l”y)y(dy)> :
yey

X

Definition 4.15. The Sinkhorn algorithm consists in alternatively solving these two equa-
tions starting from ¢o(x) =0, x € X : formn € N,

¢n(y) — —In (/ e‘f’”(x)_g(xvy)u(d:x)) L ye)y
rzeX

Gpi1(r) = —1In (/ ewn(y)i(%y)y(dy)) L EX.
yey

Since the cost function ¢ is bounded, we check by induction on n that so are ¢, and
ty,. Let mp = R. = e s pu® v and for n € N, my,41 and 7,2 be defined by

and ———

d7T2n+1 — e(]ﬁn@wn*g d7T2n+2 = e¢n+1@¢’ﬂ7§. (412>
du®@uv dp @ v

Since, by definition of v, and ¢, 1,
/ @ =29y dp) — 1 and / O @)+ )£ (dy) = 1,
zeX yey

we have 7,11 € II(+,v) and Tonio € Il(p, +) with (-, v) = U, cp(x) (7, ) denoting the
subset of P(X x )) consisting in probability measures with second marginal equal to v.
For n € N, the first marginal of o, is

n(dz) := 6%(93)/ ewn(y)—i(w,y)y(dym(dx) — 6¢7z($)_¢n+1(z)u(dx> (4.13)

yey

and the second marginal of 7y, 4 is

ewn(y)/ €¢n+1(m)fg(x’y)/vt(dI)V(dy) = ew”(y)iw"le(y)V(dy), (414)
yey
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Since %% = ePnt17% and, by (4.12), Tonio(dr, dy) = %%(:C)Wznﬂ(dx,dy), by Proposition

4.9 apphed with R = Ton+1, H<7T2n+2|7'('2n+1> = infwen(%.) H(W‘WgnJrl) and ¢n+1 - (bn c
argmax { u(¢) — Tant1 (e?) : ¢ € L' (1) }. Hence

[(Gns1 — On) — Tonsr (€77079) > p(0) — mangs (€9),

so that with (4.12),

plbun) —p@ v (™0 E) > pu(6,) —p v (7).

In a symmetric way, for n > 1, H(mop41|m2n) = infren.,) H(7|m2,) and

an) —uRv ( On®Yn— —‘) > ,/wn 1) R=X (€¢>n®wn_r§) )

Hence, for n > 1,

1(6n) + 1) — p @ v (e E) > () + v(tny) — p @ v (01 En1E)
Z M(¢n—1) + V(wn—l) — U KV (6(%71@#)"71_?) .
This rewrites @ v(d, © Yy +1) — Re (e7%n) > 1@ v(¢p 1 @by +1) — R (en-18¥n-1),

Therefore, in view of the dual formulation of the entropic optimal transport problem
stated in Proposition 4.3, we may expect convergence of the Sinkhorn algorithm.

Theorem 4.16. The sequence (m,), converges in total variation to the optimizer of
Ve (1, v).

Proof: Let m, € II(u,v) = II(u, ) NII(-, v) denote the optimal coupling for V. .(u,v) =
einfrenuy) H(m|R:). For n € N, since mony1 € argmin{H (7|my,) : 7 € I(-,v)} and
Tonto € argmin{ H (m|mo,11) : m € (4, -)}, by Proposition 4.6,

H(ﬂ—*"]@n) 2 H(’/T*‘ﬂ_Qn—i-l) + H(ﬂ—Qn—i—l‘ﬂ_Zn)

and H (7, |mony1) > H(m|mons2) + H(Toni2|Toni1).

We deduce that H(m|ma,) > H(my|monte) + H(mon11|mon) + H(T2n12|Tony1) and that

H (m,|mo) >Z (Ton41|Ton) + H (Tont2|Ton+1))- (4.15)
neN

Since mo = R., H(m.|mo) = H(m|R.) < H(p®@v|R.) = p@ v (£) < o0.
Let p, and v, denote the first and second marginals of m,. We have v5,,; = v and

Monto = p for n € N and

H(pn|pon—1) if n > 3 is odd
H(vp|vp—1) if n > 2 is even

H (pn|p) + H(vn|v) = {
Note that

diin AT )
H(m,|m,—1) = In T) X 12 (AY) thy—1 (dx
mme) = [t () () ) ()

— H(jualpns) + /X Hmo |t pina(de) > Hlolpn)  (4.16)
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and, in a symmetric way, H(m,|m,—1) > H(vy|vn_1). Therefore, for n > 2, H(p,|un) +
H(vn|lv) < H(mp|mn—1). With (4.15) then Pinsker’s inequality (see Lemma 4.4), we deduce
that
H(m,|mo) > Z (tn|p) + H(vn|v)) > 22 d?fv (fns 1) + d%“v(’/nay))-
n>2 n>2
Therefore lim,, o0 (dry (fin, ) + drv(vp, v)) = 0.
Since, by (4.12) and the definition of R.,

d7—r2n+1 _ e(ﬁn@d)n and d7r2n+2 — 6¢n+1@'¢)n
dR. dR. ’

Corollary 4.8 ensures that for n > 1, 7, is optimal for inf e, v,y H(7|R:). For m €

dm dm d#n®1jn
(e, vp ), since iR = T AT

H(x|R.) = = (m (dcg)) H (i ® v) + 7 (m (CZL) & In (CZ;)) +2m(o)

(m(c) + eH (m|pn @ vn)) + H(pn|p) + H(wn|v).

c
X e=, we have

(LI

We deduce that for n > 1, m, is optimal for V. (pn,v,). With Proposition 4.14, we
conclude that lim,,_, . dry (7, m) = 0.

Remark 4.17. By (4.12), (4.13) and (4.14), - = <ot dins — cba—tnit gpg

7 dman42 du
dc’f” = e¥n-17¥n Therefore
v

H(on|Tony2) = o (60 — Pni1) @ (1 — 1)) = (ln (Jﬁ)) Vo (1“ (ddu)>

= H(von|v) — H(plp2n+1)

H<7T2n+2|7r2n> = Ton+2 ((¢n+1 - gbn) S (¢n - ¢n—1))
= H(p|poni1) + Vonto (200 — Yoot — ¥ng1) = Vongo (Vn — Ynia)
= H(p|p2n+1) + H(vont2|von) — H(vanya|v).

The first equality implies that H(ve,|v) > H(u|pont1) and the second combined with
H(mony2|mon) > H(Vopia|van) proved like (4.16) ensures that H(p|pont1) > H(Vopsa|v).
Therefore H(vo,|v) > H(Vonia|v). In a symmetric way, we can check that the sequence
(H (p2n11|t) )nen also is non-increasing.

Remark 4.18. By studying the dual problem, it is possible to check that ||¢. — én || r2¢u) +
1Y% = Unll 20y < CR™ for some rate h € (0,1) depending on ||c||s.



Chapter 5

Weak convergence

Let X be a metric space endowed with its Borel o-field B(&X') i.e. the smallest o-field
which contains all the open subsets of X for the distance dy. A subset O C X is open
if Ve € O, 3¢ > 0, B(z,e) :={y € X :dx(z,y) < e} C O. Let P(X) denote the set of
probability measures on (X, B(X)) and Cy(X) = {f : X — R continuous and bounded}.

Definition 5.1. e A sequence (ji,)nen C P(X) converges weakly to p € P(X) if

Vf € Cb(X)v nlgilo,un(f) = M(f)

o A function f: X — R is upper (resp. lower) semi-continuous if

Ve e X, f(x) > limsup f(y) (resp. f(z) < liminf f(y)).

Yoz Yy—x

Note that a function is continuous iff it is both upper and lower semi-continuous.

Theorem 5.2 (Portmanteau). The following assertions are equivalent

1) The sequence (fin)nen converges weakly to p as n — oco.

2) Vf: X = R Lipschitz and bounded, limy, o f1n(f) = u(f).

3) limy, e sup {pn(f) = u(f)} = 0.
FY=R
1— Lipschitz bounded by 1
4) YF C X closed, limsup,,_, .. pin(F) < u(F).

5) Vf :+ X — {—oo} UR upper semi-continuous and bounded from above,
Hmsup,, o fin(f) < pu(f).

6) YO C X open, liminf,_,. p,(0) > p(O).

VS X — R U {+oo} lower semi-continuous and bounded from below,
lim it o0 tn(f) > (F).

8) VA € B(X) with u(0A) =0, lim, . pn(A) = u(A).

9) Vf: X — R bounded and continuous 1 a.e., im, o0 fn(f) = pu(f).
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We refer to Theorem 2.1 [5] for the equivalence between 1), 4), 6) and 8). We will
frequently use 7). Let us check that it is equivalent to 6). Since for O C X open, 1¢ is
lower semi-continuous and bounded from below by 0, we have 7) = 6). Let f : X - R
be lower semi-continuous and bounded from below. Up to replacing, f by f —inf f, we
may suppose that the function is non-negative. For n € P(X'), we have

= | f:) da(ds) = [ Oo | tuesamtanyia = [ e X f) > a))da.

=0
Since f is lower semi-continuous, the set {r € X : f(z) < a} is closed and its comple-

mentary {z € X : f(z) > a} is open. Hence, by 6) and Fatou lemma,

+00

+00
ph = [ ne e @) > ahdas [ lmint (s € X2 fe) > a}da

=0 a=0

< lim inf /+OO pn({z € X : f(x) > a})da = ligglfun(f).

n—oo =0
The following result is the combination of Theorems 5.1 and 5.2 [5].

Theorem 5.3 (Prokhorov). Let L C P(X).

o If L is tight i.e.

Ve > 0, 3K C X compact such that sup u(K°¢) < e,
pneL

then L is relatively compact (i.e. its closure is compact) for the weak convergence
topology.

e Let X be Polish (i.e. separable and complete in addition to metric). Conversely, if
L s relatively compact, then L is tight.

Proposition 5.4 (Skorokhod representation of the weak convergence). Let X' be a Polish
space and (fn)nen C P(X) converge weakly to pn € P(X) as n — oo. Then there exists
on a probability space, X, ~ pin, n € N and X ~ pu such that lim,, ., X,, = X a.s..

We refer to Theorem 6.7 [5] for a proof of this result which is a consequence of Lemma
1.43 when X = R.
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