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Chapter 1

Optimal Transport

1.1 From Monge to Kantorovich

Let X and Y be two Polish spaces for the distances dX and dY . We denote by P(X ) and
P(Y) the sets of probability measures on X and Y respectively.

Definition 1.1. The image of the probability measure µ ∈ P(X ) by T : X → Y measur-
able is the probability measure T#µ ∈ P(Y) defined by

∀B ∈ B(Y), T#µ(B) = µ(T−1(B)),

where T−1(B) is the preimage of B by T .

The Monge formulation [13] of the optimal transport problem from µ ∈ P(X ) to
ν ∈ P(Y) with cost c : X × Y → R measurable is

V Monge
c (µ, ν) = inf

T :T#µ=ν

∫
X
c(x, T (x))µ(dx).

This formulation has several drawbacks. First when X = Y = R, µ = δ0 and ν =
1
2
(δ0+ δ1), there is no transport map T such that T#µ = ν since T#µ = δT (0). Moreover,

the set of transport maps is neither convex nor sequentially compact. Kantorovich [12]
introduced a relaxation of this problem by considering couplings instead of maps. Let

Π(µ, ν) =

{
π ∈ P(X × Y) :

∫
y∈Y

π(dx, dy) = µ(dx) and

∫
x∈X

π(dx, dy) = ν(dy)

}
.

denote the set of probability measures on X ×Y with first marginal equal to µ and second
marginal equal to ν. The Kantorovich formulation is

Vc(µ, ν) = inf
π∈Π(µ,ν)

π(c).

Remark 1.2. • Let iX : X → X denote the identity function on X defined by iX (x) =
x for x ∈ X . Since when T#µ = ν, then (iX , T )#µ ∈ Π(µ, ν) and (iX , T )#µ(c) =∫
X c(x, T (x))µ(dx), we have

V Monge
c (µ, ν) ≥ Vc(µ, ν).

3
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• The set Π(µ, ν) is never empty since µ⊗ ν(dx, dy) = µ(dx)ν(dy) ∈ Π(µ, ν). More-
over this set is convex and has nice compactness properties stated in Lemma 1.7
below.

Proposition 1.3. When µ is atomless (i.e. µ({x}) = 0 for all x ∈ X ), then the
set of Monge couplings {(iX , T )#µ : T : X → Y measurable} is dense in Π(µ, ν) and
V Monge
c (µ, ν) = Vc(µ, ν).

Proof: Let π(dx, dy) = µ(dx)πx(dy) ∈ Π(µ, ν). By the fundamental theorem of simula-
tion, there exists S : X × [0, 1] → Y measurable such that S(x, ·)#1[0,1](u)du = πx, µ(dx)
a.e.. Let pX : X ×[0, 1] → X be defined by pX (x, u) = x. Then (pX , S)#(µ⊗1[0,1](u)du) =
µ ⊗ πx = π. Let (xm)m∈N be dense in X and for n ∈ N∗, Bn

0 = B(x0, 1
n
) and for m ≥ 1,

Bn
m = B(xm, 1

n
) ∩
{⋃m−1

k=0 B(xk, 1
n
)
}c
.

Since µ is atomless, we can find Rn,m : Bn
m → Bn

m × [0, 1] measurable such that
Rn,m#µ|Bnm = µ|Bnm ⊗ 1[0,1](u)du. We set

Rn(x) =
∑
m∈N

1Bnm(x)R
n,m(x).

When X ∼ µ, Rn(X) ∼ µ⊗ 1[0,1](u)du and (pX (R
n(X)), S(Rn(X))) ∼ π.

When x ∈ Bn
m, dX (x, pX (R

n(x))) ≤ dX (x, xm) + dX (xm, pX (R
n
m(x))) ≤ 2

n
. Hence

∀x ∈ X , dX (x, pX (R
n(x))) ≤ 2

n
. Therefore for φ : X × Y → R Lipschitz continuous and

bounded

|E[φ(X,S(Rn(X)))]− π(φ)| = |E[φ(X,S(Rn(X)))]− E[φ(pX (Rn(X)), S(Rn(X)))]|

≤ E [|φ(X,S(Rn(X)))− φ(pX (R
n(X)), S(Rn(X)))|] ≤ Lip(φ)× 2

n

n→∞−→ 0.

By the Portmanteau theorem (see Theorem 5.2), we conclude that the law of
(X,S(Rn(X))) converges weakly to π as n→ ∞.

The following uniqueness criterion for optimal couplings will be used in the proof of
Brenier’s theorem.

Proposition 1.4. If any optimal coupling π⋆ ∈ Π(µ, ν) for Vc(µ, ν) is a Monge coupling,
then there is at most one optimal coupling.

Proof: Let π⋆, π̃⋆ ∈ Π(µ, ν) be optimal. Then π⋆(dx, dy) = µ(dx)δT (x)(dy) and

π̃⋆(dx, dy) = µ(dx)δT̃ (x)(dy) for some measurable maps T, T̃ : X → Y . Since Vc(µ, ν) =

(1
2
(π+π̃⋆))(c),

1
2
(π+π̃⋆)(dx, dy) = µ(dx)1

2

(
δT (x) + δT̃ (x)

)
(dy) also is optimal and therefore

a Monge coupling. As a consequence µ(dx) a.e., T̃ (x) = T (x) and π̃⋆ = π⋆.

1.2 The case of finitely supported probability mea-

sures

In this case, the Kantorovich formulation of the optimal transport problem is a linear
programming problem with finitely many variables and can be solved efficiently by the
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simplex algorithm or the interior-point method.

Let µ =

 µ1
...
µI

 ∈ [0, 1]I and ν =

 ν1
...
νJ

 ∈ [0, 1]J be such that
∑I

i=1 µi = 1 =

∑J
j=1 νj. For c = (cij)1≤i≤I,1≤j≤J , we want to solve

min
I∑
i=1

J∑
j=1

cijπij under the constraints ∀(i, j) ∈ {1, · · · , I} × {1, · · · , J}, πij ≥ 0,

∀i ∈ {1, · · · , I},
J∑
j=1

πij = µi and ∀j ∈ {1, · · · , J},
I∑
i=1

πij = νi.

Since the under the constraints, π = (πij)1≤i≤I,1≤j≤J describes a closed and bounded and

therefore compact subset of RI×J and RI×J ∋ π 7→ c.π =
∑I

i=1

∑J
j=1 cijπij is continuous,

there exists an optimizer π⋆.

Let us now characterize the set of optimizers. Up to replacing cij by cij −
min1≤k≤I,1≤ℓ≤J ckℓ, we may suppose that the entries of c are non-negative, which we write
c ≥ 0. Then the optimization problem is equivalent to

(P ) min c.π under the constraints Aπ ≥

 µ
ν

OI×J

 ,

with A =

(
B
IIJ

)
∈ R(I+J+IJ)×IJ and B ∈ R(I+J)×IJ giving the marginal constraints

that one should saturate since c ≥ 0. Let us extract from A the rows such that the

corresponding entries of Aπ⋆ and

 µ
ν

OI×J

 are equal and in particular the I + J first

rows. Let Ã ∈ Rd×IJ with d ≥ I + J denote the matrix with these rows. The next lemma
(see for instance Theorem 22.3 [15]) is a consequence of the separation of convexes and
therefore of the Hahn-Banach theorem.

Lemma 1.5 (Farkas). Either ∃η ∈ RIJ such that Ãη ≥ 0 and c.η < 0 or ∃h ∈ Rd such
that ÃTh = c and h ≥ 0.

Indeed, {ÃTh : h ≥ 0} is the closed cone spanned by the columns of ÃT and when c
is not in this cone, we can separate {c} and the cone by the hyperplane directed by η.
Because of the optimality of π⋆,

∀η ∈ RIJ such that Ãη ≥ 0 coordinate-wise, c.η ≥ 0.

Otherwise, we could get a smaller value and still respect the constraints by adding εη to

π⋆ with ε > 0 small enough. Therefore, by Farkas lemma, there exists h =

 ϕ⋆

ψ⋆

h̃

 with

ϕ⋆ ∈ RI , ψ⋆ ∈ RJ and h̃ ∈ Rd−(I+J) such that ÃTh = c and h ≥ 0. In the row of ÃT

corresponding to πij, we have coefficient 1 on the i-th column (constraint
∑J

ℓ=1 πiℓ = µi),
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on the I + j-th column (constraint
∑I

k=1 πkj = νj) and possibly on one of the d− (I + J)
last columns when π⋆ij = 0 while all the other entries are equal to 0. Therefore

cij =

{
ϕ⋆i + ψ⋆j when π⋆ij > 0

ϕ⋆i + ψ⋆j + h̃ij when π
⋆
ij = 0

.

Let us consider the dual problem

(D) max

{
I∑
i=1

ϕiµi +
J∑
j=1

ψjνj

}
under the constraints

∀(i, j) ∈ {1, · · · , I} × {1, · · · , J}, ϕi + ψj ≤ cij.

For π satisfying the constraints in the primal problem and ϕ, ψ satisfying those in the
dual problem,

I∑
i=1

ϕiµi +
J∑
j=1

ψjνj ≤
I∑
i=1

J∑
j=1

(ϕi + ψj)πij ≤ c.π.

We deduce that (D) ≤ (P ). For π, ϕ, ψ replaced by (π⋆, ϕ⋆, ψ⋆) both inequalities are
equalities so that (D) = (P ).

Moreover, the complementary slackness property (propriété des écarts complémentaires
en français) holds : if π⋆ is optimal for (P ) and (ϕ⋆, ψ⋆) for (D), then ϕ⋆i + ψ⋆j = cij for
each (i, j) such that π⋆ij > 0. Last, the support {(i, j) : π⋆ij > 0} of π⋆ is c-cyclically
monotone in the sense that if (i1, j1), · · · , (ik, jk) are in the support, then

k∑
ℓ=1

ciℓjℓ =
k∑
ℓ=1

(ϕ⋆iℓ + ψ⋆jℓ) =
k∑
ℓ=1

(ϕ⋆iℓ + ψ⋆jℓ+1
) ≤

k∑
ℓ=1

ciℓjℓ+1
,

under the convention jk+1 = j1. We will next investigate the dual formulation, the
complementary slackness condition and the c-cyclical monotonicity for general probability
measures µ ∈ P(X ) and ν ∈ P(Y).

1.3 Study of the primal Kantorovich formulation

Theorem 1.6. Let c : X ×Y → R∪{+∞} be lower semi-continuous bounded from below.
Then there exists π⋆ ∈ Π(µ, ν) such that π⋆(c) = Vc(µ, ν). Moreover, P(X ) × P(Y) ∈
(µ, ν) 7→ Vc(µ, ν) is lower semi-continuous and convex.

The proof relies on the next lemma.

Lemma 1.7. The set Π(µ, ν) is compact for the weak convergence topology. Moreover
when µn → µ and νn → ν weakly as n → ∞, then from any sequence πn ∈ Π(µn, νn) we
may extract a subsequence converging weakly to π∞ ∈ Π(µ, ν).

Proof of Theorem 1.6: Let (πn)n∈N ⊂ Π(µ, ν) be a minimizing sequence for Vc(µ, ν).
By Lemma 1.7, we may extract a subsequence (πnk)k∈N converging weakly to π⋆ ∈ Π(µ, ν).
By the Portmanteau theorem (see Theorem 5.2 7)),

Vc(µ, ν) = lim inf
k→∞

πnk(c) ≥ π⋆(c) ≥ Vc(µ, ν).
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Let µ̃ ∈ P(X ), ν̃ ∈ P(Y), π̃⋆ ∈ Π(µ̃, ν̃) be optimal for Vc(µ̃, ν̃) and α ∈ [0, 1]. Then
απ⋆ + (1− α)π̃⋆ ∈ Π(αµ+ (1− α)µ̃, αν + (1− α)ν̃) so that

Vc(αµ+ (1− α)µ̃, αν + (1− α)ν̃) ≤ (απ⋆ + (1− α)π̃⋆)(c) = αVc(µ, ν) + (1− α)Vc(µ̃, ν̃).

Therefore Vc is convex. Let us now suppose that µn → µ and νn → ν weakly as n → ∞.
Let πn ∈ Π(µn, νn) be optimal for Vc(µn, νn). By Lemma 1.7, from any subsequence
attaining lim infn→∞ Vc(µn, νn), we may extract a further subsequence (πnk)k∈N converging
weakly to π∞ ∈ Π(µ, ν). Using the Portmanteau theorem (see Theorem 5.2 7)) for the
second inequality, we have

Vc(µ, ν) ≤ π∞(c) ≤ lim
k→∞

πnk(c) = lim inf
n→∞

Vc(µn, νn)

and Vc is lower semi-continuous.

Proof of Lemma 1.7: The first assertion is a consequence of the second for the choice
(µn, νn) = (µ, ν) for each n. To prove the second assertion, we set ε ∈ (0, 1). Since X
(resp. Y) is Polish, by the Prokhorov theorem (see Theorem 5.3), there exists a compact
subset KX ∈ X (resp. KY ∈ Y) such that supn µn(K

c
X ) ≤ ε

2
(resp. supn νn(K

c
Y) ≤ ε

2
).

Since πn ∈ Π(µn, νn),

πn({KX ×KY}c) = πn({Kc
X × Y} ∪ {X ×Kc

Y})
≤ πn(K

c
X × Y) + πn(X ×Kc

Y) = µn(K
c
X ) + νn(K

c
Y) ≤ ε.

By Tykhonov’s theorem, KX × KY is a compact subset of X × Y . Using the other
direction in the Prokhorov theorem (see Theorem 5.3), we deduce that we can extract a
subsequence (πnk)k∈N converging weakly to π∞. Let µ∞ and ν∞ denote the marginals of
π∞. By continuity of the projections X×Y ∋ (x, y) 7→ x ∈ X and X×Y ∋ (x, y) 7→ y ∈ Y ,
µ∞ = limk→∞ µnk = µ and ν∞ = limk→∞ νnk = ν so that π∞ ∈ Π(µ, ν).

1.4 Dual formulation

Theorem 1.8. Let c : X ×Y → R∪{+∞} be lower semi-continuous bounded from below.
Then

Vc(µ, ν) = sup
(ϕ,ψ)∈Cb(X )×Cb(Y)

ϕ⊕ψ≤c

{µ(ϕ) + ν(ψ)}, where ϕ⊕ ψ(x, y) = ϕ(x) + ψ(y).

Remark 1.9. For π ∈ Π(µ, ν) and (ϕ, ψ) ∈ Cb(X )×Cb(Y) such that ϕ⊕ψ ≤ c, we have

π(c) ≥ π(ϕ⊕ ψ) = µ(ϕ) + ν(ψ).

Therefore the weak duality inequality Vc(µ, ν) ≥ sup(ϕ,ψ)∈Cb(X )×Cb(Y)

ϕ⊕ψ≤c
{µ(ϕ) + ν(ψ)} holds.

The converse inequality is the main statement in the theorem.

The proof relies on the Fenchel-Moreau theorem (see Theorem 2.3.3 [16]).
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Theorem 1.10 (Fenchel-Moreau). Let V be a Hausdorff topological vector space (2 dis-
tinct points in V have distinct neighbourhoods) with topological dual V ′ (space of contin-
uous linear forms on V ), f : V → R∪ {+∞} and f ⋆(v′) = supv∈V {v′(v)− f(v)}, v′ ∈ V ′

denote its convex conjugate. Then f is lower semi-continuous and convex iff

f(v) = sup
v′∈V ′

{v′(v)− f ⋆(v′)} = f ⋆⋆(v), v ∈ V.

Remark 1.11. The convex conjugate f ⋆ is convex lower semi-continuous on V ′ as the
supremum of linear (hence convex) continuous (hence lower semi-continuous) functions.

Exercise 1.12. Prove that the supremum of convex (resp. lower semi-continuous) R ∪
{+∞}-valued functions is convex (resp. lower semi-sontinuous). For the lower semi-
continuity, you may first check that f is lower semi-continuous iff its level sets {f ≤
α}, α ∈ R are closed.

The next lemma ensures that a lower semi-continuous function bounded from below is
the non-decreasing limit of Lipschitz functions obtained by inf-convolution.

Lemma 1.13. A function c : Z → R ∪ {+∞} non constantly equal to +∞, lower semi-
continuous and bounded from below on a metric space Z with distance dZ is the non-
decreasing limit as n → ∞ of the n-Lipschitz functions cn(z) = inf z̃∈Z{c(z̃) + ndZ(z̃, z)}
which are bounded from below by the same constant as c.

Proof: Let z0 ∈ Z satisfy c(z0) < +∞. Clearly, cn is bounded from below by the same
constant as c, non-decreasing with n and bounded from above by c (choice z̃ = z) and by
c(z0) + ndZ(·, z0) < +∞ (choice z̃ = z0). Let z, ẑ ∈ Z be such that cn(z) ≤ cn(ẑ) and for
k ∈ N∗, z̃n,k such that cn(z) ≥ c(z̃n,k) + ndZ(z̃n,k, z)− 1

k
. Then, by the definition of cn(ẑ)

and the triangle inequality,

cn(ẑ)− cn(z) ≤ c(z̃n,k) + ndZ(z̃n,k, ẑ)−
(
c(z̃n,k) + ndZ(z̃n,k, z)−

1

k

)
≤ ndZ(ẑ, z) +

1

k
.

By letting k → ∞, we deduce that cn is n-Lipschitz. We have

c(z) ≥ cn(z) ≥ c(z̃n,n) + ndZ(z̃n,n, z)−
1

n
≥ inf c+ ndZ(z̃n,n, z)−

1

n
.

If z̃n,n → z as n→ ∞, then, by the first two inequalities,

c(z) ≥ lim
n→∞

cn(z) ≥ lim inf
n→∞

c(z̃n,n) ≥ c(z)

where the last inequality follows from the lower semi-continuity of c. Otherwise,

c(z) ≥ lim sup
n→∞

cn(z) ≥ lim sup
n→∞

(inf c+ ndZ(z̃n,n, z)) = +∞ ≥ c(z).

Lemma 1.14. Let f ∈ X × Y → R be bounded from below and Lipschitz continuous in
its first variable. For each ε > 0, there exists a measurable map Sε : X → Y such that

∀x ∈ X , f(x, Sε(x)) ≤ inf
y∈Y

f(x, y) + ε.
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Proof: Let (xn)n∈N be dense in X . For each n ∈ N, there exists yn such that f(xn, yn) ≤
infy∈Y f(xn, y)+

ε
3
. Let L denote the Lipschitz constant of f in its first variable. If L = 0,

Sε(x) = x0 does the job. Let us suppose that L > 0. By the argument given in the
proof of Lemma 1.13, we can check that the function g(x) = infy∈Y f(x, y) is Lipschitz

with constant L. For n ∈ N, we set An = B(xn,
ε
3L
) ∩
{⋃n−1

k=0 B(xk,
ε
3L
)
}c ∈ B(X ). By

density of (xn)n∈N in X , this set is the disjoint union of the (An)n∈N. Let us define
Sε(x) =

∑
n∈N 1An(x)yn. For n ∈ N and x ∈ An, we have

f(x, Sε(x))− g(x) = f(x, yn)− f(xn, yn) + f(xn, yn)− g(xn) + g(xn)− g(x)

≤ L× ε

3L
+
ε

3
+ L× ε

3L
= ε.

Proof of Theorem 1.8: When c is constantly equal to +∞, then the conclusion holds
since Vc(µ, ν) = +∞ and the supremum of {µ(ϕ) + ν(ψ)} over constant functions ϕ and
ψ such that ϕ⊗ψ ≤ c also is +∞. We now suppose that c is not constantly equal to +∞.
We apply the Fenchel-Moreau theorem to V equal to the space of bounded signed measures
on Y endowed with the bounded Lipschitz norm :

∥q∥BL = sup
f :Y→R

1− Lipschitz bounded by 1

|q(f)|.

By Theorem 5.2 3), this norm metricizes the weak convergence topology on P(Y). We
have V ′ = Cb(Y) with g(q) = q(g) =

∫
Y g(y)q(dy) for (g, q) ∈ Cb(Y)×V . We fix µ ∈ P(X )

and set

F (q) =

{
Vc(µ, q) if q ∈ P(Y)

+∞ if q ∈ V \ P(Y)
.

Since P(Y) is a closed convex subset of V and P(Y) ∋ ν 7→ Vc(µ, ν) is lower semi-
continuous and convex by Theorem 1.6, F is lower semi-continuous and convex. Hence
by the Fenchel-Moreau theorem,

∀ν ∈ P(Y), Vc(µ, ν) = F (ν) = sup
ψ∈Cb(Y)

{ν(ψ)− F ⋆(ψ)}. (1.1)

Case c Lipschitz. For ψ ∈ Cb(Y), we define ψc̄(x) = infy∈Y{c(x, y) − ψ(y)}, x ∈ X .
The function ψc̄ is bounded from below. By Lemma 1.14, there exists a measurable
map Sε : X → Y such that ∀x ∈ X , c(x, Sε(x)) − ψ(Sε(x)) ≤ ψc̄(x) + ε. Setting
πε(dx, dy) = µ(dx)δSε(x)(dy), we have

µ(ψc̄) = inf
ν∈P(Y)

π∈Π(µ,ν)

π(ψc̄ ⊕ 0) ≤ inf
ν∈P(Y)

π∈Π(µ,ν)

π(c− 0⊕ ψ)

≤ πε(c− 0⊕ ψ) ≤ πε(ψ
c̄ ⊕ 0 + ε) = µ(ψc̄) + ε.

Letting ε → 0, we deduce that inf
ν∈P(Y)

π∈Π(µ,ν)

π(c − 0 ⊕ ψ) = µ(ψc̄). Using the definitions
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of F and Vc for the second equality, we deduce that

−F ⋆(ψ) = − sup
q∈V

{q(ψ)− F (q)} = − sup
ν∈P(Y)

{
ν(ψ)− inf

π∈Π(µ,ν)
π(c)

}
= − sup

ν∈P(Y)

π∈Π(µ,ν)

π(0⊕ ψ − c) = inf
ν∈P(Y)

π∈Π(µ,ν)

π(c− 0⊕ ψ) = µ(ψc̄).

Plugging this equality in (1.1) and using the weak duality result in Remark 1.9, we
conclude that

∀ν ∈ P(Y), Vc(µ, ν) = sup
ψ∈Cb(Y)

{ν(ψ)+µ(ψc̄)} ≤ sup
(ϕ,ψ)∈Cb(X )×Cb(Y)

ϕ⊕ψ≤c

{µ(ϕ)+ν(ψ)} ≤ Vc(µ, ν).

General case. We use the sequence (cn)n≥1 of n-Lipschitz functions growing to c given
by Lemma 1.13. Using the weak duality inequality in Remark 1.9 for the first
inequality and the previous case for the equality, we get that

Vc(µ, ν) ≥ sup
(ϕ,ψ)∈Cb(X )×Cb(Y)

ϕ⊕ψ≤c

{µ(ϕ) + ν(ψ)}

≥ sup
n

sup
(ϕ,ψ)∈Cb(X )×Cb(Y)

ϕ⊕ψ≤cn

{µ(ϕ) + ν(ψ)} = sup
n
Vcn(µ, ν). (1.2)

Let for n ≥ 1, πn ∈ Π(µ, ν) be optimal for Vcn(µ, ν). By Lemma 1.7, we may extract
a sequence (πnk)k which converges weakly to π∞ ∈ Π(µ, ν). We have

sup
n
Vcn(µ, ν) = lim

n→∞
↗ πn(cn) = lim

k→∞
πnk(cnk).

For fixed m ∈ N∗, when k is large enough, we have nk ≥ m and cnk ≥ cm. By
the Portmanteau theorem (see Theorem 5.2), lim infk→∞ πnk(cm) ≥ π∞(cm). By the
monotone convergence theorem, supm≥1 π∞(cm) = π∞(c). Therefore

sup
n
Vcn(µ, ν) = lim

k→∞
πnk(cnk) ≥ sup

m≥1
lim inf
k→∞

πnk(cm) ≥ sup
m≥1

π∞(cm) = π∞(c) ≥ Vc(µ, ν).

With (1.2), we conclude that Vc(µ, ν) = sup(ϕ,ψ)∈Cb(X )×Cb(Y)

ϕ⊕ψ≤c
{µ(ϕ) + ν(ψ)}.

1.5 c-cyclical monotonicity and the super-differential

For ϕ, ψ such that ϕ ⊕ ψ ≤ c, we can always increase the dual value {µ(ϕ) + ν(ψ)} by
replacing ϕ (resp. ψ) by the c̄-conjugate ψc̄ of ψ (resp. the c-conjugate ϕc of ϕ) defined
by

ψc̄(x) = inf
y∈Y

{c(x, y)− ϕ(y)} and ϕc(y) = inf
x∈X

{c(x, y)− ϕ(x)}.

For these definitions to make sense, we suppose that c is real-valued (it cannot take
the value +∞ like in Theorems 1.6 and 1.8) and that ψ : Y → {−∞}∪R (resp. ϕ : X →



1.5. C-CYCLICAL MONOTONICITY AND THE SUPER-DIFFERENTIAL 11

{−∞}∪R). When ψ : Y → {−∞}∪R (resp. ϕ : X → {−∞}∪R), then ψc̄ (resp. ϕc) is
{−∞} ∪ R-valued iff ψ (resp. ϕ) is not constantly equal to −∞.
When Y = X and the cost function c is symmetric, the distinction between these c̄ and
the c transforms is no longer needed.

Definition 1.15. • We say that ψ : Y → {−∞} ∪R is c-concave if ψ = ϕc for some
ϕ : X → {−∞} ∪ R.

• We say that ϕ : X → {−∞}∪R is c̄-concave if ϕ = ψc̄ for some ψ : Y → {−∞}∪R.

Note that when ψ : Y → {−∞} ∪ R is c-concave (resp. ϕ : X → {−∞} ∪ R is c̄-
concave), then any function ϕ : X → {−∞} ∪ R such that ψ = ϕc (ψ : Y → {−∞} ∪ R
such that ϕ = ψc̄) is non constantly equal to −∞. According to proof of the next lemma,
it is not useful to iterate the transform

Lemma 1.16. Let c : X × Y → R. The function ϕ : X → {−∞} ∪ R (resp. ψ : Y →
{−∞}∪R) non constantly equal to −∞ is c̄-concave (resp. c-concave) iff ϕ = (ϕc)c̄ (resp.
ψ = (ψc̄)c).

Proof: We only deal with the statement concerning ϕ since the one concerning ψ is
proved in a symmetric way. Since ϕ is not constant equal to −∞, ϕc is {−∞}∪R-valued
and ϕ = (ϕc)c̄ implies that ϕ is c̄-concave. To prove the converse implication, it is enough
to check that for ψ : Y → {−∞} ∪ R, ((ψc̄)c)c̄ = ψc̄. Indeed, when ϕ is c̄-concave, then
there exists ψ : Y → {−∞} ∪ R such that ϕ = ψc̄ = ((ψc̄)c)c̄ = (ϕc)c̄. We have

((ψc̄)c)c̄(x) = inf
y∈Y

{
c(x, y)− inf

x̃∈X

{
c(x̃, y)− inf

ỹ∈Y
{c(x̃, ỹ)− ψ(ỹ)}

}}
= inf

y∈Y
sup
x̃∈X

inf
ỹ∈Y

{c(x, y)− c(x̃, y) + c(x̃, ỹ)− ψ(ỹ)} .

Restricting x̃ to be equal to x, we deduce that ((ψc̄)c)c̄(x) ≤ inf ỹ∈Y {c(x, ỹ)− ψ(ỹ)} =
ψc̄(x). Restricting y to be equal to ỹ, we also deduce that ((ψc̄)c)c̄(x) ≥
inf ỹ∈Y {c(x, ỹ)− ψ(ỹ)} = ψc̄(x). Hence ((ψc̄)c)c̄ = ψc̄.

Example 1.17. Let Y = X and c(x, y) = dX (x, y). Let ϕ : X → {−∞}∪R non constantly
equal to −∞. Let us check that ϕ is dX -concave iff it is R-valued and 1-Lipschitz. If ϕ
is dX -concave, then, by Lemma 1.16, ϕ(x) = infy∈Y{dX (x, y) − ϕdX (y)}. If ϕ(x) ≤ ϕ(x̂)
with ϕ(x̂) > −∞, then choosing (yn)n∈N such that ϕ(x) = limn→∞{dX (x, yn) − ϕdX (yn)}
and using that ϕ(x̂) ≤ dX (x̂, yn)− ϕdX (yn), we obtain that

ϕ(x̂)− ϕ(x) ≤ lim inf
n→∞

{
dX (x̂, yn)− ϕdX (yn)− dX (x, yn) + ϕdX (yn)

}
≤ dX (x̂, x),

so that ϕ is R-valued and 1-Lipschitz. Conversely, ϕdX (x) = infy∈X{dX (x, y) − ϕ(y)} ≤
dX (x, x)− ϕ(x) = −ϕ(x), and if ϕ : X → R is 1-Lipschitz, then

ϕdX (x) ≥ inf
y∈X

{dX (x, y)− (ϕ(x) + dX (x, y))} = −ϕ(x) so that ϕ = −ϕdX .

Since −ϕ also is 1-Lipschitz, we deduce that −ϕ = −(−ϕ)dX so that ϕ = (−ϕ)dX and ϕ is
dX -concave.



12 CHAPTER 1. OPTIMAL TRANSPORT

Example 1.18. Let Y = X = Rd and c(x, y) = −x.y. Then for ϕ : Rd → {−∞} ∪ R,

ϕc(y) = inf
x∈Rd

{−x.y − ϕ(x)} = − sup
x∈Rd

{x.y − (−ϕ(x))} = −(−ϕ)⋆(y).

Let us moreover suppose that ϕ is not constantly equal to −∞. With Lemma 1.16, we
deduce that

ϕ c-concave ⇔ ϕ = (ϕc)c = (−(−ϕ)⋆)c = −(−ϕ)⋆⋆.

Since −(−ϕ)⋆⋆ is upper semi-continuous and concave, ϕ c-concave ⇒ ϕ upper semi-
continuous and concave. Conversely, if ϕ is upper semi-continuous and concave, then
−ϕ is lower semi-continuous and convex and, by Fenchel-Moreau duality (see Theorem
1.10), −ϕ = (−ϕ)⋆⋆ so that ϕ = (ϕc)c and ϕ is c-concave.

Example 1.19. Let Y = X = Rd and c(x, y) = |x − y|2. Let ϕ : Rd → {−∞} ∪ R. We

set ϕ̄(x) = |x|2
2

− ϕ(x) with values in R ∪ {+∞}. We have

|y|2

2
− ϕc(y) =

|y|2

2
− inf

x∈Rd

{
1

2
|x− y|2 − ϕ(x)

}
= − inf

x∈Rd

{
−x.y + ϕ̄(x)

}
= sup

x∈Rd
{x.y − ϕ̄(x)} = (ϕ̄)⋆(y).

Therefore ϕc(y) = |y|2
2

− (ϕ̄)⋆(y) and

(ϕc)c(x) = inf
y∈Rd

{
1

2
|x− y|2 −

(
|y|2

2
− (ϕ̄)

⋆
(y)

)}
=

|x|2

2
− sup

y∈Rd

{
x.y − (ϕ̄)

⋆
(y)
}

=
|x|2

2
− (ϕ̄)

⋆⋆
(x).

With Lemma 1.16 and Fenchel-Moreau duality (see Theorem 1.10), we conclude that when
ϕ is not constantly equal to −∞,

ϕ c-concave ⇔ ϕ = (ϕc)c ⇔ ϕ̄ = (ϕ̄)
⋆⋆ ⇔ ϕ̄ lower semi-continuous convex.

Let us now introduce the superdifferentials and the cyclic monotonicity.

Definition 1.20. Let c : X × Y → R.

• Let ϕ : X → {−∞}∪R (resp. ψ : Y → {−∞}∪R) be c̄-concave (resp. c-concave).
Its c̄-superdifferential (resp. c-superdifferential) is defined as

∂ c̄ϕ = {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)}
(resp. ∂cψ = {(x, y) ∈ X × Y : ψc̄(x) + ψ(y) = c(x, y)}).

We also set ∂ c̄ϕ(x) = {y ∈ Y : ϕ(x) + ϕc(y) = c(x, y)} for x ∈ X and ∂cψ(y) =
{x ∈ X : ψc̄(x) + ψ(y) = c(x, y)} for y ∈ Y.

• A subset Γ of X × Y is called c-cyclically monotone if for all N ∈ N∗,
(x1, y1), · · · , (xN , yN) ∈ Γ, we have

∑N
i=1 c(xi, yi) ≤

∑N
i=1 c(xi, yi+1) with conven-

tion yN+1 = y1.

• A coupling π ∈ P(X × Y) is called c-cyclically monotone if there exists some c-
cyclically monotone set Γ ∈ B(X × Y) such that π(Γ) = 1.
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Example 1.21. Let X = Y = Rd, c(x, y) = −x.y and ϕ : Rd → {−∞}∪R non constantly
equal to −∞ be c-concave. By Example 1.18, ϕ is upper semi-continuous and concave.
By definition of ϕc(y),

y ∈ ∂ c̄ϕ(x) ⇔ ϕc(y) = −x.y − ϕ(x) ⇔ inf
x̃∈Rd

{−x̃.y − ϕ(x̃)} = −x.y − ϕ(x)

⇔ sup
x̃∈Rd

{ϕ(x̃) + y.x̃} = ϕ(x) + y.x⇔ ∀x̃ ∈ Rd, ϕ(x̃) ≤ ϕ(x)− y.(x̃− x)

and ∂ c̄ϕ(x) is minus the super-differential of the concave function ϕ at x.

Proposition 1.22. Let c : X × Y → R. The set Γ ⊂ X × Y is c-cyclically monotone iff
Γ ⊂ ∂ c̄ϕ for some c̄-concave function ϕ : X → {−∞} ∪ R.

Proof: To prove the sufficient condition, it is enough to check that if ϕ : X → {−∞} ∪ R
is c̄-concave, then ∂ c̄ϕ is c-cyclically monotone. This follows from the fact that for N ∈ N∗

and (x1, y1), · · · , (xN , yN) ∈ ∂ c̄ϕ,

N∑
i=1

c(xi, yi) =
N∑
i=1

{ϕ(xi) + ϕc(yi)} =
N∑
i=1

{ϕ(xi) + ϕc(yi+1)} ≤
N∑
i=1

c(xi, yi+1) as ϕ⊕ ϕc ≤ c.

To show the necessary condition, we suppose that Γ ̸= ∅ is c-cyclically monotone. We fix
(x0, y0) ∈ Γ and set

ϕ(x) = inf

{
c(x, yN) +

N−1∑
i=0

c(xi+1, yi)−
N∑
i=0

c(xi, yi) : N ∈ N, (x1, y1), · · · , (xN , yN) ∈ Γ

}
.

(1.3)

Clearly, ϕ is {−∞} ∪ R-valued. Moreover, we have xN+1 = x0 in the constraints of the
minimization problem giving ϕ(x0), so that, by c-cyclical monotony of Γ, the infimum is
taken on non-negative

∑N
i=0 c(xi+1, yi)−

∑N
i=0 c(xi, yi). Hence ϕ(x0) ≥ 0. We also set

−ψ(y) = inf

{N−1∑
i=0

c(xi+1, yi)−
N∑
i=0

c(xi, yi) : N ∈ N, (x1, y1), · · · , (xN , yN) ∈ Γ and yN = y

}
under the convention inf ∅ = +∞ (the existence of xN ∈ X such that (xN , y) ∈ Γ is
not guaranteed). Using that c(x, y) = c(x, yN) under the constraint yN = y for the
minimization problem for −ψ(y), we get

inf
y∈Y

{c(x, y)− ψ(y)} = ϕ(x)

Hence ϕ = ψc̄ and, since ϕ(x0) ≥ 0, ψ is {−∞} ∪ R-valued so that ϕ is c̄-concave.

To show that Γ ⊂ ∂ c̄ϕ, it is enough to check that ϕ(x) + ψ(y) ≥ c(x, y) for (x, y) ∈ Γ
since ϕc = (ψc̄)c ≥ ψ and ϕ⊕ϕc ≤ c. Let (x, y) ∈ Γ. There exists a sequence (ỹn)n∈N ⊂ Y
such that ϕ(x) = limn→∞{c(x, ỹn) − ψ(ỹn)}. Choosing N ∈ N∗ and (xN , yN−1) = (x, ỹn)
in the minimization problem giving −ψ(y), we get

−ψ(y) ≤ inf

{
c(x, ỹn)− c(x, y) +

N−2∑
i=0

c(xi+1, yi)−
N−1∑
i=0

c(xi, yi) :

N ∈ N∗, (x1, y1), · · · , (xN−1, yN−1) ∈ Γ and yN−1 = ỹn

}
= c(x, ỹn)− c(x, y)− ψ(ỹn) = −c(x, y) + {c(x, ỹn)− ψ(ỹn)}.
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Taking the limit n→ ∞ in the right-hand side, we conclude that −ψ(y) ≤ −c(x, y)+ϕ(x)
i.e. ϕ(x) + ψ(y) ≥ c(x, y).

Remark 1.23. • In (1.3) with x = x0, we get for the choice N = 1 and (x1, y1) =
(x0, y0), using x2 = x0,

ϕ(x0) ≤ c(x1, y0) + c(x2, y1)− c(x0, y0)− c(x1, y1)

= c(x0, y0) + c(x0, y0)− c(x0, y0)− c(x0, y0) = 0.

Hence ϕ(x0) = 0.

• The functions ϕ and ϕc constructed in the proof of Proposition 1.22 may not be
measurable. But when c is measurable and Γ ∈ B(X × Y), then ϕ and (resp. ϕc) is
universally measurable which means that for any µ ∈ P(X ) (resp. ν ∈ P(Y)), there
exists a Borel function ϕ̃ : X → {−∞} ∪ R (resp. ψ̃ : Y → {−∞} ∪ R) such that
ϕ(x) = ϕ̃(x), µ(dx) a.e. (resp. ϕc(y) = ψ(y), ν(dy) a.e.).

Definition 1.24. The support supp(η) of a probability measure η on (Z,B(Z)) is the
smallest closed subset A of Z such that η(A) = 1.

Remark 1.25. This definition makes sense since an arbitrary intersection
of closed subsets remains closed. The complementary supp(η)c of supp(η)
is an open subset such that η(supp(η)c) = 0. Therefore supp(η)c ⊂
{z ∈ Z : ∃ O open containing z such that η(O) = 0}. The converse inclusion holds
since when there is an open set O containing z with η(O) = 0 then supp(η) is included
in the closed set Oc and therefore z ∈ O ⊂ supp(η)c. Hence

supp(η) = {z ∈ Z : ∀ O open containing z, η(O) > 0} .

Theorem 1.26 (Fundamental Theorem of OT). Let µ ∈ P(X ), ν ∈ P(Y), c : X×Y → R
be continuous and bounded from below and such that c ≤ a⊕ b for some (a, b) ∈ L1(µ)×
L1(ν). For π⋆ ∈ Π(µ, ν) the following assertions are equivalent :

(i) π⋆ is optimal for Vc(µ, ν),

(ii) the support of π⋆ is c-cyclically monotone,

(iii) there exists a c̄-concave function ϕ : X → {−∞} ∪ R such that ϕ+ ∈ L1(µ) and the
support of π⋆ is included in ∂ c̄ϕ.

Remark 1.27. Under the assumptions, if π⋆ is optimal for Vc (π⋆(dx× Y), π⋆(X × dy))
and π ∈ Π(µ, ν) such that supp(π) ⊂ supp(π⋆), then π is optimal for Vc(µ, ν) as soon as
there exists (a, b) ∈ L1(µ)× L1(ν) such that c ≤ a⊕ b.

The proof relies on the next lemma.

Lemma 1.28. Let µ ∈ P(X ), ν ∈ P(Y) and c : X×Y → R be continuous. If π⋆ ∈ Π(µ, ν)
is such π⋆(c) = Vc(µ, ν) < +∞, then the support of π⋆ is c-cyclically monotone.
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Proof of Theorem 1.26: By Lemma 1.28, we have (i) ⇒ (ii).
For (ii) ⇒ (iii), we remark that Proposition 1.22 ensures the existence of a c̄-concave
function ϕ such that supp (π⋆) ⊂ ∂ c̄ϕ. Moreover, the definition (1.3) of ϕ in its proof
together with the inequality c ≤ a⊕ b ensure that

∀x ∈ X , ϕ(x) ≤ c(x, y0)− c(x0, y0) ≤ a(x) + b(y0)− c(x0, y0)

so that ϕ+ ∈ L1(µ) since a ∈ L1(µ).
To prove (iii) ⇒ (i), we are going to check that, under (iii), π⋆(c) ≤ π(c) where π is
an arbitrary coupling in Π(µ, ν). Note that since c is bounded from below and such that
c ≤ a⊕ b with (a, b) ∈ L1(µ)× L1(ν), c ∈ L1(π). By definition of ϕc, ϕ⊕ ϕc ≤ c so that
ϕ⊕ ϕc is semi-integrable with respect to π and π(ϕ⊕ ϕc) ≤ π(c). Since supp(π⋆) ⊂ ∂ c̄ϕ,
we have π⋆(c) = π⋆(ϕ⊕ ϕc). With the equality

π⋆(ϕ⊕ ϕc) = µ(ϕ) + ν(ϕc) = π(ϕ⊕ ϕc), (1.4)

which seems formally obvious but that we are next going establish rigorously, we conclude
that

π⋆(c) = π⋆(ϕ⊕ ϕc) = µ(ϕ) + ν(ϕc) = π(ϕ⊕ ϕc) ≤ π(c).

Let Γ = supp(π⋆) and for x ∈ X , Γx = {y ∈ Y : (x, y) ∈ Γ}. For (x, y) ∈ ∂ c̄ϕ, we have
ϕ(x) + ϕc(y) = c(x, y) and therefore ϕ(x) > −∞ and ϕc(y) > −∞. With Γ ⊂ ∂ c̄ϕ, we
deduce that {x ∈ X : π⋆x(Γx) > 0} ⊂ {x ∈ R : ϕ(x) > −∞}. Therefore

µ ({x ∈ R : ϕ(x) > −∞}) ≥ µ ({x ∈ X : π⋆x(Γx) > 0}) ≥
∫
X
π⋆x(Γx)µ(dx) = π⋆(Γ) = 1.

Hence there exists x0 ∈ X such that both ϕ(x0) and a(x0) belong to R. With the definition
of ϕc and the inequality c ≤ a⊕ b, we deduce that

∀y ∈ Y , (ϕc(y))+ ≤ (c(x0, y)− ϕ(x0))
+ ≤ (a(x0) + b(y)− ϕ(x0))

+

Since b ∈ L1(ν), we conclude that (ϕc)+ ∈ L1(ν). In a symmetric way, we obtain that
ϕ+ ∈ L1(µ) and deduce that ϕ+ ⊕ (ϕc)+ ∈ L1(π). For k ∈ N, (ϕ ∨ −k) ∈ L1(µ),
(ϕc ∨ −k) ∈ L1(ν) and (ϕ ∨ −k)⊕ (ϕc ∨ −k) ∈ L1(π) so that

π
(
ϕ+ ⊕ (ϕc)+ − (ϕ ∨ −k)⊕ (ϕc ∨ −k)

)
= π

(
ϕ+ ⊕ (ϕc)+

)
− π ((ϕ ∨ −k)⊕ (ϕc ∨ −k))

= µ(ϕ+) + ν((ϕc)+)− µ((ϕ ∨ −k))− ν((ϕc ∨ −k))
= µ(ϕ+ − (ϕ ∨ −k)) + ν((ϕc)+ − (ϕc ∨ −k)).

With the monotone convergence theorem, we conclude that

π
(
ϕ+ ⊕ (ϕc)+

)
− π (ϕ⊕ ϕc) = π

(
ϕ+ ⊕ (ϕc)+ − ϕ⊕ ϕc

)
= lim

k→∞
π
(
ϕ+ ⊕ (ϕc)+ − (ϕ ∨ −k)⊕ (ϕc ∨ −k)

)
= lim

k→∞

{
µ
(
ϕ+ − (ϕ ∨ −k)

)
+ ν

(
(ϕc)+ − (ϕc ∨ −k)

)}
= µ(ϕ+ − ϕ) + ν((ϕc)+ − ϕc)

= µ(ϕ+)− µ(ϕ) + ν((ϕc)+)− ν(ϕc)

= π
(
ϕ+ ⊕ (ϕc)+

)
− µ(ϕ)− ν(ϕc).
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Hence π (ϕ⊕ ϕc) = µ(ϕ) + ν(ϕc) and, since π⋆ also belongs to Π(µ, ν), π⋆ (ϕ⊕ ϕc) =
µ(ϕ) + ν(ϕc) so that (1.4) holds.

Proof of Lemma 1.28: Let us suppose that there exist N ≥ 2 and
(x1, y1), · · · , (xN , yN) ∈ supp(π⋆) such that

∑N
i=1 c(xi, yi) >

∑N
i=1 c(xi, yi+1) with yN+1 =

y1. By continuity of c there are open neighbourhoods Ui of xi and Vi of yi such that

inf
((ui,vi))1≤i≤N∈

∏N
i=1 Ui×Vi

N∑
i=1

c(ui, vi) > sup
((ui,vi))1≤i≤N∈

∏N
i=1 Ui×Vi

N∑
i=1

c(ui, vi+1) with vN+1 = v1.

(1.5)
Since (xi, yi) ∈ supp(π⋆), by Remark 1.25, mi := π⋆(Ui × Vi) > 0. Let µi and νi denote
the marginals of the probability measure 1

mi
π⋆|Ui×Vi and

π = π⋆ +
min1≤i≤N mi

N

N∑
i=1

(
µi ⊗ νi+1 −

1

mi

π⋆|Ui×Vi
)

where νN+1 = ν1.

Since for each i ∈ {1, · · · , N}, π⋆ ≥ π⋆|Ui×Vi , we have

π⋆ ≥
1

N

N∑
i=1

π⋆|Ui×Vi ≥
1

N

N∑
i=1

min1≤j≤N mj

mi

π⋆|Ui×Vi

so that π is a non-negative measure. Since µi⊗νi+1,
1
mi
π⋆|Ui×Vi ∈ P(X×Y), π ∈ P(X×Y).

The marginals of π are

µ+
min1≤i≤N mi

N

N∑
i=1

(µi − µi) = µ and ν +
min1≤i≤N mi

N

N∑
i=1

(νi+1 − νi) = ν,

so that π ∈ Π(µ, ν). Since

π(c) ≤ π⋆(x)

+
min1≤i≤N mi

N

(
sup

((ui,vi))1≤i≤N∈
∏N
i=1 Ui×Vi

N∑
i=1

c(ui, vi+1)− inf
((ui,vi))1≤i≤N∈

∏N
i=1 Ui×Vi

N∑
i=1

c(ui, vi)

)
,

the inequality (1.5) ensures that π⋆ is not optimal for Vc(µ, ν). By contraposition, we
conclude that supp(π⋆) is c-cyclically monotone.

Theorem 1.29 (Stability of OT). Let µ ∈ P(X ), ν ∈ P(Y), c : X×Y → R be continuous
and bounded from below with c ≤ a ⊕ b for some (a, b) ∈ L1(µ) × L1(ν). If (πn)n∈N ⊂
P(X ) × P(Y) is a sequence of optimal couplings for VC(π

n(dx × Y), πn(X × dy)) which
converges weakly to π ∈ Π(µ, ν), then Vc(µ, ν) = π(c).

Corollary 1.30. If c ∈ Cb(X × Y), then Vc is continuous on P(X )× P(Y).

Proof of Corollary 1.30: By Theorem 1.6, Vc is lower semi-continuous. Let (µ, ν) ∈
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P(X )×P(Y) and (µn, νn)n∈N ⊂ P(X )×P(Y) such that µn (resp. νn) converges weakly to
µ (resp. ν) as n→ ∞ and limn→∞ Vc(µn, νn) = lim sup(µ̃,ν̃)→(µ,ν) Vc(µ̃, ν̃). By Theorem 1.6,
for each n ∈ N, there exists πn ∈ Π(µn, νn) optimal for Vc(µn, νn) i.e. Vc(µn, νn) = πn(c).
By Lemma 1.7, we may extract a subsequence (πnk)k∈N converging weakly to π ∈ Π(µ, ν)
as k → ∞. Using Theorem 1.29 for the first equality and the lower semi-continuity of Vc
for the last inequality, we conclude that

Vc(µ, ν) = π(c) = lim
k→∞

πnk(c) = lim
k→∞

Vc(µnk , νnk) = lim sup
(µ̃,ν̃)→(µ,ν)

Vc(µ̃, ν̃)

≥ lim inf
(µ̃,ν̃)→(µ,ν)

Vc(µ̃, ν̃) ≥ Vc(µ, ν).

The proof of Theorem 1.29 relies on the next lemma

Lemma 1.31. For N ∈ N∗, supp(π⊗N) = supp(π)N .

Proof of Lemma 1.31: Let (z1, · · · , zN) ∈ supp(π)N . Any open neighbourhood B of
(z1, · · · , zN) contains a product

∏N
i=1Bi of open neighbourhoods Bi of the zi which, by

Remark 1.25, are such that π(Bi) > 0 since zi ∈ supp(π). Therefore

π⊗N(B) ≥ π⊗N

(
N∏
i=1

Bi

)
=

N∏
i=1

π(Bi) > 0

and supp(π)N ⊂ supp(π⊗N). On the other hand, supp(π)N is closed and satisfies
π⊗N(supp(π)N) = (π(supp(π))N = 1. By definition of the support (see Definition 1.24),
we conclude that supp(π)N = supp(π⊗N).

Proof of Theorem 1.29: For N ∈ N∗, (X × Y)N ∋ ((x1, y1), · · · , (xN , yN)) 7→
cN((xi, yi)1≤i≤N) =

∑N
i=1 (c(xi, yi+1)− c(xi, yi)) (with the usual convention yN+1 = y1)

is continuous. The support Γn of πn is c-cyclically monotone by Lemma 1.28. Hence
ΓNn ⊂ {cN ≥ 0} and

π⊗N
n ({cN ≥ 0}) ≥ π⊗N

n

(
ΓNn
)
= (πn(Γn))

N = 1.

Since {cN ≥ 0} is closed by continuity of cN , using the Portmanteau theorem (see Theorem
5.2 4)), we deduce that

π⊗N({cN ≥ 0}) ≥ lim sup
n→∞

π⊗N
n ({cN ≥ 0}) = 1.

The closed set {cN ≥ 0} has full π⊗N measure and therefore contains the support of π⊗N ,
which, by Lemma 1.31, is equal to the product ΓN of the support Γ of π. Hence Γ is
c-cyclical monotonic and, by Theorem 1.26, π is optimal for Vc(µ, ν).
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1.6 Brenier’s theorem

Theorem 1.32. Let X = Y = Rd, c(x, y) = 1
2
|x − y|2 and µ, ν ∈ P(Rd) be such that∫

Rd |x|
2µ(dx) +

∫
Rd |y|

2ν(dy) < ∞ and µ << λ where λ denotes the Lebesgue measure on
Rd. Then there is a unique optimal coupling π⋆ and it writes

π⋆(dx, dy) = µ(dx)δ∇φ(x)(dy)

for some convex function φ : Rd → R ∪ {+∞} such that µ({φ < ∞}) =
µ({φ differentiable}) = 1.

Definition 1.33. The domain of a convex function φ : Rd → R ∪ {+∞} is the convex
set dom(φ) = {x ∈ Rd : φ(x) < +∞}.

The proof of Brenier’s theorem relies on the following properties of convex functions
from Rd to R ∪ {+∞}.

Proposition 1.34. Let φ : Rd → R ∪ {+∞} be a convex function and

diff(φ) = {x ∈ int(dom(φ)) : φ is differentiable at x} .

Then we have

• λ(dom(φ) \ diff(φ)) = 0,

• ∀(x, y) ∈ diff(φ)× Rd, φ(y) ≥ φ(x) +∇φ(x).(y − x).

Remark 1.35. When x ∈ diff(φ), then x ∈ int(dom(φ)) and for each y ∈ Rd, (1− ε)x+
εy ∈ dom(φ) when ε ∈ [0, 1) is small enough. The convexity then ensures that

0 ≤ 1

ε
((1− ε)φ(x) + εφ(y)− φ((1− ε)x+ εy)) =

1

ε
(φ(x)−φ((1−ε)x+εy)−φ(x)+φ(y)

and by taking the limit ε → 0+, we conclude that 0 ≤ −∇φ(x).(y − x) − φ(x) + φ(y).
The fact that λ (int(dom(φ)) \ diff(φ)) = 0 is a standard result of convex analysis (see
for instance Theorem 25.5 [15]). To deduce that λ(dom(φ) \ diff(φ)) = 0, it is enough to
check that the Lebesgue measure of the boundary of dom(φ) is 0 (see for instance Theorem
5.2 [11]).

Proof of Theorem 1.32: Since c(x, y) = 1
2
|x − y|2 is continuous and bounded from

below, there exists an optimal coupling π⋆ by Theorem 1.6. Since c(x, y) ≤ |x|2+ |y|2 and∫
Rd |x|

2µ(dx) +
∫
Rd |y|

2ν(dy) < ∞, according to Theorem 1.26, there exists a c-concave
function ϕ such that Γ := supp(π⋆) ⊂ ∂cϕ. Moreover, ϕ > −∞ on

ΓX = {x ∈ Rd : ∃y ∈ Rd such that (x, y) ∈ Γ}.

Since Γ ⊂ ΓX × Rd, 1 = π⋆(Γ) ≤ π⋆(ΓX × Rd) = µ(ΓX ). By Example 1.19, the function

φ(x) = |x|2
2

− ϕ(x) is lower semi-continuous and convex. We are going to check that
π⋆ = µ(dx)δ∇φ(x)(dy). Since this ensures that each optimal coupling is a Monge coupling,
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uniqueness follows from Proposition 1.4. Let x ∈ Rd be such that ϕ(x) > −∞ i.e.
x ∈ dom(φ). We have

y ∈ ∂cϕ(x) ⇔ ϕ(x) + ϕc(y) =
1

2
|x− y|2 ⇔ inf

z∈Rd

{
1

2
|z − y|2 − ϕ(z)

}
=

1

2
|x− y|2 − ϕ(x)

⇔ ∀z ∈ Rd, φ(z)− y.z ≥ φ(x)− y.x⇔ ∀z ∈ Rd, φ(z) ≥ φ(x) + y.(z − x).

When x ∈ diff(φ), then for w ∈ Rd, limh→0+
1
h
(φ(x + hw) − φ(x)) = ∇φ(x).w and we

deduce that

y ∈ ∂cϕ(x) ⇒ ∀w ∈ Rd, ∇φ(x).w ≥ y.w ⇒ y = ∇φ(x).

Hence for x ∈ diff(φ), ∂cϕ(x) ⊂ {∇φ(x)}. In view of the previous equivalence and the
last assertion in Proposition 1.34, we even have

∀x ∈ diff(φ), ∂cϕ(x) = {∇φ(x)}. (1.6)

Since diff(φ) ⊂ dom(φ), we have

Rd \ diff(φ) ⊂ {Rd \ dom(φ)} ∪ {dom(φ) \ diff(φ)}.

By Proposition 1.34, λ ({dom(φ) \ diff(φ)}) = 0 so that µ ({dom(φ) \ diff(φ)}) = 0 since
µ << λ. Since {Rd \ dom(φ)} = {ϕ = −∞} ⊂ Rd \ ΓX , µ(Rd \ dom(φ)) = 0 and
therefore µ(Rd \ diff(φ)) = 0. Hence π⋆(dx, dy), x ∈ diff(φ). Since supp(π⋆) ⊂ ∂cϕ,
π⋆(dx, dy) a.e., y ∈ ∂cϕ(x). With (1.6), we conclude that π⋆(dx, dy) a.e., y = ∇φ(x) i.e.
π⋆(dx, dy) = µ(dx)δ∇φ(x)(dy).

1.7 The Wasserstein distance

1.7.1 General case

Let q ≥ 1,

Pρ(X ) =

{
η ∈ P(X ) : ∃x0 ∈ X ,

∫
x∈X

dρX (x0, x)η(dx) <∞
}
,

and for µ, ν ∈ Pρ(X ), Wρ(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

dρX (x, y)π(dx, dy)

)1/ρ

.

Since, by the triangle and Jensen inequalities, dρX (x1, x) ≤ 2ρ−1 (dρX (x1, x0) + dρX (x0, x)) for
x0, x1, x ∈ X ,

∫
x∈X d

ρ
X (x0, x)η(dx) < ∞ ⇔ ∀x1 ∈ X ,

∫
x∈X d

ρ
X (x1, x)η(dx) < ∞. There-

fore Pρ(X ) =
{
η ∈ P(X ) : ∀x0 ∈ X ,

∫
x∈X d

ρ
X (x0, x)η(dx) <∞

}
. Moreover, dρX (x, y) ≤

2ρ−1 (dρX (x, x0) + dρX (x0, y)) implies that Wρ(µ, ν) <∞ for µ, ν ∈ Pρ(X ).
Moreover, since X × X ∋ (x, y) 7→ dX (x, y) is bounded from below by 0 and 1-Lipshitz
and therefore lower semi-continuous, according to Theorem 1.6,

∀µ, ν ∈ Pρ(X ), ∃π⋆ ∈ Π(µ, ν), Wρ
ρ (µ, ν) =

∫
X×X

dρX (x, y)π⋆(dx, dy). (1.7)
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When 1 ≤ ρ̃ ≤ ρ, by Jensen’s inequality, we deduce that for µ, ν ∈ Pρ(X ),

Wρ(µ, ν) =

(∫
X×X

dρX (x, y)π⋆(dx, dy)

)1/ρ

≥
(∫

X×X
dρ̃X (x, y)π⋆(dx, dy)

)1/ρ̃

≥ Wρ̃(µ, ν).

(1.8)

Theorem 1.36. For ρ ≥ 1, Wρ is a metric on Pρ(X ).

Proof: Since the image of π ∈ Π(µ, ν) by X × X ∋ (x, y) 7→ (y, x) ∈ X × X belongs to
Π(ν, µ), Wρ is symmetric : Wρ(µ, ν) = Wρ(ν, µ).
Since for the identity function iX introduced in Remark 1.2, (iX , iX )#µ ∈ Π(µ, µ), we
have Wρ(µ, µ) ≤

∫
X |x− x|ρµ(dx) = 0. If conversely Wρ(µ, ν) = 0, then the optimal cou-

pling π⋆ ∈ Π(µ, ν) given by (1.7) is such that dX (x, y) = 0 and therefore x = y, π⋆(dx, dy)
a.e.. Therefore, the image ν of π⋆ by X × X ∋ (x, y) 7→ y ∈ X is equal to its image µ by
X × X ∋ (x, y) 7→ x ∈ X .
Let µ, ν, µ̃ ∈ Pρ(X ). By (1.7), there exist π ∈ Π(µ, ν) optimal for Wρ(µ, ν)
and π̃(dy, dx̃) = ν(dy)π̃y(dx̃) ∈ Π(ν, µ̃) optimal for Wρ(µ, ν). The coupling∫
y∈X π̃y(dx̃)π(dx, dy) belongs to Π(µ, µ̃). Therefore, using the Minkowski inequality for
the second inequality, we have

Wρ(µ, µ̃) ≤
(∫

X 3

(dX (x, y) + dX (y, x̃))
ρ π̃y(dx̃)π(dx, dy)

)1/ρ

≤
(∫

X 3

dρX (x, y)π̃y(dx̃)π(dx, dy)

)1/ρ

+

(∫
X 3

dρX (y, x̃)π̃y(dx̃)π(dx, dy)

)1/ρ

=

(∫
X 2

dρX (x, y)π(dx, dy)

)1/ρ

+

(∫
X 2

dρX (y, x̃)π̃y(dx̃)ν(dy)

)1/ρ

= Wρ(µ, ν) +Wρ(ν, µ̃).

Proposition 1.37.

∀µ, ν ∈ P1(X ), W1(µ, ν) = sup
f :X→R 1−Lipschitz

{µ(f)− ν(f)}.

Proof: Let f : X → R be 1-Lipschitz. For x, y ∈ X , f⊖f(x, y) = f(x)−f(y) ≤ dX (x, y).
Therefore,

∀π ∈ Π(µ, ν), {µ(f)− ν(f)} = π(f ⊖ f) ≤ π(c),

so that supf :X→R 1−Lipschitz{µ(f) − ν(f)} ≤ W1(µ, ν). By (1.7), there exist π⋆ ∈ Π(µ, ν)
optimal forW1(µ, ν). Since dX (x, y) ≤ dX (x, x0)+dX (x0, y) with dX (x0, ·) ∈ L1(µ)∩L1(ν),
by the fundamental theorem of Optimal Transport (see Theorem 1.26), there exists ϕ :
X → {−∞} ∪ R dX -concave such that supp(π⋆) ∈ ∂dXϕ i.e. π⋆(dx, dy) a.e., dX (x, y) =
ϕ(x) + ϕdX (y). In particular ϕ(x) > −∞ for some x ∈ X and, by Example 1.17, ϕ is
R-valued and 1-Lipschitz and ϕdX = −ϕ. Therefore,

W1(µ, ν) = π⋆(c) = π⋆(ϕ⊖ ϕ) = µ(ϕ)− ν(ϕ) ≤ sup
f :X→R 1−Lipschitz

{µ(f)− ν(f)}.
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Definition 1.38. We say that a sequence (µn)n∈N ⊂ Pρ(X ) converges to µ ∈ Pρ(X ) in

Pρ(X ) and denote µn
Pρ(X )−→ µ when µn converges weakly to µ as n→ ∞ and

∃x0 ∈ X , lim
n→∞

∫
x∈X

dρX (x0, x)µn(dx) =

∫
x∈X

dρX (x0, x)µ(dx).

Example 1.39. Let (Xi)i≥1 be Rd-valued random variables i.i.d. according to some el-
ement of P2(Rd) and X̄n = 1

n

∑n
i=1Xi for n ∈ N∗. By the central limit theorem, the

distribution µn of
√
n(X̄n − E[X1]) converges weakly to G ∼ Nd(0,Cov(X1)), where

Cov(X1) ∈ Rd×d denotes the covariance matrix of X1. Since

E[|
√
n(X̄n − E[X1])|2] = ntr

(
Cov(X̄n)

)
= tr (Cov(X1)) = E[|G|2],

we have that µn
P2(Rd)−→ Nd(0,Cov(X1)). In view of Proposition 1.41 below, we deduce that

∀f : Rd → R continuous s.t. sup
x∈Rd

|f(x)|
1 + |x|2

<∞, lim
n→∞

E
[
f(
√
n(X̄n − E[X1]))

]
= E[f(G)].

Theorem 1.40. For ρ ≥ 1, the metric Wρ metricizes the convergence in Pρ(X ).

Proof of Theorem 1.40: Let (µn)n∈N ⊂ P(X ) and µ ∈ P(X ). By (1.8) and Proposition
1.37,

Wρ(µn, µ) ≥ W1(µn, ν) ≥ sup
f :X→R 1-Lipschitz bounded by 1

{µn(f)− µ(f)}.

With Theorem 5.2 3), we deduce that limn→∞ Wρ(µn, µ) = 0 implies that µn
converges weakly to µ as n → ∞. Moreover, since by the triangle inequality
|Wρ(µn, δx0)−Wρ(µ, δx0)| ≤ Wρ(µn, µ), it also implies that∫

x∈X
dρX (x0, x)µn(dx) = Wρ

ρ (µn, δx0)
n→∞−→ Wρ

ρ (µ, δx0) =

∫
x∈X

dρX (x0, x)µ(dx).

Conversely, let us suppose that µn converges weakly to µ and
limn→∞

∫
x∈X d

ρ
X (x0, x)µn(dx) =

∫
x∈X d

ρ
X (x0, x)µ(dx). By Proposition 5.4, there ex-

ist Xn ∼ µn and X ∼ µ such that limn→∞Xn = X a.s. and limn→∞ E[dρX (x0, Xn)] =

E[dρX (x0, X)]. Since 0 ≤ 2ρ−1(dρX (x0, X)+ dρX (x0, Xn))− dρX (X,Xn)
n→∞−→ 2ρdρX (x0, X) a.s.,

by Fatou Lemma, we get

2ρE[dρX (x0, X)] ≤ lim inf
n→∞

E
[
2ρ−1(dρX (x0, X) + dρX (x0, Xn))− dρX (X,Xn)

]
= 2ρE[dρX (x0, X)]− lim sup

n→∞
E [dρX (X,Xn)] .

Since Wρ
ρ (µn, µ) ≤ E [dρX (X,Xn)], we conclude that

lim sup
n→∞

Wρ
ρ (µn, µ) ≤ lim sup

n→∞
E [dρX (X,Xn)] = 0.
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Proposition 1.41. The convergence µn
Pρ(X )−→ µ is equivalent to

∀f ∈ Cρ(X ), lim
n→∞

µn(f) = µ(f),

where Cρ(X ) denotes the set of functions f : X → R continuous such that

supx∈X
|f(x)|

1+dρX (x0,x)
<∞.

Proof: The sufficient condition is clear since supx∈X
|f(x)|

1+dρX (x0,x)
< ∞ when f is bounded

and when f(x) = dρX (x0, x) which is a continuous function.

To prove the necessary condition, we set νn = dρX (x0, ·)#µn and ν = dρX (x0, ·)#µ
which are probability measures on R+ such that νn converges weakly to ν and
limn→∞

∫
R xνn(dx) =

∫
R xν(dx).

By Lemmas 1.42 and 1.43 below, we have that for U ∼ U [0, 1], limn→∞ F−1
νn (U) = F−1

ν (U)
a.s. and limn→∞ E[F−1

νn (U)] = E[F−1
ν (U)]. Since (F−1

ν (U) − F−1
νn (U))+ ≤ F−1

ν (U), by
Lebesgue’s theorem, limn→∞ E[(F−1

ν (U)− F−1
νn (U))+] = 0. Since

|F−1
ν (U)− F−1

νn (U)| = 2(F−1
ν (U)− F−1

νn (U))+ + F−1
νn (U)− F−1

ν (U),

we deduce that limn→∞ E
[
|F−1
ν (U)− F−1

νn (U)|
]
= 0. Since for k ∈ N, R ∋ y 7→ (|y| − k)+

is 1-Lipschitz,

sup
k∈N

∣∣E[(|F−1
νn (U)| − k)+]− E[(|F−1

ν (U)| − k)+]
∣∣

≤ sup
k∈N

E
[
|(|F−1

νn (U)| − k)+ − (|F−1
ν (U)| − k)+|

]
≤ E

[
|F−1
ν (U)− F−1

νn (U)|
] n→∞−→ 0.

For ε > 0, we may thus choose nε ∈ N such that

sup
n≥nε

sup
k∈N

∣∣E[(|F−1
νn (U)| − k)+]− E[(|F−1

ν (U)| − k)+]
∣∣ ≤ ε

2
.

Since by Lebesgue’s theorem, limk→∞ E[(|F−1
ν (U)| − k)+] = 0, we may choose knε ∈ N

such that supk≥knε E[(|F
−1
ν (U)| − k)+] ≤ ε

2
and therefore

sup
k≥knε

sup
n≥nε

E[(|F−1
νn (U)| − k)+] ≤ ε

2
+
ε

2
= ε.

On the other hand, for n ∈ {0, · · · , nε − 1}, since by Lebesgue’s theorem,
limk→∞ E[(|F−1

νn (U)| − k)+] = 0, we may choose kn ∈ N such that supk≥kn E[(|F−1
νn (U)| −

k)+] ≤ ε. We then have supk≥max(k0,··· ,knε ) supn∈N E[(|F
−1
νn (U)| − k)+] ≤ ε and deduce that

lim
k→∞

sup
n∈N

E[(|F−1
νn (U)| − k)+] = 0.

Let now f ∈ Cρ(X ), C = supx∈X
|f(x)|

1+dρX (x0,x)
, Xn ∼ µn, X ∼ µ and fk(x) = (−C(1 + k)) ∨

f(x)∧ (C(1+k)), for k ∈ N. We have |f(Xn)| ≤ C(1+dρX (x0, Xn)) and (|f(Xn)|−C(1+
k))+ ≤ C(dρX (x0, Xn)− k)+ and therefore

sup
n∈N

E[(|f(Xn)− C(1 + k))+] ≤ C sup
n∈N

E[(|F−1
νn (U)| − k)+]

k→∞−→ 0.
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Since |f(x)− fk(x)| ≤ (|f(x)| − C(1 + k))+, we deduce that

sup
n∈N

|E[f(Xn)]− E[fk(Xn)]|
k→∞−→ 0.

Moreover, by Lebesgue’s theorem, limk→∞ E[fk(X)] = E[f(X)]. We deduce that for ε > 0,
we may choose kε such that

sup
n∈N

|E[f(Xn)]− E[fkε(Xn)]| ≤
ε

3
and |E[f(X)]− E[fkε(X)]| ≤ ε

3
.

Since fkε is continuous and bounded, the weak convergence of µn to µ ensures that
limn→∞ E[fkε(Xn)] = E[fkε(X)] so that ∃nε ∈ N, supn≥nε |E[fkε(Xn)]− E[fkε(X)]| ≤ ε

3
.

We conclude that

∀n ≥ nε, |E[f(Xn)]− E[f(X)]| ≤ |E[f(Xn)]− E[fkε(Xn)]|+ |E[fkε(Xn)]− E[fkε(X)]|

+ |E[fkε(X)]− E[f(X)]| ≤ ε

3
+
ε

3
+
ε

3
= ε.

1.7.2 The real line case

We denote by Fη(x) = η((−∞, x]), x ∈ R and F−1
η (u) = inf{x ∈ R : Fη(x) ≥ u}, u ∈

(0, 1) the cumulative distribution function and the quantile function of a probability mea-
sure η ∈ P(R). Let us recall the inverse sampling transform.

Lemma 1.42.

∀(u, x) ∈ (0, 1)× R, F−1
η (u) ≤ x⇔ u ≤ Fη(x).

Moreover, for U ∼ U [0, 1], F−1
η (U) ∼ η.

Proof: The cumulative distribution function Fη is right-continuous and non-decreasing
and, by definition of F−1

η (u), we have ∀x > F−1
η (u), Fη(x) ≥ u. Therefore Fη(F

−1
η (u)) ≥ u.

As a consequence, with the monotonicity of Fη, we obtain

F−1
η (u) ≤ x⇒ Fη(F

−1
η (u)) ≤ Fη(x) ⇒ u ≤ Fη(x).

Conversely, u ≤ Fη(x) ⇒ F−1
η (u) ≤ x, by definition of F−1

η (u).

The equivalence implies that for U ∼ U [0, 1], P(F−1
η (U) ≤ x) = P(U ≤ Fη(x)) = Fη(x)

so that F−1
η (U) has the cumulative distribution function Fη and therefore is distributed

according to η.

Lemma 1.43. Let (µn)n∈N be a sequence in P(R) which converges weakly to µ as n→ ∞.
Then, for each continuity point u of F−1

µ in (0, 1), we have limn→+∞ F−1
µn (u) = F−1

µ (u).
In particular, for U ∼ U [0, 1], F−1

µn (U) converges a.s. to F
−1
µ (U) as n→ ∞.
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Proof: Since the function F−1
µ is non-decreasing on (0, 1), it has at most countably many

discontinuity points in (0, 1). Therefore the second assertion is a consequence of the first.

By definition of F−1
µ we have

∀u ∈ (0, 1), ∀x < F−1
µ (u), Fµ(x) < u. (1.9)

Moreover, Fµ(F
−1
µ (u)) ≥ u by definition of F−1

µ and right-continuity of Fµ. If
Fµ(F

−1
µ (u)) > u then ∀x ≥ F−1

µ (u), Fµ(x) ≥ Fµ(F
−1
µ (u)) > u. If Fµ(F

−1
µ (u)) = u

and there exists some x > F−1
µ (u) with Fµ(x) = u, then for each v ∈ (u, 1), F−1

µ (v) ≥ x >
F−1
µ (u) and Fµ is not right-continuous at u. We deduce that

∀u ∈ (0, 1), F−1
µ right-continuous at u⇒ ∀x > F−1

µ (u), Fµ(x) > u. (1.10)

Let u ∈ (0, 1) be a continuity point of F−1
µ . Since the non-decreasing function Fµ has at

most countably many discontinuity points on R, for k ∈ N∗, there exists εk ∈ (0, 1
k
] such

that Fµ is continuous both at F−1
µ (u)− εk and F−1

µ (u) + εk so that, by Theorem 5.2 8),

lim
n→∞

Fµn(F
−1
µ (u)− εk) = Fµ(F

−1
µ (u)− εk) and lim

n→∞
Fµn(F

−1
µ (u) + εk) = Fµ(F

−1
µ (u) + εk).

Moreover, by (1.9), Fµ(F
−1
µ (u)− εk) < u and by (1.10), Fµ(F

−1
µ (u)+ εk) > u. We deduce

the existence of Nk <∞ such that for n ≥ Nk, Fµn(F
−1
µ (u)− εk) < u < Fµn(F

−1
µ (u)+ εk)

so that, by definition of F−1
µn (u),

∀n ≥ Nk, F
−1
µ (u)− 1

k
≤ F−1

µ (u)− εk < F−1
µn (u) ≤ F−1

µ (u) + εk ≤ F−1
µ (u) +

1

k
.

We conclude that limn→∞ F−1
µn (u) = F−1

µ (u).

Proposition 1.44 (Hoeffding-Fréchet bounds). Let µ, ν ∈ P(R) and π ∈ Π(µ, ν). Then

∀x, y ∈ R, (Fµ(x) + Fν(y)− 1)+ ≤ π ((−∞, x]× (−∞, y]) ≤ Fµ(x) ∧ Fν(y),
with the upper bound attained for the comonotonous coupling π = L(F−1

µ (U), F−1
ν (U))

where U ∼ U [0, 1] and the lower bound for the anti-comonotonous coupling π =
L(F−1

µ (U), F−1
ν (1− U)).

Proof: The function Fπ(x, y) = π ((−∞, x]× (−∞, y]) is non-decreasing in each of its
variables. Therefore

Fπ(x, y) ≤ Fπ(x,+∞) ∧ Fπ(+∞, y) = Fµ(x) ∧ Fν(y).
On the other hand,

π ((x,+∞)× (y,+∞)) = Fπ(x, y)− Fπ(x,+∞)− Fπ(+∞, y) + Fπ(+∞,+∞),

which implies Fπ(x, y) ≥ Fπ(x,+∞) + Fπ(+∞, y) − Fπ(+∞,+∞) = Fµ(x) + Fν(y) − 1.
Therefore Fπ(x, y) ≥ (Fµ(x) + Fν(y)− 1)+. Finally, by Lemma 1.42, we have

P(F−1
µ (U) ≤ x, F−1

ν (U) ≤ y) = P(U ≤ Fµ(x), U ≤ Fν(y))

= P(U ≤ Fµ(x) ∧ Fν(y)) = Fµ(x) ∧ Fν(y) and
P(F−1

µ (U) ≤ x, F−1
ν (1− U) ≤ y) = P(U ≤ Fµ(x), 1− U ≤ Fν(y))

= P(U ≤ Fµ(x), U ≥ 1− Fν(y)) = (Fµ(x) + Fν(y)− 1)+.
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Proposition 1.45. Let ρ > 1.

∀µ, ν ∈ Pρ(R), Wρ(µ, ν) =

(∫ 1

u=0

|F−1
µ (u)− F−1

ν (u)|ρdu
)1/ρ

.

The proof relies on the next lemma.

Lemma 1.46. Let ρ > 1, µ, ν ∈ Pρ(R) and π ∈ Π(µ, ν). Then∫
R2

|x−y|ρ(π(dx, dy)−µ(dx)ν(dy)) = ρ(ρ−1)

∫
R2

|z−w|ρ−2 (Fµ(z)Fν(w)− Fπ(z, w)) dzdw.

Proof of Proposition 1.45: According to Lemma 1.46, to minimize (resp. max-
imize)

∫
R2 |x − y|ρπ(dx, dy) over Π(µ, ν), it is enough to choose π which maximizes

(resp. minimizes) Fπ, i.e. π equal to the comonotonous coupling L(F−1
µ (U), F−1

ν (U))
(resp. anti-comonotonous coupling L(F−1

µ (U), F−1
ν (1 − U))) by Proposition 1.44. For

π = L(F−1
µ (U), F−1

ν (U)), we have∫
R2

|x− y|ρπ(dx, dy) = E
[
|F−1
µ (U)− F−1

ν (U)|ρ
]
=

∫ 1

u=0

|F−1
µ (u)− F−1

ν (u)|ρdu.

Remark 1.47. Since the two-dimensional cumulative distribution function Fπ character-
izes the coupling π, the comonotonous coupling is the unique optimal coupling.

Proof of Lemma 1.46: The function R2 ∋ (z, w) 7→ |z−w|ρ is continuously differntiable
with ∂z|z − w|ρ = ρ(1{z>w} − 1{w>z})|z − w|ρ−1. Moreover, R2 ∋ (z, w) 7→ ∂z|z − w|ρ is
differentiable on R2 \ {(z, w) ∈ Rd : z = w} with ∂2zw|z −w|ρ = −ρ(ρ− 1)|z −w|ρ−2. We
deduce that

∀w1, w2 ∈ R, ∂z|z − w2|ρ − ∂z|z − w1|ρ = −ρ(ρ− 1)

∫ w2

w=w1

|z − w|ρ−2dw.

As a consequence, for all x, y, x̃, ỹ ∈ R,

|x̃− ỹ|ρ + |x− y|ρ − |x̃− y|ρ − |x− ỹ|ρ = −ρ(ρ− 1)

∫ x̃

z=x

∫ ỹ

w=y

|z − w|ρ−2dwdz

= −ρ(ρ− 1)

∫
R2

(1{x≤z} − 1{x̃≤z})(1{y≤w} − 1{ỹ≤w})|z − w|ρ−2dwdz

= ρ(ρ− 1)

∫
R2

(
1{x≤z}1{ỹ≤w} + 1{x̃≤z}1{y≤w} − 1{x≤z,y≤w} − 1{x̃≤z,ỹ≤w}

)
|z − w|ρ−2dwdz.

(1.11)

The equality between the second and last expressions ensures that the function R2 ∋
(z, w) 7→

(
1{x≤z}1{ỹ≤w} + 1{x̃≤z}1{y≤w} − 1{x≤z,y≤w} − 1{x̃≤z,ỹ≤w}

)
has constant sign equal

to that of (x− x̃)(ỹ − y). Therefore

ρ(ρ− 1)

∫
R2

∣∣1{x≤z}1{ỹ≤w} + 1{x̃≤z}1{y≤w} − 1{x≤z,y≤w} − 1{x̃≤z,ỹ≤w}
∣∣ |z − w|ρ−2dwdz

= ||x̃− ỹ|ρ + |x− y|ρ − |x̃− y|ρ − |x− ỹ|ρ| ≤ 2ρ (|x|ρ + |y|ρ + |x̃|ρ + |ỹ|ρ) ,
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where the right-hand side and thus each expression is integrable with respect to
π(dx, dy)π(dx̃, dỹ) for π ∈ Π(µ, ν). This permits to use Fubini’s theorem to check that
the integral of the right-hand side of (1.11) is equal to

2ρ(ρ− 1)

∫
R2

|z − w|ρ−2(Fµ(z)Fν(w)− Fπ(z, w))dzdw.

Since the integral of the left-hand side of (1.11) is equal to 2
∫
R2 |x − y|ρ(π(dx, dy) −

µ(dx)ν(dy)), we conclude that the statement holds.

Corollary 1.48.

∀µ, ν ∈ P1(R), W1(µ, ν) =

∫ 1

u=0

|F−1
µ (u)− F−1

ν (u)|du =

∫
x∈R

|Fµ(x)− Fν(x)|dx.

Remark 1.49. The comonotonous coupling is optimal for W1 but there may also exist
other optimal couplings. For instance, if there exists a ∈ R such that Fµ(a) = 1 and
Fν(a) = 0, then for each π ∈ Π(µ, ν),

π ((a,+∞)× R) = µ ((a,+∞)) = 1− Fµ(a) = 0 = Fν(a) = π (R× (−∞, a]) .

As a consequence, π ((−∞, a]× [a,+∞)) = 1 so that∫
R2

|x− y|π(dx, dy) =
∫
R2

(x− y)π(dx, dy) =

∫
R
xµ(dx)−

∫
R
yν(dy)

does not depend on π ∈ Π(µ, ν).

Proof: By Lemma 1.42, F−1
µ (u) ≤ x < F−1

ν (u) ⇔ Fν(x) < u ≤ Fµ(x) and F
−1
ν (u) ≤ x <

F−1
µ (u) ⇔ Fµ(x) < u ≤ Fν(x). With Fubini’s theorem, we deduce that∫ 1

u=0

|F−1
µ (u)− F−1

ν (u)|du =

∫ 1

u=0

∫
x∈R

1{F 1
µ(u)≤x<F

−1
ν (u)} + 1{F 1

µ(u)≤x<F
−1
µ (u)}dxdu

=

∫
x∈R

∫ 1

u=0

1{Fν(x)<u≤Fµ(x)} + 1{Fµ(x)<u≤Fν(x)}dudx

=

∫
x∈R

|Fµ(x)− Fν(x)|dx.

For n ∈ N, let µn and νn denote the respective images of µ and ν by R ∋ x 7→ (−n)∨x∧n.
We have F−1

µn (u) = (−n)∨F−1
µ (u)∧n and F−1

νn (u) = (−n)∨F−1
ν (u)∧n so that, by monotone

convergence,
∫ 1

u=0
|F−1
µn (u)−F−1

νn (u)|du converges to
∫ 1

u=0
|F−1
µ (u)−F−1

ν (u)|du as n→ ∞.

We have W1(µn, µ) ≤
∫ 1

u=0
|F−1
µn (u) − F−1

µ (u)|du =
∫ 1

u=0
1{|F−1

µ (u)|>n}(|F−1
µ (u)| − n)du,

where the right-hand side goes to 0 when n → ∞ by Lebesgue’s theorem. In the same
way limn→∞ W1(νn, ν) = 0. By the triangle inequality, we deduce that

|W1(µ, ν)−W1(µn, νn)| ≤ W1(µn, µ) +W1(νn, ν)
n→∞−→ 0.

Therefore, to prove that W1(µ, ν) =
∫ 1

u=0
|F−1
µ (u)−F−1

ν (u)|du, it is enough to check that
the same equality holds with (µ, ν) replaced by (µn, νn). Let πn ∈ Π(µn, νn) be optimal
for W1(µn, νn). By Proposition 1.45,

∀ρ > 1,

∫
R2

|x− y|ρπn(dx, dy) ≥
∫ 1

u=0

|F−1
µn (u)− F−1

νn (u)|ρdu.
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The fact that |F−1
µn (u)−F−1

νn (u)| ≤ 2n and |x− y| ≤ 2n, πn(dx, dy) a.e., permits to apply
Lebesgue’s theorem to take the limit ρ→ 1 in the inequality to conclude that

W1(µn, νn) =

∫
R2

|x− y|πn(dx, dy) ≥
∫ 1

u=0

|F−1
µn (u)− F−1

νn (u)|du ≥ W1(µn, νn).

1.7.3 Quadratic Wasserstein distance between Gaussian distri-
butions

Let S+(d) denote the set of symmetric positive semi-definite d × d matrices i.e. the set
of covariance matrices of d-dimensional square integrable random vectors. For Σ ∈ S+(d)
we denote by Σ1/2 the only element of S+(d) such that Σ1/2Σ1/2 = Σ, i.e. the symmetric
square root of Σ. When Σ is non singular, we also denote by Σ−1/2 the inverse of Σ1/2. For
m ∈ Rd, Σ ∈ S+(d) let finally Nd(µ,Σ) denote the d-dimensional Gaussian distribution
with expectation m and covariance matrix Σ.

Proposition 1.50.

W2
2 (Nd(mµ,Σµ),Nd(mν ,Σν)) = |mµ −mν |2 + tr

(
Σµ + Σν − 2(Σ1/2

µ ΣνΣ
1/2
µ )1/2

)
.

Remark 1.51. Since Σµ and Σν play symmetric roles, we have tr
(
(Σ

1/2
µ ΣνΣ

1/2
µ )1/2

)
=

tr
(
(Σ

1/2
ν ΣµΣ

1/2
ν )1/2

)
.

Let us denote by mη ∈ Rd and Ση ∈ S+(d) the expectation and the covariance matrix

of η ∈ P2(Rd). For µ, ν ∈ P2(Rd) and π ∈ Π(µ, ν) ⊂ P2(R2d), we have mπ =

(
mµ

mν

)
and Σπ =

(
Σµ Θπ

ΘT
π Σν

)
for some Θπ ∈ Rd×d such that Σπ ∈ S+(2d). Moreover, by bias

variance decomposition,∫
Rd×Rd

|x− y|2π(dx, dy) =|mµ −mν |2

+

∫
Rd×Rd

(
|x−mµ|2 + |y −mν |2 − 2(x−mµ).(y −mν)

)
π(dx, dy)

=|mµ −mν |2 + tr(Σµ + Σν − 2Θπ).

Therefore
W2

2 (µ, ν) = |mµ −mν |2 + tr(Σµ) + tr(Σν)− 2 sup
π∈Π(µ,ν)

tr(Θπ).

The specificity of the Gaussian case µ = Nd(mµ,Σµ) and ν = Nd(mν ,Σν)

is that any Θ ∈ Rd×d such that

(
Σµ Θ
ΘT Σν

)
∈ S+(2d) is attainable by the

Gaussian coupling N2d

((
mµ

mν

)
,

(
Σµ Θ
ΘT Σν

))
. As a consequence, to explicit

W2
2 (Nd(mµ,Σµ),Nd(mν ,Σν)), it is enough to maximize tr(Θ) over such matrices Θ.
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This was done in [14, 9, 10].

To prove Proposition 1.50, we are rather going to use the approach with more prob-
abilistic insight about correlation matrices introduced in [3]. Let C(d) = {C ∈ S+(d) :
∀i ∈ {1, · · · , d}, Cii = 1} denote the set of correlation matrices of d-dimensional square
integrable random vectors.
We say that the correlation matrix C is associated with the covariance matrix Σ if
Σij =

√
ΣiiΣjjCij for all i, j ∈ {1, · · · d} i.e.

Σ = dg(Σ)1/2Cdg(Σ)1/2

where dg(Σ) denotes the diagonal matrix with diagonal entries equal to those of Σ.

Note that denoting by D the diagonal matrix with diagonal entries Dii = 1{Σii>0}Σ
−1/2
ii

for i ∈ {1, · · · , d}, the correlation matrix DΣD is associated with Σ and, when Σ is non
singular so that D = dg(Σ)−1/2, this is the only correlation matrix associated with Σ. Let
O(d) denote the set of d × d orthogonal matrices i.e. O(d) = {U ∈ Rd×d : UUT = Id}.
The proof of Proposition 1.50 relies on the next lemma.

Lemma 1.52. For Σµ,Σν ∈ S+(d), there exists U ∈ O(d) such that UΣµU
T and UΣνU

T

share the same correlation matrix C.

Proof of Proposition 1.50: According to the above discussion, it is enough to check
that V (Σµ,Σν) defined by

V (Σµ,Σν) = sup

Θ∈Rd×d:

 Σµ Θ
ΘT Σν

∈S+(2d)

tr(Θ)

is equal to tr
(
(Σ

1/2
µ ΣνΣ

1/2
µ )1/2

)
.

For U ∈ O(d), since

(
UΣµU

T UΘUT

UΘTUT UΣνU
T

)
=

(
U 0
0 U

)(
Σµ Θ
ΘT Σν

)(
U 0
0 U

)T
,(

Σµ Θ
ΘT Σν

)
∈ S+(2d) ⇔

(
UΣµU

T UΘUT

UΘTUT UΣνU
T

)
∈ S+(2d),

and, by the cyclicity of the trace, tr(UΘUT ) = tr(UTUΘ) = tr(Θ). Therefore

∀U ∈ O(d), V (Σµ,Σν) = V (UΣµU
T , UΣνU

T ). (1.12)

We now use Lemma 1.52 to choose U ∈ O(d) such that Σ̃µ := UΣµU
T and Σ̃ν := UΣνU

T

share the correlation matrix C i.e.

Σ̃µ = dg(Σ̃µ)
1/2Cdg(Σ̃µ)

1/2 and Σ̃ν = dg(Σ̃ν)
1/2Cdg(Σ̃ν)

1/2. (1.13)

For Θ ∈ Rd×d such that

(
Σ̃µ Θ

ΘT Σ̃ν

)
∈ S+(2d) and i, j ∈ {1, · · · , d}, we have(

(Σ̃µ)ii Θii

Θii (Σ̃ν)ii

)
∈ S+(2) and therefore Θ2

ii ≤ (Σ̃µ)ii(Σ̃ν)ii. We deduce that

V
(
Σ̃µ, Σ̃ν

)
≤

d∑
i=1

√
(Σ̃µ)ii(Σ̃ν)ii.
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This inequality turns out to be an equality since Θ = dg(Σ̃µ)
1/2Cdg(Σ̃ν)

1/2 attains the

upper-bound and is such that

(
Σ̃µ Θ

ΘT Σ̃ν

)
=
(
dg(Σ̃µ)

1/2, dg(Σ̃ν)
1/2
)
C

(
dg(Σ̃µ)

1/2

dg(Σ̃ν)
1/2

)
∈

S+(2d).

When Σµ is non singular, the matrix Σ̃
1/2
µ dg(Σ̃ν)

1/2dg(Σ̃µ)
−1/2Σ̃

1/2
µ is equal to

Σ̃
1/2
µ dg(Σ̃µ)

−1/2dg(Σ̃ν)
1/2Σ̃

1/2
µ and therefore symmetric. Moreover, using (1.13) for the

second and third equalities, we have

Σ̃1/2
µ dg(Σ̃ν)

1/2dg(Σ̃µ)
−1/2Σ̃1/2

µ Σ̃1/2
µ dg(Σ̃ν)

1/2dg(Σ̃µ)
−1/2Σ̃1/2

µ

= Σ̃1/2
µ dg(Σ̃ν)

1/2dg(Σ̃µ)
−1/2Σ̃µdg(Σ̃µ)

−1/2dg(Σ̃ν)
1/2Σ̃1/2

µ = Σ̃1/2
µ dg(Σ̃ν)

1/2Cdg(Σ̃ν)
1/2Σ̃1/2

µ

= Σ̃1/2
µ Σ̃νΣ̃

1/2
µ .

Therefore, when Σµ is non singular, (Σ̃
1/2
µ Σ̃νΣ̃

1/2
µ )1/2 = Σ̃

1/2
µ dg(Σ̃ν)

1/2dg(Σ̃
−1/2
µ )Σ̃

1/2
µ so

that, by cyclicity of the trace,

tr
(
(Σ̃1/2

µ Σ̃νΣ̃
1/2
µ )1/2

)
= tr

(
dg(Σ̃ν)

1/2dg(Σ̃µ)
−1/2Σ̃µ

)
=

d∑
i=1

√
(Σ̃µ)ii(Σ̃ν)ii.

Replacing (Σµ,Σν) by(
(dg(Σµ)

1/2 + εId)((1− ε)C + εId)(dg(Σµ)
1/2 + εId), dg(Σν)

1/2((1− ε)C + εId)dg(Σν)
1/2
)

with ε > 0 in this equality and using the continuity of the symmetric square root and of
the trace to take the limit ε→ 0, we conclude with (1.12) that even when Σµ is singular,

tr
(
(Σ̃1/2

µ Σ̃νΣ̃
1/2
µ )1/2

)
=

d∑
i=1

√
(Σ̃µ)ii(Σ̃ν)ii = V

(
Σ̃µ, Σ̃ν

)
= V (Σµ,Σν) .

For Σ ∈ S+(d), (UΣ
1/2UT )(UΣ1/2UT ) = UΣUT so that (UΣUT )1/2 = UΣ1/2UT . There-

fore, (
Σ̃1/2
µ Σ̃νΣ̃

1/2
µ

)1/2
=
(
UΣ1/2

µ UTUΣνU
TUΣ1/2

µ UT
)1/2

= U
(
Σ1/2
µ ΣνΣ

1/2
µ

)1/2
UT ,

so that, by the cyclicity of the trace,

tr
(
(Σ̃1/2

µ Σ̃νΣ̃
1/2
µ )1/2

)
= tr

(
U(Σ1/2

µ ΣνΣ
1/2
µ )1/2UT

)
= tr

(
(Σ1/2

µ ΣνΣ
1/2
µ )1/2

)
.

Proof of Lemma 1.52: Let us first suppose that Σµ is non singular. We obtain U

by diagonalization of the matrix Σ
−1/2
µ (Σ

1/2
µ ΣνΣ

1/2
µ )1/2Σ

−1/2
µ which belongs to S+(d), i.e.

we choose U ∈ O(d) such that UΣ
−1/2
µ (Σ

1/2
µ ΣνΣ

1/2
µ )1/2Σ

−1/2
µ UT = D for some diagonal

matrix D with positive diagonal coefficients.
Note that for Σ ∈ S+(d), (UΣ

1/2UT )(UΣ1/2UT ) = UΣUT so that (UΣUT )1/2 = UΣ1/2UT
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and, in the same way, (UΣUT )−1/2 = UΣ−1/2UT when Σ is moreover invertible. Setting

Σ̃µ = UΣµU
T and Σ̃ν = UΣνU

T , we deduce that(
Σ̃1/2
µ Σ̃νΣ̃

1/2
µ

)1/2
=
(
UΣ1/2

µ UTUΣνU
TUΣ1/2

µ UT
)1/2

= U
(
Σ1/2
µ ΣνΣ

1/2
µ

)1/2
UT

= UΣ1/2
µ UTDUΣ1/2

µ UT = Σ̃1/2
µ DΣ̃1/2

µ

Σ̃1/2
µ Σ̃νΣ̃

1/2
µ =

(
Σ̃1/2
µ Σ̃νΣ̃

1/2
µ

)1/2 (
Σ̃1/2
µ Σ̃νΣ̃

1/2
µ

)1/2
= Σ̃1/2

µ DΣ̃1/2
µ Σ̃1/2

µ DΣ̃1/2
µ .

By multiplying the last equality to the left and to the right by Σ̃
−1/2
µ , we con-

clude that Σ̃ν = DΣ̃µD. Therefore Σ̃ν and Σ̃µ share the correlation matrix C =

dg(Σ̃µ)
−1/2Σ̃µdg(Σ̃µ)

−1/2 where dg(Σ̃µ) denotes the diagonal matrix with diagonal en-

tries equal to those of Σ̃µ. When Σµ is singular, we choose a sequence (εn)n∈N of positive
numbers converging to 0 as n → ∞. By the previous case, for each n ∈ N, there exists
(Un, Cn) ∈ O(d)× C(d) such that

Un(Σµ + εnId)U
T
n = dg

(
Un(Σµ + εnId)U

T
n

)1/2
Cndg

(
Un(Σµ + εnId)U

T
n

)1/2
and UnΣνU

T
n = dg

(
UnΣνU

T
n

)1/2
Cndg

(
UnΣνU

T
n

)1/2
.

By compactness of the sets O(d) and C(d), we can extract from (Un, Cn)n∈N a subsequence
converging to (U,C) ∈ O(d) × C(d) which does the job by taking the limit in the two
previous equalities.



Chapter 2

Weak optimal transport

Let X and Y be two Polish spaces with respective metrics dX and dY and µ ∈ P(X ), ν ∈
P(Y). For π(dx, dy) = µ(dx)πx(dy) ∈ Π(µ, ν) and c : X ×Y → R∪ {+∞} bounded from
below, we have

π(c) =

∫
X×Y

c(x, y)π(dx, dy) =

∫
X

(∫
Y
c(x, y)πx(dy)

)
µ(dx) =

∫
X
C(x, πx)µ(dx),

where C(x, p) =
∫
Y c(x, y)p(dy) for (x, p) ∈ X × P(Y). Weak Optimal transport is a

generalization of Optimal Transport concerned with cost functions C : X × P(Y) →
R ∪ {+∞} :

VC(µ, ν) = inf
π∈Π(µ,ν)

∫
X
C(x, πx)µ(dx).

The Martingale Optimal Transport problem considered in Chapter 3 and the Entropic
Optimal Transport problem considered in Chapter 4 are particular cases of WOT. The
MOT problem is restricted to the case X = Y = Rd and relies on the next definition.

Definition 2.1. • Let p̄ =
∫
Rd xp(dx) denote the mean of a probability measure p ∈

P1(Rd).

• For µ, ν ∈ P1(Rd), a coupling π ∈ Π(µ, ν) is called a martingale coupling if µ(dx)
a.e., π̄x = x.

• The set of martingale couplings between µ and ν is denoted by ΠM(µ, ν).

Since ν̄ =
∫
X π̄xµ(dx), a necessary condition for ΠM(µ, ν) ̸= ∅ is ν̄ = µ̄. Strassen’s theo-

rem (see Theorem 2.16 below) gives a necessary and sufficient condition for ΠM(µ, ν) ̸= ∅.
For c : Rd × Rd → R ∪ {+∞}, measurable the value function of the martingale optimal
transport problem is

V M
c (µ, ν) = inf

π∈ΠM (µ,ν)
π(c).

Let C : R× P1(Rd) be defined by

C(x, p) =

{∫
Rd c(x, y)p(dy) if p̄ = x

+∞ otherwise
.

When c is bounded from below, so that the use of Fubini’s theorem is justified, we have
V M
c (µ, ν) = VC(µ, ν), which shows that MOT is a particular case of WOT. Let c be lower

31
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semi-continuous and bounded from below. Then C is bounded from below by the same
constant. Moreover, for x ∈ Rd, p, q ∈ P1(Rd) and α ∈ (0, 1), C(x, αp+ (1− αq) is equal
to

• +∞ if αp+ (1− αq) ̸= x and, then, p̄ ̸= x or q̄ ̸= x, so that αC(x, p) + (1 −
α)C(x, q) = +∞,

•
∫
Rd c(x, y)(αp+ (1− αq))(dy) ≤ αC(x, p) + (1− α)C(x, q) otherwise.

We deduce that C is convex in its measure (second) argument. Since {(x, p) ∈ Rd ×
P1(Rd) : p̄ ̸= x} is open, it is enough to check that Rd×P1(Rd) ∋ (x, p) 7→

∫
Rd c(x, y)p(dy)

is lower semi-continuous to conclude that so is C. The case when c is constant equal to +∞
is clear. Otherwise, by Lemma 1.13, c is the non-decreasing limit of n-Lipschitz functions
cn bounded from below by the same constant as c. Using the inequality (2.3) below with
X = Y = Rd and f = cn, we obtain that Rd × P1(Rd) ∋ (x, p) 7→

∫
Rd cn(x, y)p(dy) is

continuous. By monotone convergence, Rd × P1(Rd) ∋ (x, p) 7→
∫
Rd c(x, y)p(dy) is the

supremum of these continuous functions and it is thus lower semi-continuous.

The EOT problem writes

Vc,ε(µ, ν) = inf
π∈Π(µ,nu)

(π(c) + εH(π|µ⊗ ν)) ,

where c : X × Y → R is a cost function, ε > 0, µ⊗ ν(dx, dy) = µ(dx)ν(dy) and, for tow
probability measure η, γ on the the same measurable set (Z,B(Z)),

H(η|γ) =

{∫
Z ln

(
dη
dγ
(z)
)
η(dz) if η << γ

+∞ otherwise
.

If π ∈ Π(µ, ν) satisfies π << µ ⊗ ν then writing π(dx, dy) = µ(dx)πx(dy), we have
dπ

dµ⊗ν (x, y) =
dπx
dν

(y) so that

H(π|µ⊗ ν) =

∫
X×Y

ln

(
dπx
dν

(y)

)
πx(dy)µ(dx) =

∫
X
H(πx|ν)µ(dx).

Therefore Vc,ε(µ, ν) = VC(µ, ν) with

C(x, p) =

∫
Y
c(x, y)p(dy) + εH(p|ν).

The function P(Y)×P(Y) ∈ (p, ν) 7→ H(p|ν) is non-negative by (4.1) and jointly lower-
semi continuous and convex according to Lemma 4.2.

2.1 Properties of Weak Optimal Transport

Let ρ ≥ 1, C : X × Pρ(Y) → R ∪ {+∞} be lower semi-continuous bounded from below
and convex in the measure (i.e. second) argument. We set

∀(µ, ν) ∈ Pρ(X )× Pρ(Y), VC(µ, ν) = inf
π∈Π(µ,ν)

∫
X
C(x, πx)µ(dx).

The convexity in the measure argument is needed because of the lack of continuity of
P(X × Y) ∋ π(dx, dy) = µ(dx)πx(dy) 7→ (πx)x∈X . We want to prove the following main
results.
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Theorem 2.2. Let ρ ≥ 1, C : X ×Pρ(Y) → R∪{+∞} be lower semi-continuous bounded
from below and convex in the measure argument. Then, for all (µ, ν) ∈ Pρ(X ) × Pρ(Y),
there exists π⋆ ∈ Π(µ, ν) such that VC(µ, ν) =

∫
X C(x, π

⋆
x)µ(dx). Moreover, the function

VC is lower semi-continuous on Pρ(X )× Pρ(Y) and convex in its second argument.

Definition 2.3. • Let Mρ(Y) denote the set of functions f : Y → R measurable and

such that supy∈Y
|f(y)|

1+dρY (y0,y)
<∞ where y0 is any element of Y. Let Cρ(Y) denote the

subset of Mρ(Y) which consists in continuous functions.

• For C : X ×Pρ(Y) → R ∪ {+∞} and ψ ∈ Mρ(Y), we define ψC : X → R ∪ {+∞}
by ψC(x) = infp∈Pρ(Y){C(x, p)− p(ψ)}.

• Let C∧
ρ (Y) = {ψ ∈ Cρ(Y) : ψ is bounded from above}.

Note that when C is bounded from below and ψ ∈ C∧
ρ (Y), then ψC is bounded from

below and therefore semi-integrable with respect to µ ∈ P(X ). The following dual for-
mulation is the second main result.

Theorem 2.4. Let ρ ≥ 1, C : X ×Pρ(Y) → R∪{+∞} be lower semi-continuous bounded
from below and convex in the measure argument. Then for (µ, ν) ∈ Pρ(X )× Pρ(Y),

VC(µ, ν) = sup
ψ∈C∧

ρ (Y)

{
µ(ψC) + ν(ψ)

}
= sup

(ϕ,ψ)∈C1(X )×C∧
ρ (Y)

ϕ⊕ψ(·)≤C

{µ(ϕ) + ν(ψ)},

where ϕ⊕ ψ(·) ≤ C stands for ∀(x, p) ∈ X × Pρ(Y), ϕ(x) + p(ψ) ≤ C(x, p).

Remark 2.5. In the proof of Theorem 2.4, we will check that when C is moreover Lips-
chitz continuous, then for ψ ∈ Cρ(Y), ψC is either constant and equal to −∞ or R-valued
and Lipschitz continuous so that µ(ψC) makes and

VC(µ, ν) = sup
ψ∈Cρ(Y)

{
µ(ψC) + ν(ψ)

}
.

The proof of Theorem 2.2 relies on the next proposition.

Proposition 2.6. Let ρ ≥ 1, C : X × Pρ(Y) → R ∪ {+∞} be lower semi-continuous
bounded from below and convex in the measure argument. Then Pρ(X × Y) ∋ π 7→∫
X C(x, πx)π(dx× Pρ(Y)) is lower semi-continuous.

To prove the proposition, let us introduce

• J : P(X ×Y) → P(X ×P(Y)) such that for π ∈ P(X ×Y), J(π) is the image of π
by X × Y ∋ (x, y) 7→ (x, πx). Note that J(π) also is the image of the first marginal
π(dx× Y) of π by X ∋ x 7→ (x, πx).

• The intensity I : P(X × P(Y)) → P(X × Y) defined for P (dx, dp) = P (dx ×
P(Y))Px(dp) ∈ P(X × P(Y)) by

∀f ∈ Mb(X × Y), I(P )(f) =

∫
X×P(Y)×Y

f(x, y)p(dy)P (dx, dp)

=

∫
X×Y

f(x, y)

(∫
P(Y )

pPx(dp)

)
(dy)P (dx× P(Y)).

(2.1)
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Since, for f ∈ Mb(X × Y),

I(J(π))(f) =

∫
X×Y

f(x, y)πx(dy)π(dx× P(Y )) =

∫
X×Y

f(x, y)π(dx, dy) = π(f),

we have
∀π ∈ P(X × Y), I(J(π)) = π.

Lemma 2.7. The intensity Pρ(X × Pρ(Y)) ∋ P 7→ I(P ) ∈ Pρ(X × Y) is continuous.

Proof: Let x0 ∈ X , y0 ∈ Y . Since for p ∈ Pρ(Y), Wρ
ρ (δy0 , p) =

∫
Y d

ρ
Y(y0, y)p(dy), we have

∀P ∈ Pρ(X × Pρ(Y)),

∫
X×Pρ(Y)

(
dρX (x0, x) +Wρ

ρ (δy0 , p)
)
P (dx, dp)

=

∫
X×Pρ(Y)×Y

(
dρX (x0, x) + dρY(y0, y)

)
p(dy)P (dx, dp)

=

∫
X×Y

(
dρX (x0, x) + dρY(y0, y)

)
I(P )(dx, dy). (2.2)

Hence convergence of the ρ-th order moment of Pn to that of P∞ is equivalent to conver-
gence of the ρ-th order moment of I(Pn) to that of I(P∞). According to the Portmanteau
theorem (see Theorem 5.2 2)), the weak convergence is characterized by the convergence
of integrals for bounded and Lipschitz continuous test functions. Let f : X × Y → R
be bounded and Lipschitz continuous. For x, x̃ ∈ X and p, p̃ ∈ Pρ(Y), we have, using
Proposition 1.37 for the second inequality and (1.8) for the third∣∣∣∣∫

Y
f(x, y)p(dy)−

∫
Y
f(x̃, y)p̃(dy)

∣∣∣∣ ≤∫
Y
|f(x, y)− f(x̃, y)|p(dy)

+

∣∣∣∣∫
Y
f(x̃, y)p(dy)−

∫
Y
f(x̃, y)p̃(dy)

∣∣∣∣
≤Lip(f) (|x− x̃|+W1(p, p̃)) (2.3)

≤Lip(f) (|x− x̃|+Wρ(p, p̃)) .

As a consequence, X × Pρ(Y) ∋ (x, p) 7→
∫
Y f(x, y)p(dy) is bounded and Lipschitz con-

tinuous with constant Lip(f). Since I(P )(f) =
∫
X×P(Y)

(∫
Y f(x, y)p(dy)

)
P (dx, dp), we

conclude that the weak convergence of Pn to P∞ implies that of I(Pn) to I(P∞).

Remark 2.8. Replacing dX and dY by dX ∧ 1 and dY ∧ 1 in this proof ensures that
I : P(X × P(Y)) → P(X × Y) is continuous (for the weak convergence topology).

Lemma 2.9. A subset E of Pρ(X × Pρ(Y)) is relatively compact iff its image I(E) by I
is relatively compact in Pρ(X × Y).

The proof relies on the next lemma.

Lemma 2.10. Let Y be a Polish space Ê ⊂ P(P(Y)) and Î : P(P(Y)) → P(Y) be defined
by Î(Q) =

∫
P(Y)

pQ(dp). Then, for the weak convergence topology,

Ê tight ⇔ Ê relatively compact ⇔ Î(Ê) relatively compact ⇔ Î(Ê) tight.
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Remark 2.11. We do not need P(Y) to be Polish, to ensure that the relative compactness
of Ê implies its tightness (this would be needed to apply Theorem 5.3).

Proof of Lemma 2.10: The implications

Ê tight ⇒ Ê relatively compact, and , Î(Ê) relatively compact ⇒ Î(Ê) tight

follow from Theorem 5.3. Like in Remark 2.8, we can check that Î is continuous. Since
the image of a relatively compact set by a continuous function is relatively compact, this
ensures that

Ê relatively compact ⇒ Î(Ê) relatively compact.

Let us finally check that the tightness of Ê ⊂ P(P(Y)) follows from that of Î(Ê). Let
ε > 0. By the Prokhorov theorem (see Theorem 5.3), for each n ∈ N there exists some
compact subset Kn of Y such that supν∈Î(Ê) ν(K

c
n) ≤ ε2

22n
. Let

K =
{
p ∈ P(Y) : ∀n ∈ N, p(Kc

n) ≤
ε

2n

}
.

For the weak convergence topology, this set is closed by Theorem 5.2 6) and relatively
compact by Theorem 5.3. Hence K is a compact subset of P(Y). For Q ∈ Ê , we have,
using Kc =

⋃
n∈N

{
p ∈ P(Y) : p(Kc

n) >
ε
2n

}
then the Markov inequality,

Q(Kc) ≤
∑
n∈N

Q
({
p ∈ P(Y) : p(Kc

n) >
ε

2n

})
≤
∑
n∈N

2n

ε

∫
P(Y)

p(Kc
n)Q(dp)

=
∑
n∈N

2n

ε
Î(Q)(Kc

n) ≤
∑
n∈N

2n

ε
sup
ν∈Î(Ê)

ν(Kc
n) ≤

∑
n∈N

2n

ε
× ε2

22n
= ε.

Proof of Lemma 2.9: Since the image of a relatively compact set by a continuous
function is relatively compact, the necessary condition is a consequence of Lemma 2.7.

Let us suppose that I(E) is relatively compact in Pρ(X × Y). Of course, this set is
relatively compact for the weak convergence topology and, by continuity of the projections,
so are the sets of the first and second marginals of the elements of I(E). Since X and Y are
Polish, by Prokhorov’s theorem (see Theorem 5.3), these two sets of marginals are tight.
As the first marginal of P and I(P ) coincide, the set of first marginals of the elements of
E are tight. Since the second marginal of I(P ) is the image of the second marginal of P
by Î introduced in Lemma 2.9, this lemma ensures that the set of second marginals of the
elements of E is tight. Using that a product of compact sets is compact by Tikhonov’s
theorem, we deduce that E is tight and, in view of Theorem 5.3, relatively compact for
the weak convergence topology.

From any sequence (Pn)n∈N of elements of E we may extract a subsequence (Pnk)k∈N
such that Pnk converges weakly to P∞ as k → ∞ and I(Pnk) converges in Pρ(X ×Y) and
therefore weakly to some limit, which, by Remark 2.8, is I(P∞). According to (2.2), the
convergence of the ρ-th order moment of I(Pnk) to that of I(P∞) implies the convergence
of the ρ-th order moment of Pnk to that of P∞. We conclude that Pnk converges to P∞
in Pρ(X × Pρ(Y)) and therefore E is relatively compact.
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Lemma 2.12. Let C : X × P(Y) → R ∪ {+∞} be lower semi-continuous, bounded from
below and convex in the measure argument. Then

∀P ∈ Pρ(X × Pρ(Y)), P (C) ≥
∫
X
C(x, I(P )x)P (dx× Pρ(Y)).

Proof: Since, by (2.1), I(p)x =
∫
Pρ(Y )

pPx(dp), P (dx×P(Y)) a.e., we have, using Jensen’s

inequality,∫
X
C(x, I(P )x)P (dx× P(Y)) =

∫
X
C

(
x,

∫
Pρ(Y)

pPx(dp)

)
P (dx× P(Y))

≤
∫
X
C (x, p)Px(dp)P (dx× P(Y)) = P (C).

To justify the use of Jensen’s inequality, let us prove that for Q ∈ Pρ(Pρ(Y)),

C
(
x,
∫
Pρ(Y)

pQ(dp)
)

≤
∫
Pρ(Y)

C(x, p)Q(dp). We approximate Q by 1
n

∑n
k=1 δpk where

the (pk)k≥1 are i.i.d. according to Q and choose some ω in the underlying probability
space such that 1

n

∑n
k=1 δpk(ω) converges to Q in Pρ(Pρ(Y)) as n → ∞, which is pos-

sible according to the strong law of large numbers. By the continuity of Pρ(Pρ(Y)) ∋
R 7→

∫
Pρ(Y)

pR(dp) ∈ Pρ(Y) which can be established like in the proof of Lemma 2.7,
1
n

∑n
k=1 pk(ω) converges to

∫
Pρ(Y)

pQ(dp) in Pρ(Y). Then, by lower semi-continuity then

convexity of C in its second argument and finally Theorem 5.2 7), we have

C

(
x,

∫
Pρ(Y)

pQ(dp)

)
≤ lim inf

n→∞
C

(
x,

1

n

n∑
k=1

pk(ω)

)
≤ lim inf

n→∞

1

n

n∑
k=1

C(x, pk(ω))

= lim inf
n→∞

∫
Pρ(Y)

C(x, p)
1

n

n∑
k=1

δpk(ω)(dp) ≤
∫
Pρ(Y)

C(x, p)Q(dp).

Proof of Proposition 2.6: Let (πn)n∈N converge to π in Pρ(X ×Y). We denote by µn
(resp. µ) the first marginal and by νn (resp. ν) the second marginal of πn (resp. π). We
have ∫

X
C(x, πnx)µn(dx) =

∫
X×Pρ(Y)

C(x, p)J(πn)(dx, dp).

Since I(J(πn)) = πn, the sequence (I(J(πn)))n∈N is relatively compact in Pρ(X ×Y). By
Lemma 2.9, we deduce that (J(πn))n∈N is relatively compact in Pρ(X × Pρ(Y)). From
any subsequence along which lim infn→∞

∫
X×Pρ(Y)

C(x, p)J(πn)(dx, dp) is attained, we can

extract a further subsequence (J(πnk))k∈N such that J(πnk) converges to P in Pρ(X ×Y)
as k → ∞. The continuity of the intensity I stated in Lemma 2.7 ensures that I(J(πnk)) =
πnk converges to I(P ) in Pρ(X×Y). We deduce that I(P ) = π and P (dx×Pρ(Y)) = µ(dx).
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Using Theorem 5.2 7) for the first inequality and Lemma 2.12 for the second, we deduce
that

lim inf
n→∞

∫
X
C(x, πnx)µn(dx) = lim inf

n→∞

∫
X×Pρ(Y)

C(x, p)J(πn)(dx, dp)

= lim
k→∞

∫
X×Pρ(Y)

C(x, p)J(πnk)(dx, dp) ≥
∫
X×Pρ(Y)

C(x, p)P (dx, dp)

≥
∫
X
C(x, I(P )x)µ(dx) =

∫
X
C(x, πx)µ(dx).

Proof of Theorem 2.2: Let (πn)n∈N ⊂ Π(µ, ν) be a minimizing sequence for VC(µ, ν).
Since∫

X×Y
(dρX (x0, x) + dρX (y0, y))π

n(dx, dy) =

∫
X
dρX (x0, x)µ(dx) +

∫
Y
dρX (y0, y)ν(dy)

does not depend on n, Lemma 1.7 and Definition 1.38 ensure that we can extract a subse-
quence (πnk)k∈N converging to π⋆ in Pρ(X ×Y). By Proposition 2.6,

∫
X C(x, π

⋆
x)µ(dx) ≤

lim infk→∞
∫
X C(x, π

nk
x )µ(dx) = VC(µ, ν) so that the coupling π⋆ is optimal.

Let now (µn)n∈N and (νn)n∈R converge to µ and ν as n → ∞ respectively in Pρ(X )
and Pρ(Y) and πn ∈ Π(µn, νn) be optimal for VC(µn, νn). By Lemma 1.7, from any
subsequence of (πn)n∈N along which lim infn→∞

∫
X C(x, π

n
x)µn(dx) is attained, we can

extract a further subequence (πnk)k∈N converging weakly to π ∈ Π(µ, ν). Since∫
X×Y

(dρX (x0, x) + dρX (y0, y))π
nk(dx, dy) =

∫
X
dρX (x0, x)µnk(dx) +

∫
Y
dρX (y0, y)νnk(dy)

converges to∫
X
dρX (x0, x)µ(dx) +

∫
Y
dρX (y0, y)ν(dy) =

∫
X×Y

(dρX (x0, x) + dρX (y0, y))π(dx, dy)

as k → ∞, the sequence (πnk)k∈N converges to π in Pρ(X ×Y). Using Proposition 2.6 for
the second inequality, we deduce that

VC(µ, ν) ≤
∫
X
C(x, πx)µ(dx) ≤ lim

k→∞

∫
X
C(x, πnkx )µnk(dx) = lim inf

n→∞
VC(µn, νn).

Hence VC is lower semi-continuous on Pρ(X )× Pρ(Y).
Let finally µ ∈ Pρ(X ), ν, ν̃ ∈ Pρ(Y), π ∈ Π(µ, ν), π̃ ∈ Π(µ, ν̃) be optimal for VC(µ, ν) and
VC(µ, ν̃) respectively, and α ∈ [0, 1]. Using the convexity of C in the measure argument
for the first inequality and απ+(1−α)π̃ ∈ Π(µ, αν +(1−α)ν̃) for the second, we obtain

αVC(µ, ν) + (1− α)VC(µ, ν̃) =

∫
X
(αC(x, πx) + (1− α)C(x, π̃x))µ(dx)

≥
∫
X
C(x, απx + (1− α)π̃x)µ(dx) ≥ VC(µ, αν + (1− α)ν̃).
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Lemma 2.13. Let f ∈ X × Z → R be Lipschitz continuous in its first variable with
constant L and g(x) = infz∈Z f(x, z) for x ∈ X . Then

• either g is R-valued, Lipschitz continuous with the same constant L and for each
ε > 0, there exists a measurable map Sε : X → Z such that

∀x ∈ X , f(x, Sε(x)) ≤ g(x) + ε,

• or g is constantly equal to −∞ and for each ε > 0, there exists a measurable map
Sε : X → Z such that

∀x ∈ X , f(x, Sε(x)) ≤ −1

ε
.

Proof: When g(x0) > −∞ for some x0, we can check that g is R-valued and Lipschitz
continuous with constant L as in the proof of Lemma 1.13. The existence of Sε then follows
from the argument in the proof of Lemma 1.14. We now suppose that g is constantly
equal to −∞ and prove the existence of Sε for ε > 0 in this case. Let (xn)n∈N be dense
in X . For each n ∈ N, there exists yn such that f(xn, yn) ≤ −2

ε
. Since Sε(x) = x0

does the job when L = 0, we now suppose that L > 0. For n ∈ N, we set An =
B(xn,

1
Lε
)∩
{⋃n−1

k=0 B(xk,
1
Lε
)
}c ∈ B(X ). By density of (xn)n∈N in X , this set is the disjoint

union of the (An)n∈N. Let us define Sε(x) =
∑

n∈N 1An(x)yn. For n ∈ N and x ∈ An, we
have, using the Lipschitz continuity of f in its first variable

f(x, Sε(x)) = f(x, yn)− f(xn, yn) + f(xn, yn) ≤ L× 1

Lε
− 2

ε
= −1

ε
.

Proof of Theorem 2.4: Let

ṼC(µ, ν) = inf{P (C) : P ∈ Pρ(X × Pρ(Y)) such that I(P ) ∈ Π(µ, ν)}.

By Lemma 2.12, for P ∈ Pρ(X × Pρ(Y)) such that I(P ) ∈ Π(µ, ν), we have

P (C) ≥
∫
X
C(x, I(P )x)µ(dx) ≥ inf

π∈Π(µ,ν)

∫
X
C(x, πx)µ(dx) = VC(µ, ν).

As a consequence, ṼC(µ, ν) ≥ VC(µ, ν). The converse inequality holds since for π⋆ optimal
for VC(µ, ν) (which exists by Theorem 2.2), J(π⋆)(C) =

∫
X C(x, π

⋆
x)µ(dx) = VC(µ, ν) while

I(J(π⋆)) = π⋆ ∈ Π(µ, ν). Moreover, J(π⋆) is an optimizer of ṼC(µ, ν) and, by Theorem

2.2, ṼC is lower semi-continuous and convex in its measure argument.

Since the case when C is constantly equal to +∞ is obvious, we suppose that C takes
finite values. We apply the Fenchel-Moreau theorem with V equal to the space of bounded
signed measures q on Y such that

∫
Y d

ρ
Y(y0, y)|q|(dy) <∞ where |q| is the total variation

of q. We have V ′ = Cρ(Y) with g(q) = q(g) =
∫
Y g(y)q(dy) for (g, q) ∈ Cρ(Y) × V . We

fix µ ∈ Pρ(X ) and set

F (q) =

{
ṼC(µ, q) if q ∈ Pρ(Y)

+∞ if q ∈ V \ Pρ(Y)
.
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Since Pρ(Y) is a closed convex subset of V and Pρ(Y) ∋ ν 7→ Ṽc(µ, ν) is lower semi-
continuous and convex, F is lower semi-continuous and convex. Hence by the Fenchel-
Moreau theorem (see Theorem 1.10),

∀ν ∈ Pρ(Y), ṼC(µ, ν) = F (ν) = sup
ψ∈Cρ(Y)

{ν(ψ)− F ⋆(ψ)}. (2.4)

Case C Lipschitz. Let ψ ∈ Cρ(Y). By Lemma 2.13, either ψC is constantly equal to
−∞ or it is R-valued and Lipschitz continuous with the same constant as C. Let
us first deal with the second case. For ε > 0, still by Lemma 2.13, there exists a
measurable map

Sε : X → Pρ(Y) such that ∀x ∈ X , C(x, Sε(x))− ψ(Sε(x)) ≤ ψC(x) + ε,

where, by a small abuse of notation, ψ(p) = p(ψ) for p ∈ Pρ(Y). Setting Pε(dx, dp) =
µ(dx)δSε(x)(dp), we have, using the definition of ψC for the first inequality

µ(ψC) = inf
ν∈Pρ(Y)

P∈Pρ(X×Pρ(Y)):I(P )∈Π(µ,ν)

P (ψC ⊕ 0) ≤ inf
ν∈Pρ(Y)

P∈Pρ(X×Pρ(Y)):I(P )∈Π(µ,ν)

P (C − 0⊕ ψ(·))

≤ Pε(C − 0⊕ ψ(·)) ≤ Pε(ψ
C ⊕ 0 + ε) = µ(ψC) + ε.

Letting ε→ 0, we deduce that

inf
ν∈Pρ(Y)

P∈Pρ(X×Pρ(Y)):I(P )∈Π(µ,ν)

P (C − 0⊕ ψ(·)) = µ(ψC).

This equality is preserved when ψC is constantly equal to −∞ by applying the same
reasoning with the measurable map

Sε : X → Pρ(Y) such that ∀x ∈ X , C(x, Sε(x))− ψ(Sε(x)) ≤ −1

ε
,

given by Lemma 2.13. Using the definitions of F and ṼC for the second equality
then that P (0⊕ ψ(·)) = ν(ψ) for P ∈ Pρ(X ×Pρ(Y)) such that I(P ) ∈ Π(µ, ν), we
deduce that

−F ⋆(ψ) = − sup
q∈V

{q(ψ)− F (q)} = − sup
ν∈Pρ(Y)

{
ν(ψ)− inf

P∈Pρ(X×Pρ(Y)):I(P )∈Π(µ,ν)
P (C)

}
= − sup

ν∈Pρ(Y)

P∈Pρ(X×Pρ(Y)):I(P )∈Π(µ,ν)

P (0⊕ ψ(·)− C)

= inf
ν∈Pρ(Y)

P∈Pρ(X×Pρ(Y)):I(P )∈Π(µ,ν)

P (C − 0⊕ ψ(·)) = µ(ψC).

Plugging this equality in (2.4), we conclude that

ṼC(µ, ν) = sup
ψ∈Cρ(Y)

{µ(ψC) + ν(ψ)} ≥ sup
ψ∈C∧

ρ (Y)

{µ(ψC) + ν(ψ)}. (2.5)

Let ψ ∈ Cρ(Y). For k ∈ N, ψ ∧ k ∈ C∧
ρ (Y) and (ψ ∧ k)C(x) decreases with k to

inf
k∈N

inf
p∈Pρ(Y)

{C(x, p)− p(ψ ∧ k)} = inf
p∈Pρ(Y)

inf
k∈N

{C(x, p)− p(ψ ∧ k)}

= inf
p∈Pρ(Y)

{C(x, p)− p(ψ)} = ψC(x).
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We have

(ψ ∧ k)C(x) ≤ C(x, δ0)− ψ(0) ∧ k ≤ C(x, δ0) + (ψ(0))−,

where the right-hand side does not depend on k and is Lipschitz continuous with
respect to x and therefore integrable with respect to the probability measure µ which
belongs to Pρ(X ) ⊂ P1(X ). By monotone convergence, we deduce that

µ
(
(ψ ∧ k)C

)
= µ(C(·, δ0)) + (ψ(0))− − µ

(
C(·, δ0) + (ψ(0))− − (ψ ∧ k)C

)
converges to µ(C(·, δ0))+(ψ(0))−−µ

(
C(·, δ0) + (ψ(0))− − ψC

)
= µ

(
ψC
)
as k → ∞.

On the other hand, since ν ∈ Pρ(Y), by Lebesgue’s theorem, ν(ψ ∧ k) converges to
ν(ψ) as k → ∞. Hence

∀ψ ∈ Cρ(Y), lim
k→∞

{
µ((ψ ∧ k)C) + ν(ψ ∧ k)

}
=
{
µ(ψC) + ν(ψ)

}
.

With (2.5), we deduce that

ṼC(µ, ν) = sup
ψ∈C∧

ρ (Y)

{µ(ψC) + ν(ψ)}.

When ψ ∈ C∧
ρ (Y), then ψC is R valued and Lipschitz continuous and therefore

belongs to C1(Y) and satisfies ψC(x) + p(ψ) ≤ C(x, p) for all (x, p) ∈ X × Pρ(Y).
On the other hand, when ϕ ∈ C1(X ) is such that ϕ(x) + p(ψ) ≤ C(x, p) for all
(x, p) ∈ X × Pρ(Y) (a condition which we abbreviate into ϕ ⊕ ψ(·) ≤ C) , then
ϕ ≤ ψC . Therefore

sup
(ϕ,ψ)∈C1(X )×C∧

ρ (Y)

ϕ⊕ψ(·)≤C

{µ(ϕ) + ν(ψ)} = sup
ψ∈C∧

ρ (Y)

{µ(ψC) + ν(ψ)} = ṼC(µ, ν).

General case. We use the sequence (Cn)n≥1 of n-Lipschitz functions growing to C given
by Lemma 1.13. For P ∈ Pρ(X × Pρ(Y)) such that I(P ) ∈ Π(µ, ν) and (ϕ, ψ) ∈
C1(X ) × C∧

ρ (Y) such that ϕ ⊕ ψ(·) ≤ C, we have ϕ ≤ ψC where, by definition of
ψC , ψC + ψ(·) ≤ C so that

P (C) ≥ P (ψC ⊕ ψ(·)) = µ(ψC) + ν(ψ) ≥ µ(ϕ) + ν(ψ).

Taking the infimum over P and the supremum over (ϕ, ψ) we deduce that

ṼC(µ, ν) ≥ sup
ψ∈C∧

ρ (Y)

{
µ(ψC) + ν(ψ)

}
≥ sup

(ϕ,ψ)∈C1(X )×C∧
ρ (Y)

ϕ⊕ψ(·)≤C

{µ(ϕ) + ν(ψ)}

≥ sup
n∈N

sup
(ϕ,ψ)∈C1(X )×C∧

ρ (Y)

ϕ⊕ψ(·)≤Cn

{µ(ϕ) + ν(ψ)} = sup
n∈N

ṼCn(µ, ν), (2.6)

where we used the case when the cost function is Lipschitz for the last equality. Let
for n ≥ 1, Pn ∈ Pρ(X × Pρ(Y)) such that I(P ) ∈ Π(µ, ν) be optimal for ṼCn(µ, ν)
(the existence of Pn was checked at the beginning of the proof). By Lemma 3.12
below, Π(µ, ν) is compact in Pρ(X ×Y). Hence the sequence (I(Pn))n≥1 is relatively
compact in Pρ(X × Y). By Lemma 2.9, we may extract a sequence (Pnk)k which
converges weakly to P∞ in Pρ(X × Pρ(Y)). Then, by the continuity of I stated in
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Lemma 2.7, I(Pnk) converges in Pρ(X ×Y) to I(P∞) which belongs to Π(µ, ν) since
this set is closed. We have

sup
n∈N

ṼCn(µ, ν) = lim
n→∞

↗ Pn(Cn) = lim
k→∞

Pnk(Cnk).

For fixed m ∈ N∗, when k is large enough, we have nk ≥ m and Cnk ≥ Cm. By the
Portmanteau theorem (see Theorem 5.2), lim infk→∞ Pnk(Cm) ≥ P∞(Cm). By the
monotone convergence theorem, supm≥1 P∞(Cm) = π∞(C). Therefore

sup
n∈N

ṼCn(µ, ν) = lim
k→∞

Pnk(Cnk) ≥ sup
m≥1

lim inf
k→∞

Pnk(Cm) ≥ sup
m≥1

P∞(Cm) = P (C) ≥ ṼC(µ, ν).

With (2.6), we conclude that

ṼC(µ, ν) = sup
ψ∈C∧

ρ (Y)

{
µ(ψC) + ν(ψ)

}
= sup

(ϕ,ψ)∈C1(X )×C∧
ρ (Y)

ϕ⊕ψ(·)≤C

{µ(ϕ) + ν(ψ)}.

2.2 Strassen’s theorem

Let us introduce the convex order on P1(Rd).

Definition 2.14. For µ, ν ∈ P1(Rd), we say that µ is smaller than ν for the convex order
and denote µ ≤cx ν if

∀φ : Rd → R convex, µ(φ) ≤ ν(φ).

Remark 2.15. When φ : Rd → R is convex, then φ is bounded from below by the affine
functions Rd ∋ x 7→ φ(x̃) + y.(x − x̃) where y is any element of the subdifferential of φ
at x̃ ∈ Rd. As a consequence, for each η ∈ P1(Rd), η(φ−) < ∞, i.e. φ is semi-integrable
with respect to η and η(φ) makes sense in R ∪ {+∞}.

Theorem 2.16. Let µ, ν ∈ P1(Rd). Then

ΠM(µ, ν) ̸= ∅ ⇔ µ ≤cx ν.

The necessary condition follows from Jensen’s inequality since for π ∈ ΠM(µ, ν) and
φ : Rd → R convex,

µ(φ) =

∫
Rd
φ(π̄x)µ(dx) ≤

∫
Rd

∫
Rd
φ(y)πx(dy)µ(dx) =

∫
Rd×Rd

φ(y)π(dx, dy) = ν(φ).

The proof of the sufficient condition is more difficult and relies on the next lemma

Lemma 2.17. Let ϕ : Rd → R be bounded from below by an affine function. Then the
largest lower semi-continuous convex function ϕ⋆⋆ smaller than ϕ is given by

∀x ∈ Rd, ϕ⋆⋆(x) = inf
{
p(ϕ) : p ∈ P1(Rd) such that p̄ = x

}
.
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Remark 2.18. The supremum of lower semi-continuous and convex functions is lower
semi-continuous and convex, which, together with the convexity and lower semi-continuity
of the affine lower bound, explains why ϕ⋆⋆ exists.

Proof: Let

ψ(x) = inf
{
p(ϕ) : p ∈ P1(Rd) such that p̄ = x

}
, x ∈ Rd.

For p ∈ P1(Rd) such that p̄ = x, we have by Jensen’s inequality and ϕ⋆⋆ ≤ ϕ,

ϕ⋆⋆(x) = ϕ⋆⋆(p̄) ≤ p(ϕ⋆⋆) ≤ p(ϕ).

We deduce that ϕ⋆⋆ ≤ ψ and ψ is real valued. We have ψ(x) ≤ ϕ(x) for the choice p = δx.
On the other hand, for x, y ∈ Rd and ε > 0, choosing px and py ε-optimal for ψ(x) and
ψ(y) respectively, we get for α ∈ [0, 1],

ψ(αx+ (1− α)y) ≤ (αpx + (1− α)py)(ϕ) ≤ αψ(x) + (1− α)ψ(y) + ε.

Letting ε→ 0, we deduce that ψ is convex. It is therefore enough to check that ψ is lower
semi-continuous to conclude that ψ = ϕ⋆⋆. For this purpose, we let x ∈ Rd, y1, · · · , yd+1 ∈
Rd such that x is in the interior of the convex hull of y1, · · · , yd+1. Let (xn)n∈N ⊂ Rd

converge to x as n→ ∞ and pn be ε-optimal for ψ(xn). Up to removing the first terms of
the sequence, we may suppose that for each n ∈ N, xn + x−xn

ε
belongs to the convex hull

of y1, · · · , yd+1 so that there exists a probability measure qn supported in {y1, · · · , yd+1}
such that q̄n = xn +

x−xn
ε

. Then (1− ε)pn + εqn = (1− ε)xn + εxn + x− xn = x so that

ψ(x) ≤ (1− ε)pn(−ϕ) + εqn(ϕ) ≤ (1− ε)(ψ(xn) + ε) + ε max
1≤i≤d+1

ϕ(yi).

We deduce that ψ(x) ≤ (1− ε) lim infn→∞ ψ(xn)+ ε(1− εmax1≤i≤d+1 ϕ(yi)) and conclude
that ψ is lower semi-continuous by letting ε→ 0.

Proof: The obvious necessary condition was proved using Jensen’s inequality just after
the statement. To check the sufficient condition, we define

C : Rd × P1(Rd) ∋ (x, p) 7→ |x− p̄| ∈ R.

The function C is continuous and convex in the measure argument as the composition of
a convex function with the linear function P1(Rd) ∋ p 7→ p̄ ∈ Rd. By Theorem 2.2, there
exists π⋆ ∈ Π(µ, ν) such that VC(µ, ν) =

∫
Rd |x− π̄

⋆
x|µ(dx). Since, when VC(µ, ν) = 0, then

π̄⋆x = x, µ(dx) a.e., i.e. π⋆ ∈ ΠM(µ, ν), it is enough to check that µ ≤cx ν ⇒ VC(µ, ν) = 0,
which we now do.
Let us check that when ψ ∈ C1(Rd) (continuous with affine growth), then ψ ≤ −ψC and
ψC is 1-Lipschitz convex. By Definition 2.3 and Lemma 2.17, we have

ψC(x) = inf
p∈P1(Rd)

{|x− p̄| − p(ψ)} = inf
z∈Rd

inf
p∈P1(Rd):p̄=z

{|x− p̄|+ p(−ψ)}

= inf
z∈Rd

{|x− z|+ (−ψ)⋆⋆(z)}. (2.7)
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For the choice z = x, we deduce also using the definition of (−ψ)⋆⋆ that ψC ≤ (−ψ)⋆⋆ ≤
−ψ so that ψ ≤ −ψC .

If ψC(x) ≤ ψC(x̃), then choosing zn such that ψC(x) ≥ |x− zn|+ (−ψ)⋆⋆(zn)− 1
n
and

z̃n such that ψC(x̃) ≥ |x− z̃n|+ (−ψ)⋆⋆(z̃n)− 1
n
for n ∈ N∗, we get

ψC(x̃)− ψC(x) ≤ |x̃− zn|+ (−ψ)⋆⋆(zn)−
(
|x− zn|+ (−ψ)⋆⋆(zn)−

1

n

)
≤ |x̃− x|+ 1

n
.

Moreover, for α ∈ [0, 1], by convexity of (−ψ)⋆⋆,

ψC(αx+ (1− α)x̃) ≤ |αzn + (1− α)z̃n − (αx+ (1− α)x̃)|+ (−ψ)⋆⋆(αzn + (1− α)z̃n)

≤ α (|x− z̃n|+ (−ψ)⋆⋆(z̃n)) + (1− α) (|x− z̃n|+ (−ψ)⋆⋆(z̃n))

≤ αψC(x) + (1− α)ψC(x̃) +
1

n

By taking the limit n→ ∞, we deduce that ψC is 1-Lipschitz convex.

If ψ is 1-Lipschitz concave, then −ψ is 1-Lipschitz convex so that (−ψ)⋆⋆ = −ψ. With
(2.7), we deduce that

ψC(x) = inf
z∈Rd

{|x− z| − ψ(z)} ≥ inf
z∈Rd

{|x− z| − ψ(x)− |x− z|} = −ψ(x)

and ψC(x) ≤ −ψ(x) by the choice z = x in the first equality so that ψC = −ψ.
When ψ ∈ C1(Rd), then the inequality ψC ≤ −ψ ensures that µ is semi-integrable with

respect to µ which belongs to P1(Rd). Therefore µ(ψC) makes sense in {−∞}∪R and so
does µ(ψC) + ν(ψ). With Theorem 2.4, we deduce that

VC(µ, ν) = sup
ψ∈C∧

1 (Rd)

{
µ(ψC) + ν(ψ)

}
≤ sup

ψ∈C1(Rd)

{
µ(ψC) + ν(ψ)

}
.

Since the definition of ψC (see Definition 2.3) ensures that ∀(x, ρ) ∈ X ×Pρ(Y), C(x, p) ≥
ψC(x) + p(ψ), we have for ψ ∈ C1(Rd) and π ∈ Π(µ, ν),∫

Rd
C(x, πx)µ(dx) ≥

∫
Rd
{ψC(x) + πx(ψ)}µ(dx) = µ(ψC) + ν(ψ).

Taking the infimum over π ∈ Π(µ, ν) and the supremum over ψ ∈ C1(Rd), we conclude
that

VC(µ, ν) ≥ sup
ψ∈C1(Rd)

{
µ(ψC) + ν(ψ)

}
≥ VC(µ, ν).

Using the inequality ψ ≤ −ψC for the first inequality, the fact that ψC is 1-Lipschitz
convex for the second inequality, the fact that −ψ = ψC when ψ is 1-Lipschitz concave
for the third equality, we deduce that

VC(µ, ν) = sup
ψ∈C1(Rd)

{
µ(ψC) + ν(ψ)

}
≤ sup

ψ∈C1(Rd)

{
µ(ψC) + ν(−ψC)

}
≤ sup

ϕ 1−Lipschitz convex
{µ(ϕ)− ν(ϕ)} = sup

ψ 1−Lipschitz concave
{µ(−ψ) + ν(ψ)}

= sup
ψ 1−Lipschitz concave

{µ(ψC) + ν(ψ)} ≤ sup
ψ∈C1(Rd)

{
µ(ψC) + ν(ψ)

}
= VC(µ, ν).
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Hence VC(µ, ν) = sup
ϕ 1−Lipschitz convex{µ(ϕ)− ν(ϕ)} and

µ ≤cx ν ⇒ ∀ϕ 1− Lipschitz convex, µ(ϕ)− ν(ϕ) ≤ 0 ⇒ VC(µ, ν) = 0.

Remark 2.19. For the cost function C(x, p̄) = |x− p̄|,

VC(µ, ν) = sup
ϕ 1−Lipschitz convex

{µ(ϕ)− ν(ϕ)}

permits to measure in general the possible lack of convex order between µ and ν. Note
that

∀ϕ 1− Lipschitz convex, µ(ϕ) ≤ ν(ϕ) ⇒ VC(µ, ν) = 0 ⇒ ΠM(µ, ν) ̸= ∅ ⇒ µ ≤cx ν.

Since the converse implication µ ≤cx ν ⇒ ∀ϕ 1−Lipschitz convex, µ(ϕ) ≤ ν(ϕ) is obvious,
we conclude that

µ ≤cx ν ⇔ ∀ϕ 1− Lipschitz convex, µ(ϕ) ≤ ν(ϕ),

i.e. Lipschitz convex functions are enough to characterize the convex order.



Chapter 3

Martingale Optimal Transport

3.1 From Finance to Robust Finance

We consider the evolution in discrete time t ∈ {0, 1, 2, · · · , T} of a market with 2 assets :

• one riskless asset with constant value 1 i.e. we assume zero interest rates, a simpli-
fying assumption which could be relaxed,

• one risky asset with successive values S0, S1, · · · , ST .

In a portfolio strategy, the amount Ht of risky asset held on [t, t+1] is decided at time t in
view of the information available on the market up to this time. Starting from the initial
wealth 0 and choosing a self-financing strategy, we get that the value of the portfolio at

time t is (H.S)t =

{
0 if t = 0∑t−1

s=0Hs(Ss+1 − Ss) otherwise
. Let us introduce a probabilistic

setup (Ω, (Ft)
T
t=0,P) where the historical probability measure P is a probability measure

on (Ω,FT ) and ((St, Ht))
T
t=0 is adapted to the filtration (Ft)

T
t=0. The mathematical formu-

lation of the Absence of Arbitrage Opportunities, which is a natural modeling assumption
saying that there is no possibility to earn money without taking risk is

(AAO) P((H.S)T ≥ 0) = 1 ⇒ P((H.S)T = 0) = 1.

The first fundamental theorem of asset pricing [8] is that (AAO) is equivalent to the
existence of a probability measure Q equivalent to P under which, (St)

T
t=0 is a martingale.

Such a probability measure Q is called an Equivalent Martingale Measure. When one
considers an option with payoff F FT -measurable then

sup
Q EMM

Q(F ) = inf{a ∈ R : ∃(Ht)
T
t=0 adapted self-financing s.t. P(a+ (H.S)T ≥ F ) = 1}

inf
Q EMM

Q(F ) = sup{a ∈ R : ∃(Ht)
T
t=0 adapted self-financing s.t. P(a+ (H.S)T ≤ F ) = 1}.

In the robust finance approach, rather than starting with the sensitive choice of the
historical probability P, one only takes into account informations given by the market.
Let for K ≥ 0, C(t,K) be the initial market price of the Call option with payoff (St−K)+

at time t. The following are consequences of the Absence of Arbitrage Opportunities :

45
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1) ∀K ≥ 0, C(t,K) ≥ 0,

2) by convexity of K 7→ (St −K)+, R+ ∋ K 7→ C(t,K) is convex,

3) C(t, 0) = S0 since (St − 0)+ = St,

4) limK→∞C(t,K) = 0 since limK→∞(St −K)+ = 0,

5) for 0 ≤ K ≤ K̃, C(t,K)− C(t, K̃) ≤ K̃ −K since (St −K)+ − (St − K̃)+ ≤ K̃ −K.

The following result is due to Breeden and Lizenberger [6].

Lemma 3.1. Assume that R+ ∋ K 7→ C(t,K) satisfies 1)−5). Then there exists a unique
probability measure µt ∈ P1(R+) such that

∫
R+
xµt(dx) = S0 and ∀K ∈ R+, C(t,K) =∫

R+
(x−K)+µ(dx).

Proof: Let ∂K+C(t,K) denote the right-hand derivative of the convex function K 7→
C(t,K). Then K 7→ −∂K+C(t,K) is right-continuous and non-increasing, such that
−∂K+C(t, 0) ≤ 1 by 5) and that limK→+∞ −∂K+C(t,K) = 0 by 4). We set

µt({0}) = 1 + ∂K+C(t, 0) and µt((K,+∞)) = −∂K+C(t,K) for K ≥ 0.

By 4) then Fubini’s theorem,

∀K ≥ 0, C(t,K) = −
∫
(K,+∞)

∂K+C(t, ℓ)dℓ =

∫
(K,+∞)

∫
(ℓ,+∞)

µt(dx)dℓ

=

∫
[0,+∞)

∫
1{K<ℓ<x}dℓµ(dx) =

∫
R+

(x−K)+µt(dx).

For K = 0, we deduce with 3) that
∫
R+
xµt(dx) = C(t, 0) = S0.

For t ≤ u, since (Su −K) = (Su −K)+ − (K − Su)
+, the market price (St −K) at time

t of the wealth (Su −K) at time u is equal to the market price Ct(u,K) at time t of the
Call option with strike K and maturity u minus the market price at time t of the Put
option with strike K and maturity u. Hence Ct(u,K) ≥ (St −K)+ and, still by Absence
of Arbitrage Opportunities, C(u,K) ≥ C(t,K). With Remark 3.7 below, we deduce that
for t ≤ u, µt ≤cx µu.

The extreme pricing values of an option with payoff f(S1, · · · , ST ) are

inf / sup
{
Q(f) : Q martingale measure on RT

+ with marginals Qt = µt for t ∈ {1, · · · , T}
}
.

We will concentrate on the T = 2 case, denote µ = µ1, ν = µ2 and c(x, y) = f(x, y) even
if the results that we state have higher dimensional versions (sometimes more technical).
We set

V M
c (µ, ν) = inf

π∈ΠM (µ,ν)
π(c) (under the convention inf ∅ = +∞).

The results that we derive for the infimum hold true for the supremum, up to replacing
the assumption c lower semi-continuous bounded from below by c upper semi-continuous
bounded from above. We even consider µ, ν ∈ P1(Rd), which correspond to d risky assets,
even if the joint distributions of these asset prices at times t ∈ {1, 2} cannot be fully
derived from the market prices of traded options.
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3.2 Existence of optimizers and duality

Remark 3.2. • Monge type couplings (iRd , T )#µ are martingale couplings iff T (x) =
x, µ(dx) a.e.. Therefore, when µ ̸= ν, πM(µ, ν) contains no Monge type coupling.

• For µ ∈ P1(Rd), ΠM(µ, µ) = {(iRd , iRd)#µ}. Indeed, clearly, (iRd , iRd)#µ ∈
ΠM(µ, µ). On the other hand, the function φ(x) =

√
1 + |x|2 with gradient ∇φ(x) =

x√
1+|x|2

and Heassian matrix ∇2φ(x) = 1
(1+|x|2)3/2

(
(1 + |x|2)Id − xxT

)
≥ Id

(1+|x|2)3/2

is strictly convex and belongs to C1(Rd). As a consequence, for π ∈ ΠM(µ, µ), by
Jensen’s inequality,

µ(φ) =

∫
Rd
φ(x)µ(dx) =

∫
Rd
φ(π̄x)µ(dx) ≤

∫
Rd

∫
Rd
φ(y)πx(dy)µ(dx) =

∫
Rd
φ(y)µ(dy),

so that µ(dx) a.e., φ(π̄x) =
∫
Rd φ(y)πx(dy) and, by strict convexity of φ, πx = δπ̄x =

δx.

• The equivalent for MOT of Proposition 1.4 is the result of the next exercise.

Exercise 3.3. Check that if any optimal coupling for V M
c (µ, ν) writes

µ(dx)
(
p(x)δS(x) + (1− p(x))δT (x)

)
(dy) for some measurable functions p : Rd → [0, 1] and

S, T : Rd → Rd such that p(x)S(x)+(1−p(x))T (x) = x, µ(dx) a.e., then there is at most
one optimal coupling. You may first remark that for given s, t ∈ Rd, there is at most one
probability measure with expectation x which writes qδs + (1− q)δt for some q ∈ [0, 1].

According to Strassen’s theorem (see Theorem 2.16),

∀µ, ν ∈ P1(Rd), πM(µ, ν) ̸= ∅ ⇔ µ ≤cx ν.

Example 3.4. Let d = 1, µ = 1
2
(δ−1 + δ1), ν = 1

3
(δ−4 + δ0 + δ4). There are uncountably

many martingale couplings with marginals µ and ν since for each α ∈ [− 5
24
, 5
24
], the

coupling πα(dx, dy) = 1
2

(
δ−1(dx)π

α
−1(dy) + δ1(dx)π

α
1 (dy)

)
with

πα−1 =

(
11

24
− α

)
δ−4 +

(
1

3
+ 2α

)
δ0 +

(
5

24
− α

)
δ4 and

πα1 =

(
5

24
+ α

)
δ−4 +

(
1

3
− 2α

)
δ0 +

(
11

24
+ α

)
δ4,

belongs to ΠM(µ, ν). Indeed,

1

2

((
11

24
∓ α

)
+

(
5

24
± α

))
=

16

48
=

1

3
=

1

2

((
1

3
+ 2α

)
+

(
1

3
− 2α

))
and

(
11
24

∓ α
)
× (∓4) +

(
1
3
± 2α

)
× 0 +

(
5
24

∓ α
)
× (±4) = ∓1.

It is not so easy to check whether µ ≤ X ν when µ, ν ∈ P1(Rd). Of course, a necessary
condition is the equality of the expectations µ̄ = ν̄ (take φ(x) = ±x in Definition 2.14 or
use that the marginals of a martingale coupling share the same expectation). Nevertheless,
in dimension d = 1, the convex order can be characterized through the potential functions.

Proposition 3.5. Let µ, ν ∈ P1(R). Then µ ≤cx ν ⇔ ∀x ∈ R, uµ(x) ≤ uν(x) where for
η ∈ P1(R), uη(x) =

∫
R |x− y|η(dy).
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Remark 3.6. By convexity of R ∋ x 7→ |x − y|, the potential function uη of η ∈ P1(R)
is convex. Its right-hand derivative is equal to

∫
R

(
1{x≥y} − 1{x<y}

)
η(dy) = 2Fη(x)− 1 so

that it characterizes the probability measure η. Moreover, for x, x̃ ∈ R,

|uη(x)− uη(x̃)| ≤
∫
R
||x− y| − |x̃− y|| η(dy) ≤ |x− x̃|,

and uη is 1-Lipschitz. Last, according to the proof of Proposition 3.5, limx→+∞ |uη(x) −
x+ η̄| = limx→−∞ |uη(x) + x− η̄| = 0.

Proof: The necessary condition follows from the convexity of R ∋ y 7→ |x − y| for fixed
x ∈ R. Let us prove the sufficient condition. Since |x − y| = 2(y − x)+ + x − y =
2(x− y)+ + y − x, we have for η ∈ P1(R)

∀x ∈ R, uη(x) = 2

∫
R
(y − x)+η(dy) + x− η̄ = 2

∫
R
(x− y)+η(dy) + η̄ − x (3.1)

where
∫
R(y−x)+η(dy) goes to 0 as x→ ∞ and

∫
R(x− y)+η(dy) goes to 0 as x→ −∞ by

Lebesgue’s theorem. Therefore the inequality uµ(x) ≤ uν(x) yields −µ̄ ≤ −ν̄ in the limit
x→ +∞ and µ̄ ≤ ν̄ in the limit x→ −∞, so that µ̄ = ν̄. Therefore uµ ≤ uν also implies

∀x ∈ R,
∫
R
(y − x)+µ(dy) ≤

∫
R
(y − x)+ν(dy) and

∫
R
(x− y)+µ(dy) ≤

∫
R
(x− y)+ν(dy).

(3.2)
For φ : R → R convex, the second order distribution derivative φ′′ is a non-negative
measure and

∀y ∈ R, φ(y) = φ(0) + φ′
+(0)y +

∫
(0,+∞)

(y − x)+φ′′(dx) +

∫
(−∞,0]

(x− y)+φ′′(dx), (3.3)

where φ′
+ denotes the right-hand derivative of φ. With µ̄ = ν̄ and (3.2), we conclude that

µ(φ) ≤ ν(φ). Let us finally check (3.3) for y ≥ 0, the proof being analogous for y < 0.
The second integral in the right-hand side vanishes and we have, using Fubini’s theorem,∫

(0,+∞)

(y − x)+φ′′(dx) =

∫
x∈(0,+∞)

∫
z∈R

1{x≤z<y}dzφ
′′(dx) =

∫ y

z=0

∫
x∈(0,z]

φ′′(dx)dz

=

∫ y

z=0

φ′′((0, z])dz =

∫ y

z=0

(φ′
+(z)− φ′

+(0))dz = φ(y)− φ(0)− φ′
+(0)y.

Remark 3.7. In view of Proposition 3.5 and (3.1), for µ, ν ∈ P1(R),

µ ≤cx ν ⇔ µ̄ = ν̄ and ∀x ∈ R,
∫
R
(y − x)+µ(dy) ≤

∫
R
(y − x)+ν(dy)

⇔ µ̄ = ν̄ and ∀x ∈ R,
∫
R
(x− y)+µ(dy) ≤

∫
R
(x− y)+ν(dy).

Proposition 3.8. Let µ, ν ∈ P1(R) be such that µ ≤cx ν. The open set {uν(x) > uµ(x)}
is the at most countable union of disjoint open intervals (In)n∈N (with N ⊂ N). Moreover
any π ∈ ΠM(µ, ν) writes

π(dx, dy) = µ(dx)πx(dy) =
∑
n∈N

µ|In(dx)1{Īn}(y)πx(dy) + 1{uµ(x)=uν(x)}µ(dx)δx(dy),

where Īn denotes the closed interval equal to the closure of In.
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Remark 3.9. This means that for each n ∈ N, 1In(x)µ(dx) a.e., πx(Īn) = 1 and
1{uµ(x)=uν(x)}µ(dx) a.e., πx = δx. In particular, we recover that the only element of
ΠM(µ, µ) is µ(dx)δx(dy).

The proof of Proposition 3.8 relies on the next lemmas.

Lemma 3.10. Let η ∈ P1(R) and x ∈ R be such that uη(x) = |x − η̄|. Then
η((−∞, x))η((x,+∞)) = 0.

Proof of Lemma 3.10: Let η ∈ P1(R) be such that η((−∞, x))η((x,+∞)) > 0. Then

η<x(dy) =
1(−∞,x)(y)η(dy)

η((−∞,x))
and η>x(dy) =

1(x,+∞)(y)η(dy)

η((x,+∞))
belong to P1(R) and satisfy η<x < x

and η>x > x. We then have η̄ = η((−∞, x))η<x + η({x})x+ η((x,+∞))η>x so that

|x− η̄| = |η((−∞, x))(x− η<x) + η((x,+∞))(x− η>x)|.

Since the first term in the absolute value in the right-hand side is positive and the second
is negative,

|x− η̄| < η((−∞, x))(x− η<x) + η((x,+∞))(η>x − x) =

∫
R
|x− y|η(dy) = uη(x).

By contraposition, we conclude that uη(x) = |x− η̄| ⇒ η((−∞, x))η((x,+∞)) = 0.

Lemma 3.11. Let µ, ν ∈ P1(R) be such that µ ≤cx ν. Then

uµ(z) = uν(z) ⇒ ∀π ∈ ΠM(µ, ν), π ((−∞, z)× (z +∞)) = π ((z +∞)× (−∞, z)) = 0,

i.e. z is a barrier for the martingale couplings between µ and ν.

Proof of Lemma 3.11: Let us suppose that uµ(z) = uν(z) and choose some π ∈
ΠM(µ, ν). We then have, using the consequence

∫
R |z − y|πx(dy) ≥ |z − π̄x| of Jensen’s

inequality then the martingale property of π that

uν(z) =

∫
R×R

|z − y|π(dx, dy) =
∫
R

(∫
R
|z − y|πx(dy)

)
µ(dx) ≥

∫
R
|z − π̄x|µ(dx)

=

∫
R
|z − x|µ(dx) = uµ(z) = uν(z).

Therefore µ(dx) a.e.
∫
R |z − y|πx(dy) = |z − π̄x| and, by Lemma 3.10,

πx((−∞, z))πx((z,+∞)) = 0. Since µ(dx) a.e. π̄x = x, we conclude that 1{x<z}µ(dx) a.e.
πx((z,+∞)) = 0 so that π((−∞, z)× (z,+∞)) = 0 and 1{x>z}µ(dx) a.e. πx((−∞, z)) = 0
so that π((z,+∞)× (−∞, z)) = 0. We conclude that

π ((−∞, z)× (z,+∞)) =

∫
R
πx((z,+∞))1{x<z}µ(dx) = 0 =

∫
R
πx((−∞, z))1{x>z}µ(dx)

= π ((z,+∞)× (−∞, z)) .
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Proof of Proposition 3.8: Any open subset of the real line writes as an at most
countable union of disjoint open intervals. Moreover, when finite, the boundaries of these
intervals belong to the complementary of the open set. In particular, the boundaries
ℓn < rn of the intervals In are such that ℓn > −∞ ⇒ uµ(ℓn) = uν(ℓn) and rn < +∞ ⇒
uµ(rn) = uν(rn). With Lemma 3.11, this implies that for π ∈ ΠM(µ, ν), 1In(x)µ(dx) a.e.,
πx(Īn) = 1. For z ∈ R such that z ≤ ℓn and π ∈ ΠM(µ, ν), we deduce that∫

R
|z − x|1In(x)µ(dx) =

∫
R
(x− z)1In(x)µ(dx) =

∫
R
(π̄x − z)1In(x)µ(dx)

=

∫
R2

(y − z)πx(dy)1In(x)µ(dx) =

∫
R2

|z − y|πx(dy)1In(x)µ(dx)

and, by symmetry, the equality between the extreme sides is preserved when z ∈ R is
such that z ≥ rn. We deduce that when z ∈ R is such that uµ(z) = uν(z) i.e. such that
z ∈

{⋃
n∈N In

}c
, then∫

R
|z − x|1{uν(x)>uµ(x)}µ(dx) =

∑
n∈N

∫
R
|z − x|1In(x)µ(dx)

=
∑
n∈N

∫
R2

|z − y|πx(dy)1In(x)µ(dx) =
∫
R2

|z − y|πx(dy)1{uν(x)>uµ(x)}µ(dx)

so that∫
R
|z − x|1{uν(x)=uµ(x)}µ(dx) = uν(z)−

∫
R
|z − x|1{uν(x)>uµ(x)}µ(dx)

=

∫
R2

|z − y|πx(dy)µ(dx)−
∫
R2

|z − y|πx(dy)1{uν(x)>uµ(x)}µ(dx)

=

∫
R2

|z − y|πx(dy)1{uν(x)=uµ(x)}µ(dx).

Therefore, when µ ({uµ = uν}) > 0,
1{uν (x)=uµ(x)}
µ({uµ=uν}) µ(dx)πx(dy) is a martingale coupling

between two probability measures sharing the same potential functions and therefore equal
by Remark 3.6. By the second point in Remark 3.2, we conclude that 1{uν(x)=uµ(x)}µ(dx)
a.e., πx = δx.

Lemma 3.12. Let ρ ≥ 1 and µ, ν ∈ Pρ(Rd). Then Π(µ, ν) is convex and compact in
Pρ(Rd × Rd).
When, moreover µ ≤cx ν, then ΠM(µ, ν) is convex and compact in Pρ(Rd × Rd).
Last, if for n ∈ N, πn ∈ ΠM(µn, νn) with µn ≤cx νn and µn (resp. νn) converges to µ
(resp. ν) in Pρ(Rd) as n → ∞, then µ ≤cx ν and we can extract a subsequence (πnk)k∈N
which converges to some π ∈ ΠM(µ, ν) in Pρ(Rd × Rd).

Proof: By the equivalence of norms on Rd × Rd and Proposition 1.41, the definition of
the convergence in Pρ(Rd × Rd) does not depend on the choice of the norm inducing the

distance dRd×Rd . When we choose |(x, y)| =
(∑d

i=1(|xi|ρ + |yi|ρ)
)1/ρ

so that

dρRd×Rd ((x̃, ỹ), (x, y)) =
d∑
i=1

|x̃i − xi|ρ + |ỹi − yi|ρ,
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we see that the convergence in Pρ(Rd × Rd) amounts to the weak convergence and the
respective convergence of the first and second marginals in Pρ(Rd). With Lemma 1.7, we
deduce that when µ, ν ∈ Pρ(Rd), Π(µ, ν) is compact in Pρ(Rd × Rd).

When µ ≤cx ν and π ∈ ΠM(µ, ν), we have for each h : Rd → Rd measurable bounded,∫
Rd×Rd

h(x).(y − x)π(dx, dy) =

∫
Rd
h(x).

∫
Rd
(y − x)πx(dy)µ(dx) =

∫
Rd
h(x).(π̄x − x)µ(dx)

=

∫
Rd
h(x).0µ(dx) = 0.

Let us conversely suppose that this equality holds for each h : Rd → Rd continuous and
bounded. For i ∈ {1, · · · , d}, the function Rd ∋ x 7→ 1{(π̄x)i>xi} − 1{(π̄x)i<xi} belongs to
L1(|x− π̄x|µ(dx)). By density of Cb(Rd) in L1(|x− π̄x|µ(dx)), we deduce that∫

Rd

d∑
i=1

|xi − (π̄x)i|µ(dx) = 0

so that µ(dx) a.e., π̄x = x and π ∈ ΠM(µ, ν). Therefore

π ∈ ΠM(µ, ν) ⇔ ∀h : Rd → Rd continuous and bounded,

∫
Rd×Rd

h(x).(y−x)π(dx, dy) = 0

(3.4)
If PM

ρ (Rd × Rd) =
{
π̃(dx, dy) = µ̃(dx)π̃x(dy) ∈ Pρ(Rd × Rd) : µ̃(dx) a.e., ¯̃πx = x

}
de-

notes the subset of Pρ(Rd × Rd) consisting in martingale couplings, then we have

PM
ρ (Rd × Rd) =

⋂
h∈Cb(Rd,Rd)

{
π ∈ Pρ(Rd × Rd) : π(H) = 0

}
. (3.5)

For h ∈ Cb(Rd,Rd), the function Rd×Rd ∋ (x, y) 7→ h(x).(y−x) is continuous with affine
growth i.e. belongs to C1(Rd ×Rd) ⊂ Cρ(Rd ×Rd). By Proposition 1.41, we deduce that
Pρ(Rd × Rd) ∋ π 7→ π(H) is continuous. Therefore

{
π ∈ Pρ(Rd × Rd) : π(H) = 0

}
is a

closed and convex (the equality constraint involves Pρ(Rd × Rd) ∋ π 7→ π(H) which is
linear) subset of Pρ(Rd × Rd). With (3.5), we deduce that PM

ρ (Rd × Rd) is a convex and
closed subset of Pρ(Rd × Rd). Moreover, ΠM(µ, ν) = Π(µ, ν) ∩ PM

ρ (Rd × Rd), which is
non empty iff µ ≤cx ν according to Strassen’s theorem (see Theorem 2.16) is convex and
compact in Pρ(Rd × Rd).

Let finally for n ∈ N, πn ∈ ΠM(µn, νn) with µn ≤cx νn and µn (resp. νn) converging
to µ (resp. ν) in Pρ(Rd) as n → ∞. For φ : Rd → R Lipschitz continuous and convex,
we have limn→∞ µn(φ) = µ(φ) and limn→∞ νn(φ) = ν(φ). By taking the limit n → ∞
in the inequality µn(φ) ≤ νn(φ) consequence of µn ≤cx νn, we obtain µ(φ) ≤ ν(φ)· With
Remark 2.19, we deduce that µ ≤cx ν. By Lemma 1.7, we can extract a subsequence
(πnk)k∈N converging weakly to some π∞ ∈ Π(µ, ν) as k → ∞. Since the convergence in
Pρ(Rd×Rd) amounts to the weak convergence and the respective convergence of the first
and second marginals in Pρ(Rd), πnk converges to π in Pρ(Rd × Rd). By closedness of
PM
ρ (Rd × Rd) in Pρ(Rd × Rd), π∞ ∈ ΠM(µ, ν).

Corollary 3.13. Let c be lower semi-continuous and bounded from below. Then for
µ, ν ∈ P1(Rd) such that µ ≤cx ν, there exists π⋆ ∈ ΠM(µ, ν) such that V M

c (µ, ν) = π⋆(c).
Moreoever, V M

c is lower semi-continuous on
{
(µ, ν) ∈ P1(Rd)× P1(Rd) : µ ≤cx ν

}
.
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Remark 3.14. According to the proof of Lemma 3.12,{
(µ, ν) ∈ P1(Rd)× P1(Rd) : µ ≤cx ν

}
is a closed subset of P1(Rd) × P1(Rd). Since

V M
c is equal to +∞ on its open complementary, we deduce that V M

c is lower semi-
continuous on P1(Rd)× P1(Rd).

Proof: Let µ, ν ∈ P1(Rd) be such that µ ≤cx ν. Let (πn)n∈N ⊂ ΠM(µ, ν) be a minimizing
sequence for V M

c (µ, ν). By Lemma 3.12, we can extract a subsequence (πnk)k∈N which
converges weakly to some π⋆ ∈ ΠM(µ, ν) as k → ∞. By the Portmanteau theorem (see
Theorem 5.2 7)),

π⋆(c) = lim inf
k→∞

πnk(c) = V M
c (µ, ν),

so that π⋆ is optimal for V M
c (µ, ν).

Let now (µn)n∈N and (νn)n∈N be sequences in P1(Rd) with µn ≤cx νn converging re-
spectively to µ and ν in P1(Rd) as n→ ∞ and such that

lim
n→∞

V M
c (µn, νn) = lim inf

(µ̃,ν̃)
P1(Rd)×P1(Rd)−→ (µ,ν):µ̃≤cxν̃

V M
c (µ̃, ν̃).

By Lemma 3.12, we can extract a subsequence (πnk)k∈N which converges in P1(Rd × Rd)
to π ∈ ΠM(µ, ν). By the Portmanteau theorem (see Theorem 5.2 7)), we conclude that

V M
c (µ, ν) ≤ π(c) = lim

k→∞
πnk(c) = lim inf

(µ̃,ν̃)
P1(Rd)×P1(Rd)−→ (µ,ν):µ̃≤cxν̃

V M
c (µ̃, ν̃).

Remark 3.15. Corollary 3.13 also is a consequence of Theorem 2.2 and the discussion at
the beginning of Chapter 2 explaining the the MOT problem is a special case of the WOT
problem.

Example 3.16. When d ≥ 2, according to [7] V M
c may fail to be continuous on{

(µ, ν) ∈ P1(Rd)× P1(Rd) : µ ≤cx ν
}
even for continuous and bounded cost functions c.

Indeed, let d = 2,

µ =
1

2

(
δ(1,0) + δ(2,0)

)
and,

for θ ∈ [0, π), νθ =
1

4

(
δ(1+cos θ,sin θ) + δ(1−cos θ,− sin θ) + δ(2+cos θ,sin θ) + δ(2−cos θ,− sin θ)

)
.

For θ ∈ (0, π),

1

4

(
δ((1,0),(1+cos θ,sin θ)) + δ((1,0),(1−cos θ,− sin θ)) + δ((2,0),(2+cos θ,sin θ)) + δ((2,0),(2−cos θ,− sin θ))

)
is the only element of ΠM(µ, νθ) so that V M

c (µ, νθ) = 1 when c(x, y) = |x − y| ∧ 1. For
θ = 0, ν0 =

1
4

(
δ(0,0) + δ(1,0) + δ(2,0) + δ(3,0)

)
and

1

4

(
δ((1,0),(1,0)) + δ((2,0),(2,0))

)
+

1

6

(
δ((1,0),(0,0)) + δ((2,0),(3,0))

)
+

1

12

(
δ((1,0),(3,0)) + δ((2,0),(0,0))

)
belongs to ΠM(µ, ν0) so that

Vc(µ, ν0) ≤
1

4
× (0 + 0) +

1

6
× (1 + 1) +

1

12
× (2 + 2) =

2

3
< 1 = lim

θ→0+
V M
c (µ, νθ).
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Remark 3.17. In dimension d = 1, according to [4], it is possible to approximate any
coupling π ∈ ΠM(µ, ν) by a sequence of couplings πn ∈ ΠM(µn, νn) and check the continu-
ity of V M

c on {(µ, ν) ∈ P1(R)× P1(R) : µ ≤cx ν} when the cost function c is continuous
and bounded.

Let us now give a dual formulation of the MOT problem.

Theorem 3.18. Let c : Rd × Rd → R ∪ {+∞} be lower semi-continuous and bounded
from below. Then for all µ, ν ∈ P1(Rd),

V M
c (µ, ν) = sup{µ(ϕ) + ν(ψ) : ϕ, ψ ∈ C1(Rd),

∃h ∈ Cb(Rd,Rd), ϕ(x) + ψ(y) + h(x).(y − x) ≤ c(x, y), ∀(x, y) ∈ Rd × Rd}.

Remark 3.19. • Note that the couples (ϕ, ψ) ∈ Cb(Rd)×Cb(Rd) such that ϕ⊕ψ ≤ c
appearing in the dual formulation of the OT problem Vc(µ, ν) given in Theorem 1.8
are admissible in the dual formulation of V M

c (µ, ν) so that V M
c (µ, ν) ≥ Vc(µ, ν), an

equality obvious from the primal formulations and the inclusion ΠM(µ, ν) ⊂ Π(µ, ν).

• Returning to the original financial motivation, we see that the triplets (ϕ, ψ, h) which
appear in the dual formulation provide the following model-free sub-hedging strategy
for the option with exotic payoff c(S1, S2) and maturity 2 :

– with the initial wealth µ(ϕ) + ν(ψ) buy at time 0 an option with payoff ϕ(S1)
and maturity 1 and an option with payoff ψ(S2) and maturity 2,

– buy at time 1, h(S1) units of the risky assets and invest −h(S1).S1 + ϕ(S1) in
the risk-free asset,

– sell at time 2, the h(S1) units of the risky assets.

Indeed, the terminal wealth is −h(S1).S1 + ϕ(S1) + ψ(S2) + h(S1).S2 ≤ c(S1, S2).

The proof relies on the following minimax result (see Theorem 2.4.1 [2]).

Theorem 3.20. Let K be a compact convex subset of a Hausdorff topological vector space,
Y be a convex subset of an arbitrary vector space and K × Y ∋ (x, y) 7→ h(x, y) ∈ R be
convex lower semi-continuous in x on K for each fixed y ∈ Y and concave in y on Y for
each fixed x ∈ K. Then

min
x∈K

sup
y∈Y

h(x, y) = sup
y∈Y

min
x∈K

h(x, y).

Remark 3.21. For fixed y ∈ Y , the infimum on the compact set K of the lower semi-
continuous function x 7→ h(x, y) is attained. Since x 7→ supy∈Y h(x, y) also is lower semi-
continuous as the supremum of lower semi-continuous functions, its infimum over K also
is attained. Note that the inequality minx∈K supy∈Y h(x, y) ≥ supy∈Y minx∈K h(x, y) is
obvious.

Proof: Let µ, ν ∈ P1(Rd) and π ∈ Π(µ, ν) \ ΠM(µ, ν). For α ∈ R+ and i ∈ {1, · · · , d},
approximating in L1(|x− π̄x|µ(dx)) the function Rd ∋ x 7→ α

(
1{xi>(π̄x)i} − 1{xi<(π̄x)i}

)
by

functions in Cb(Rd) we check that

sup
h∈Cb(Rd,Rd)

∫
Rd×Rd

h(x).(x− y)π(dx, dy) ≥ α

∫
Rd

d∑
i=1

|xi − (π̄x)i|µ(dx).
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Letting α → ∞, we conclude that suph∈Cb(Rd,Rd)
∫
Rd×Rd h(x).(x − y)π(dx, dy) = +∞.

On the other hand, when π ∈ ΠM(µ, ν),
∫
Rd×Rd h(x).(y − x)π(dx, dy) = 0 for each h ∈

Cb(Rd,Rd). Therefore, setting H(x, y) = h(x).(y − x), we have

V M
c (µ, ν) = inf

π∈Π(µ,ν)
sup

h∈Cb(Rd,Rd)
π(c−H).

Note that for π ∈ P1(Rd × Rd) and h ∈ Cb(Rd,Rd) so that H ∈ C1(Rd × Rd), we
have H ∈ L1(π). The cost function c being bounded from below, it is semi-integrable
with respect to π and π(c − H) = π(c) − π(H). For fixed π ∈ Π(µ, ν), Cb(Rd,Rd) ∋
h 7→ π(c − H) = π(c) − π(H) is affine and therefore concave. On the other hand, by
Lemma 3.12, Π(µ, ν) is a compact subset of P1(Rd × Rd) and, for fixed h ∈ Cb(Rd,Rd),
P1(Rd × Rd) ∋ π 7→ π(c) − π(H) is lower semi-continuous as the sum of the lower semi-
continuous function π(c) (see Theorem 5.2 7)) and the continuous function −π(H) (see
Proposition 1.41). By Theorem 3.20, we deduce that

V M
c (µ, ν) = sup

h∈Cb(Rd,Rd)
inf

π∈Π(µ,ν)
π(c−H).

Let H̃(x, y) = |h|(|x|+ |y|) where |h| = supz∈Rd |h(z)|. We have

V M
c (µ, ν) = sup

h∈Cb(Rd,Rd)

{
inf

π∈Π(µ,ν)
π(c+ H̃ −H)− |h| (µ(| · |) + ν(| · |))

}
.

The cost function c̃ = c + H̃ −H being lower semi-continuous and bounded from below
by the same constant as c, the duality Theorem for OT (see Theorem 1.8) ensures that

Vc̃(µ, ν) = inf
π∈Π(µ,ν)

π(c̃) = sup
(ϕ̃,ψ̃)∈Cb(Rd)×Cb(Rd)

ϕ̃⊕ψ̃≤c̃

{µ(ϕ̃) + ν(ψ̃)}.

Therefore, using that Cb(Rd) ⊂ C1(Rd) for the first inequality then that ϕ = ϕ̃ − |h|| · |
belongs to C1(Rd) when ϕ̃ ∈ C1(Rd), we obtain

V M
c (µ, ν) = sup

h∈Cb(Rd,Rd)
sup

(ϕ̃,ψ̃)∈Cb(Rd)×Cb(Rd)

ϕ̃(x)+ψ̃(y)≤c(x,y)+|h|(|x|+|y|)−H(x,y)

{µ(ϕ̃− |h|| · |) + ν(ψ̃ − |h|| · |)}

≤ sup
h∈Cb(Rd,Rd)

sup
(ϕ̃,ψ̃)∈C1(Rd)×C1(Rd)

ϕ̃(x)−|h||x|+ψ̃(y)−|h||y|≤c(x,y)−H(x,y)

{µ(ϕ̃− |h|| · |) + ν(ψ̃ − |h|| · |)}

≤ sup
h∈Cb(Rd,Rd)

sup
(ϕ,ψ)∈C1(Rd)×C1(Rd)

ϕ⊕ψ≤c−H

{µ(ϕ) + ν(ψ)}.

Of course, these inequalities are equalities when V M
c (µ, ν) = +∞. Otherwise ΠM(µ, ν) ̸=

∅ and for π ∈ ΠM(µ, ν), h ∈ Cb(Rd,Rd) and (ϕ, ψ) ∈ C1(Rd)×C1(Rd) such that ϕ⊕ ψ ≤
c −H, then π(c) = π(c −H) ≥ π(ϕ ⊕ ψ) = µ(ϕ) + ν(ψ). By taking the infimum over π
and the supremum over (ϕ, ψ) in this inequality, we conclude that

V M
c (µ, ν) = sup

h∈Cb(Rd,Rd)
sup

(ϕ,ψ)∈C1(Rd)×C1(Rd)
ϕ⊕ψ≤c−H

{µ(ϕ) + ν(ψ)}.



Chapter 4

Entropic Optimal Transport

The Entropic Optimal Transport problem consists in solving

Vc,ε(µ, ν) = inf
π∈Π(µ,nu)

(π(c) + εH(π|µ⊗ ν)) ,

where c : X × Y → R is a cost function, ε > 0 and

H(π|µ⊗ ν) =

{∫
X×Y ln

(
dπ

dµ⊗ν (x, y)
)
π(dx, dy) if π << µ⊗ ν

+∞ otherwise
,

denotes the relative entropy of the coupling π with respect to µ⊗ν(dx, dy) = µ(dx)ν(dy).
In this chapter, we will see that the Entropic Optimal Transport problem is an approxi-
mation of the classical Optimal Transport problem in the sense that Vc,ε(µ, ν) converges to
Vc,0(µ, ν) as ε → 0 and present the Sinkhorn algorithm which permits to solve efficiently
this approximate problem.

4.1 Relative Entropy, primal and dual formulations

For µ, ν ∈ P(X ), we say that µ is absolutely continuous with respect to ν and denote
µ << ν if ν(A) = 0 ⇒ µ(A) = 0 for each Borel subset A of X . The relative entropy of µ
with respect to ν is defined by

H(µ|ν) =

{
µ
(
ln
(
dµ
dν

))
= ν

(
dµ
dν

ln
(
dµ
dν

))
if µ << ν

+∞ otherwise
.

Note that for f(y) = y ln(y), f ′(y) = ln(y) + 1, f ′′(y) = 1
y
and infy≥0 f(y) = f(1/e) =

−1/e. This ensures that when µ << ν, −1/e ≤ dµ
dν

ln
(
dµ
dν

)
and the integral of the right-

hand side with respect to ν makes sense. Moreover, if H(µ|ν) < ∞, then by strict
convexity of f and Jensen’s inequality,

H(µ|ν) = ν

(
f

(
dµ

dν

))
≥ f

(
ν

(
dµ

dν

))
= f(1) = 0 (4.1)

with equality iff dµ
dν

is ν a.e. constant i.e. µ = ν.
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Proposition 4.1. Let c ∈ Mb(X × Y). Then for each ε > 0, there exists a unique
πε ∈ Π(µ, ν) optimal for Vc,ε(µ, ν).

The proof relies on the next lemma which gives a variational formulation of the relative
entropy.

Lemma 4.2.

∀µ, ν ∈ P(X ), H(µ|ν) = sup
f∈Cb(X )

{
µ(f + 1)− ν(ef )

}
, (4.2)

and P(X )×P(X ) ∋ (µ, ν) 7→ H(µ|ν) is convex and lower semi-continuous for the product
of the weak convergence topology.

Proof of Proposition 4.1: Let Rε ∈ P(X × Y) be defined by dRε
dµ⊗ν = e−

c
ε

µ⊗ν(e−
c
ε )
. The

probability measure Rε is equivalent to µ ⊗ ν and π << µ ⊗ ν ⇔ π << Rε. When this
holds, dπ

dRε
= µ⊗ ν(e−

c
ε )e

c
ε

dπ
dµ⊗ν so that

H(π|Rε) = ln
(
µ⊗ ν(e−

c
ε )
)
+

1

ε
(π(c) + εH(π|µ⊗ ν)) . (4.3)

The first term in the right-hand side is some constant not depending on the cou-
pling π. Hence π ∈ Π(µ, ν) is optimal for Vc,ε(µ, ν) if and only if it is optimal for
infπ∈Π(µ,ν)H(π|Rε). Let us check that there is a unique πε ∈ Π(µ, ν) optimal for the latter
problem. Note that infπ∈Π(µ,ν)H(π|Rε) ≤ H(µ⊗ν|Rε) = ln

(
µ⊗ ν(e−

c
ε )
)
+ 1
ε
µ⊗ν(c) <∞.

Lemma 1.7 ensures that from any minimizing sequence in Π(µ, ν) for infπ∈Π(µ,ν)H(π|Rε),
we may extract a subsequence (πn)n converging weakly to some π∞ ∈ Π(µ, ν). Since,
by Lemma 4.2, π 7→ H(π|Rε) is lower semi-continuous, we deduce that π∞ is optimal
for infπ∈Π(µ,ν)H(π|Rε). For distinct π, π̃ ∈ Π(µ, ν) such that H(π|Rε) + H(π̃|Rε) < ∞,
setting g = dπ

dRε
and g̃ = dπ̃

dRε
, we have, by strict convexity of R+ ∋ y 7→ y ln y,

H

(
π + π̃

2
|Rε

)
= Rε

(
1

2
(g + g̃) ln

(
1

2
(g + g̃)

))
< Rε

(
1

2
(g ln(g) + g̃ ln(g̃))

)
=

1

2
(H(π|Rε) +H(π̃|Rε)).

Since π+π̃
2

∈ Π(µ, ν) by convexity of this set, this ensures uniqueness of optimizers for
infπ∈Π(µ,ν)H(π|Rε).

Proof of Lemma 4.2: Before proving (4.2), let us check that this variational for-
mulation implies the second assertion. For fixed f ∈ Cb(X ), P(X ) × P(X ) ∋ (µ, ν) 7→
µ(f+1)−ν(ef ) is linear and continuous. We deduce that P(X )×P(X ) ∋ (µ, ν) 7→ H(µ|ν)
is convex (resp. lower semi-continuous) as the supremum of convex (resp. lower semi-
continuous) functions. Let us now prove that

sup
f∈Cb(X )

{
µ(f + 1)− ν(ef )

}
= sup

f∈Mb(X )

{
µ(f + 1)− ν(ef )

}
.
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Since Cb(X ) ⊂ Mb(X ), the right-hand side is not smaller than the left-hand side and
it is enough to check that for fixed f ∈ Mb(X ) bounded by Mf , µ(f + 1) − ν(ef ) ≤
supg∈Cb(X ) {µ(g + 1)− ν(eg)}. By density of Cb(X ) in L1(µ+ ν), there exists a sequence
(fn)n∈N in Cb(X ) converging to f in L1(µ + ν). Since ∥f − (−Mf ) ∨ fn ∧Mf∥L1(µ+ν) ≤
∥f − fn∥L1(µ+ν), we may suppose that each function fn is bounded by Mf . We extract a
subsequence (fnk)k∈N such that as k → ∞, fnk → f , µ+ν a.e.. By dominated convergence,
µ(f + 1)− ν(ef ) = limk→∞ µ(fnk + 1)− ν(efnk ) ≤ supg∈Cb(X ) {µ(g + 1)− ν(eg)}.

• When µ is not absolutely continuous with respect to ν, then there exists A ∈ B(X )
such that µ(A) > 0 and ν(A) = 0. Choosing f = c1A, we get µ(f + 1) − ν(ef ) =
cµ(A) + 1− 0 and letting c→ ∞, we deduce that

sup
f∈Mb(X )

{
µ(f + 1)− ν(ef )

}
= +∞ = H(µ|ν).

• When µ << ν, we set g(x) = dµ
dν
(x). For y > 0, fy(x) = yx− ex is strictly concave

and maximal equal to fy(ln(y)) = y ln(y) − y when f ′
y(x) = 0 i.e. y = ex i.e.

x = ln(y). We deduce that for y > 0

y ln(y) = sup
x∈R

{yx− ex}+ y, (4.4)

an equality which remains valid when y = 0. Hence for f ∈ Mb(X ), g ln(g) ≥
g + fg − ef so that

H(µ|ν) = ν(g ln(g)) ≥ ν(g + fg − ef ) = µ(1 + f)− ν(ef ).

We deduce that H(µ|ν) ≥ supf∈Mb(X )

{
µ(f + 1)− ν(ef )

}
.

On the other hand, let for n ∈ N∗, fn = ln
(
1
n
∨ g ∧ n

)
. By monotone con-

vergence, µ
(
1{g>1}fn

)
→ µ

(
1{g>1} ln(g)

)
= ν

(
1{g>1}g ln(g)

)
as n → ∞. Since

−1
e
= infy∈[0,1] y ln(y) ≤ 1{g≤1}gfn ≤ 0, by Lebesgue’s theorem, µ

(
1{g≤1}fn

)
=

ν
(
1{g≤1}gfn

)
→ ν

(
1{g≤1}g ln(g)

)
. We deduce that

µ(fn) = µ
(
1{g>1}fn

)
+ µ

(
1{g≤1}fn

)
→ ν

(
1{g>1}g ln(g)

)
+ ν

(
1{g≤1}g ln(g)

)
= ν(g ln g) = H(µ|ν).

Moreover, by Lebesgue’s theorem ν(efn) = ν( 1
n
∨ g ∧ n) → ν(g) = 1. We deduce

that µ(fn+1)−ν(efn) → H(µ|ν) so that H(µ|ν) = supf∈Mb(X )

{
µ(f + 1)− ν(ef )

}
.

Let us now give the dual formulation of the entropic optimal transport problem.

Proposition 4.3. Let µ ∈ P(X ), ν ∈ P(Y) and R ∈ P(X × Y). Then

inf
π∈Π(µ,ν)

H(π|R) = sup
(ϕ,ψ)∈L1(µ)×L1(ν)

{
µ⊗ ν(ϕ⊕ ψ + 1)−R(eϕ⊕ψ)

}
,

where ϕ⊕ ψ(x, y) = ϕ(x) + ψ(y).
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Proof of Proposition 4.3: By Lemma 4.2,

inf
π∈Π(µ,ν)

H(π|R) = inf
π∈Π(µ,ν)

sup
f∈Cb(X×Y)

{
π(f + 1)−R(ef )

}
.

Since Π(µ, ν) is convex and compact by Lemma 1.7, π 7→ π(f + 1)− R(ef ) is linear and
continuous in π for fixed f ∈ Cb(X × Y) and f 7→ π(f + 1) − R(ef ) is concave in f by
concavity of R ∋ y 7→ −ey, by the above minimax theorem (Theorem 3.20),

inf
π∈Π(µ,ν)

H(π|R) = sup
f∈Cb(X×Y)

inf
π∈Π(µ,ν)

{
π(f + 1)−R(ef )

}
.

For f ∈ Cb(X ×Y), by the duality theorem for the Optimal Transport problem with cost
function f (see Theorem 1.8),

inf
π∈Π(µ,ν)

{
π(f + 1)−R(ef )

}
= sup

(ϕ,ψ)∈Cb(X )×Cb(Y)

ϕ⊕ψ≤f

{
µ(ϕ) + ν(ψ) + 1−R(ef )

}
.

Since ϕ⊕ ψ ≤ f implies eϕ⊕ψ ≤ ef and ϕ⊕ ψ ∈ Cb(X × Y) for (ϕ, ψ) ∈ Cb(X )× Cb(Y),
we deduce that

inf
π∈Π(µ,ν)

H(π|R) ≤ sup
f∈Cb(X×Y)

sup
(ϕ,ψ)∈Df

ϕ∈Cb(X ),ψ∈Cb(Y)

{
µ⊗ ν(ϕ⊕ ψ + 1)−R

(
eϕ⊕ψ

)}
= sup

(ϕ,ψ)∈Cb(X )×Cb(Y)

{
µ⊗ ν(ϕ⊕ ψ + 1)−R

(
eϕ⊕ψ

)}
≤ sup

(ϕ,ψ)∈L1(µ)×L1(ν)

{
µ⊗ ν(ϕ⊕ ψ + 1)−R

(
eϕ⊕ψ

)}
. (4.5)

For π ∈ Π(µ, ν) such that π << R and (ϕ, ψ) ∈ L1(µ)× L1(ν), by the equality y ln(y) =
supx∈R{yx− ex}+ y valid for y ≥ 0, we have

dπ

dR
ln

(
dπ

dR

)
≥ dπ

dR
ϕ⊕ ψ − eϕ⊕ψ +

dπ

dR
.

We deduce that

H(π|R) = R

(
dπ

dR
ln

(
dπ

dR

))
≥ π(ϕ⊕ ψ)−R(eϕ⊕ψ) + π(1) = π(ϕ⊕ ψ + 1)−R(eϕ⊕ψ)

so that

inf
π∈Π(µ,ν)

H(π|R) ≥ sup
(ϕ,ψ)∈L1(µ)×L1(ν)

{
µ⊗ ν(ϕ⊕ ψ + 1)−R

(
eϕ⊕ψ

)}
.

With (4.5), we conclude that both sides are equal.

4.2 Relative entropy and projections

Let us recall that the total variation distance is defined by

dTV(µ, ν) = sup
A∈B(X )

|µ(A)− ν(A)| for µ, ν ∈ P(X ).
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Note that

dTV(µ, ν) = sup
f∈Mb(X ):∥f∥∞≤ 1

2

|µ(f)− ν(f)|, and (4.6)

µ << η and ν << η ⇒ dTV(µ, ν) =
1

2
η

(∣∣∣∣dµdη − dν

dη

∣∣∣∣) . (4.7)

The Pinsker inequality provides an estimation of the total variation distance in terms of
the relative entropy.

Lemma 4.4 (Pinsker’s inequality).

∀µ, ν ∈ P(X ), dTV(µ, ν) ≤
√

1

2
H(µ|ν).

Proof: Since dTV(µ, ν) ≤ 1, the conclusion is obvious when H(µ|ν) = ∞ and we now
suppose that H(µ|ν) < ∞. Let µ0, µ1 ∈ P(X ) be such that H(µ0|ν) + H(µ1|ν) < ∞,
µt = (1−t)µ0+tµ1 for t ∈ [0, 1], ft =

dµt
dν

= (1−t)f0+tf1 and h(t) = H(µt|ν) = ν(ft ln(ft)).
For t ∈ (0, 1), we have

∂t(ft ln ft) = (1 + ln ft)∂tft = (1 + ln ft)(f1 − f0)

and

∂2t (ft ln ft) =
∂tft
ft

(f1 − f0) =
(f1 − f0)

2

ft
≤ f0 + f1

ft
|f1 − f0| ≤

|f1 − f0|
(1− t) ∧ t

.

Using for the third inequality that for y ∈ [0, 1], −1/e ≤ y ln(y) ≤ 0 so that y| ln(y)| ≤
1/e ≤ 2/e + y ln(y) then the convexity of R+ ∋ y 7→ y ln(y) for the fourth, we obtain for
t ∈ (0, 1)

|(f1 − f0) ln ft| ≤ (f0 + f1)| ln(ft)| ≤
ft

(1− t) ∧ t
| ln(ft)| ≤

2/e+ ft ln(ft)

(1− t) ∧ t

≤ 1/e+ (1− t)(1/e+ f0 ln f0) + t(1/e+ f1 ln f1)

(1− t) ∧ t
.

Since ∂t(ft ln ft) = (1 + ln ft)(f1 − f0), we deduce that for ε ∈ (0, 1
2
),

sup
t∈(ε,1−ε)

|∂t(ft ln ft)| ≤ f0 + f1 +
1/e+ (1− ε)(1/e+ f0 ln f0) + (1− ε)(1/e+ f1 ln f1)

ε

where the right-hand side is integrable with respect to ν. By Lebesgue’s theorem, we
deduce that h(t) is differentiable on (ε, 1− ε) and therefore on (0, 1) with derivative

h′(t) = ν ((1 + ln(ft))(f1 − f0)) = (µ1 − µ0)(ln(ft)). (4.8)

Since supt∈(ε,1−ε) |∂2t (ft ln ft)| ≤
f0+f1
ε

, h′ is differentiable on (0, 1) with derivative

h′′(t) = ν

(
(f1 − f0)

2

ft

)
= µt

(
(f1 − f0)

2

f 2
t

)
≥
(
µt

(
|f1 − f0|

ft

))2

= (ν(|f1 − f0|))2 = 4d2TV(µ1, µ0),
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where we used (4.7) for the last equality. Therefore [0, 1] ∋ h(t) + 2t(1− t)d2TV(µ1, µ0) is
convex and

∀t ∈ [0, 1], h(t) + 2t(1− t)d2TV(µ1, µ0) ≤ (1− t)h(0) + th(1)

so that d2TV(µ1, µ0) ≤ h(0)
2t

+ h(1)
2(1−t) for t ∈ (0, 1). Choosing µ0 = µ and µ1 = ν so that

h(0) = H(µ|ν) and h(1) = H(ν|ν) = 0 and letting t→ 1, we conclude that d2TV(µ1, µ0) ≤
1
2
H(µ|ν).

Lemma 4.5. Let µ, ν, η ∈ P(X ) with µ << η. If either H(ν|η) < ∞ or H(ν|µ) < ∞,
then

H(ν|η)−H(ν|µ) = ν

(
ln

(
dµ

dη

))
and ln

(
dµ
dη

)
is semi-integrable with respect to ν (meaning that its positive or its negative

part is integrable).

Proof: When H(ν|η) < ∞ then ν << η and when H(ν|µ) < ∞, ν << µ << η. Let
f = dν

dη
and g = dµ

dη
.

• When ν << µ, then dν
dµ

= f
g
, η a.e. and therefore µ a.e.. Moreover, H(ν|µ) =

ν (ln(f/g)) ≥ 0 while H(ν|η) = ν(ln(f)) ≥ 0. When H(ν|µ) < ∞, then ln(f/g) ∈
L1(ν) and since ν(ln(f)) ≥ 0, (ln(f))− ∈ L1(ν). Moreover,

(ln(g))− = (ln(f)− ln(f/g))− ≤ (ln(f))− + (− ln(f/g))− ≤ (ln(f))− + | ln(f/g)|

implies that (ln(g))− ∈ L1(ν). We deduce that

H(ν|η)−H(ν|µ) = ν(ln f)− ν(ln(f/g)) = ν (ln f − ln(f/g)) = ν(ln g)

= ν

(
ln

(
dµ

dη

))
.

When H(ν|η) < ∞, the equality still holds since ln(f), (ln(f/g))− ∈ L1(ν). More-
over,

(ln(g))+ = (ln(f)− ln(f/g))+ ≤ (ln(f))+ + (− ln(f/g))+ ≤ | ln(f)|+ (ln(f/g))−

implies that (ln(g))+ ∈ L1(ν).

• When ν is not absolutely continuous with respect to µ, then η({f > 0, g = 0}) > 0
so that ν({ln(g) = −∞}) = η(1{g=0}f) > 0. Moreover, H(ν|µ) = +∞ so that
H(ν|η) = η(f ln(f)) < ∞ and f ln(f) ∈ L1(η). Using that ln(y) ≤ y − 1 for y > 0,
we have

0 ≤ f(ln(g))+ =

{
0 if f = 0 or g ≤ 1

f(ln(g/f) + ln(f)) ≤ g − f + f ln(f) otherwise
,

so that f(ln(g))+ ∈ L1(η) and (ln(g))+ ∈ L1(ν). Hence ν(ln(g)) = −∞ = H(ν|η)−
H(ν|µ).
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Proposition 4.6. Let E ⊂ P(X ) be convex and such that µ ∈ E and η ∈ P(X ) be such
that H(µ|η) <∞. Then the following are equivalent

(i) H(µ|η) = infν∈E H(ν|η),

(ii) ∀ν ∈ E with H(ν|η) <∞, ν
(
ln
(
dµ
dη

))
≥ H(µ|η),

(iii) ∀ν ∈ E, H(ν|η) ≥ H(ν|µ) +H(µ|η).
Remark 4.7. Under the equivalent conditions (i)− (ii)− (iii),

• if η ∈ E, then µ = η,

• if ν ∈ E satisfies H(ν|η) <∞, then H(ν|µ) <∞ and ν << µ.

Proof: Since H(ν|µ) ≥ 0, we have (iii) ⇒ (i).

Let us now check that (ii) ⇒ (iii). When H(ν|η) = ∞ then the inequality in (iii)
holds. Otherwise, by Lemma 4.5 then (ii),

H(ν|η)−H(ν|µ) = ν

(
ln

(
dµ

dη

))
≥ H(µ|η).

Let us finally check that (i) ⇒ (ii). Let ν ∈ E be such that H(ν|η) < ∞ and let
νt = (1− t)µ+ tν for t ∈ [0, 1]. Like in the derivation of (4.8) in the proof of Lemma 4.4,
we obtain

∀t ∈ (0, 1),
d

dt
H(νt|η) = (ν − µ)

(
ln

(
(1− t)

dµ

dη
+ t

dν

dη

))
.

For all t ∈ (0, 1), since νt ∈ E by convexity of this set, H(νt|η) ≥ H(µ|η). Hence there
exists a decreasing sequence (tn)n∈N in (0, 1) such that limn→∞ tn = 0 and

∀n ∈ N, 0 ≤(ν − µ)

(
ln

(
(1− tn)

dµ

dη
+ tn

dν

dη

))
≤ν
(
1{ dµ

dη
≥ dν
dη

} ln

(
dµ

dη

))
+ ν

(
1{ dµ

dη
< dν
dη

} ln

(
(1− tn)

dµ

dη
+ tn

dν

dη

))
− µ

(
ln(1− tn) + ln

(
dµ

dη

))
.

Since limn→∞ tn = 0, the third term in the right-hand side converges to µ
(
ln
(
dµ
dη

))
=

H(µ|η) as n→ ∞.

By monotone convergence, ν
(
1{ dµ

dη
< dν
dη

}

(
ln
(
dν
dη

)
− ln

(
(1− tn)

dµ
dη

+ tn
dν
dη

)))
converges to

ν
(
1{ dµ

dη
< dν
dη

}

(
ln
(
dν
dη

)
− ln

(
dµ
dη

)))
. Since H(ν|η) < ∞ implies ν

(∣∣∣ln(dνdη)∣∣∣) < ∞, we

deduce that the second term in the right-hand side converges to ν
(
1{ dµ

dη
< dν
dη

} ln
(
dµ
dη

))
. By

Lemma 4.5, ln
(
dµ
dη

)
is semi-integrable with respect to ν so that ν

(
1{ dµ

dη
≥ dν
dη

} ln
(
dµ
dη

))
+

ν
(
1{ dµ

dη
< dν
dη

} ln
(
dµ
dη

))
= ν

(
ln
(
dµ
dη

))
and we conclude that 0 ≤ ν

(
ln
(
dµ
dη

))
−H(µ|η).
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Corollary 4.8. Let µ ∈ P(X ), ν ∈ P(Y) and R ∈ P(X × Y). If there exists (ϕ⋆, ψ⋆) ∈
L1(µ)×L1(ν) such that π⋆ with density dπ⋆

dR
= eϕ⋆⊕ψ⋆ belongs to Π(µ, ν), then H(π⋆|R) =

infπ∈Π(µ,ν)H(π|R) and (ϕ⋆, ψ⋆) is a pair of dual optimizers.

Proof: For π ∈ Π(µ, ν), we have

π

(
ln

(
dπ⋆
dR

))
= π(ϕ⋆⊕ψ⋆) = µ(ϕ⋆)+ν(ψ⋆) = π⋆(ϕ⋆⊕ψ⋆) = π⋆

(
ln

(
dπ⋆
dR

))
= H(π⋆|R).

Hence statement (ii) in Proposition 4.6 holds with (η, µ, ν) = (R, π⋆, π) and E =
Π(µ, ν) which is convex. By this proposition, statement (i) also holds : H(π⋆|R) =
infπ∈Π(µ,ν)H(π|R). Moreover, since R(eϕ⋆⊕ψ⋆) = R(dπ⋆

dR
) = 1,

µ⊗ν(ϕ⋆⊕ψ⋆+1)−R(eϕ⋆⊕ψ⋆) = H(π⋆|R) = sup
(ϕ,ψ)∈L1(µ)×L1(ν)

{
µ⊗ ν(ϕ⊕ ψ + 1)−R(eϕ⊕ψ)

}
,

where the last equality follows from Proposition 4.3.

For µ ∈ P(X ), we denote by Π(µ, ·) =
⋃
ν∈P(Y) Π(µ, ν) the subset of P(X × Y) which

consists in probability measures with first marginal equal to µ.

Proposition 4.9. Let µ, η ∈ P(X ) with µ ∼ η (i.e. µ << η and η << µ) and dµ
dη

= eϕ⋆ ∈
L1(µ). For R ∈ Π(η, ·) with desintegration R(dx, dy) = η(dx)Rx(dy),

inf
π∈Π(µ,·)

H(π|R) = µ(ϕ⋆) = sup
ϕ∈L1(µ)

{
µ(ϕ+ 1)−R(eϕ)

}
.

In particular π⋆(dx, dy) = µ(dx)Rx(dy) =
dµ
dη
(x)R(dx, dy) is the primal optimizer and ϕ⋆

a dual optimizer.

Remark 4.10. The fact that µ ∼ η implies that dµ
dη
> 0, η a.e. (and therefore µ a.e.)

and writes eϕ⋆.

Proof: For π ∈ Π(µ, ·) such that π << R,

H(π|R) = H(µ(dx)πx(dy)|η(dx)Rx(dy)) =

∫
X×Y

ln

(
dµ

dη
(x)× dπx

dRx

(y)

)
µ(dx)πx(dy)

= H(µ|η) +
∫
X×Y

H(πx|Rx)µ(dx) ≥ H(µ|ν),

since H(πx|Rx) ≥ 0. As a consequence, infπ∈Π(µ,·)H(π|R) ≥ H(µ|ν). Since π⋆x = Rx

µ(dx) a.e., H(π⋆|R) = H(µ|η) = infπ∈Π(µ,·)H(π|R) and π⋆ is a primal optimizer. The
uniquess of the primal optimizer is a consequence of the strict convexity of R+ ∋ y 7→
y ln(y) like in the proof of Corollary 4.1. Finally,

inf
π∈Π(µ,·)

H(π|R) = H(µ|η) = µ

(
ln

(
dµ

dη

))
= µ(ϕ⋆) = µ(ϕ⋆ + 1)−R

(
eϕ⋆
)
, (4.9)

where we used that R
(
eϕ⋆
)
= η

(
eϕ⋆
)
= η

(
dµ
dη

)
= 1 for the last equality.

Reasoning like in the end of the proof of Proposition 4.3, we check that
infπ∈Π(µ,·)H(π|R) ≥ supϕ∈L1(µ)

{
µ(ϕ+ 1)−R(eϕ)

}
. With (4.9), we conclude that

infπ∈Π(µ,·)H(π|R) = µ(ϕ⋆ + 1) − R
(
eϕ⋆
)
= supϕ∈L1(µ)

{
µ(ϕ+ 1)−R(eϕ)

}
and that ϕ⋆

is a dual optimizer.
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4.3 Stability of the Entropic Optimal Transport

problem

Proposition 4.11. Let c ∈ Cb(X × Y). Then limε→0 Vc,ε(µ, ν) = Vc(µ, ν). Moreover, if
(πn)n∈N is a weakly convergent sequence of optimizers for Vc,εn(µ, ν) with limn→∞ εn = 0,
then its limit is optimal for Vc(µ, ν).

Remark 4.12. From any sequence (πn)n∈N of optimizers we can extract a weakly conver-
gent subsequence according to Lemma 1.7.

The proof relies on the data processing inequality :

Lemma 4.13 (Data processing inequality). Let κ : X → P(Y) be a probability kernel.
For η ∈ P(X ), we denote by ηκ ∈ P(Y) the probability measure defined by ηκ(dy) =∫
x∈X κx(dy)η(dx). Then

∀µ, ν ∈ P(X ), H(µκ|νκ) ≤ H(µ|ν).

Proof of Proposition 4.11: Clearly, ε 7→ Vc,ε(µ, ν) is non-decreasing and bounded
from below by Vc(µ, ν) so that limε→0 Vc,ε(µ, ν) exists and satisfies limε→0 Vc,ε(µ, ν) ≥
Vc(µ, ν). Let π⋆ be optimal for Vc(µ, ν). To check that limε→0 Vc,ε(µ, ν) = Vc(µ, ν), it is
enough to exhibit a sequence (πn)n∈N in Π(µ, ν) that converges weakly to π⋆ and such
that H(πn|µ ⊗ ν) < ∞ for each n ∈ N. Indeed setting εn = 1

n(H(πn|µ⊗ν)∨1) we have

limn→∞ εn = 0 = limn→∞ εnH(πn|µ⊗ ν) and

lim
n→∞

Vc,εn(µ, ν) ≤ lim
n→∞

{πn(c) + εnH(πn|µ⊗ ν)} = π⋆(c) = Vc(µ, ν).

To construct πn withH(πn|µ⊗ν) <∞, we rely on finitely supported probability measures.
Let (µn)n∈N and (νn)n∈N be sequences of finitely supported probability measures in P(X )
and P(Y) such that µn converges weakly to µ and νn converges weakly to ν as n → ∞
(existence follows for instance from the almost sure convergence of the empirical measure
of i.i.d. copies deduced from the strong law of large numbers). Let

• µ⊗κn,1 = µn⊗κ̃n,1 be some optimal coupling for W1(µ, µn) with the distance dX ∧1,

• ν⊗κn,2 = νn⊗ κ̃n,2 be some optimal coupling for W1(ν, νn) with the distance dY ∧1,

• π̂n = π⋆(κ
n,1 ⊗ κn,2) ∈ Π(µn, νn) and πn = π̂n(κ̃

n,1 ⊗ κ̃n,2) ∈ Π(µ, ν).

The weak convergence is equivalent to convergence in W1 for the distance capped by 1
so that limn→∞W1(µn, µ) +W1(νn, ν) = 1. When X × Y is equipped with the distance
(dX ∧ 1)⊕ (dY ∧ 1),

W1(π⋆, π̂n) ≤
∫
X×Y×X×Y

(dX (x, x̃) ∧ 1) + (dY(y, ỹ) ∧ 1)π⋆(dx, dy)κ
n,1
x (dx̃)κn,2y (dỹ)

=

∫
X×X

(dX (x, x̃) ∧ 1)µ(dx)κn,1x (dx̃) +

∫
Y×Y

(dY(y, ỹ) ∧ 1)ν(dy)κn,2y (dỹ)

= W1(µ, µn) +W1(ν, νn).
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In a symmetric way, W1(π̂n, πn) ≤ W1(µn, µ)+W1(νn, ν) so that by the triangle inequality

W1(π⋆, πn) ≤ W1(π⋆, π̂n) +W1(π̂n, πn) ≤ 2 (W1(µ, µn) +W1(ν, νn))
n→∞−→ 0,

and πn converges weakly to π⋆ as n → ∞. On the other hand, since π̂n and µn ⊗ νn are
finitely supported with the support of π̂n included in the one of µn ⊗ νn, π̂n << µn ⊗ νn,
and since the relative entropy amounts to a finite sum, ∞ > H(π̂n|µn ⊗ νn). Since πn =
π̂n(κ̃

n,1⊗ κ̃n,2) and µ⊗ν = (µnκ̃
n,1)⊗(νnκ̃

n,2) = (µn⊗νn)(κ̃n,1⊗ κ̃n,2), the data processing
inequality stated in Lemma 4.13 ensures that H(πn|µ ⊗ ν) ≤ H(π̂n|µn ⊗ νn) < ∞. The
sequence (πn)n∈N has the desired properties and therefore limε→0 Vc,ε(µ, ν) = Vc(µ, ν).

Last, if (πn)n∈N is sequence of optimizers for Vc,εn(µ, ν) with limn→∞ εn = 0 that con-
verges weakly to π∞, then π∞ ∈ Π(µ, ν) and taking the limit n → ∞ in the inequality
πn(c) ≤ Vc,εn(µ, ν), we get π∞(c) ≤ Vc(µ, ν), so that π∞ is optimal for Vc(µ, ν).

Proof of Lemma 4.13: It is enough to deal with the case when H(µ|ν) < ∞,
which implies µ << ν. Using the desintegrations µ(dx)κx(dy) = µκ(dy)κµy (dx) and
ν(dx)κx(dy) = νκ(dy)κνy(dx), we have

dµ

dν
(x) =

dµκx
dνκx

(x, y) =
dµκ

dνκ
(y)×

dκµy
dκνy

(x).

Then

H(µ|ν) = H(µκx|νκx) =
∫
X×Y

ln

(
dµκ

dνκ
(y)

)
+ ln

(
dκµy
dκνy

(x)

)
κyµ(dx)µκ(dy)

= H(µκ|νκ) +
∫
Y
H(κyµ|κyν)µκ(dy) ≥ H(µκ|νκ),

where we used the non-negativity of the relative entropy for the inequality.

Proposition 4.14. Let c ∈ Mb(X × Y), µ, µ̃ ∈ P(X ), ν, ν̃ ∈ P(Y). Then

|Vc,ε(µ, ν)− Vc,ε(µ̃, ν̃) ≤ 2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)) .

Moreover, the optimizers π⋆ ∈ Π(µ, ν) and π̃⋆ ∈ Π(µ̃, ν̃) satisfy

dTV(π⋆, π̃⋆) ≤ dTV(µ, µ̃) + dTV(ν, ν̃) +
√

2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)).

Proof: The coupling

µ(dx)κ1x(dx̃) = µ ∧ µ̃(dx)δx(dx̃) + 1{µ∧µ̃(X )<1}
(µ− µ ∧ µ̃)(dx)(µ̃− µ ∧ µ̃)(dx̃)

1− µ ∧ µ̃(X )

is optimal for dTV(µ, µ̃). Let ν(dy)κ2y(dỹ) defined similarly be optimal for dTV(ν, ν̃). For
π ∈ Π(µ, ν), π̃ := π(κ1 ⊗ κ2) ∈ Π(µ̃, ν̃). Let IYy (dw) = δy(dw) and π̂ = π(κ1 ⊗ IY).
By the triangle inequality, dTV(π, π̃) ≤ dTV(π, π̂) + dTV(π̂, π̃). We have π̂(dx, dy) =
µ̃(dx)πx(dy) = ν(dy)π̃y(dx). For f ∈ Mb(X × Y) bounded by 1/2, the function g(x) =∫
Y f(x, y)πx(dy) also is bounded by 1/2 and, by (4.6),

|π(f)− π̂(f)| = |µ(g)− µ̃(g)| ≤ dTV(µ, µ̃).
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With (4.6), this implies that dTV(π, π̂) ≤ dTV(µ, µ̃). In a symmetric way, dTV(π̂, π̃) ≤
dTV(ν, ν̃) and therefore dTV(π, π̃) ≤ dTV(µ, µ̃) + dTV(ν, ν̃). With (4.6), we deduce that

|π̃(c)− π(c)| ≤ 2∥c∥∞dTV(π, π̃) ≤ 2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)) . (4.10)

Since µ̃ ⊗ ν̃ = (µκ1) ⊗ (νκ2) = (µ ⊗ ν)(κ1 ⊗ κ2), by the data processing inequality
stated in Lemma 4.13, H(π̃|µ̃⊗ ν̃) ≤ H(π|µ⊗ ν). Hence

π̃(c)− π(c) + εH(π̃|µ̃⊗ ν̃)− εH(π|µ⊗ ν) ≤ 2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)) .

For the choice π = π⋆, we deduce that

Vc,ε(µ̃, ν̃)− Vc,ε(µ, ν) ≤ 2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)) .

The first inequality follows by symmetry. For R̃ε ∈ P(X ×Y) such that dRε
dµ̃⊗ν̃ = e−

c
ε

µ̃⊗ν̃(e−
c
ε )
,

π̃⋆ minimizes H(π̃|R̃) over Π(µ̃, ν̃) and by Proposition 4.6, H(π̃|R̃) ≥ H(π̃|π̃⋆) +H(π̃⋆|R̃)
for each π̃ ∈ Π(µ̃, ν̃). We choose π̃ = π⋆(κ

1 ⊗ κ2) to deduce with (4.10), H(π̃|µ̃ ⊗ ν̃) ≤
H(π⋆|µ ⊗ ν) (consequence of the data processing inequality stated in Lemma 4.13) and
the first assertion that

H(π̃|π̃⋆) ≤ H(π̃|R̃)−H(π̃⋆|R̃)
= π̃(c)− π̃⋆(c) + ε (H(π̃|µ̃⊗ ν̃)−H(π̃⋆|µ̃⊗ ν̃))

≤ π⋆(c)− π̃⋆(c) + 2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)) + ε (H(π⋆|µ⊗ ν)−H(π̃⋆|µ̃⊗ ν̃))

= Vc,ε(µ, ν)− Vc,ε(µ̃, ν̃) + 2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃))

≤ 4∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)) .

With Pinsker’s inequality stated in Lemma 4.4, we conclude that

dTV(π⋆, π̃⋆) ≤ dTV(π⋆, π̃) + dTV(π̃, π̃⋆) ≤ dTV(µ, µ̃) + dTV(ν, ν̃) +

√
1

2
H(π̃|π̃⋆)

≤ dTV(µ, µ̃) + dTV(ν, ν̃) +
√
2∥c∥∞ (dTV(µ, µ̃) + dTV(ν, ν̃)).

4.4 The Sinkhorn algorithm

Let c ∈ Mb(X × Y), ε > 0 and Rε ∈ P(X × Y) be defined by dRε
dµ⊗ν = e−

c
ε

µ⊗ν(e−
c
ε )
. The

probability measure Rε is equivalent to µ⊗ν and for π ∈ P(X ×Y), π << µ⊗ν ⇔ π <<
Rε. When this holds, dπ

dRε
= µ⊗ ν(e−

c
ε )e

c
ε

dπ
dµ⊗ν so that

εH(π|Rε) = (π(c) + εH(π|µ⊗ ν)) + ε ln
(
µ⊗ ν(e−

c
ε )
)
. (4.11)

Up to adding ε ln
(
µ⊗ ν(e−

c
ε )
)
to c we suppose from now on that

dRε

dµ⊗ ν
= e−

c
ε and Vc,ε(µ, ν) = ε inf

π∈Π(µ,ν)
H(π|Rε).
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By Corollary 4.8, we deduce that if we find (ϕ, ψ) ∈ L1(µ) × L1(ν) such that π with
density dπ

dRε
= eϕ⊕ψ belongs to Π(µ, ν), then π is the minimizer of Vc,ε (uniqueness is a

consequence of Corollary 4.1). Note that then

ν(dy) =

∫
x∈X

π(dx, dy) =

∫
x∈X

eϕ(x)+ψ(y)−
c
ε
(x,y)µ(dx)ν(dy)

so that

ν(dy) a.e., eψ(y)
∫
x∈X

eϕ(x)−
c
ε
(x,y)µ(dx) = 1

and by symmetry,

µ(dx) a.e., eϕ(x)
∫
y∈Y

eψ(y)−
c
ε
(x,y)ν(dy) = 1.

Hence

ν(dy) a.e., ψ(y) = − ln

(∫
x∈X

eϕ(x)−
c
ε
(x,y)µ(dx)

)
and µ(dx) a.e., ϕ(x) = − ln

(∫
y∈Y

eψ(y)−
c
ε
(x,y)ν(dy)

)
.

Definition 4.15. The Sinkhorn algorithm consists in alternatively solving these two equa-
tions starting from ϕ0(x) = 0, x ∈ X : for n ∈ N,

ψn(y) = − ln

(∫
x∈X

eϕn(x)−
c
ε
(x,y)µ(dx)

)
, y ∈ Y

ϕn+1(x) = − ln

(∫
y∈Y

eψn(y)−
c
ε
(x,y)ν(dy)

)
, x ∈ X .

Since the cost function c is bounded, we check by induction on n that so are ϕn and
ψn. Let π0 = Rε = e−

c
εµ⊗ ν and for n ∈ N, π2n+1 and π2n+2 be defined by

dπ2n+1

dµ⊗ ν
= eϕn⊕ψn−

c
ε and

dπ2n+2

dµ⊗ ν
= eϕn+1⊕ψn− c

ε . (4.12)

Since, by definition of ψn and ϕn+1,∫
x∈X

eϕn(x)+ψn(y)−
c
ε
(x,y)µ(dx) = 1 and

∫
y∈Y

eϕn+1(x)+ψn(y)− c
ε
(x,y)ν(dy) = 1,

we have π2n+1 ∈ Π(·, ν) and π2n+2 ∈ Π(µ, ·) with Π(·, ν) =
⋃
η∈P(X ) Π(η, ν) denoting the

subset of P(X × Y) consisting in probability measures with second marginal equal to ν.
For n ∈ N, the first marginal of π2n+1 is

η(dx) := eϕn(x)
∫
y∈Y

eψn(y)−
c
ε
(x,y)ν(dy)µ(dx) = eϕn(x)−ϕn+1(x)µ(dx) (4.13)

and the second marginal of π2n+2 is

eψn(y)
∫
y∈Y

eϕn+1(x)− c
ε
(x,y)µ(dx)ν(dy) = eψn(y)−ψn+1(y)ν(dy). (4.14)
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Since dµ
dη

= eϕn+1−ϕn and, by (4.12), π2n+2(dx, dy) = dµ
dη
(x)π2n+1(dx, dy), by Proposition

4.9 applied with R = π2n+1, H(π2n+2|π2n+1) = infπ∈Π(µ,·)H(π|π2n+1) and ϕn+1 − ϕn ∈
argmax

{
µ(ϕ)− π2n+1

(
eϕ
)
: ϕ ∈ L1(µ)

}
. Hence

µ(ϕn+1 − ϕn)− π2n+1

(
eϕn+1−ϕn

)
≥ µ(0)− π2n+1

(
e0
)
,

so that with (4.12),

µ(ϕn+1)− µ⊗ ν
(
eϕn+1⊕ψn− c

ε

)
≥ µ(ϕn)− µ⊗ ν

(
eϕn⊕ψn−

c
ε

)
.

In a symmetric way, for n ≥ 1, H(π2n+1|π2n) = infπ∈Π(·,ν)H(π|π2n) and

ν(ψn)− µ⊗ ν
(
eϕn⊕ψn−

c
ε

)
≥ ν(ψn−1)− µ⊗ ν

(
eϕn⊕ψn−1− c

ε

)
.

Hence, for n ≥ 1,

µ(ϕn) + ν(ψn)− µ⊗ ν
(
eϕn⊕ψn−

c
ε

)
≥ µ(ϕn) + ν(ψn−1)− µ⊗ ν

(
eϕn−1⊕ψn−1− c

ε

)
≥ µ(ϕn−1) + ν(ψn−1)− µ⊗ ν

(
eϕn−1⊕ψn−1− c

ε

)
.

This rewrites µ⊗ν(ϕn⊕ψn+1)−Rε

(
eϕn⊕ψn

)
≥ µ⊗ν(ϕn−1⊕ψn−1+1)−Rε

(
eϕn−1⊕ψn−1

)
.

Therefore, in view of the dual formulation of the entropic optimal transport problem
stated in Proposition 4.3, we may expect convergence of the Sinkhorn algorithm.

Theorem 4.16. The sequence (πn)n converges in total variation to the optimizer of
Vc,ε(µ, ν).

Proof: Let π⋆ ∈ Π(µ, ν) = Π(µ, ·) ∩ Π(·, ν) denote the optimal coupling for Vc,ε(µ, ν) =
ε infπ∈Π(µ,ν)H(π|Rε). For n ∈ N, since π2n+1 ∈ argmin{H(π|π2n) : π ∈ Π(·, ν)} and
π2n+2 ∈ argmin{H(π|π2n+1) : π ∈ Π(µ, ·)}, by Proposition 4.6,

H(π⋆|π2n) ≥ H(π⋆|π2n+1) +H(π2n+1|π2n)
and H(π⋆|π2n+1) ≥ H(π⋆|π2n+2) +H(π2n+2|π2n+1).

We deduce that H(π⋆|π2n) ≥ H(π⋆|π2n+2) +H(π2n+1|π2n) +H(π2n+2|π2n+1) and that

H(π⋆|π0) ≥
∑
n∈N

(H(π2n+1|π2n) +H(π2n+2|π2n+1)). (4.15)

Since π0 = Rε, H(π⋆|π0) = H(π⋆|Rε) ≤ H(µ⊗ ν|Rε) = µ⊗ ν
(
c
ε

)
<∞.

Let µn and νn denote the first and second marginals of πn. We have ν2n+1 = ν and
µ2n+2 = µ for n ∈ N and

H(µn|µ) +H(νn|ν) =

{
H(µn|µn−1) if n ≥ 3 is odd

H(νn|νn−1) if n ≥ 2 is even
.

Note that

H(πn|πn−1) =

∫
X×Y

ln

(
dµn
dµn−1

(x)× dπnx
dπn−1x

(y)

)
πn−1x(dy)µn−1(dx)

= H(µn|µn−1) +

∫
X
H(πnx|πn−1x)µn−1(dx) ≥ H(µn|µn−1) (4.16)
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and, in a symmetric way, H(πn|πn−1) ≥ H(νn|νn−1). Therefore, for n ≥ 2, H(µn|µ) +
H(νn|ν) ≤ H(πn|πn−1). With (4.15) then Pinsker’s inequality (see Lemma 4.4), we deduce
that

H(π⋆|π0) ≥
∑
n≥2

(H(µn|µ) +H(νn|ν)) ≥ 2
∑
n≥2

(d2TV(µn, µ) + d2TV(νn, ν)).

Therefore limn→∞(dTV(µn, µ) + dTV(νn, ν)) = 0.
Since, by (4.12) and the definition of Rε,

dπ2n+1

dRε

= eϕn⊕ψn and
dπ2n+2

dRε

= eϕn+1⊕ψn ,

Corollary 4.8 ensures that for n ≥ 1, πn is optimal for infπ∈Π(µn,νn)H(π|Rε). For π ∈
Π(µn, νn), since

dπ
dRε

= dπ
dµn⊗νn × dµn⊗νn

dµ⊗ν × e
c
ε , we have

H(π|Rε) = π

(
ln

(
dπ

dRε

))
= H(π|µn ⊗ νn) + π

(
ln

(
dµn
dµ

)
⊕ ln

(
dνn
dν

))
+

1

ε
π(c)

=
1

ε
(π(c) + εH(π|µn ⊗ νn)) +H(µn|µ) +H(νn|ν).

We deduce that for n ≥ 1, πn is optimal for Vc,ε(µn, νn). With Proposition 4.14, we
conclude that limn→∞ dTV(πn, π⋆) = 0.

Remark 4.17. By (4.12), (4.13) and (4.14), dπ2n
dπ2n+2

= eϕn⊕ψn−1

eϕn+1⊕ψn ,
dµ2n+1

dµ
= eϕn−ϕn+1 and

dν2n
dν

= eψn−1−ψn. Therefore

H(π2n|π2n+2) = π2n ((ϕn − ϕn+1)⊕ (ψn−1 − ψn)) = −µ
(
ln

(
dµ

dµ2n+1

))
+ ν2n

(
ln

(
dν2n
dν

))
= H(ν2n|ν)−H(µ|µ2n+1)

H(π2n+2|π2n) = π2n+2 ((ϕn+1 − ϕn)⊕ (ψn − ψn−1))

= H(µ|µ2n+1) + ν2n+2 (2ψn − ψn−1 − ψn+1)− ν2n+2 (ψn − ψn+1)

= H(µ|µ2n+1) +H(ν2n+2|ν2n)−H(ν2n+2|ν).

The first equality implies that H(ν2n|ν) ≥ H(µ|µ2n+1) and the second combined with
H(π2n+2|π2n) ≥ H(ν2n+2|ν2n) proved like (4.16) ensures that H(µ|µ2n+1) ≥ H(ν2n+2|ν).
Therefore H(ν2n|ν) ≥ H(ν2n+2|ν). In a symmetric way, we can check that the sequence
(H(µ2n+1|µ))n∈N also is non-increasing.

Remark 4.18. By studying the dual problem, it is possible to check that ∥ϕ⋆−ϕn∥L2(µ)+
∥ψ⋆ − ψn∥L2(ν) ≤ Chn for some rate h ∈ (0, 1) depending on ∥c∥∞.



Chapter 5

Weak convergence

Let X be a metric space endowed with its Borel σ-field B(X ) i.e. the smallest σ-field
which contains all the open subsets of X for the distance dX . A subset O ⊂ X is open
if ∀x ∈ O, ∃ε > 0, B(x, ε) := {y ∈ X : dX (x, y) < ε} ⊂ O. Let P(X ) denote the set of
probability measures on (X ,B(X )) and Cb(X ) = {f : X → R continuous and bounded}.

Definition 5.1. • A sequence (µn)n∈N ⊂ P(X ) converges weakly to µ ∈ P(X ) if

∀f ∈ Cb(X ), lim
n→∞

µn(f) = µ(f).

• A function f : X → R is upper (resp. lower) semi-continuous if

∀x ∈ X , f(x) ≥ lim sup
y→x

f(y) (resp. f(x) ≤ lim inf
y→x

f(y)).

Note that a function is continuous iff it is both upper and lower semi-continuous.

Theorem 5.2 (Portmanteau). The following assertions are equivalent

1) The sequence (µn)n∈N converges weakly to µ as n→ ∞.

2) ∀f : X → R Lipschitz and bounded, limn→∞ µn(f) = µ(f).

3) limn→∞ sup
f :Y→R

1− Lipschitz bounded by 1

{µn(f)− µ(f)} = 0.

4) ∀F ⊂ X closed, lim supn→∞ µn(F ) ≤ µ(F ).

5) ∀f : X → {−∞} ∪ R upper semi-continuous and bounded from above,
lim supn→∞ µn(f) ≤ µ(f).

6) ∀O ⊂ X open, lim infn→∞ µn(O) ≥ µ(O).

7) ∀f : X → R ∪ {+∞} lower semi-continuous and bounded from below,
lim infn→∞ µn(f) ≥ µ(f).

8) ∀A ∈ B(X ) with µ(∂A) = 0, limn→∞ µn(A) = µ(A).

9) ∀f : X → R bounded and continuous µ a.e., limn→∞ µn(f) = µ(f).
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We refer to Theorem 2.1 [5] for the equivalence between 1), 4), 6) and 8). We will
frequently use 7). Let us check that it is equivalent to 6). Since for O ⊂ X open, 1O is
lower semi-continuous and bounded from below by 0, we have 7) ⇒ 6). Let f : X → R
be lower semi-continuous and bounded from below. Up to replacing, f by f − inf f , we
may suppose that the function is non-negative. For η ∈ P(X ), we have

η(f) =

∫
x∈X

∫ f(x)

α=0

dαη(dx) =

∫ +∞

α=0

∫
x∈X

1{f(x)>α}η(dx)dα =

∫ +∞

α=0

η({x ∈ X : f(x) > α})dα.

Since f is lower semi-continuous, the set {x ∈ X : f(x) ≤ α} is closed and its comple-
mentary {x ∈ X : f(x) > α} is open. Hence, by 6) and Fatou lemma,

µ(f) =

∫ +∞

α=0

µ({x ∈ X : f(x) > α})dα ≤
∫ +∞

α=0

lim inf
n→∞

µn({x ∈ X : f(x) > α})dα

≤ lim inf
n→∞

∫ +∞

α=0

µn({x ∈ X : f(x) > α})dα = lim inf
n→∞

µn(f).

The following result is the combination of Theorems 5.1 and 5.2 [5].

Theorem 5.3 (Prokhorov). Let L ⊂ P(X ).

• If L is tight i.e.

∀ε > 0, ∃K ⊂ X compact such that sup
µ∈L

µ(Kc) ≤ ε,

then L is relatively compact (i.e. its closure is compact) for the weak convergence
topology.

• Let X be Polish (i.e. separable and complete in addition to metric). Conversely, if
L is relatively compact, then L is tight.

Proposition 5.4 (Skorokhod representation of the weak convergence). Let X be a Polish
space and (µn)n∈N ⊂ P(X ) converge weakly to µ ∈ P(X ) as n → ∞. Then there exists
on a probability space, Xn ∼ µn, n ∈ N and X ∼ µ such that limn→∞Xn = X a.s..

We refer to Theorem 6.7 [5] for a proof of this result which is a consequence of Lemma
1.43 when X = R.
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