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Abstract

In this article, we give a brief review of some recent results concerning the study of the
Euler-Maruyama scheme and its high order extensions. These numerical schemes are used to
approximate solutions of stochastic differential equations, which enables to approximate various
important quantities including solutions of partial differential equations. Some have been im-
plemented in Premia [56]. In this article we mainly consider results about weak approximation,
the most important for financial applications.

1 Introduction

The Euler-Maruyama scheme is a simple and natural approximation method for the solution of
various types of stochastic differential equations. It helps not only to simulate the solutions of
stochastic equations but it also serves theoretical purposes (see e.g. the articles of E. Gobet [18] [19]
on the local asymptotic mixed normality (LAMN) property in statistics).

To introduce this notion consider the stochastic differential equation

X(t) = x+

∫ t

0

b(X(s))ds+

r∑
j=1

∫ t

0

σj(X(s))dZj(s), (1)

where b, σi : Rd → Rd, i = 1, ..., r, are Lipschitz coefficients and Z = (Z1, . . . , Zr) is a r dimensional
Wiener process.

For a partition of the interval [0, T ] denoted as π : 0 = t0 < ... < tn = T , we define the norm of
the partition as ‖π‖ = max{ti+1−ti; i = 0, ..., n−1} and η(t) = sup{ti; ti ≤ t} the last discretization
time before t. Then the Euler-Maruyama scheme is defined inductively by

∀t ∈ [ti, ti+1], Xπ(t) = Xπ(ti) + b(Xπ(ti))(t− ti) +

r∑
j=1

σj(X
π(ti))(Z

j(t)− Zj(ti)).

The simplicity and the generality of the possible applications are the main attractions of this scheme.
In practice, one only needs to simulate the Brownian increments (Z(ti+1)− Z(ti))0≤i≤n−1 in order
to compute (Xπ(t1), Xπ(t2), . . . , Xπ(tn)). Let us first mention the strong convergence rate result.

Theorem 1 Under the above assumptions

∀p ≥ 1, E

[
sup
t≤T
‖X(t)−Xπ(t)‖2p

]
≤ C ‖π‖p

where the constant C depends on p, T , x and the Lipschitz constants.

∗Keywords: Euler-Maruyama scheme, Kusuoka scheme, Milshtein scheme, weak approximations, stochastic equa-
tions.
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The proof of this result is standard and essentially goes through the same methodology used to
prove existence of solutions to (1). This result can also be generalized to various equations without
changing the essential ideas.

In this paper, we are mainly interested in analyzing different error terms which involve a test
function. The corresponding results are called weak convergence results. Section two deals with
weak convergence for the Euler scheme. In case the partition is uniform (ti = iT

n ), denoting the
Euler scheme by Xn instead of Xπ, we first state the convergence in law of the normalized error
process

√
n(X−Xn) to a process χ which writes as a stochastic integral with respect to a Brownian

motion independent from Z. More precisely, for any continuous and bounded function F on the
space of continuous paths, E (F (

√
n(X −Xn))) converges to E (F (χ)) as n→ +∞.

Analysis of the weak error E (f(X(T )))− E (f(Xn(T ))) turns out to be more important for appli-
cations : for instance, the price of a European option with payoff function f and maturity T written
on an underlying evolving according to (1) under the risk-neutral measure writes E(e−rT f(X(T )))
where r denotes the risk-free rate. In [60], Talay and Tubaro prove that this difference can be
expanded in powers of 1

n . This justifies the use of Romberg-Richardson extrapolations in order to
speed-up the convergence : for instance E (f(X(T ))) − E

(
2f(X2n(T ))− f(Xn(T ))

)
= O( 1

n2 ) (see
Pagès [53] for a recent study devoted to the numerical implementation of these extrapolations). The
proof given by Talay and Tubaro relies on the Feynman-Kac partial differential equation associated
with (1). Here, we present another methodology introduced in [33] and based on the integration
by parts formula of Malliavin calculus. In [10], a general framework relying on the study of the
linear stochastic equation satisfied by the error process X−Xn is presented. This new methodology
enables to deal with a great variety of equations including some which seem beyond the scope of
the former PDE approach. We illustrate this latter point on the example of stochastic differential
equations with delay.

The third section is devoted to a method of exact (in law) simulation of (1) recently introduced
by [4] [5] in the one dimensional case r = d = 1. Then, for a smooth diffusion coefficient σ which
does not vanish, one can make a change of variables which transforms (1) into a SDE with diffusion
coefficient constant and equal to one. Under a new probability measure given by Girsanov theorem,
the original Brownian motion Z solves the latter SDE. The exponential factor giving the change
of probability measure is then simulated by a rejection/acceptation technique involving a Poisson
point process.

It is possible to obtain schemes with convergence order higher than the one of the Euler scheme by
keeping more terms in the stochastic Taylor expansion of the solution of the SDE. Section four deals
with such schemes. We first introduce Stratonovitch stochastic integrals in order to write nice Taylor
expansions. Then, on the example of the Milshtein scheme, we illustrate the difficulty to simulate the
iterated Brownian integrals which appear in the expansions and therefore to implement schemes with
high order of strong convergence. Recently, to overcome this difficulty, Kusuoka [40] [41] proposed
to replace these iterated Brownian integrals by random variables with the same moments up to a
given order. This leads to schemes with high order of weak convergence. These schemes and their
application in finance are currently the subject of a consequent research activity : [42] [47] [48] [50]
[17].

The last section adresses extensions of the results presented previously. The case where instead
of Z we have a Levy process, Z, is first considered. Discretization of reflecting stochastic differential
equations is also discussed.

2 Weak errors: from Jacod-Kurtz-Protter to Milshtein-Talay

If one is trying to approach the problem of weak convergence of the error process then the first
natural approach is to study the weak convergence of the process

√
n (X(t)−Xn(t)) .
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This is done in a series of articles by Jacod, Kurtz and Protter (e.g. see Section 5 in [39]). To
simplify the ideas suppose that we are dealing with the Wiener case in one dimension (r = 1), b ≡ 0
and that the partition is uniform : ti = iT

n . Since the process Xn solves

Xn(t) = x+

∫ t

0

σ(Xn(η(s)))dZ(s),

we have that

X(t)−Xn(t) =

∫ t

0

σn1 (s) (X(s)−Xn(s)) dZ(s) +

∫ t

0

σn2 (s) (Z(s)− Z(η(s))) dZ(s) (2)

where

σn1 (s) =

∫ 1

0

σ′(αX(s) + (1− α)Xn(s))dα

σn2 (s) =

∫ 1

0

σ′(αXn(s) + (1− α)Xn(η(s)))dασ(Xn(η(s))).

Given the strong convergence result and assuming smoothness of σ, one has that σn1 and σn2 converge
in the Lp(C[0, T ],R)-norm to

σ1(s) = σ′(X(s))

σ2(s) = σ′σ(X(s)).

Solving (2), we obtain that

X(t)−Xn(t) = En(t)

∫ t

0

En(s)−1σn2 (s) (Z(s)− Z(η(s))) dZ(s)

− En(t)

∫ t

0

En(s)−1σn1 σ
n
2 (s) (Z(s)− Z(η(s))) ds,

where

En(t) = exp

(∫ t

0

σn1 (s)dZ(s)− 1

2

∫ t

0

(σn1 (s))
2
ds

)
(3)

is the Doleans-Dade exponential, solution of the linear equation

En(t) = 1 +

∫ t

0

σn1 (s)En(s)dZ(s).

Now consider the process

√
n

∫ t

0

(Z(s)− Z(η(s))) dZ(s) =

√
n

2

j(t)−1∑
i=0

(Z(ti+1)− Z(ti))
2 + (Z(t)− Z(η(t)))

2 − t

 ,

where tj(t) = η(t). Then using Donsker’s theorem (see e.g. Billingsley [6] p. 68) we have that

√
n

∫ ·
0

(Z(s)− Z(η(s))) dZ(s) =⇒ Z ′

where
√

2
T Z ′ is a Wiener process independent of Z. Furthermore if we consider〈

Z,
√
n

∫ ·
0

(Z(s)− Z(η(s))) dZ(s)

〉
t

=
√
n

∫ t

0

(Z(s)− Z(η(s))) ds
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we have that this quadratic covariation converges to 0 in L2. This points to the following convergence(
Z,
√
n

∫ ·
0

(Z(s)− Z(η(s))) dZ(s)

)
=⇒ (Z,Z ′)

where Z and
√

2
T Z ′ are two independent Wiener processes. Therefore one can hint at the following

result
√
n (X(t)−Xn(t)) =⇒ E(t)

∫ t

0

E(s)−1σ2(s)dZ ′(s),

where

E(t) = exp

(∫ t

0

σ1(s)dZ(s)− 1

2

∫ t

0

(σ1(s))
2
ds

)
and (Z,

√
2
T Z ′) is a 2 dimensional Wiener process.

This result in a variety of forms and generalizations has been extensively proved by Jacod, Kurtz
and Protter.

In particular, from this result one obtains that for any continuous bounded functional F in
C[0, T ] one has that E [F (

√
n (X −Xn))] converges to E

[
F
(
E(·)

∫ ·
0
E(s)−1σ2(s)dZ ′(s)

)]
. On one

hand these results give more detail about the limit law of the error process. Nevertheless, this
does not give full information about the rate of convergence of various other functionals such as
E(X(t)p)− E(Xn(t)p), pX(t)(x)− pXn(t)(x) where p stands for the density function.

For this reason other efforts have been directed into extending the type of convergence into
stronger topologies than the one given by weak convergence of processes. In [29], the authors prove
that for any continuous bounded functional F and any bounded real variable Y we have that

E
[
Y F

(√
n (X −Xn)

)]
→ E

[
Y F

(
E(·)

∫ ·
0

E(s)−1σ2(s)dZ ′(s)

)]
.

This type of convergence is called stable convergence in law. It is worth noting that if Y is restricted
to a subfiltration this concept also allows the study of the convergence of the conditional expectation
of the error process. This type of results are promising but still it does not allow the analysis of the
convergence of quantities like the ones mentioned before.

In order to analyze this problem, there is another ”parallel” theory called weak approximation
that deals particularly with the error

E [f(X)− f(Xn)] .

The state of the art of this problem is more advanced than the one given previously by the theory
of Jacod-Kurtz-Protter. In fact one is able to deal with non bounded, non continuous and even
Schwartz distribution functions f (see Guyon [24]). On the other hand one is not able to give
precise information on the distribution of the limit error. Just to explain in simple terms the ideas
behind this approach, let’s explain in simple terms a complex result due to Bally and Talay [2] [3].

To clarify the methodology, we consider a real diffusion process (that is Z is a one dimensional
Wiener process)

X(t) = x+

∫ t

0

σ(X(s))dZ(s), t ∈ [0, T ],

and its Euler approximation

Xn(t) = x+

∫ t

0

σ(Xn(η(s)))dZ(s), t ∈ [0, T ],

where η(s) = kT/n for kT/n ≤ s < (k + 1)T/n. The error process Y = X −Xn solves

Y (t) =

∫ t

0

(σ(X(s))−σ(Xn(η(s))))dZ(s) =

∫ t

0

∫ 1

0

σ′(aX(s)+(1−a)Xn(η(s)))da(X(s)−Xn(η(s)))dZ(s),
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this can be written

Y (t) =

∫ t

0

σn1 (s)Y (s)dZ(s) +G(t), 0 ≤ t ≤ T,

with

σn1 (s) =

∫ 1

0

σ′(aX(s) + (1− a)Xn(η(s)))da

G(t) =

∫ t

0

σn1 (s)(Xn(s)−Xn(η(s)))dZ(s) =

∫ t

0

σn1 (s)σ(Xn(η(s)))(Z(s)− Z(η(s)))dZ(s).

In this simple case we have an explicit expression for Yt,

Y (t) = En(t)

∫ t

0

En(s)−1(dG(s)− σn1 (s)d < G,Z >s)

where En(t) is given by (3). Finally we obtain

Y (t) =En(t)

∫ t

0

En(s)−1σ1(s)σ(Xn(η(s)))(Z(s)− Z(η(s)))dZ(s)

− En(t)

∫ t

0

E(s)−1σn1 (s)2σ(Xn(η(s)))(Z(s)− Z(η(s)))ds.

Now let f be a smooth function with possibly polynomial growth at infinity. We are interested in
obtaining the rate of convergence of Ef(X(T )) to Ef(Xn(T )). We first write the difference

Ef(X(T ))−Ef(Xn(T )) =E

[∫ 1

0

f ′(aXT + (1− a)Xn(t))daY (T )

]
.

Replacing Y (T ) by its expression, we obtain with the additional notation Fn =

∫ 1

0

f ′(aX(T ) + (1−

a)Xn(T ))da,

Ef(X(T ))−Ef(Xn(T )) =E

[
FnEn(T )

∫ T

0

En(s)−1σn1 (s)σ(Xn(η(s)))(Z(s)− Z(η(s)))dZ(s)

]

−E

[
FnEn(T )

∫ T

0

En(s)−1σn1 (s)2σ(Xn(η(s)))(Z(s)− Z(η(s)))ds

]
. (4)

Applying the duality formula for stochastic integrals (E[< DF, u >L2[0,T ]] = E[Fδ(u)] see [51])
where D stands for the stochastic derivative and δ stands for the adjoint of the stochastic derivative,
this gives

Ef(X(T ))−Ef(Xn(T )) = E

[∫ T

0

Ds(F
nEn(T ))En(s)−1σn1 (s)σ(Xn(η(s)))(Z(s)− Z(η(s)))ds

]

−E

[
FnEn(T )

∫ T

0

En(s)−1σn1 (s)2σ(Xn(η(s)))(Z(s)− Z(η(s)))

]
.

Consequently, the differenceEf(X(T ))−Ef(Xn(T )) has the simple expression

Ef(X(T ))−Ef(Xn(T )) =E

[∫ T

0

Un(s)(Z(s)− Z(η(s)))ds

]
,

with
Un(s) = (Ds(F

nEn(T ))− FnEn(T )σ1(s))(En(s)−1σn1 (s)σ(Xn(η(s)))).
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We finally obtain the rate of convergence by applying once more the duality for stochastic integrals

Ef(XT )−Ef(Xn
T ) =E

[∫ T

0

∫ s

η(s)

DuU
n(s)duds

]
.

This last formula ensures that |Ef(X(T )) −Ef(Xn(T ))| ≤ CT/n and leads to an expansion of
Ef(X(T )) −Ef(Xn(T )) with some additional work. Furthermore the above argument extends
easily in the case that f is an irregular function through the use of the integration by parts formula
of Malliavin Calculus.

In other stochastic equations, one cannot explicitly solve the stochastic linear equation satisfied
by Y , but in a recent article [10], one can find a general framework that allows treating a great
variety of equations. As example we have developed the case of delay equations. The idea explained
above appeared for the first time at some workshop proceedings (in [33]) and later was used by
various authors (see [20], [22] and [21]) to prove weak approximations errors in other contexts such
as the Zakai equation or backward stochastic differential equations.

In fact, the first time this argument appeared in [33], it was just considered as an alternative
argument to prove the classical results of weak approximation of Milshtein [43] which are usually
obtained through a PDE method. Later it has been shown that in fact this new approach can
go beyond the classical proof method. To explain this with a concrete example, we will briefly
describe the problem with delay equations which is solved in [10]. Notice that such equations have
been introduced in finance by Rogers and Hobson [25] in order to propose a complete model with
stochastic volatility. In few words the problem with the Euler approximation for delay equations
is that if one tries to use the Milshtein method one gets into infinite dimensional problems quite
rapidly and therefore the degree of generalization is quite limited. In fact, consider (see the article
of Buckwar and Shardlow [8]) the following one dimensional delay equation

dX(t) =

(∫ 0

−τ
X(t+ s)dm(s) + b(X(t))

)
dt+ σ(X(t))dZ(t)

where m is a deterministic finite measure on the interval [−τ, 0] and the initial conditions are
X(s) = x(s) for s ∈ [−τ, 0].

Consider the integral operator A

Ax(t) =

∫ 0

−τ
x(t+ s)dm(s).

Then using classical theory of stochastic differential equations in infinite dimensions (an extension
of the variation of constants method, see Da Prato-Zabczyk) one obtains

X(t) = S(t)x+

∫ t

0

S(t− s)b(X(s))ds+

∫ t

0

S(t− s)σ(X(s))dZ(s)

where S is the semigroup associated with the linear first term in the equation for X.
The natural definition of the Euler scheme is obviously obtained by discretization of the integral

in the drift term. That is,

Xn(ti+1) = Xn(ti) +

m∑
j=0

X(ti + sj)m(sj , sj+1] + b(Xn(ti))(ti+1 − ti) + σ(Xn(ti))(Z(ti+1)− Z(ti))

where sj is a partition of the interval [−τ, 0] such that ti + sj = tl for some l ≤ i.
Similarly, one finds that Xn is generated using instead of S the Yoshida approximations to this

semigroup. That is the semigroup Sn associated with

Anx(t) =

m∑
j=0

x(t+ sj)(m(sj+1)−m(sj)).
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Then, as when n tends to infinity Anx −→ Ax and Snx −→ Sx, one expects the strong convergence
of the Euler scheme. In order to study the weak errors one has to go further and define the solution
of the partial differential equation associated with this problem :

ut(t, y) =
1

2
ux0x0

(t, y)σ(x0)2 + ux(t, y)Ax+ ux0
(t, y)b(x0)

where x(0) = x0 for y = (x0, x) ∈ R × L2[−τ, 0]. The (non-trivial) argument is then similar to
the classical Milshtein argument.

Nevertheless, it is also clear from the above set-up that this approach has its limitations. For
example, one cannot suppose that there is also a continuous delay in the diffusion coefficient or that
the delay term is non-linear.

In comparison, using the method explained previously, one obtains the following result:
Let (Xt)t∈[0,T ] be the solution stochastic delay equation : dXt = σ

(∫ 0

−τ
Xt+sdν(s)

)
dZt + b

(∫ 0

−τ
Xt+sdν(s)

)
dt

Xs = ξs, s ∈ [−τ, 0],

where τ > 0, ξ ∈ C([−τ, 0], IR) and ν is a finite measure.
We consider the Euler approximation of (Xt) with step h = τ/n dXn

t = σ

(∫ 0

−τ
Xn
η(t)+η(s)dν(s)

)
dZt + b

(∫ 0

−τ
Xn
η(t)+η(s)dν(s)

)
dt

Xn
s = ξs, s ∈ [−τ, 0],

with η(s) = [ns/τ ]
n/τ , where [t] stands for the entire part of t. We assume that the functions f , σ and

b are C3b . Then we obtain that

Ef(XT )− Ef(Xn
T ) = hCf + Ih(f) + o(h) (5)

where Cf = C(U0) and Ih(f) = Ih(U0) are defined in [10]. In particular |Ih(f)| ≤ Ch and

U0
s = σ′

(∫ 0

−r
Xs+udν(u)

)
Dsf

′(XT ) + b′
(∫ 0

−r
Xs+udν(u)

)
f ′(XT )

+σ′
(∫ 0

−r
Xs+udν(u)

)
Ds

(∫ T

0

θtdt

)
+ b′

(∫ 0

−r
Xs+udν(u)

)∫ T

s

θtdt

and θ is the unique solution of

θt = α∗

(
J

(
f ′(XT ) +

∫ T

0

θsds

))
(t) + β∗

(
E

(
f ′(XT ) +

∫ T

.

θsds|F.

))
(t)

with

α∗(X)(t) = E

(∫ 0

max(t−T,−r) σ
′
(∫ 0

−r
Xt−u+vdν(v)

)
Xt−udν(u)|Ft

)
β∗(X)(t) = E

(∫ 0

max(t−T,−r) b
′
(∫ 0

−r
Xt−u+vdν(v)

)
Xt−udν(u)|Ft

)
.

The above quoted result (5) is an expansion of the error. This result is used in order to increase

the rate of convergence of the method using the Romberg extrapolation (see [60] for details in the

diffusion case). That is, if Ef(XT )−Ef(Xn
T ) = hCf+o(h). Then if we define Y = 2f(Xn

T )−f(X
n/2
T )

one obviously obtains that Ef(XT )−EY = o(h) therefore increasing the rate of convergence of the
method. In order to know exactly what has been gained, it is also important to obtain the order of
the term o(h) in (5). This can be done using the same method but through tedious work obtaining
that in fact, Ef(XT ) − Ef(Xn

T ) = hCf + O(h2) under enough smoothness conditions on σ and
b. In the diffusion case, Pagès [53] addresses variance issues in the context of multi-step Romberg
extrapolation.
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3 An exact simulation method for one dimensional elliptic
diffusions

Recently in two articles by Beskos et.al. [4] [5], an interesting exact method of simulation in dimen-
sion one has been introduced. Consider the one dimensional diffusion

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dZ(s)

where σ(x) ≥ c > 0 for any x ∈ R and σ ∈ C1(R). Then perform the change of variables Yt = η(Xt)
where η(z) =

∫ z
x

1
σ(u)du. By Ito’s formula, Y satisfies the following sde:

Y (t) =

∫ t

0

α(Y (s))ds+ Z(t)

where α(y) = b
σ (η−1(y)) − σ′

2 (η−1(y)). Suppose that we want to compute E(f(XT )). Then using
Girsanov’s Theorem we have that

E(f(XT )) = E

[
f(BT ) exp

(∫ T

0

α(Bs)dBs −
1

2

∫ T

0

α(Bt)
2dt

)]
(6)

where B is another Wiener process and here we assume that α is bounded. This idea is usually
found when one proves existence of weak solutions for stochastic differential equations.

Next, one defines the function A(u) =
∫ u
0
α(y)dy. With this definition we have, applying Ito’s

formula, that

A(BT ) =

∫ T

0

α(Bs)dBs +
1

2

∫ T

0

α′(Bs)ds.

Therefore

Ef(XT ) = E

[
f(BT ) exp

(
A(BT )− 1

2

∫ T

0

(
α(Bt)

2 + α′(Bt)
)
dt

)]
.

If one was to simulate the above quantity, one would need the whole path of the Wiener process
B. In fact this is done in a series of papers by Detemple et. al. [14], [15] and [16] where the
Doss-Sussman formula is used to improve the approximation and obtain a scheme which is of strong
order one. Instead, Beskos et.al. [5] propose to use a Poisson process to simulate the exponential
in the above expression. In fact, one assumes that φ(x) = 1

2

(
α(x)2 + α′(x)

)
is such that ∀x ∈ R,

0 ≤ φ(x) ≤ M and introduces a Poisson point process N with intensity ds × du on [0, T ] × [0,M ],
independent of B. For any Borel subset S of [0, T ]× [0,M ], N(S) is a Poisson random variable with
parameter the Lebesgue measure of S. Hence, the random variable N1 = N({(s, u) ∈ [0, T ]× [0,M ] :
0 ≤ u ≤ φ(B(s))}) is such that

P (N1 = 0|B) = exp

(
−
∫ T

0

φ(Bs)ds

)
.

The simulation scheme follows from the equality

E(f(XT )) = E
[
f(BT ) exp (A(BT ))E(1{N1=0}|B)

]
= E

[
f(BT ) exp (A(BT )) 1{N1=0}

]
.

How is the simulation done? First one simulates independent exponential random variables with
parameter M say X1, ..., Xν until

∑ν
i=1Xi > T . Then one simulates independent random vari-

able Ui, . . . , Uν−1 uniformly distributed on the interval [0,M ]. The resulting point process N =∑ν−1
i=1 δ(X1+...+Xi,Ui) on [0, T ]× [0,M ] is Poisson with intensity ds× du. Now one simulates the in-

dependent increments B(X1), B(X1 +X2)−B(X1), ..., B(T )−B(
∑ν−1
i=1 Xi) of the Brownian motion

and computes N1 =
∑ν−1
i=1 1{Ui≤B(X1+...+Xi)}.
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Obviously there are various issues that have not been considered in this short introduction which
rest as open problems or that had already been treated by the authors. Also as it was well known
before, the one dimensional case always permits various reductions that do not happen in higher
dimensions. For instance, in higher dimensions, the so-called Doss transformation which permits
to obtain a SDE with a constant diffusion coefficient is only possible when σ satisfies a restrictive
commutativity condition. Notice that under that condition, the discretization scheme obtained by
applying the Euler scheme to the SDE with constant diffusion coefficient and making the inverse
change of variables is of strong order one (see [14]). Moreover, in higher dimensions the replacement
of the stochastic integral in (6) by a standard integral thanks to Itô’s formula is only possible when
α is a gradient function.
Nevertheless, the one dimensional case always remains as a testing ground for new methodology as
it was proven by our recent development in Section 2. And an exact Monte Carlo method for the
pricing of Asian options in the Black-Scholes model inspired by the above ideas will be implemented
by Jourdain and Sbai [30] in the version 10 of Premia [56].

4 Schemes with high order of convergence

4.1 Stochastic Taylor expansions

In order to make such expansions, it is more convenient to rewrite (1) in Stratonovich form. The
interest is that the chain rule holds for Stratonovich integrals. We recall that for a regular adapted
one-dimensional process (H(s))s≤t the Stratonovich integral

∫ t
0
H(s) ◦ dZj(s) is equal to the limit

in probability of
∑
i
1
2 (H(ti+1 ∧ t) +H(ti ∧ t))(Zj(ti+1 ∧ t)− Zj(ti ∧ t)) as maxi |ti+1 − ti| tends to

0. Hence ∫ t

0

H(s) ◦ dZj(s) =

∫ t

0

H(s)dZj(s) +
1

2
< H,Zj >t

and (1) writes

X(t) = x+

∫ t

0

σ0(X(s))ds+

r∑
j=1

∫ t

0

σj(X(s)) ◦ dZj(s) (7)

where σ0 = b− 1
2

∑r
j=1 ∂σjσj with ∂σj denoting the matrix

(
∂σij

∂xl

)
1≤i,l≤d

for σj = (σ1j , . . . , σdj)
∗.

Let us introduce the differential operators Vj =
∑d
i=1 σij(x)∂xi

for 0 ≤ j ≤ r. Since the chain rule
holds for Stratonovich integrals, for f a smooth function on Rd,

f(X(t)) = f(x) +

∫ t

0

V0f(X(s))ds+
r∑
j=1

∫ t

0

Vjf(X(s)) ◦ dZj(s) = f(x) +

r∑
j=0

∫ t

0

Vjf(X(s)) ◦ dZj(s),

where for notational convenience we set Z0(s) = s.
Now remarking that Vjf(X(s)) = Vjf(x) +

∑r
l=0

∫ s
0
VlVjf(X(u)) ◦ dZl(u), one obtains

f(X(t)) = f(x) +

r∑
j=0

Vjf(x)

∫ t

0

◦dZj(s) +

r∑
j,l=0

∫
0≤u≤s≤t

VlVjf(X(u)) ◦ dZl(u) ◦ dZj(s).

Iterating the reasoning, one obtains that for any positive integer m,

f(X(t)) =f(x) +

m∑
k=1

r∑
j1,...,jk=0

Vj1Vj2 . . . Vjkf(x)Z(j1,...,jk)(t)

+

r∑
j1,...,jm+1=0

∫
0≤s1≤...≤sm+1≤t

Vj1 . . . Vjm+1
f(X(s1)) ◦ dZj1(s1) ◦ . . . ◦ dZjm+1(sm+1)
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where Z(j1,...,jk)(t) =
∫
0≤s1≤...≤sk≤t ◦dZ

j1(s1) ◦ . . . ◦ dZjk(sk).

For 1 ≤ j ≤ r, Zj(s) is of order
√
s while Z0(s) = s or, in other words, by scaling, Z(j1,...,jk)(t) has the

same distribution as t(k+#{1≤l≤k:jl=0})/2Z(j1,...,jk)(1). Hence to obtain terms with the same order of
magnitude in the above expansion, one has to count the integrals with respect to Z0(s) twice. That is
why for α = (j1, . . . , jk) ∈ A =

⋃
l∈N∗{0, . . . , r}l, we set |α| = k and ‖α‖ = k+#{1 ≤ l ≤ k : jl = 0}.

Then we write

f(X(t)) =f(x) +
∑

α:‖α‖≤m

Vj1 . . . Vjkf(x)Zα(t) +Rm,f (t) where

Rm,f (t) =
∑

α:|α|≤m,‖α‖>m

Vj1 . . . Vjkf(x)Zα(t)

+

r∑
j1,...,jm+1=0

∫
0≤s1≤...≤sm+1≤t

Vj1 . . . Vjm+1
f(X(s1)) ◦ dZj1(s1) ◦ . . . ◦ dZjm+1(sm+1).

(8)

Since the remainder Rm,f (t) involves termes scaling like t to a power greater or equal to (m+ 1)/2,
the following result (see Proposition 2.1 [42] for p = 1) is not surprising.

Proposition 2 When the functions f , b and σj are smooth, the remainder Rm,f (t) is such that

for p ≥ 1, E(|Rm,f (t)|2p)1/(2p) ≤ Ct
m+1

2 where the constant C depends on p, f , b, σj and their
derivatives.

4.2 The Milshtein scheme

The Milsthein scheme consists in choosing f(x) = x and m = 2 in the above expansion (8) and
removing the remainder :

∀t ∈ [ti, ti+1], Xπ(t) =Xπ(ti) +

r∑
j=0

σj(X
π
ti)(Z

j(t)− Zj(ti)) +

r∑
j,l=1

∂σjσl(X
π
ti)(Z

(l,j)(t)− Z(l,j)(ti+1)).

(9)

The strong order of convergence of the Milshtein scheme is one (see for instance [32]) :

Theorem 3 Assume that the functions σj and b are C2 with bounded derivatives. Then for p ≥ 1,

sup
t≤T

E [‖X(t)−Xπ(t)‖p] ≤ C‖π‖p,

where the constant C does not depend on the partition π.

To implement the Milshtein scheme, one faces the difficulty usually encountered when trying to
construct practical discretization schemes from Taylor expansions : the need to simulate increments
of the multiple stochastic integrals which appear. On the one hand, by the fundamental theorem of
calculus, for 1 ≤ j ≤ r, Z(j,j)(t) =

∫
0≤u≤s≤t ◦dZ

j
u◦dZjs is equal to 1

2 (Zj(t))2. But on the other hand,

no such nice expression in terms of Zj(t), Zl(t) holds for Z(l,j)(t) when j 6= l. The generalization of
equality 2Z(j,j)(t) = (Zj(t))2 writes Z(l,j)(t) + Z(j,l)(t) = ZlZj(t).
Hence, for the Milshtein scheme to be simulable, one needs the following commutativity condition

(C) ∀1 ≤ l < j ≤ r, ∂σjσl = ∂σlσj

which always holds when r = 1 (single Brownian motion case). Under (C), it is enough to simulate
the Brownian increments since the Milshtein scheme writes

Xπ(ti+1) = Xπ(ti) + b(Xπ
ti)(ti+1 − ti) +

r∑
j=1

σj(X
π
ti)(Z

j(ti+1)− Zj(ti))

+
∑

1≤l<j≤r

∂σjσl(X
π
ti)(Z

lZj(ti+1)− ZlZj(ti)) +
1

2

r∑
j=1

∂σjσj [(Z
j(ti+1))2 − (Zj(ti))

2 − (ti+1 − ti)].
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In the elliptic case (when ∀x ∈ Rd, (σ1(x), . . . , σr(x)) is a basis of Rd), Cruzeiro, Malliavin and
Thalmaier [11] have recently proposed a new version of the Milshtein scheme X̃π which does not
involve iterated stochastic integrals of second order (even if commutativity (C) fails). It instead
involves a process with values in orthogonal matrices which governs a dynamical rotation of the
driving Brownian motion. The solution of X̃ of the equation obtained from (1) by this rotation has
the same distribution as X. They prove that E(supt≤T |X̃π

t − X̃t|2) ≤ C‖π‖2.

4.3 Schemes with high order of weak convergence

We just saw that the simulation of iterated Brownian integrals of order greater than one is a problem.
To overcome this difficulty and obtain simulable schemes with high order of weak convergence,
Kusuoka [40] [41] proposed to replace the iterated Brownian integrals which appear in the stochastic
Taylor expansion (8) by random variables with the same moments up to order m. See also [47] and
[48] where Ninomiya discusses the numerical implementation and efficiency of the resulting scheme
and [42] in which Lyons and Victoir propose another scheme based on similar ideas.

Definition 4 Let m ∈ N∗. A family (ζα)‖α‖≤m of random variables with finite moments of any
order is called m-moment like if

∀α1, . . . , αk ∈ A such that ‖α1‖+ . . .+ ‖αk‖ ≤ m, E [ζα1 . . . ζαk ] = E [Zα1(1) . . . Zαk(1)] . (10)

The following 5-moment like family in dimension r = 1 is given in [48] where other examples are
also presented :

Example 5 Let η be a random variable such that P (η = 0) = 2
3 and P (η = ±

√
3) = 1

6 .
Then one obtains a 5-moment like family in dimension r = 1 by setting

ζ0 = 1, ζ1 = η, ζ(1,1) =
1

2
η2, ζ(1,0) = ζ(0,1) =

1

2
η, ζ(1,1,1) =

1

6
η3,

ζ(1,1,0) = ζ(0,1,1) =
1

4
, ζ(0,0) =

1

2
, ζ(1,1,1,1) =

1

8
and ζα = 0 otherwise.

Now replacing the mutiple Brownian integrals by a m-moment like family in (8) written for
f(x) = I(x) where I(x) = x denotes the idendity function on Rd, one approximates the law of X(t)
by the one of

Y xt = x+
∑
‖α‖≤m

t‖α‖/2Vj1 . . . VjkI(x)ζα.

Let Qtf(x) = E(f(Y xt )) denote the corresponding approximation of E(f(X(t))).

Theorem 6 When the functions f , b and σj are smooth,

∣∣E(f(X(T )))−Qt1Qt2−t1 . . . QT−tn−1
f(x)

∣∣ ≤ C n−1∑
i=0

(ti+1 − ti)(m+1)/2

where the constant C depends on f , b, σj and their derivatives.

Remark 7 • For a regular grid ti = iT
n , one has

∑n−1
i=0 (ti+1− ti)(m+1)/2 = T (m+1)/2

n(m−1)/2 . Hence the
order of weak convergence of the scheme is (m− 1)/2.

• Setting ζj = Zj(1) for 0 ≤ j ≤ r, ζ(j,j) = 1
2 for 1 ≤ j ≤ r, ζ(j,l) = 0 for 0 ≤ j 6= l ≤ r

and ζ(j,k,l) = 0 for 1 ≤ j, k, l ≤ r, one obtains a m = 3-moment like family. According to the
Markov property, this family is such that Qt1Qt2−t1 . . . QT−tn−1f(x) = E(f(Xπ(T ))) where
Xπ denotes the Euler-Maruyama scheme. The order of weak convergence of this scheme is
1 = (3− 1)/2.
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• Of course, for the numerical approximation of E(f(X(T ))), m-moment like families which
can be generated on finite probability spaces with as few elements as possible are preferable.
For instance, the 5-moment like family given in example 5 can be generated on a probability
space with 3 elements supporting the random variable η. For this choice, the exact computation
of the approximation Qt1Qt2−t1 . . . QT−tn−1

f(x) is possible using a non-recombining trinomial
tree with n time-steps and therefore 3n leaves. When m and r increase, so does the cardinality
of the probability space necessary to support a m-moment like family. If exact computation
of the approximation is no longer possible, one has to resort to a partial sampling technique
such as the Monte-Carlo method (see [48] which is devoted to that issue). An important open
problem is how to generate m-moment like families of order higher than 5.

• In [40] [41], Kusuoka works under a uniformly non-degeneracy assumption weaker than the
uniform Hörmander condition (called the UFG condition) for (1) which ensures, thanks to the
Malliavin calculus, that for t > 0 x → E(f(X(t))) is smooth in the directions given by the
fields generated by the Lie brackets of Vj even if f is not. For the non uniform grid refined
near the maturity T

ti = T

(
1−

(
n− i
n

)γ)
with γ > m,

he obtains convergence of the approximation with order (m− 1)/2 for functions f only C1 :

∣∣E(f(X(T )))−Qt1Qt2−t1 . . . QT−tn−1
f(x)

∣∣ ≤ C‖∇f‖∞
n(m−1)/2

.

Proof. Setting Ptf(x) = E(f(X(t))), one has the following decomposition of the error

|E(f(X(T ))−Qt1 . . . QT−tn−1
f(x)| ≤|E(PT−tn−1

f(X(tn−1)))−Qt1 . . . Qtn−1−tn−2
PT−tn−1

f(x)|
+ |Qt1Qt2−t1 . . . Qtn−1−tn−2

(PT−tn−1
f −QT−tn−1

f)(x)|
(11)

We now prove the result by induction on n. For n = 1, one deals with Ptf(z)−Qtf(z) which by (8)
is equal to

E

f
z +

∑
‖α‖≤m

Vj1 . . . VjkI(z)Zα(t) +Rm,I(t)

− f
z +

∑
‖α‖≤m

t‖α‖/2Vj1 . . . VjkI(z)ζα

 .
Assuming for simplicity that d = 1 and making a standard Taylor expansion of the function f in
the neighborhood of z, one deduces that Ptf(z)−Qtf(z) is equal to

m∑
k=1

f (k)(z)

k!
E


 ∑
‖α‖≤m

Vj1 . . . VjkI(z)Zα(t) +Rm,I(t)

k

−

 ∑
‖α‖≤m

t‖α‖/2Vj1 . . . VjkI(z)ζα

k
+O(t

m+1
2 ).

According to Proposition 2, Rm,I(t) scales like t(m+1)/2. Now developping the powers and using
(10) one obtains that the expectation of all terms scaling like tl/2 with l ≤ m vanish. Therefore
|Ptf(z)−Qtf(z)| ≤ Ct(m+1)/2 and the induction hypothesis holds for n = 1.
We now assume that the induction hypothesis holds at rank n − 1. Since when f is smooth, so is
PT−tn−1

f , we deduce that the first term of the right-hand-side of (11) is smaller than C
∑n−2
i=0 (ti+1−

ti)
(m+1)/2. By the result proved for n = 1, ‖PT−tn−1

f −QT−tn−1
f‖∞ ≤ C(T − tn−1)(m+1)/2. Since

for all t ≥ 0, ‖Qtg‖∞ ≤ ‖g‖∞, one deduces that the second term of the r.h.s. of (11) is smaller than
C(T − tn−1)(m+1)/2. This concludes the proof.

Let us briefly present the related approximation based on the notion of cubature proposed by
Lyons and Victoir [42].
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Definition 8 Let m ∈ N∗ and t > 0. Continuous paths ωt,1, . . . , ωt,N with bounded variation from

[0, t] to Rr and positive weights λ1, . . . , λN such that
∑N
l=1 λl = 1 define a cubature formula with

degree m at time t if

∀α = (j1, . . . , jk) ∈ A such that ‖α‖ ≤ m, E(Zα(t)) =

N∑
l=1

λl

∫
0≤s1≤...≤sk≤t

dωj1t,l(s1) . . . dωjkt,l(sk)

(12)
where ωjt,l(s) denotes the j-th coordinate of ωt,l(s) when 1 ≤ j ≤ d and ω0

t,l(s) = s.

According to [42], there exists a cubature with degree m at time 1 such that N is smaller than
the cardinality of {α ∈ A : ‖α‖ ≤ m}. Moreover, one deduces a cubature of degree m at time t by
scaling. For l ∈ {1, . . . , N} let (yt,l(s, x))s≤t denote the solution of the ODE :

yt,l(0, x) = x and ∀s ∈ [0, t], dyt,l(s, x) =

r∑
j=0

σj(yt,l(s, x))dωjt,l(s).

Lyons and Victoir propose to approximate E(f(X(t)) by Qtf(x) =
∑N
l=1 λlf(yt,l(t, x)). Theorem

6 still holds with this new definition of Qtf . The proof is based on a similar decomposition of the
error but the analysis of E(f(X(t))−Qtf(x) is easier. Indeed the Taylor expansion (8) holds for Z
replaced by ωt,l. Multiplying by λl, summing over l and substracting (8) then using Proposition 2
and (12) , one obtains that |E(f(X(t))−Qtf(x)| ≤ Ct(m+1)/2.

Let us finally mention, interesting schemes with high weak order of convergence recently proposed
by Ninomiya and Victoir [50] and Fujiwara [17]. Even if the idea of these schemes also comes from
stochastic Taylor expansions, their implementation is different from the previous ones. It requires
a sequence of independent uniform random variables (Ui)1≤i≤n independent from (Z1, . . . , Zr). For
θ ∈ N∗, to go from X̄π

θ (ti) to X̄π
θ (ti+1), one repeats the following steps for k ∈ {1, . . . , θ}

1. integrate the ordinary differential equation d
dtx(t) = σ0(x(t)) on an interval with length (ti+1−

ti)/2θ,

2. depending on whether Ui+1 ≤ 1
2 or not, integrate successively for j increasing from 1 to r or

for j decreasing from r to 1 the ODE d
dtx(t) = σj(x(t)) on an interval with random length

Zj(tki )− Zj(tk−1i ) where tki = ti + k(ti+1 − ti)/θ.

3. do the first step again.

Ninomiya and Victoir [50] prove that X̄π
1 (T ) is an approximation of X(T ) with weak order of

convergence 2. The idea of Fujiwara [17] is to make Romberg-like extrapolations in order to improve
the weak rate of convergence. Indeed, he proves that E(f(X(T ))) is respectively approximated by
1
3E(4f(X̄n

2 (T )) − f(X̄n
1 (T ))) and 1

120E(243f(X̄n
3 (T )) − 128f(X̄n

2 (T )) + 5f(X̄n
1 (T ))) with order of

convergence 4 and 6. When, for some of the above ODEs, no analytical expression of the solution
is available, one has to resort to discretization schemes. Those schemes have to be chosen carefully
in order to preserve the weak order for the resulting scheme for (1). For instance, Fujiwara suggests
a Runge-Kutta scheme with order 13 to preserve the weak order 6. More recently, Ninomiya and
Ninomiya [49] have proposed a scheme with weak order 2 in which, for each time-step, only two
ordinary differential equations have to be integrated on a random time-horizon. They have also
analysed the effect in terms of weak error of the resort to Runge-Kutta schemes to integrate the
ordinary differential equations. The schemes with weak order 2 proposed by Ninomiya and Victoir
and by Ninomiya and Ninomiya are both implemented in Premia [56] for the pricing of Asian options
under the Heston model of stochastic volatility.

5 Comments on some extensions

We discuss first the case when Z is a Lévy process. That is, process with independent and stationary
increments with characteristic function given by
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E [exp (i 〈θ, Z(t)〉)] = exp

(
−1

2
〈θ,Γθ〉 t+ i 〈b, θ〉 t+

∫
Rr

(exp(i 〈θ, x〉)− 1− iθx1 {x ≤ 1}) ν(dx)

)
where θ ∈ Rr, Γ ∈ Rr×r is a symmetric non-negative matrix and ν is a measure satisfying∫
Rr

(
1 ∧ |x|2

)
ν(dx) < ∞. When b = ν = 0 and Γ is the identity matrix, then Z is a standard

r-dimensional Wiener process. The constant b denotes the drift of the process and ν is the Lévy
measure associated to the process Z. We note that in comparison with the Wiener process case not
all moments of Z are finite. In fact the moment of order k of Z is finite if

∫
Rr |x|k 1{x≥1}ν(dx) <∞.

The existence and uniqueness of the above equation (1) is ensured by standard theorems that can
be found in e.g. Protter [57] under Lipschitz assumptions on the coefficients b and σ. Nevertheless
it is not clear under which conditions the moments of the solution are finite if Z is a Lévy process,
except for the case of bounded coefficients.

In particular, we do not know how the finite moment property transfers from Z into X when
the coefficients are Lipschitz. These properties are important in order to determine the convergence
properties of the Euler scheme. The situation in the case that σ is constant is already difficult
enough. Nevertheless, this is an interesting problem.

We quote here some results of the article Kohatsu-Yamazato [34] who study this problem in the
particular case that σ is constant.

For example, consider for simplicity the one dimensional case r = d = 1 with Γ = 0, b = 0 and
ν a measure concentrated on (0,∞). The moment E(X(t)β) is finite or not depending on whether
the integral with respect to ν in the last column is finite or not.

b(y) = yα β Criterion for finiteness of E(X(t)β)

0 ≤ α ≤ 1 β > 0
∫ +∞
1

yβν(dy)
α > 1 0 < β < α− 1 always finite

α > 1 β = α− 1
∫ +∞
1

log (y) ν(dy)

α > 1 β > α− 1
∫ +∞
1

yβ−α+1ν(dy)

In the same lines of the above table, but in another set up, Grigoriu-Samorodnistsky [23] studied
the tail behavior of X(t). In either case the conclusions are similar.

The rule seems to be that if the drift coefficient is sublinear then the drift does not influence
the finite moment property of Z and it transfers directly to X. If the drift is superlinear then the
situation is different. That is, the finite moment property depends on the difference of power between
the drift and the moment to be evaluated. Therefore, it can be conjectured that this is the situation
in the Lipschitz cases.

Currently, as far as our knowledge goes, it is not known if X has finite moments even if the
exponential moments of Z are bounded unless one imposes a series of stringent conditions. In most
papers found in the literature, besides this assumption, one also has to make the assumption that
the moments of X are bounded which is an unaccomplished feature of this problem. For example
one has that

Theorem 9 Suppose that Z has exponential moments and that X has finite moments. Then

E

[
sup
t≤T
‖X(t)−Xπ(t)‖2p

]
≤ C ‖π‖p

where the constant C depends on T , x and the Lipschitz constants.

One remarkable different case from the discussion in this paper is the situation of reflecting
stochastic differential equations. In general, if the domain is closed and convex and the reflection
is normal, then the results can be usually obtained as generalizations of the non-reflecting case.
The main difference lies in how the inequalities are obtained. In fact, instead of using strong type
inequalities directly on the error process X(t) − Xπ(t), one has to use Ito’s formula and the fact
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that contribution of the reflecting processes brings Xn closer to X. If the domain is more general
then the results are no longer valid. In fact, as proven by Pettersson [54] (later refined by Slominski
[59]) the rates can decay slightly depending on the properties of the domain.

The latest refined results on this can be found in a recent thesis by S. Menozzi [44]. Nevertheless
there is no parallel theory in the style of Jacod-Kurtz-Protter.

In finance, one-dimensional processes that remain non-negative are of particular interest. This
non-negativity property comes from the choice of the coefficients in the SDE rather than from
reflection. The typical example is the Cox-Ingersoll-Ross process :

X(t) = x+

∫ t

0

(a− kX(s))ds+ σ

∫ t

0

√
X(s)dZ(s), with x, a, σ ≥ 0 and k ∈ R,

which is used to model short interest rates but also stochastic volatility in the Heston model. It is
not possible to discretize this SDE by the standard Euler scheme : indeed, Xπ(t1) is negative with
positive probability and then it is not possible to compute the square root in the diffusion coefficient
in order to define Xπ(t2). To overcome this problem, Deelstra and Delbaen [12], propose to take
the positive part before the square root and define recursively :

Xπ(ti+1) = Xπ(ti)(1− k(ti+1 − ti)) + a(ti+1 − ti) + σ
√

(Xπ(ti))+ (Z(ti+1)− Z(ti)).

In her thesis [13], Diop studies the symmetrized Euler scheme defined by

Xπ(ti+1) =
∣∣∣Xπ(ti)(1− k(ti+1 − ti)) + a(ti+1 − ti) + σ

√
Xπ(ti) (Z(ti+1)− Z(ti))

∣∣∣ .
In [1], Alfonsi compares those schemes with some new ones that he proposes. He concludes that the

following explicit scheme combines the best features when a ≥ σ2

4 :

Xπ(ti+1) =

(
(1− k

2
(ti+1 − ti))

√
Xπ(ti) +

σ(Z(ti+1)− Z(ti))

2(1− k
2 (ti+1 − ti))

)2

+ (a− σ2

4
)(ti+1 − ti).

This scheme has been implemented in Premia [56] in order to discretize the SSRD model of credit
risk [7].

Another interesting issue is the discussion about adaptive methods. That is, how to choose the
partition as to improve the first term in the expansion of the strong error. For this, we refer the
reader to [9] and subsequent articles [26] and [46].
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