Méthodes mathématiques pour la finance

Examen du 29 mai 2019 (8h30-11h00)

On se donne sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ un mouvement brownien standard $(B_t)_{t\geq 0}$ de filtration naturelle $(\mathcal{F}_t)_{t\geq 0}$. On se place dans le cadre du modèle de Black&Scholes sur l'intervalle de temps [0,T]. On considère un marché financier qui comporte un actif sans risque de prix $S_t^0 = e^{rt}$ à l'instant t (avec t>0) et un actif risqué de prix t0 à l'instant t1 dont l'évolution est régie par l'équation différentielle stochastique

$$dS_t = \sigma S_t dB_t + \mu S_t dt, \ S_0 = s_0$$

où $\sigma>0$ est la volatilité, $\mu\in\mathbb{R}$ le rendement et $s_0>0$ le cours initial de l'actif. On notera \mathbb{P}^* la probabilité de densité $e^{\frac{r-\mu}{\sigma}B_T-\frac{(r-\mu)^2T}{2\sigma^2}}$ par rapport à \mathbb{P} sous laquelle $(W_t=B_t+\frac{\mu-r}{\sigma}t)_{t\in[0,T]}$ est un mouvement brownien. On note \mathbb{E} l'espérance sous la probabilité \mathbb{P} et \mathbb{E}^* celle sous la probabilité \mathbb{P}^* .

Limite $\sigma \to +\infty$ du prix du Call

On note $c(\sigma)$ la prime à l'instant initial du Call européen de maturité T et de prix d'exercice K pour la volatilité σ .

- 1. Exprimer c sous forme d'une espérance sous \mathbb{P}^* .
- 2. Que vaut $\mathbb{E}^*[e^{\sigma W_T \frac{\sigma^2}{2}T}]$?
- 3. Quel est le comportement asymptotique presque sûr de $e^{\sigma W_T \frac{\sigma^2}{2}T}$ lorsque $\sigma \to \infty$?
- 4. En déduire que $\mathbb{E}^*[\sup_{\sigma>0}e^{\sigma W_T-\frac{\sigma^2}{2}T}]=+\infty$. Calculer $\sup_{\sigma>0}e^{\sigma W_T-\frac{\sigma^2}{2}T}$ et retrouver ce résultat.
- 5. Quel est le comportement asymptotique presque sûr de $(s_0e^{\sigma W_T-\frac{\sigma^2}{2}T}-Ke^{-rT})^+$ lorsque $\sigma \to \infty$?
- 6. Montrer que

$$c(\sigma) = s_0 - \mathbb{E}^* \left[s_0 e^{\sigma W_T - \frac{\sigma^2}{2}T} 1_{\{s_0 e^{\sigma W_T + (r - \frac{\sigma^2}{2})T} \le K\}} \right] - K e^{-rT} \mathbb{P}^* (s_0 e^{\sigma W_T + (r - \frac{\sigma^2}{2})T} > K).$$

7. Montrer que $\lim_{\sigma\to\infty}\mathbb{E}^*\left[s_0e^{\sigma W_T-\frac{\sigma^2}{2}T}\mathbf{1}_{\{S_0e^{\sigma W_T+(r-\frac{\sigma^2}{2})T}\leq K\}}\right]=0$. Quel est le comportement asymptotique de $\mathbb{P}^*(s_0e^{\sigma W_T+(r-\frac{\sigma^2}{2})T}>K)$ lorsque $\sigma\to\infty$? En déduire $\lim_{\sigma\to+\infty}c(\sigma)$.

Option passeport

Une option passeport donne le droit à son acheteur de choisir un processus $\Delta = (\Delta_t)_{t \in [0,T]}$ \mathcal{F}_t -adapté à valeurs dans [-1,1] et toucher à maturité T la partie positive $(X_T^{\Delta})^+$ de la valeur en T du portefeuille autofinancé de valeur initiale x_0 et qui consiste à détenir Δ_t actif risqué en $t \in [0,T]$. On note X_t^{Δ} la valeur de ce portefeuille en $t \in [0,T]$ et on pose $w(\Delta) = \mathbb{E}^*[e^{-rT}(X_T^{\Delta})^+]$.

1. Exprimer en fonction de S_t^0 , X_t^{Δ} , Δ_t et S_t la quantité d'actif sans risque détenue en t dans ce portefeuille?

On pose $Y_t^{\Delta} = X_t^{\Delta}/S_t$.

- 2. En appliquant un résultat vu en TD, dont on rappellera le nom, vérifier que l'autofinancement s'écrit $dY_t^{\Delta} = (X_t^{\Delta} - \Delta_t S_t)e^{-rt}dU_t$ où $U_t = S_t^0/S_t$.
- 3. Calculer U_t et en déduire que $dY_t^{\Delta} = \sigma(\Delta_t Y_t^{\Delta})(dW_t \sigma dt)$.
- 4. Pourquoi peut-on définir une probabilité $\hat{\mathbb{P}}$ de densité $\frac{d\hat{\mathbb{P}}}{d\mathbb{P}^*} = \frac{e^{-rT}S_T}{s_0}$ par rapport à \mathbb{P}^* ? Que peut-on dire du processus $(\beta_t = W_t \sigma t)_{t \in [0,T]}$ sous cette probabilité $\hat{\mathbb{P}}$? On note désormais $\hat{\mathbb{E}}$ l'espérance sous la probabilité $\hat{\mathbb{P}}$.
 - 5. Pourquoi l'équation différentielle stochastique

$$dZ_t = \sigma(1+|Z_t|)d\beta_t, \ Z_0 = z_0$$

admet-elle une unique solution pour toute condition initiale $z_0 \in \mathbb{R}$?

6. Justifier que $(Z_t)_{t \in [0,T]}$ est une \mathcal{F}_t -martingale de carré intégrable sous $\hat{\mathbb{P}}$ et en déduire que pour $s \in [0,T], Z_s^+ \leq \hat{\mathbb{E}}[Z_T^+|\mathcal{F}_s]$.

On admet l'existence d'une solution v(t,z) continue sur $[0,T] \times \mathbb{R}$ et $C^{1,2}$ avec $\partial_z v$ bornée sur $[0,T] \times \mathbb{R}$ à l'équation aux dérivées partielles

$$\begin{cases} \partial_t v(t,z) + \frac{\sigma^2}{2} (1+|z|)^2 \partial_{zz} v(t,z) = 0, \ (t,z) \in [0,T[\times \mathbb{R}, \\ v(T,z) = z^+, \ z \in \mathbb{R} \end{cases}$$
 (1)

- 7. Soit $s \in [0, T[$. Calculer $dv(t + s, Z_t)$ pour $t \in [0, T s[$. En déduire que $(v(t + s, Z_t))_{t \in [0, T - r]}$ est une \mathcal{F}_t -martingale sous $\hat{\mathbb{P}}$.
- 8. Soient $t, s \geq 0$ tels que $t + s \leq T$. Montrer que $v(t + s, Z_t) = \hat{\mathbb{E}}[Z_{T-s}^+ | \mathcal{F}_t]$ et $v(t, Z_t) = \hat{\mathbb{E}}[Z_T^+ | \mathcal{F}_t]$ et en déduire que $v(t, Z_t) \geq v(t + s, Z_t)$.
- 9. Quel est le signe de $\partial_t v$ sur $[0, T[\times \mathbb{R}]]$ En déduire que pour tout $t \in [0, T[, z \mapsto v(t, z)]$ est convexe.
- 10. On pose $V_t^{\Delta} = v(t, Y_t^{\Delta})$. Vérifier que pour $t \in [0, T]$,

$$dV_t^{\Delta} = \sigma \partial_z v(t, Y_t^{\Delta})(\Delta_t - Y_t^{\Delta})d\beta_t + D_t dt,$$

où $D_t = \frac{\sigma^2}{2} \partial_{zz} v(t, Y_t^{\Delta}) [(\Delta_t - Y_t^{\Delta})^2 - (1 + |Y_t^{\Delta}|)^2]$. Quel est le signe de D_t pour $t \in [0, T[?]]$

- 11. En déduire que $v(0, Y_0^{\Delta}) + \sigma \int_0^T 1_{\{t \leq \tau_n\}} \partial_z v(t, Y_t^{\Delta}) (\Delta_t Y_t^{\Delta}) d\beta_t \geq (Y_{T \wedge \tau_n}^{\Delta})^+$ où $\tau_n = \inf\{t \in [0, T] : |Y_t^{\Delta}| \geq n\}$ avec $n \in \mathbb{N}^*$. Justifier que $\lim \inf_{n \to \infty} \hat{\mathbb{E}}\left[(Y_{T \wedge \tau_n}^{\Delta})^+\right] \geq \frac{w(\Delta)}{s_0}$ et conclure que $s_0 v(0, \frac{x_0}{s_0}) \geq \sup_{\Delta} w(\Delta)$. Quel choix de processus $\Delta = (\Delta_t)_{t \in [0, T]}$ \mathcal{F}_t -adapté à valeurs dans [-1, 1] semble atteindre cette borne supérieure? Quelle équation faut-il savoir résoudre pour justifier ce choix?
- 12. On note $\tilde{S}_t = e^{-rt}S_t$. Donner $d\tilde{S}_t$ en fonction de dW_t , calculer $d(\tilde{S}_tV_t^{\Delta})$ et en déduire que

$$e^{-rT}(X_T^{\Delta})^+ \le s_0 v \left(0, \frac{x_0}{s_0}\right) + \int_0^T (V_t^{\Delta} + \partial_z v(t, Y_t^{\Delta})(\Delta_t - Y_t^{\Delta})) \sigma \tilde{S}_t dW_t.$$

13. Quelle est l'évolution de la valeur actualisée \tilde{V}_t d'un portefeuille autofinancé qui consiste à détenir $v(t, Y_t^{\Delta}) + \partial_z v(t, Y_t^{\Delta})(\Delta_t - Y_t^{\Delta})$ actif risqué en t? Conclure qu'en gérant celui de valeur initiale $s_0 v(0, \frac{x_0}{s_0})$, le vendeur de l'option (qui observe le processus Δ) surcouvre l'option passeport.