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Summary. For some parabolic equations with a local nonlinearity, a suitable spa-
tial derivation leads to a Fokker-Planck equation with a nonlocal nonlinearity. In
this paper we present a review of the particle methods obtained by replacing the
nonlinearity in this Fokker-Planck equation by interaction. We are interested in the
convergence results for the particle approximations of the original equations and
give the milestones of their proofs.

Introduction

Let us justify the key idea leading to the probabilistic interpretation of the
parabolic evolution equations treated in this paper on the simple example of
the viscous Burgers equation

∂tu(t, x) = ν∂xxu(t, x) − ∂x(u(t, x))2, (t, x) ∈ R+ ×R.

Following [10] [31] [26] [27], this equation can be seen as the Fokker-Planck
equation associated with a diffusion process with diffusion coefficient equal to
ν and with drift coefficient given by the solution u itself. This leads to the
following stochastic differential equation nonlinear in the sense of McKean
since the drift coefficient at time t is the density of the solution at the same
time :

dXt =
√

2ν dWt + u(t,Xt)dt where ∀t ≥ 0, u(t, x) is the density of Xt.

Here (Wt)t≥0 is a standard Brownian motion.
Of course, because of the nonlinearity u in the drift term, it is not possible to
simulate this stochastic differential equation. But one can simulate systems of
n particles where the nonlinearity is replaced by interaction. More precisely,
the particles are driven by independent Brownian motions. And the drift co-
efficient of the i-th particle (1 ≤ i ≤ n) is obtained as the empirical density of
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the system estimated at the position of the i-th particle itself. From a numer-
ical point of view, this leads to a difficulty, since the numerical approximation
of a density function is unstable.

The approach proposed by Bossy and Talay [7] [8] for the viscous Burgers
equation enables to avoid this difficulty. It consists in giving a probabilistic
interpretation to the equation satisfied by v = ∂xu :

∂tu = ν∂xxu− 2∂x(uv).

Since v is the derivative of u, the latter function is the integral of the former.
This leads to the following nonlinear stochastic differential equation :

dXt =
√

2ν dWt + 2u(t,Xt)dt where ∀(t, x) ∈ R+ ×R, u(t, x) = P (Xt ≤ x).

In the associated system with n particles, the drift coefficient of the i-th
particle is obtained as twice the empirical cumulative distribution fonction of
the system computed at the position of this particle :

dX i,n
t =

√
2ν dW i

t +
2

n

n
∑

j=1

1{Xj,n
t ≤Xi,n

t }dt, 1 ≤ i ≤ n

where (W 1, . . . ,Wn) is a n-dimensional Brownian motion. Notice that order-
ing the particles (with computational cost O(n log n)) is enough to compute
the drift coefficients of all particles. The solution u(t, x) of the Burgers equa-
tion is then approximated by 1

n

∑n
i=1 1{Xi,n

t ≤x}. This provides a numerical

method which may be more efficient than classical ones, when e.g. the viscos-
ity coefficient ν is small (see [5]).

In the first section of the paper, we show how this approach can be adapted
for general one-dimensional parabolic equations. In the second section, we
consider spatial domains equal to Rd, d ≥ 2. The last section adresses bounded
spatial domains.

1 One Dimensional Equations

We are interested in the initial value problem for the following parabolic evo-
lution equation with local nonlinearity

∂tu(t, x) = ∂xx [α(u(t, x))] − ∂x [β(u(t, x))] , (t, x) ∈ R+ ×R

u(0, x) = u0(x), x ∈ R (1)

where α, β : R → R are C1 functions with α non-decreasing (at least on the
interval (infR u0(x), supR u0(x))) and u0 : R → R is a non-constant function
with bounded variation i.e. u0(.) = c+

∫ .

−∞m(dy) with m a bounded signed
measure on the real line. By modifying the functions α and β without changing
their smoothness, we may assume without restriction that c is equal to zero
and that m is a probability measure when the function u0 is monotonic.
The following equations of physical interest may be written in the form (1) :
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• the viscous scalar conservation law ∂tu = ν∂xxu − ∂xβ(u) where ν > 0
obtained in the case α(u) = νu.

• the inviscid scalar conservation law ∂tu+ ∂xβ(u) = 0 obtained in the case
α ≡ 0.

• the porous medium equation ∂tu = ∂xxu
q with q > 1 obtained in the case

α(u) = uq and β ≡ 0. Then the initial condition u0 has to be non-negative.

Before dealing with general initial conditions, we consider monotonic functions
u0.

1.1 Monotonic Initial Conditions

We assume that u0(x) = m((−∞, x]) with m a probability measure on R. By
spatial derivation of (1), one obtains that v = ∂xu formally solves

∂tv = ∂xx [α′(u)v] − ∂x [β′(u)v] , v(0, .) = m.

To obtain a closed equation, one has to express u which appears in α′ and β′

in terms of v. Since v is the spatial derivative of u (and limx→−∞ u0(x) = 0),
one expects that u(t, x) =

∫ x

−∞ v(t, y) = H ∗ v(t, .)(x) where H(x) = 1{x≥0}
denotes the Heaviside function. Hence v formally solves the following parabolic
equation with nonlocal nonlinearity

∂tv = ∂xx [α′(H ∗ v)v] − ∂x [β′(H ∗ v)v] , v(0, .) = m. (2)

We are now going to distinguish the non-degenerate case obtained when α′ is
a positive function on the real line (assumption satisfied for the viscous scalar
conservation law) and the case of inviscid scalar conservation laws (α ≡ 0).

Non-Degenerate Case

We assume that ∀u ∈ R, α′(u) > 0. Let (Xt)t≥0 and P(C([0,+∞), R)) denote
respectively the canonical process and the space of probability measures on
C([0,+∞), R). Interpreting (2) as a nonlinear Fokker-Planck equation, we
associate the following nonlinear martingale problem with it

Definition 1. A probability measure P ∈ P(C([0,+∞), R)) with time-marginals
(Pt)t≥0 solves problem (MP) if

1. P0 = m
2. Mϕ

t = ϕ(Xt)−ϕ(X0)−
∫ t

0 α
′(H∗Ps(Xs))ϕ

′′(Xs)+β
′(H∗Ps(Xs))ϕ

′(Xs)ds
is a P -martingale for any function ϕ ∈ C2

b (R).

If P solves (MP), then the function t → EP (Mϕ
t ) is constant. One deduces

that t → Pt is a weak solution of (2). Since α′ is bounded from below by a
positive constant on the interval [0, 1], according to Theorem 2 [21], dt a.e. Pt

does not weight points. This ensures that α′(H ∗Pt)Pt (resp. β′(H ∗Pt)Pt) is
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the spatial derivative of α(H ∗ Pt) (resp. β(H ∗ Pt)) in the distribution sense
on R∗

+ ×R. Therefore if P solves (MP), then H ∗Pt(x) is a weak solution of
(1).
Consequently when uniqueness holds for weak solutions of (1), uniqueness for
problem (MP) is equivalent to uniqueness for a standard martingale problem
which follows from exercise 7.3.3 [30]. Uniqueness for weak solutions of the
viscous scalar conservation law (α(u) = νu) can be checked easily [15]. When
β ≡ 0, the uniqueness result of [9] ensures that (1) has no more than one
weak solution u such that ‖u(t, .)−u0‖L1(R) is locally integrable with respect
to t ∈ R+ and tends to 0 as t tends to 0. Lemma 1 stated in the Appendix
in the framework of Section 1.2 which generalizes the present one, allows to
deduce that if P and Q both solve problem (MP), then ∀(t, x) ∈ R+ × R,
H ∗ Pt(x) = H ∗ Qt(x). Apart from both these cases, to our knowledge, no
general result ensures uniqueness of the weak solution of (1).

Because of the presence of the marginal Ps in the coefficients at time s,
it is not possible to simulate the diffusion dynamics given by (MP). But one
obtains a simulable system of n particles by replacing Ps by the empirical
measure of the system at time s in the coefficients :

X i,n
t = X i

0 +

∫ t

0

√
2α′(H ∗µn

s (X i,n
s ))dW i

s +

∫ t

0

β′(H ∗µn
s (X i,n

s ))ds, i ≤ n (3)

where µn = 1
n

∑n
j=1 δXj,n and the initial variables X1

0 , . . . , X
n
0 are i.i.d.

according to m and independent from the n-dimensional Brownian motion
(W 1, . . . ,Wn). Existence of a weak solution is ensured by [30] exercise 7.3.2.
Weak uniqueness follows from [2] since the diffusion matrix is constant on the
polyhedrons {x = (x1, . . . , xn) ∈ Rn, xσ(1) < xσ(2) < . . . < xσ(n)} indexed by
the permutations σ of {1, . . . , n}.
Let πn denote the law of the empirical measure µn considered as a random
variable with values in P(C([0,+∞), R)). Since in view of weak uniqueness,
the processes X i,n, 1 ≤ i ≤ n are exchangeable, the tightness of the sequence
(πn)n is equivalent to the tightness of the laws of X1,n, n ≥ 1 (see [32]) which
follows from the boundedness of α′ and β′ on the interval [0, 1]. It is not dif-
ficult [16] to prove that the weak limit of any converging subsequence gives
full weight to the set of probability measures Q ∈ P(C([0,+∞), R)) such that
H ∗ Qt(x) is a weak solution of (1). In case this equation admits a unique
weak solution u(t, x), one deduces [18] :

∀T > 0, lim
n→+∞

E sup
t∈[0,T ]

∫

R

|u(t, x) −H ∗ µn
t (x)|

1 + x2
dx = 0. (4)

Hence the empirical cumulative distribution functions H∗µn
t (x) of the particle

systems converge to u(t, x) as n tend to infinity.
The next step consists in proving that the limit π∞ of any converging

subsequence of (πn)n gives full weight to solutions of problem (MP). In case
uniqueness holds for this problem, one deduces that when n tends to +∞,
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the empirical measures µn converge in probability to the constant P where P
denotes the unique solution of problem (MP). The choice of the initial distri-
bution of particles ensures that π∞ a.s. condition 1 in definition 1 is satisfied.
According to [16], the mappings on P(C([0,+∞), R)) naturally introduced
in order to check condition 2 are continuous at any probability measure Q
such that dt a.e. Qt does not weight points. Therefore it is enough to check
that π∞ gives full weight to such probability measures to conclude. For the
viscous scalar conservation law , one may deduce this property from estimates
of the density of (X1,n

t , X2,n
t ) obtained by Girsanov theorem [14] [15]. More

generally, it is a consequence of the estimate

E

(∫ t

0

|f(X1,n
s , X2,n

s )|ds
)

≤ C‖f‖L3(R2) with C not depending on n, (5)

which follows from Theorem 2 [21] since α′ is bounded from below by a positive
constant on the interval [0, 1] and the coefficients of the stochastic differential
equation (3) are globally bounded.

One may also be interested in the asymptotic behaviour of the reordered
system (Y 1,n, . . . , Y n,n) defined in the following way : for any t ≥ 0,
Y 1,n

t ≤ Y 2,n
t ≤ . . . ≤ Y n,n

t is the increasing reordering of (X1,n
t , . . . , Xn,n

t ).
According to [16], (Y 1,n, . . . , Y n,n) is a diffusion process with constant dif-
fusion matrix diag(α′(1/n), α′(2/n), . . . , α′(n/n)) and with drift coefficient
(β′(1/n), β′(2/n), . . . , β′(n/n)) normaly reflected at the boundary of the con-
vex subset {(y1, . . . , yn) : y1 ≤ y2 ≤ . . . ≤ yn} of Rn.
The laws π̄n of the empirical measures µ̄n = 1

n

∑n
i=1 δY i,n are easily proved

to be tight [16]. In general µ̄n is different from µn, but of course for any
non-negative t, one has µ̄n

t = µn
t . Hence the limit π̄∞ of any converg-

ing subsequence of (π̄n)n also gives full weight to the set of probability
measures Q ∈ P(C([0,+∞), R)) such that H ∗ Qt(x) is a weak solution
of (1). The order between particles enables to check that moreover, π̄∞

gives full weight to probability measures Q with finite dimensional marginals
Qt1,...,tk

equal to the image of the Lebesgue measure on the interval [0, 1]
by y → ((H ∗ Qt1)

−1(y), . . . , (H ∗ Qtk
)−1(y)) where for any non-negative

t, (H ∗ Qt)
−1(y) = inf{x : H ∗ Qt(x) ≥ y} (see [18]). When unique-

ness of weak solutions holds for (1), there is a unique probability measure
P̄ ∈ P(C([0,+∞), R)) with both these properties and the sequence (µ̄n)n

converges in probability to P̄ . If in addition, the unique weak solution of (1)
is continuous on ]0,+∞[×R, then according to [16], the second property char-
acterizing P̄ is equivalent to the fact that P̄ gives full weight to sample-paths
X such that t→ u(t,Xt) is constant on (0,+∞).

The following Theorem summarizes the results obtained above for the
viscous scalar conservation law and the equation with no first order term:

Theorem 1. Assume that α(u) = νu with ν > 0 (resp. that α′ is a posi-
tive function and that β ≡ 0). Then (1) admits a unique solution u and this
solution is continuous on (0,+∞) × R (resp. (1) admits a unique solution
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u such that ‖u(t, .) − u0‖L1(R) is locally integrable with respect to t ∈ R+

and tends to 0 as t tends to 0). As n tend to infinity, the empirical cumu-
lative distribution functions H ∗ µn

t (x) of the particle systems converge to
u(t, x) in the sense given by (4). The empirical measures of the original par-
ticles converge in probability to the unique solution P of problem (MP). The
empirical measures of the reordered particles converge in probability to the
unique P̄ ∈ P(C([0,+∞), R)) such that H ∗ P̄t(x) = u(t, x) and that P̄ a.s.
t → u(t,Xt) is constant on (0,+∞) (resp. and that the finite dimensional
marginals P̄t1,...,tk

are equal to the image of the Lebesgue measure on the in-
terval [0, 1] by y → ((H ∗ P̄t1)

−1(y), . . . , (H ∗ P̄tk
)−1(y))).

Remark 1. (see [16]) In case of the porous medium equation, α(u) = uq with
q > 1 and α′ vanishes for u = 0. By combining weak uniqueness for this
equation and existence of a solution u with sufficient spatial regularity, one
obtains that problem (MP) has no more than one solution P such that dt
a.e., Pt does not weight points. As n tends to infinity, the empirical cumulative
distribution functions H ∗ µn

t (x) of the particle systems converge to u(t, x) in
the sense given by (4) . Since u is continuous on (0,+∞) × R, one deduces
that any limit point of the sequence (πn)n gives full weight to probability
measures Q such that dt a.e., Qt does not weight points, and then concludes
that the empirical measures µn converge in probability to the unique solution
P of (MP) such that dt a.e., Pt does not weight points. Last, the empirical
measures µ̄n of the reordered particles converge in probability to the unique
P̄ ∈ P(C([0,+∞), R)) such that H ∗ P̄t(x) = u(t, x) and that P̄ a.s. t →
u(t,Xt) is constant on (0,+∞).

The Inviscid Scalar Conservation Law

We suppose that α ≡ 0. Then uniqueness fails to hold for weak solutions of
(1). However, according to Kruzkhov’s theorem, there is a unique entropic
solution characterized by the following inequalities

∂t|u(t, x) − c| + ∂x

(

sign(u(t, x) − c)(β(u(t, x)) − β(c))

)

≤ 0 (6)

holding in the distribution sense on R+ × R for each real constant c ∈ [0, 1].
Here sign(y) = 1{y>0} − 1{y≤0}. The entropic solution is the limit of the
solution of the viscous scalar conservation law as the viscosity coefficient ν
vanishes. This suggests to approximate u(t, x) by H ∗ µn

t (x) where µn is the
empirical measure of the system

X i,n
t = X i

0 +
√

2νn W
i
t +

∫ t

0

β′(H ∗ µn
s (X i,n

s ))ds, 1 ≤ i ≤ n

with small viscosity coefficient νn > 0. Numerical experiments by Bossy and
Talay [8] and Bossy, Piperno and Fezoui [5] show the good behaviour of this
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approximation.
The reordered particle system (Y 1,n, . . . , Y n,n) turns out to be a useful tool for
the theoretical study of the limit behaviour of H∗µn

t (x) = 1
n

∑n
i=1 H(x−Y i,n

t )
when νn tends to 0 as n tends to infinity. Indeed, denoting by [y] the integer
part of any real y, one remarks that the approximations |H ∗ µn

t (x) − [nc]/n|
and sign(H ∗µn

t (x)− [nc]/n)[β(H ∗µn
t (x))−β([nc]/n)] of the functions which

appear in (6) have spatial distribution derivatives respectively equal to ηn
t =

1
n

∑n
i=1 sign(i− [cn])δY i,n

t
and close to ξn

t = 1
n

∑n
i=1 sign(i− [cn])β′(i/n)δY i,n

t
.

For g a non-negative test function on R+ × R and ψ(t, x) =
∫ x

−∞ g(t, y)dy,

computing ψ(t, Y i,n
t ) by Itô’s formula and summing over i the result multiplied

by sign(i− [cn])/n, one obtains that

< ηn
t , ψ(t, .) > − < ηn

0 , ψ(0, .) > −
∫ t

0

< ηn
s , ∂sψ(s, .) > + < ξn

s , ∂xψ(s, .) > ds

is equal to the sum of the contribution of the reflection local time term which
is non-negative and of the contribution of the Brownian terms which vanishes
as n → +∞. By making spatial integration by parts, one concludes that the
entropic inequality tested against the function g approximately holds. This
intuitive reasoning can be made rigourous [18] to prove the following result :

Theorem 2. Assume that (νn)n is a sequence of positive numbers converg-
ing to 0 as n tends to infinity. Then the empirical cumulative distribu-
tion functions H ∗ µn

t (x) of the particle systems converge to the unique en-
tropic solution u(t, x) of the inviscid scalar conservation law in the sense
given by (4). In addition, the empirical measures µ̄n of the reordered sys-
tems converge in probability to the unique P̄ ∈ P(C([0,+∞), R)) such that
H ∗ P̄t(x) = u(t, x) and that the finite dimensional marginals P̄t1,...,tk

are
equal to the image of the Lebesgue measure on the interval [0, 1] by y →
((H ∗ P̄t1)

−1(y), . . . , (H ∗ P̄tk
)−1(y)).

Remark 2. Even if this is not rigorous because of the possible discontinuities
of the function u, the second condition which characterizes P̄ in the previous
theorem intuitively means that P̄ gives full weight to the characteristic curves
X along which t→ u(t,Xt) is constant .

Remark 3. Paper [20] investigates the limit behaviour of the particles

X i,n
t = X i

0 + ν1/α
n Si

t +

∫ t

0

β′(H ∗ µn
s (X i,n

s ))ds, 1 ≤ i ≤ n

where Si, 1 ≤ i ≤ n are independent symmetric stable processes with index
α ∈ (1, 2) independent from the initial positions (X1

0 , . . . , X
n
0 ) and νn > 0.

When the sequence νn is constant and equal to ν (resp. converges to 0), the
empirical cumulative distribution functions H ∗ µn

t (x) converge to the unique
weak solution u of ∂tu = −ν(−∂xx)α/2u− ∂xβ(u) (resp. the unique entropic
solution u of the inviscid scalar conservation law).
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1.2 General Initial Conditions

The initial condition u0 is now supposed to be the cumulative distribution
function of a signed measure m on R with total mass ‖m‖ ∈ (0,+∞) and total
variation measure |m|. Let us first deal with the non-degenerate case : ∀u ∈
R, α′(u) > 0. As explained in [15], to associate a single martingale problem
with (2), one may introduce h : R → {−‖m‖, ‖m‖} a density ofm with respect
to the probability measure |m|/‖m‖. With any Q ∈ P(C([0,+∞), R)), one
then associates the signed measure Q̃ with density h(X0) with respect to Q.
The time-marginals of Q̃ are denoted by (Q̃t)t≥0. Notice that if Q0 = |m|/‖m‖
then Q̃0(dx) = h(x)|m|(dx)/‖m‖ = m(dx).

Definition 2. A probability measure P ∈ P(C([0,+∞), R)) solves problem
(MP) if

1. P0 = |m|/‖m‖
2. Mϕ

t = ϕ(Xt)−ϕ(X0)−
∫ t

0
α′(H∗P̃s(Xs))ϕ

′′(Xs)+β
′(H∗P̃s(Xs))ϕ

′(Xs)ds
is a P -martingale for any function ϕ ∈ C2

b (R).

Since P̃ = P when m is a probability measure, this definition of problem
(MP) generalizes the previous one.
If P solves (MP), then the function t → EP (h(X0)M

ϕ
t ) is constant. This

implies that t → P̃t is a weak solution of (2). With [21], one deduces that
H ∗ P̃t(x) is a weak solution of (1). Like for monotonic initial conditions u0,
uniqueness for problem (MP) follows in case α(u) = νu with ν > 0 [15] and
in case β ≡ 0 (see [9] and Lemma 1 in the appendix).

The particle dynamics generalizing (3) is

X i,n
t = X i

0 +

∫ t

0

√
2α′(H ∗ µ̃n

s (X i,n
s )dW i

s +

∫ t

0

β′(H ∗ µ̃n
s (X i,n

s ))ds, i ≤ n (7)

where the contribution of the i-th particle to the signed empirical measure
µ̃n = 1

n

∑n
j=1 h(X

j
0)δXj,n has the weight h(X i

0). Because of the possible ir-

regularity of the function h, the choice of initial variables X i
0, 1 ≤ i ≤ n

i.i.d. according to |m|/‖m‖ is crucial for the validity of the convergence re-
sults below. The stochastic differential equation (7) still admits a unique weak
solution and the laws πn of the empirical measures µn = 1

n

∑n
i=1 δXi,n form

a tight sequence. By an easy adaptation of Proposition 2.4 [18], the limit π∞

of any convergent subsequence of (πn)n gives full weight to the probability
measures Q ∈ P(C([0,+∞), R)) such that H ∗ Q̃t(x) is a weak solution of (1).
When this equation admits a unique weak solution u(t, x), one deduces :

∀T > 0, lim
n→+∞

E sup
t∈[0,T ]

∫

R

|u(t, x) −H ∗ µ̃n
t (x)|

1 + x2
dx = 0. (8)

Since (5) still holds, one obtains that π∞ a.s., dt a.e., Qt does not weight
points and concludes that π∞ gives full weight to solutions of problem (MP).
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The next theorem puts together the results obtained above and a fluctuation
result adapted from [29] in [15] which ensures that the rate of convergence of
H ∗ µ̃n

t (x) to u(t, x) is 1/
√
n in the case of the viscous scalar conservation law.

Theorem 3. Assume that α(u) = νu with ν > 0 (resp. that α′ is a positive
function and that β ≡ 0). Then (1) admits a unique solution u (resp. a unique
solution u such that ‖u(t, .) − u0‖L1(R) is locally integrable with respect to
t ∈ R+ and tends to 0 as t tends to 0). As n tend to infinity, the weighted
empirical cumulative distribution functions H ∗ µ̃n

t (x) of the particle systems
converge to u(t, x) in the sense given by (8). The empirical measures of the
particles converge in probability to the unique solution P of problem (MP).
If α(u) = νu with ν > 0 and the function β is C3, then the finite-dimensional
marginals of the fluctuation field { 1√

n

∑n
i=1(ϕ(X i,n)− < P,ϕ(.) >), ϕ ∈

L2(P )} converge weakly to those of a centered Gaussian field.

Remark 4. In practice, the particles positions X i,n
t cannot be computed ex-

actly. The stochastic differential equation giving their evolution has to be
discretized with respect to time. Let us denote by Un(k∆t, x) the approx-
imate solution of (1) obtained with the standard Euler scheme with time-
step ∆t. The convergence estimate supk≤T/∆t E‖Un(k∆t, x) − u(t, .)‖L1(R) ≤
C(

√
∆t + 1√

n
) obtained by Bossy and Talay [7] [8] for the viscous Burgers

equation (α(u) = νu with ν > 0 and β(u) = u2) was extended to general
viscous scalar conservation laws and improved into

sup
k≤T/∆t

x∈R

E
[

|Un(k∆t, x) − u(t, x)| + ‖Un(k∆t, x) − u(t, .)‖L1(R)

]

≤ C

(

∆t+
1√
n

)

by Bossy [4].

Because of the possibility for the paths of particles with opposite weights
to intersect, the reordered system no longer evolves according to a diffusion
dynamics. In addition, when trying to approximate the entropic inequalities
in the vanishing viscosity limit, the contribution of the reflection local time
corresponding to such crossings has the wrong sign. To overcome these dif-
ficulties, it is possible to modify the particles dynamics by killing the cou-
ples of particles with opposite weights that merge [18]. From the point of
view of approximation of the equation (1), this idea turns out to be natu-
ral. Indeed, if It ⊂ {1, . . . , n} denotes the set of indices of particles still alive
at time t, the approximate solution Un(t, x) = 1

n

∑

i∈It
h(X i

0)H(x − X i,n
t )

is such that maxx∈R Un(t, x) (resp. minx∈R Un(t, x)) is non-increasing (resp.
non-decreasing) with t, property which is a discrete level translation of the
maximum principle satisfied by the solutions of (1). In addition, the total
variation of x → Un(t, x) is non-increasing with t. In [18], existence for the
particle system with killing

dX i,n
t = 1It(i)

(√
2νndW

i
t + β′(Un(s,X i,n

s ))dt
)

, i ≤ n
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associated with the scalar conservation law is checked and the following con-
vergence result is proved for the approximate solution Un :

Theorem 4. Assume that the sequence (νn)n converges to ν ≥ 0. Then

∀T > 0, lim
n→+∞

E sup
t∈[0,T ]

∫

R

|u(t, x) − Un(t, x)|
1 + x2

dx = 0,

where u denotes the solution of the viscous scalar conservation law if ν > 0
and the entropic solution of the inviscid conservation law otherwise.

2 Multidimensional Equations

We are first going to deal with a viscous scalar conservation law in arbi-
trary space dimension. Then we will consider the incompressible Navier-Stokes
equation in space dimension 2.

2.1 Viscous Scalar Conservation Law

Let us consider the following viscous scalar conservation law in space dimen-
sion d.

∂tu(t, x) = ν∆u(t, x) −∇.β(u(t, x)), (t, x) ∈ R+ ×Rd

u(0, x) = u0(x), x ∈ Rd (9)

where ν > 0, β : R → Rd is a C2 function bounded together with its first and
second order derivatives.

By spatial derivation of (9), one obtains formally that for 1 ≤ i ≤ d,
vi = ∂xiu solves

∂tvi = ν∆vi −∇.(β′(u)vi) and vi(0, x) = ∂xiu0(x).

To obtain a closed system for (v1, . . . , vd), one has to express u in terms of
its spatial gradient. In space dimension d ≥ 2, this question is less obvious
than in the previous one-dimensional setting. Anderson [1] first proposed to
use the fundamental solution of the Laplacian γ(x) for this purpose in a
particle method context (see also [13] [28]). One has γ(x) = g(|x|) where
g(r) = log(r)/S2 if d = 2 and g(r) = −1/Sdr

d−2 if d ≥ 3, with Sd denoting
the unit sphere area in Rd. When f : Rd → R is a C∞ function equal to
a constant c outside of a compact set then f = c + γ ∗ ∆f . By integration
be parts, one deduces that f = c +

∑d
j=1 ∂xjγ ∗ ∂xjf = c + ∇γ ∗ ∇f . This

formula is in fact a generalization of the one used in dimension one, since then
the derivative of the fundamental solution of the Laplacian |x|/2 is equal to
H − 1/2.

We assume from now on that u0 is bounded with first order distribution
derivatives belonging to L1 ∩L∞(Rd). Then the representation formula u0 =
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c+∇γ ∗∇u0 still holds for some real constant c. In addition, (9) has a unique
classical solution u(t, x) and this solution is such that for any non-negative t,
u(t, .) = c+ ∇γ ∗ ∇u(t, .) [17]. Hence the spatial derivatives (∂x1u, . . . , ∂xd

u)
of u solve weakly the following system :

∂tvi = ν∆vi −∇.



β′



c+

d
∑

j=1

∂xjγ ∗ vj



 vi



 , vi(0, .) = ∂xiu0. (10)

As in space dimension one, by spatial derivation we have transformed the
equation (9) with local nonlinearity into the previous system with nonlocal
nonlinearity. In (9), in the function β, the unknown u is convoluted with the
Dirac mass at the origin, whereas in (10), in the function β ′, the unknown
(v1, . . . , vd) is convoluted with ∇γ which can be seen as the Dirac mass inte-
grated once.
As the solution of (9) can be deduced from the solution of a similar equation
where all the spatial coordinates i ≤ d such that ‖∂xiu0‖L1(Rd) = 0 have been
removed, we suppose without restriction that for i ≤ d, ‖∂xiu0‖L1(R) > 0.
We are now going to give a probabilistic interpretation to the system (10).
Since the functions ∂xiu0 are not in general probability densities, we associate
with any (P 1, . . . , P d) ∈ P(C([0,+∞), Rd))d, the measures P̃ i with density
hi(X0) with respect to P i where hi(x) = ‖∂xiu0‖L1(Rd)sign(∂xiu0(x)) and

(Xt)t≥0 denotes the canonical process on C([0,+∞), Rd). Let us denote re-

spectively by (P i
t )t≥0 and (P̃ i

t )t≥0 the time marginals of the measures P i and

P̃ i.

Definition 3. (P 1, . . . , P d) solves problem (MP) if for 1 ≤ i ≤ d,

1. P i
0 =

|∂xi
u0(x)|

‖∂xi
u0‖L1(Rd)

dx.

2. For any t ≥ 0, P i
t has a bounded density w.r.t. the Lebesgue measure on

Rd.
3. Mϕ

t = ϕ(Xt)−ϕ(X0)−
∫ t

0 ν∆ϕ(Xs)+β
′(c+∇γ∗P̃s(Xs)).∇ϕ(Xs)ds is a P i

martingale for any function ϕ ∈ C2
b (Rd) (here ∇γ ∗ P̃s =

∑d
j=1 ∂xjγ ∗ P̃ j

s ).

If (P 1, . . . , P d) solves this problem then t → (P̃ 1
t , . . . , P̃

d
t ) is a weak solution

of (10).
Because of the explosion of the kernel ∇γ at the origin, it is necessary to
introduce a cutoff to construct systems of particles associated with (MP).
For ε > 0 let γε(x) = gε(|x|) where

gε(r) = g(r)1{r≥ε} +

(

g′(ε)r2

2ε
+ g(ε) − g′(ε)ε

2

)

1{0≤r<ε}.

Let εn > 0 denote the cutoff parameter ruling the interaction for the system
with n particles. Each particle (X i,n

1 (t), . . . , X i,n
d (t)) has d coordinatesX i,n

j (t),

j ≤ d which evolve in Rd according to
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X i,n
j (t) = X i

j(0) +
√

2ν W i
t

+

∫ t

0

β′



c+

d
∑

l=1

1

n− 1

∑

k 6=i

∂xl
γεn(X i,n

j (s) −Xk,n
l (s))hl(X

k
l (0))



 ds,

where W 1, . . . ,Wn are independent d-dimensional Brownian motions which
are independent from the Rd×d-valued initial variables (X i

1(0), . . . , X i
d(0)),

1 ≤ i ≤ n. These initial varibles are supposed to be i.i.d. with X1
j (0) dis-

tributed according to |∂xju0(x)|dx/‖∂xju0‖L1(Rd) for 1 ≤ j ≤ d. The next
theorem summarizes the results proved in [17] :

Theorem 5. Problem (MP) has a unique solution (P 1, . . . , P d). In addi-
tion, the unique classical solution u of (9) is such that ∀(t, x) ∈ [0,+∞) ×
Rd, u(t, x) = c + ∇γ ∗ P̃t(x). If the sequence (εn)n converges to 0 as n
tends to ∞, then ( 1

n

∑n
i=1 δXi,n

1
, . . . , 1

n

∑n
i=1 δXi,n

d
) converges in probability to

(P 1, . . . , P d).

As a consequence of this convergence result,

sup
(t,x)∈[0,T ]×Rd

E

∣

∣

∣

∣

∣

∣

u(t, x) − c− 1

n

n
∑

i=1

d
∑

j=1

∂xjγ
εn(x−X i,n

j (t))hj(X
i
j(0))

∣

∣

∣

∣

∣

∣

converges to 0 as n tends to ∞ which ensures that the approximate solution
of (9) converges to the exact solution.

2.2 Incompressible Navier-Stokes Equation in R2

In absence of external forces, the velocity field u = (u1, u2) and the pressure
field p of an incompressible Newtonian fluid in R2 solve the following Navier-
Stokes equation

∂tu = ν∆u− (u.∇)u−∇p, t ≥ 0, x = (x1, x2) ∈ R2 (11)

∇.u = 0, t ≥ 0, x ∈ R2

u(t, x) → 0 as |x| → +∞ and u(0, x) = u0(x), x ∈ R2

It is well known that this equation can be reformulated in terms of the vorticity

field : w = curlu
def
= ∂x1u

2 − ∂x2u
1. By derivation of (11), one obtains

∂tw = ν∆w −∇.(uw).

To obtain a closed equation for w, one has to express the velocity in terms of
the vorticity. Since ∇.u = 0, there exists a function ψ such that u = ∇⊥ψ =
(∂x2ψ,−∂x1ψ). On deduces that w = ∂x1(−∂x1ψ)−∂x2(∂x2ψ) = −∆ψ. Hence
ψ = −γ ∗w where γ denotes the fundamental solution of the Laplacian on R2
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and u = −∇⊥γ ∗w is the spatial convolution of the kernel of Biot and Savart
−∇⊥γ with the vorticity field w. Finally, the vorticity field solves

∂tw = ν∆w + ∇.((∇⊥γ ∗ w)w) and w(0, .) = curlu0(.). (12)

From now on, we follow Méléard [25] and assume thatm = curlu0 is a bounded
signed measure on R2 with total mass ‖m‖ > 0 (see also [23] and [24] for sim-
ilar results under more restrictive assumptions). For h : R2 → {−‖m‖, ‖m‖}
a density of m with respect to the probability measure |m|/‖m‖, one as-
sociates with any Q ∈ P(C([0,+∞), R2)) the signed measure Q̃ with den-
sity h(X0) with respect to Q (here (Xt)t≥0 denotes the canonical process on

C([0,+∞), R2))). The time-marginals of Q̃ are denoted by (Q̃t)t≥0. Interpret-
ing (12) as a Fokker-Planck equation, one associates the following nonlinear
martingale problem with this equation

Definition 4. A probability measure P ∈ P(C([0,+∞), R2)) solves problem
(MP) if

1. P0 = |m|/‖m‖
2. Mϕ

t = ϕ(Xt) − ϕ(X0) −
∫ t

0 ν∆ϕ(Xs) −∇⊥γ ∗ P̃s(Xs).∇ϕ(Xs)ds is a P -
martingale for any function ϕ ∈ C2

b (R2).

Because of the singularity of ∇⊥γ at the origin, it is necessary to cutoff this
kernel in order to construct associated interacting particle systems. To keep
important features of ∇⊥γ such as the divergence-free property, one defines
kε = −∇⊥γ ∗ φε where φε(x) = φ(x/ε)/ε2 with φ a smooth function with
radial symmetry and integral equal to 1. This way, kε is bounded by Mε and
Lipschitz continuous with constant Lε. One may choose Mε = O(1/ε2) and
Lε = O(1/ε3) as ε tends to 0.

For W 1, . . . ,Wn independent 2-dimensional Brownian motions indepen-
dent from the initial variables X1

0 , . . . , X
n
0 i.i.d. according to |m|/‖m‖, the

system with n particles is defined by

X i,n
t = X i

0 +
√

2ν W i
t +

∫ t

0

kεn ∗ µ̃n
s (X i,n

s )ds, 1 ≤ i ≤ n

where µ̃n
s = 1

n

∑n
j=1 h(X

j
0)δXj,n

s
and εn > 0. According to [25],

Theorem 6. Existence holds for problem (MP). The solution P is unique
when either m does not weight points or ‖m‖ is small enough.
When uniqueness holds, for T > 0, if

lim
n→+∞

εn = 0 and lim
n→+∞

Mεne
‖m‖LεnT /

√
nLεn = 0, (13)

then the empirical measures µn = 1
n

∑n
i=1 δXi,n considered as random vari-

ables with values in P(C([0, T ], R2)) converge in probability to P◦((Xt)t∈[0,T ])
−1.
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When u0 is such that supy>0 y(mes({x : |u0(x)| > y}))1/2 < +∞, ∇.u0 = 0
and m = curlu0 either does not weight points or has a small enough total
mass, then the Navier-Stokes equation (11) admits a unique solution (u, p).
And it is possible to approximate the velocity field thanks to the particle
system since under (13), for (t, x) ∈ [0, T ] × R2, 1

n

∑n
i=1 h(X

i
0)kεn(x −X i,n

t )
converges in probability to u(t, x).

3 Bounded Spatial Domains

We are first going to deal with a viscous scalar conservation law posed on
the spatial interval [0, 1] before considering the incompressible Navier-Stokes
equation in a bounded domain of R2.

3.1 Viscous Scalar Conservation Law in the Spatial Interval [0, 1]

We are now interested in the following viscous scalar conservation law posed in
the spatial interval [0, 1] with non-homogeneous Dirichlet boundary conditions

∂tu(t, x) = ν∂2
xxu(t, x) − ∂xβ(u(t, x)), (t, x) ∈ R+ × (0, 1)

∀x ∈ [0, 1], u(0, x) = u0(x) and ∀t ≥ 0, u(t, 0) = 0 and u(t, 1) = 1 (14)

where u0 is the cumulative distribution function of a probability measure
m on the interval [0, 1]. The probabilistic interpretation of this equation
involves a diffusion process with normal reflection at the boundary of the
interval [0, 1]. That is why we introduce (Xt,Kt) the canonical process on
C = C([0,+∞), [0, 1])×C([0,+∞), R). For P a probability measure on C, we
set P̂t = P ◦X−1

t .

Definition 5. A probability measure P ∈ P(C) solves problem (MP) if

1. P ◦ (X0,K0)
−1 = m⊗ δ0

2. ϕ(Xt−Kt)−ϕ(X0−K0)−
∫ t

0 νϕ
′′(Xs−Ks)+β

′(H∗P̂s(Xs))ϕ
′(Xs−Ks)ds

is a P martingale for any ϕ ∈ C2
b (R).

3. P a.s. ∀t ≥ 0, |K|t =
∫ t

0
1{0,1}(Xs)d|K|s < +∞ and Kt =

∫ t

0
1{Xs=0} −

1{Xs=1}d|K|s.
The process Kt with finite variation which increases when Xt is equal to 0
and decreases when Xt is equal to 1 accounts for reflection and prevents Xt

from leaving the interval [0, 1].
The associated particles are also reflected at the boundary of interval [0, 1] :

X i,n
t = X i

0 +
√

2νW i
t +

∫ t

0
β′(H ∗ µ̂n

s (X i,n
s ))ds +Ki,n

t , 1 ≤ i ≤ n

|Ki,n|t =
∫ t

0 1{0,1}(X
i,n
s )d|K|i,ns and Ki,n

t =
∫ t

0 1{Xi,n
s =0} − 1{Xi,n

s =1}d|Ki,n|s
µn = 1

n

∑n
j=1 δ(Xj,n,Kj,n) and µ̂n

s = 1
n

∑n
j=1 δXj,n

s
.

The next theorem states some of the results proved in [6]



Probabilistic Approximation of Some Nonlinear Parabolic Equations 15

Theorem 7. Problem (MP) has a unique solution P . In addition, u(t, x) =
H ∗ P̂t(x) is a weak solution of (14).
As n tends to infinity, the empirical measures µn converge in probability to P
and

∀(t, x) ∈ R+ × [0, 1], lim
n→+∞

E|u(t, x) −H ∗ µ̂n
t (x)| = 0.

To obtain a practical algorithm, the stochastic differential equation giving
the evolution of the positions X i,n

t has to be discretized with respect to time.
The main part of [6] is dedicated to the numerical analysis of the algorithm
obtained by using for this purpose the version of the Euler scheme with step∆t
proposed by Lépingle [22]. To precise this scheme, one needs two constant α0 <
α1 in (0, 1). As in a standard Euler scheme, the value of the drift coefficient of
each particle is frozen on each time-step to a value depending on the positions
of all particles at the beginning of the time-step. If the position of the i-
th particle at the beginning of a time-step is in [α0, α1], then one computes
the value of the process with frozen drift coefficient and without reflection
at the end of the time-step. If the position is in [0, α0) (resp. (α1, 1]) then
one computes the value of the process with frozen drift coefficient normally
reflected at 0 (resp. 1). In each case, the result is projected on [0, 1] to obtain
the position of the i-th particle at the beginning of the next time-step.
Let us denote by X̄ i,n

k∆t, 1 ≤ i ≤ n, 0 ≤ k ≤ T/∆t the discretized positions of
the particles obtained thanks to this scheme. The following convergence rate
is proved in [6] :

sup
x∈[0,1]

k≤T/∆t

E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

H(x− X̄ i,n
k∆t) − u(k∆t, x)

∣

∣

∣

∣

∣

≤ C

(

∆t+
1√
n

)

.

This rate is the same as the one obtained before by Bossy [4] when the spatial
domain is the whole real line i.e. in the absence of reflection of particles .

On the present example, because of the appropriate choice of the boundary
conditions at positions 0 and 1, everything works as if the spatial domain was
the whole real line. Let us now turn to an example in which the boundary
conditions come from the physics.

3.2 Incompressible Navier-Stokes Equation in a Bounded Domain

We are interested in the incompressible Navier-Stokes equation in a bounded
domain Θ of R2 with no-slip boundary conditions on ∂Θ :

∂tu = ν∆u− (u.∇)u−∇p, t ≥ 0, x ∈ Θ

∇.u = 0, t ≥ 0, x ∈ Θ

u(0, x) = u0(x), x ∈ Θ and u(t, x) = 0, t ≥ 0, x ∈ ∂Θ. (15)

As when the spatial domain is the whole plane, the vorticity field w = curlu
solves
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∂tw = ν∆w −∇.(uw) and w(0, .) = curlu0

To obtain a closed equation for w, one faces two difficulties. First, as usual,
one has to express u in terms of w. Second, one has to translate the no-slip
boundary condition for the velocity field in terms of a boundary condition for
the vorticity field. Of course, both issues are closely related.
Since ∇.u = 0, one has u = ∇⊥ψ and w = −∆ψ. One may choose ψ(t, x) =
−
∫

Θ
γ(x, y)w(t, y)dy where γ is the Green function of the Laplacian on Θ

with homogeneous Dirichlet boundary conditions. One deduces

u = −[∇⊥γw] where − [∇⊥γw](t, x) stands for −
∫

Θ

∇⊥
x γ(x, y)w(t, y)dy.

Because of the choice of homogeneous Dirichlet boundary conditions, ψ van-
ishes on ∂Θ. As a consequence, the tangential derivative of ψ is zero. Since
u = ∇⊥ψ, the normal component of the velocity vanishes on the boundary.
As pointed out by Chorin [11], to ensure that the tangential component of
the velocity is also zero, vorticity has to be created on the boundary. The
following Neumann’s boundary condition involving a nonlocal right-hand-side
proposed by Cottet [12] ensures the correct creation of vorticity

∂nw = ∂ncurlγ(−∂2w, ∂1w) − 1

|∂Θ|

∫

∂Θ

∂ncurlγ(−∂2w, ∂1w), t ≥ 0, x ∈ ∂θ.

Here ∂n denotes the normal component of the gradient and

γ(−∂2w, ∂1w)(t, x) =

(

−
∫

Θ

γ(x, y)∂2w(t, y)dy,

∫

Θ

γ(x, y)∂1w(t, y)dy

)

.

This condition of Neumann’s type seems well-suited for the probabilistic in-
terpretation since it can be translated into mass creation on the boundary.

In [19], as a first step towards this probabilistic interpretation we deal with
the vortex equation

∂tw = ν∆w + ∇.([∇⊥γw]w) and w(0, .) = w0(.)

with initial condition w0 ∈ L2(Θ) supplemented by the Neumann’s boundary
condition

∂nw(t, x) = g(t, x), t ≥ 0, x ∈ ∂Θ,

where g is a given function belonging to L2([0, T ] × ∂Θ) with T > 0 a finite
time horizon. We associate with this equation a nonlinear martingale problem
on a space of reflected paths either starting initially from Θ or starting from
∂Θ after that. We show uniqueness for the martingale problem and prove the
convergence of the empirical measures of well-chosen particle systems to the
solution of the martingale problem. Finally, we show that the corresponding
velocity field −[∇⊥γw] can be approximated thanks to the particles (see [19]
for details).
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Next, we have tried to deal with the nonlocal boundary condition proposed
by Cottet. Since, to our knowledge, no energy estimate is available for the vor-
tex equation supplemented by this boundary condition, the theoretical study
appears really difficult. And so far, we have not been able to obtain convincing
numerical results. Notice that a different probabilistic interpretation based on
branching processes was developped by Benachour, Roynette and Vallois [3]
for (15). But even if the authors propose some particle approximations, the
convergence of the method is not shown and the particle systems are not for
use in practice.

Conclusion

For all the parabolic evolution equations with local nonlinearity treated in the
present paper, we have shown that a suitable derivation of the solution with
respect to spatial variables enables to obtain a closed equation (or a closed
system of equations) of Fokker-Planck type with nonlocal nonlinearity : the
unknown function is convoluted with a kernel obtained by some spatial inte-
gration of the Dirac mass at the origin. In space dimension one, this kernel is
equal to the Heaviside function : it is discontinuous at the origin but since it
is bounded, its spatial convolution with any bounded signed measure makes
sense. This makes the probabilistic interpretation of the equation obtained
by derivation easy and enables to obtain rather general approximation results
for the solution of the original equation. In space dimension d ≥ 2, the kernel
is singular at the origin. Even if, from a probabilistic point of view, such a
kernel is much easier to take into account than the Dirac mass at the origin,
one has to be more cautious than in space dimension one.
We have also explained how the use of signed weights depending on the ini-
tial positions both in the nonlinear martingale problem and in the particle
dynamics allows to give a probabilistic interpretation and design particle ap-
proximations for an enlarged class of initial conditions.
Last, we have seen that when the original equation is posed in a bounded spa-
tial domain, the treatment of its boundary conditions after spatial derivation
can be rather delicate.

Appendix

Lemma 1. Let P solve problem (MP) given in Definition 2. Then,

∀t ≥ 0, ‖H ∗P̃t(.)−u0‖L1(R) ≤ ‖m‖
(

t sup
|u|≤‖m‖

|β′(u)| +
√

2t sup
|u|≤‖m‖

|α′(u)|
)

.

Proof. Let (P y)y∈R be a regular conditional probability distribution of P
given X0 = y. One has
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‖H ∗ P̃t(.) − u0‖L1(R) =

∫

R

∣

∣

∣

∣

∫

R

(P y(Xt ≤ x) − 1{y≤x})m(dy)

∣

∣

∣

∣

dx

≤
∫

R

∫

R

1{y>x}P
y(Xt − y ≤ x− y) + 1{y≤x}P

y(Xt − y > x− y)dx|m|(dy)

=

∫

R

< P y, |Xt − y| > |m|(dy).

One concludes by remarking that |m|(dy) a.e., under P y, the canonical process
(Xt)t≥0 solves weakly

Xt = y +

∫ t

0

√
2α′(H ∗ P̃s(Xs))dWs +

∫ t

0

β′(H ∗ P̃s(Xs))ds,

which ensures that

< P y, |Xt − y| >≤
(

t sup
|u|≤‖m‖

|β′(u)| +
√

2t sup
|u|≤‖m‖

|α′(u)|
)

.
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22. D. Lépingle. Euler scheme for reflected stochastic differential equations. Math.
Comput. Simul., 38(1-3):119–126, 1995.

23. C. Marchioro and M. Pulvirenti. Hydrodynamics in two dimensions and vortex
theory. Comm. Math. Phys., 84:483–503, 1982.
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